
Under review as a conference paper at ICLR 2023

SYMMETRICAL SYNCMAP FOR IMBALANCED
GENERAL CHUNKING PROBLEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recently, SyncMap (2021) pioneered an approach to learn complex structures
from sequences as well as adapt to any changes in underlying structures. Such
approach, inspired by neuron group behaviors, is achieved by using self-organizing
dynamical equations without any loss functions. Here we propose Symmetrical
SyncMap that goes beyond the original work to show how to create dynamical
equations and attractor-repeller points which are stable over the long run, even
dealing with imbalanced continual general chunking problems (CGCPs). The
main idea is to apply equal updates from positive and negative feedback loops
by symmetrical activation. We then introduce the concept of memory window to
allow for more positive updates. Our algorithm surpasses or ties other unsupervised
state-of-the-art baselines in all 12 imbalanced CGCPs with various difficulties,
including dynamical ones. To verify its performance in real-world scenarios, we
conduct experiments on several well-studied structure learning problems. The
proposed method surpasses substantially other methods in all scenarios, suggesting
that symmetrical activation plays a critical role in uncovering topological structures
and even hierarchies encoded in temporal data.

1 INTRODUCTION

Human brains have been proved to have unsupervised abilities to detect repetitive patterns in se-
quences involving texts, sounds and images (Orbán et al., 2008; Bulf et al., 2011; Strauss et al., 2015).
In the field of neuroscience, part of this behavior is known as chunking. Chunking has been verified in
many experiments to play an important role in a diverse range of cognitive functions (Schapiro et al.,
2013; Yokoi & Diedrichsen, 2019; Asabuki & Fukai, 2020). Related to chunking problems, many
sequence processing algorithms in machine learning have been proposed for time-series clustering
(Aghabozorgi et al., 2015) based on similarity measurements (Figure 1(a)). Chunking sequences
between state variables, however, is still underexplored (see Figure 1(b)(c)).

Recently, Vargas & Asabuki (2021) proposed the first learning of chunking based solely on self-
organization called SyncMap. The authors also extended chunking problems into one called Continual
General Chunking Problem (CGCP), which includes problems with diverse structures that can change
dynamically throughout the experiments. For the first time, SyncMap was shown not only able
to uncover complex structures from sequential data, but also to adapt to continuously changing
structures. It achieves this with self-organizing dynamics that maps temporal input correlations to
spacial correlations, where the dynamics are always updating with negative/positive feedback loops.
In this work, however, we identify problems in the original dynamics that lead to long-term instability,
and we further show that performances in imbalanced CGCPs are poor given the asymmetric number
of updates, i.e., the number of negative updates is much bigger than that of the positive ones.

Beyond identifying these problems, here we propose Symmetrical SyncMap, which can solve
both of the problems above using symmetric selection of nodes and generalized memory window.
Symmetrical SyncMap solves the instability of the dynamics efficiently, and goes beyond to propose
a solution to deal with imbalanced general chunking problems. As opposed to the original SyncMap
that suffers from the uneven updates from positive/negative feedback loops, we propose symmetrical
activation, and further introduce the concept of memory window, so that the system can have more
updates from positive feedback loop while concurrently reducing the number of negative updates.
In fact, the symmetrical number of updates not only compensates when imbalanced chunks are

1

Under review as a conference paper at ICLR 2023

presented, but also makes the algorithm stable over the long run and reaches an equilibrium quickly
in changing environments. By showing that equilibrium and self-organization can appear only with
dynamical equations and without optimization/loss functions, the biggest motivation from this paper
is realizing how the substantial improvements, beyond the self-organization inspiration, make the new
learning paradigm very adaptive and precise. Moreover, the simplicity of the modifications here, as
supported by the effectiveness in real-world scenarios of structure learning, solves the problem at the
foundation, while keeping the final method concise and improving it in both accuracy and stability.

2 RELATED WORKS

Chunking. Natural neural systems are well known for the unsupervised adaptivity, since they can
self-organize by many mechanisms for several purposes on many timescales (Lukoševicius, 2012).
One of the mechanisms is chunking, which can be described as a biological process where the brain
attains compact representation of sequences (Estes et al., 2007; Ramkumar et al., 2016). Specifically,
long and complex sequences are first segmented into short and simple ones, while frequently repeated
segments are concatenated into single units (Asabuki & Fukai, 2020). This can be seen as a complexity
reduction for temporal information processing and associated cost (Ramkumar et al., 2016).

Albeit our focus is more on neuroscience and machine learning perspectives, earlier algorithms
proposed for solving chunking problems are from linguistics and include PARSER (Perruchet
& Vinter, 1998). It performs well in detecting simple chunks, but fails when the probability of
state transition are uniform (Schapiro et al., 2013). A neuro-inspired sequence learning model,
Minimization of Regularized Information Loss (MRIL) was proposed by applying a family of
competitive network of two compartment neuron models that aims to predict its own output in a
type of self-supervised neuron (Asabuki & Fukai, 2020). Albeit the interesting paradigm, MRIL
has been shown unstable even for problems in which it performs reasonably well. Very recently, a
self-organizing learning paradigm (called SyncMap) has been proposed, which surpassed MRIL in
all scenarios (Vargas & Asabuki, 2021).

)
('

&%$

&KXQN��

&KXQN��

$
%

'
(
)

&KXQN��

&KXQN��

7LPH

,QSXW�VHTXHQFH��VWDWH�YDULDEOHV�

2XWSXW�FKXQNV��ODEHOV�

&

(a) (b) (c)

&OXVWHU��

&OXVWHU��

7LPH

6�

6�

6�

6�

6�

6HULHV

3UREDELOLVWLF

)L[HG

(d)

Figure 1: Explanation of the difference between time-series clustering and sequence chunking.
(a) Process of time-series clustering. Homogenous time-series (S1-S3, S4-S5) are grouped together
based on a certain similarity measure. (b) Chunking problems example. A fixed chunk (state variables
A-B-C [blue]) and a probabilistic chunk (D-E-F [orange]) are repeated in the input sequence with
equal probabilities. (c) Input-output map of problem structure in (b) over time. State transitioning by
first-order Markov chain. (d) Examples of the structures of fixed chunk and probabilistic chunk.

Time-series Clustering. Time series data is defined as a sequence of continuous, real-valued
elements, usually with high dimensionality and large data size (Aghabozorgi et al., 2015). As a
subroutine in unsupervised sequence processing, time-series clustering aims to uncover patterns,
usually in very large sequential datasets that cannot be manually handled. This can be found in
some articles applying competition-based self-organizing maps (SOMs) (Kohonen, 1990) and their
variations (Vannucci & Colla, 2018; Fortuin et al., 2018), which are well-suited for clustering time
series but not capable of chunking time series. In other words, these SOMs were not designed to find
the underlying structures of sequences and correlation between variables, therefore, their objectives
are different. A comparison of time-series clustering and sequence chunking is shown in Figure 1.

Word Embeddings. In the field of natural language processing, word embedding algorithms generally
transforms texts and paragraphs into vector representations (Khattak et al., 2019; Bojanowski et al.,
2017; Peters et al., 2018). FastText enriched the word vector with subword information (Bojanowski
et al., 2017), whereas ELMo (Peters et al., 2018) and BERT (Devlin et al., 2018) aimed to represent
word by contextualized word embeddings. Chunking problems presented here are related to some

2

Under review as a conference paper at ICLR 2023

of them, such as a prediction-based Word2vec embedding algorithm (Mikolov et al., 2013) that
transforms texts into a vector space representation and can be combined with clustering to deal with
chunking problems. Therefore, Word2vec is used in the experiments.

Representation Learning and Communities Detection. The problem of finding probabilistic
chunks refers to a random walk over a graph with several chunk structures; in which the possibility
of transition to an internal state within a chunk is higher than that of transition to an external state
belonging to other chunks. Such graph structures mentioned above can be seen as communities
(Radicchi et al., 2004), which are most-studied by recent representation learning algorithms such
as DeepWalk (Perozzi et al., 2014) and Graph Neural Networks (GNNs) (Kipf & Welling, 2016).
More related, the Modularity Maximization (Newman & Girvan, 2004; Tang & Liu, 2009) uses
eigen-decomposition performed on the modularity matrix to learn vertex representation of community.
By using the adjacency matrix (transition probability matrix) to convert sequential data to graph
structure, Modularity Maximization can also deal with chunking problems via random walk over the
generated graphs. Although there exists newer modularity-based algorithms which try to optimize the
pioneering work, such as Louvain method (Blondel et al., 2008), their objective is mostly to reduce
the computational cost. Therefore, we use the original Modularity Maximization in the comparison.

3 CONTINUAL GENERAL CHUNKING PROBLEMS

Recently, a problem called Continual General Chunking Problem (CGCP) has been first proposed by
Vargas & Asabuki (2021). The paper generalized various problems from neuroscience to computer
science, including chunking, causal and temporal communities and unsupervised feature learning of
time sequences. Such problems are considered as extracting co-occurring states from time sequences,
in which the generation process (i.e., data structure) can change over time. To illustrate, the input
sequences of CGCP contain state variables where each state belongs to a fixed chunk or a probabilistic
chunk, transitioning by first-order Markov chain. The element of the transition matrix is given by:
Pab = Pr[st+1 = b|st = a], where st is the state vector at t; and a and b are the label of states.

Specifically, the fixed chunk problem (see Figure 1(d) the blue chunk) refers to the situation that the
next state st+1, with respect to the current state st, is deterministic within a chunk. For example, if a
and b are two continuous elements of a fixed chunk with direction a to b, then Pab = 1,

∑
b Pab = 1.

More realistically, the probabilistic chunk problem (see Figure 1(d) the orange chunk) refers to input
sequences which are generated by giving a random walk over graphs. The graphs are characterized
by two types of degrees: internal degree kinti and external degrees kexti of state i. For every state, the
following constrain holds: kinti > kexti for all i ∈ A, where A is the set of all states in sequences. The
above constraint is satisfied if the graph has dense connections within chunks but sparse connections
between nodes in different chunks.

Beyond generalizing chunking problems to fixed and probabilistic chunks, CGCP also considers their
continual variations. This is motivated by the constant adaptation observed by neural cells that can
relatively switch behavior quickly in different environments (Dahmen et al., 2010). In this case, the
data structure can change over time, conferring a harder albeit realistic setting.

4 SYNCMAP

SyncMap is a sole self-organization based algorithm proposed by Vargas & Asabuki (2021). It solves
CGCP by creating a projected map that encodes the temporal correlation (chunks) as spatial distance
between nodes. In SyncMap’s dynamic, nodes which are activated together tend to be grouped as
chunks, while nodes that do not activate together will be pulled away from each other. The algorithm
is explained in detail in the following, with a brief example shown in Figure 2(a).

Input Encoding. Consider an input sequence of state variables S = {s1, s2, ..., st, ..., sτ}, where
τ is the sequence length. st = {s1,t, ..., sn,t}T is a vector at time step t, and its elements si,t,
i = 1, ..., n hold constrain si,t ∈ {0, 1} :

∑n
i=1 si,t = 1, where n is the number of states. The input

is encoded as an exponentially decaying vector xt = {x1,t, ..., xn,t}T having the same shape as st:

xi,t =

{
si,ta ∗ e−0.1∗(t−ta), t− ta < m ∗ tstep
0, otherwise

(1)

3

Under review as a conference paper at ICLR 2023

where ta is the last state transition to state si, and m is the state memory. Specifically, state transitions
happen every tstep step (also known as time delay), and variables that have their activation period
greater than m ∗ tstep are set to 0. m and tstep are set at 2 and 10 in the original work. An example
of the encoded exponentially decaying input is shown in Figure 2(a).

Training Dynamic. We generate weight nodes wi,t in SyncMap’s map space to obtain pair tuple
(xi,t, wi,t). Nodes are first randomly initialized in a k dimensional map space. Note that weight node
wi,t ∈ Rk is a point in SyncMap’s map space, and it can also be considered as a vector.

In every iteration when a new input vector xt comes in, all its elements xi,t, together with the
corresponding nodes wi,t, are divided into two sets according to the threshold value a: (1) activated
or recently activated (positive) set PSt = {i|xi,t > a} and (2) non-recently activated (negative)
set NSt = {i|xi,t ≤ a}. The original SyncMap used a directly at 0.1. In this paper we introduce
threshold value a which allows us to achieve more general state memory implementation.

Inside the space, the centroids of PSt and NSt sets are calculated as follows if and only if the
cardinality of both sets are greater than one in this iteration (i.e., |PSt| > 1 and |NSt| > 1):

cpt=

∑
i∈PSt

wi,t

|PSt|
, cnt=

∑
i∈NSt

wi,t

|NSt|
(2)

where cpt and cnt are the centroids of PSt and NSt respectively. Finally, node wi,t corresponding
to each input xi,t is updated:

ϕi,t =

{
1, i ∈ PSt

0, i ∈ NSt
, α =

{
α, i ∈ PSt ∪NSt

0, otherwise
(3)

wi,t+1=wi,t+α(
ϕi,t(cpt−wi,t)

||wi,t−cpt||
−

(1−ϕi,t)(cnt−wi,t)

||wi,t−cnt||
) (4)

where α is the learning rate and ||·|| is the Euclidean distance. Subsequently, updated nodes are
normalized to be within a hyper-sphere having radius of 10 at the end of the iteration.

Clustering Phase. SyncMap forms a map during dynamic training, which has the number of nodes
equal to the number of input states n. After training, DBSCAN is used (Schubert et al., 2017) for
clustering with the pre-defined density parameters eps and minimum cluster mc, as it does not require
the number of clusters as input.

A B C D E D F D E A B C D F E D A

A

E

D B

C

F

wA
wB
wC
wD
wE
wF BA C

D

F

E D

F

E

B CA
Chunk 1

Chunk 2

Nodes randomly initialized Training ends Clustering phase

State memory window

State variables over time

Input x ...

(b) Original SyncMap (c) Symmetrical SyncMap

Map Center

Inhibited Node

(a) SyncMap Algorithm Description: Encoding, Dyncmic and Clustering

xA
xB
xC
xD
xE
xF

Node w

DBSCANDynamic PSt

Selected Negative Node

Negative Centroid

Selected Positive Node

Positive Centroid

PSt

NSt
NSt

Figure 2: Dynamics in SyncMap. (a) Chunking procedures using SyncMap. Sequences with
state variables are first encoded as exponentially decaying input xt (top). Here, the state memory
m=2. Weight nodes wi in SyncMap’s dynamic are randomly initialized (bottom left). The dynamic
is then trained by Equations 2 to 4 (bottom middle). Finally, in the clustering phase, DBSCAN is
applied to obtain chunks/communities (bottom right). (b) Illustration of the instability in SyncMap.
In the original work, the dynamical equations are strongly influenced by negative nodes, since the
cardinality of all non-activating nodes NSt are usually much greater than that of activating nodes
PSt (e.g., 7 : 2). (c) The proposed symmetrical activation. By applying stochastic selection, equal
number of positive and negative nodes are activated in each iteration (e.g., 2 : 2).

Limitations of SyncMap. Although SyncMap shows capabilities to address all kinds of CGCP, one
crucial issue is the instability of its dynamic in the long term. This is due to the asymmetric number
of updates with respect to positive and negative nodes. Figure 2(b) shows how this happens with an
example of nine nodes in 2-D SyncMap. The fixed state memory (m = 2) results in an uneven update
of positive (2) and negative (7) nodes, i.e., the dynamic’s update is more influenced by negative
feedback loop, which causes an undesirable convergence in the long run.

4

Under review as a conference paper at ICLR 2023

1
1
1

00

0
0
0
0
0

True

True
False

1

1

0

0
0
0
0
0

0

Node 1
Node 2
Node 3
Node 4
Node 5
Node 6
Node 7
Node 8
Node 9

Logical
Vector

Stochastic
Selection+

After
Masking PSta

Temp
PSta

N-
P+
P+

N-
P+

N-
N-
N-
N-

AND =

P+

P+

P+
N-

N-

N-
N-
N-
N-
N-

P+
NOT

Temp
NSta

1
0

0
1
1
1
1
1

1

False

False
True

False

True

False
False

1

1

0
0

0

0

0

P+

P+

N-

N-

Logical
Vector

Stochastic
Selection-

After
Masking

Symmetrical
Activations for P+/N-

N-

N-

NSta

AND =

0.045
0.123
0.333

0.000
0.905

0.000
0.002
0.006
0.016

0.049
0.135
0.368

0.000
1.000

0.001
0.003
0.007

0.018

..

xta xta+1 xta+tstep

(a) Input Encoding (m = 3).

...

0.049
0.135
0.368

0.000
1.000

0.001
0.003
0.007
0.018

...

State 1
State 2
State 3
State 4
State 5
State 6
State 7
State 8
State 9

xta xta+1 xta+tstep
N-
P+
P+

N-
P+

N-
N-
N-
N-

N-
P+
P+

N-
P+

N-
N-
N-
N-

N-

P+
N-

P+

N-
N-
N-
N-

P+...

(b) Corresponding P+/N- Division.

Current
State

Threshold
a = 0.05

Original SyncMap with m=2

Symmetrical SyncMap with m=5

... ...A1 A2 A3 A4 A5 A6 B1 B2 B3C5 C6 C7

Current State

(c) Comparison of the memory window between two models.

Sequence Direction

1

A1
A2
A3
A4

C7

1

1

· ·

· ·

· ·

· ·

+tstep +tstep

(d) Symmetrical activation process in Symmetrical SyncMap (t = ta).

Figure 3: General workflow of symmetrical activation. (a) Exponentially decaying input sequence.
(b) Sequence after the process of positive and negative nodes’ division (represented as logical vectors).
(c) Comparison of the memory window between the original and Symmetrical SyncMap. State Ai, Bi

and Ci belong to three fixed chunks. The original SyncMap deterministically activates m most recent
states (i.e., A5 and A6), while Symmetrical SyncMap generalizes the state memory to have a larger
memory window (e.g., from A2 to A6 when m=5) for stochastically selecting and activating positive
nodes. (d) Process of stochastic selection to achieve symmetrical activation. First, we randomly lose
sight of some nodes in PSt set (i.e., instead of activating all positive nodes, we stochastically select
some of them to activate). This is achieved by an AND operation to the input and a masking vector
having random logical values at each time step. Next, for stochastic selection of the negative nodes in
NSt set, we use a masking vector similarly to that in positive part, and end up with activating equal
number of positive and negative nodes in every iteration.

5 SYMMETRICAL SYNCMAP

Inspired by how neural efficiency influences brain activation by focusing the energy on smaller brain
areas (Neubauer & Fink, 2009); here we propose an algorithm called Symmetrical SyncMap to better
solve CGCP, particularly the imbalanced chunking problems. The main idea is to use symmetrical
positive and negative activations. In other words, we try to reduce the number of activated negative
nodes while selecting and activating more positive nodes in every iteration, thus balancing the
updating rates in negative and positive feedback loops. To achieve symmetrical activation, we
introduce stochastic selection and memory window.

5.1 MEMORY WINDOW: GENERALIZING THE STATE MEMORY

We introduce memory window to our algorithm by generalizing the state memory m, which allows a
wider window for updates from the positive feedback loop, thus helping to capture the bigger chunks.
This is achieved by tuning the threshold value a as mentioned in SyncMap’s definition, i.e., any nodes
wi,t having its corresponding input value xi,t greater than a will be divided into PSt set and vice
versa (a true or false logical operation). With a pre-defined tstep, one can easily adjust threshold a to
control the state memory m (tstep=10, a=0.05 and m=3 in Figure 3(a)).

5.2 SYMMETRICAL ACTIVATION

Symmetrical activation is the core of our proposed algorithm, where equal number of positive and
negative nodes are selected to activate at each time step. We propose stochastic selection to select
nodes without bias in PSt and NSt sets. Details are shown in Figure 3.

Stochastically select nodes into PSt set. With a pre-defined state memory m, we first obtain the
temporary PStemp set in a same way the original SyncMap obtains PSt (i.e., PStemp includes m

5

Under review as a conference paper at ICLR 2023

positive nodes, and PStemp ⊆ Wt, where Wt = {wi,t|i = 1, ..., n} is the set including all nodes).
Then, we apply stochastic selection to select positive nodes into PSt (i.e., a sampling process).
Whether to enable stochastic selection at this particular time step is determined by a probability
parameter Pr ∈ [0, 1]. In other word, if stochastic selection were enabled, we randomly select 2
positive nodes and “inhibit” (ignore) other m− 2 nodes in PStemp, with the probability of Pr when
state memory m > 2; otherwise we select all m nodes. When m = 2, stochastic selection is not
used and two most-recent states are selected. Afterwards, PSt is updated, which only includes those
activated positive nodes (PSt ⊆ PStemp). Additionally, we give an analysis of Pr in Appendix F.

Stochastically select nodes into NSt set. After obtaining the above PSt, we define the temporary
negative set NStemp=Wt-PSt. One may notice that there is a chance that some nodes in PStemp

could potentially be sampled as nodes in NStemp. This is desirable as it introduces a more uniform
selection process and produces more robust results. Next, we again use the stochastic selection for
sampling several negative nodes in NStemp set. The number of negative nodes being selected is
symmetrically equal to the cardinality of PSt (i.e., |NSt| = |PSt|). After this step, the NSt set is
updated (NSt ⊆ NStemp, see the right part of Figure 3(d) for example).

The remaining steps follow the Equations 2-4. We calculate a moving average of 10000 steps of
nodes’ position and use it for DBSCAN, instead of applying DBSCAN to the map at a “snapshot”
time step in the original work. Algorithmic description is shown in Appendix G.

0 100,000 200,000 300,000 400,000 500,000 600,000
Time Step t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
ve

ra
ge

d
N

M
I S

co
re

Original SyncMap

Symmetrical SyncMap

(a) NMI over Time (b) Initial nodes’ distribution (c) Nodes’ distribution at different time steps

Original SyncMap

Symmetrical SyncMap

t = 600,000t = 310,000t = 300,000 Environment changes Run until final step

Figure 4: Long term behavior analysis of the original SyncMap and Symmetrical SyncMap.
(a) NMI over time of two models. Data are mean with s.t.d (error bar). Statistics are in Appendix
H. (b) For comparison, we show a single trial performed by two models, initialized identically. (c)
Nodes’ distribution at different time steps. Colors of the nodes indicate the true labels of chunks.

6 EXPERIMENTS OF CGCP PROBLEMS

We evaluate the proposed Symmetrical SyncMap with 13 tests, including (i) a long-term behavior
analysis, and (ii) 12 imbalanced CGCP with fixed, probabilistic and mixed chunks, as well as
their continual variations. Among the large number of clustering quality measurements, we used
Normalized Mutual Information (NMI) (Studholme et al., 1999) for measurement (see Appendix
A for math detail). NMI ranges between 0 and 1, and the higher the score, the better the chunking
performance. We did 30 trials for each experiment. Results of NMI are shown in Figure 4 and
Table 1. We used a t-test with p-value of 0.05 to verify if the best result is statistically significantly
different from the others (statistical results are in Appendix H). An ablation study and computation
time analysis are also investigated in Appendices I and J.

6.1 LONG TERM BEHAVIOR ANALYSIS EXPERIMENT

To evaluate the behavior of the algorithm over the long run, we set up this experiment. The problem
considered here is a continual changing environment with ten fixed chunks, each containing six
different states. Transitions between chunks happen at the end of a chunk sequence (i.e., after the
sixth state variable presented inside a chunk). A chunk can transit to any other chunk with equal
probability. Sequence length was set to τ=600000. At time step t=0 the first environment was
initialized. After t=300000 the problem changed to the second environment by re-assigning all 60
states into new ten chunks. We applied the original SyncMap and the proposed one in this experiment.

6

Under review as a conference paper at ICLR 2023

We used the same parameter settings of the two models, where α=0.001*n, k=2, eps=1 and mc=2.
Besides, m=3 and Pr=30% were used for Symmetrical SyncMap training.

Results in Figure 4 show that Symmetrical SyncMap reaches near the optimal performance in this
experiment. By applying symmetrical activation, Symmetrical SyncMap can have long-term stability
while keeping NMI near 1.0. In contrast, the NMI of the original SyncMap reaches the peak near 0.88
at t=70000 and decreases constantly afterwards. After environment changes, Symmetrical SyncMap
detects new chunks and reaches to a new equilibrium quickly, while the original SyncMap performs
poorer and becomes unstable in the long run.

6.2 IMBALANCED CGCP PROBLEMS

Baselines and Parameter Settings. We test several imbalanced CGCP problems and their continual
variations by using Symmetrical SyncMap, SyncMap, Modularity Maximization (Modularity Max),
Word2vec and MRIL. In detail, Symmetrical SyncMap’s parameters were set to α=0.001*n, k=3, m=3,
Pr=30%, eps=4.5 and mc=2. We conducted a parameter sensitivity analysis shown in Appendix F.
For the original SyncMap, we used k=3, m=2, eps=4.5 and mc=2. Regarding the Modularity Max,
we first converted the input sequence to transition probability (TP) matrix, and then used the TP
matrix to generate a graph for communities detection. To evaluate how a word embedding algorithm
would fair in CGCP, a skip-gram Word2vec algorithm was modified to suit in the context of CGCP.
Here, a latent dimension of 3 and an output layer with softmax were used, and the output size is equal
to the inputs. Learning rate was set at 0.001 and batch size was 64 with a mean squared error as loss.
A window of 100 steps (equivalent to 10 state transitions) was used to compute the output probability
of skip-gram. Regarding the MRIL, we used 5 output neurons for all experiments, with the learning
rate of 0.001. We gathered the output neurons showing correlation larger than 0.5, detecting chunks
by assigning an index of groups that maximally respond to each input. The input sequences of all
baselines were the same exponential decaying input as used in Symmetrical SyncMap.

Problem Settings (Appendix B). We first consider several environments which consist of 3 different
sizes of chunks: big, moderate and small chunks. Specifically, the big chunk has 20 state variables,
while the moderate and small chunks have 10 and 5 respectively. Based on the chunk settings, we
then designed three types of imbalanced problems: (i) Two big and one small chunks (20-20-5). (ii)
One big, one moderate and one small chunks (20-10-5). (iii) One big and two small chunks (20-5-5).
We tested these three types of imbalanced problems with three different structure settings: fixed,
probabilistic and mixed chunks tests. The structures of the fixed and probabilistic environments
are shown in Figure 1(d). Please refer to Figure 6 in Appendix B for the examples of the complete
structures. Regarding the mixed tests, two probabilistic chunks and one fixed chunk were presented in
each environment, where the order of chunks in the input sequence was specified as: 1st probabilistic
to fixed to 2nd probabilistic chunk. Sequence length τ is set at 200000 for all types of test.

Dynamical Continual Variation. Three dynamical variations of the above-mentioned problems were
presented: continual fixed, continual probabilistic and continual mixed. Sequence length was set to
2τ . States were permuted between chunks: at time step t=0 the first type of problem was 15-15-5 (see
the problem formalism in previous subsection), after t=τ the second type of problem was 20-10-5.

Algorithm Fixed Probabilistic SBM Network
20-20-5 20-10-5 20-5-5 20-20-5 20-10-5 20-5-5 25-30-35

Modularity Max 0.67±0.0 0.73±0.03 0.64±0.02 0.96±0.04 1.0±0.0 1.0±0.0 0.99±0.02
Word2vec 0.49±0.05 0.57±0.07 0.56±0.06 0.70±0.04 0.77±0.09 0.62±0.08 0.84±0.03

MRIL 0.25±0.09 0.38±0.12 0.36±0.11 0.43±0.14 0.39±0.07 0.24±0.04 0.46±0.10
Original SyncMap 0.93±0.12 0.75±0.08 0.63±0.11 1.0±0.0 0.81±0.04 0.64±0.08 1.0±0.0

Ours: Symmetrical SyncMap 1.0±0.0 1.0±0.0 0.93±0.08 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0

Algorithm Mixed Continual 15-15-5 to 20-10-5 -
20-20-5 20-10-5 20-5-5 Fixed Prob. Mixed -

Modularity Max 0.69±0.05 0.78±0.05 0.89±0.06 0.69±0.02 0.70±0.05 0.64±0.02 -
Word2vec 0.66±0.07 0.60±0.06 0.73±0.05 0.45±0.04 0.60±0.04 0.65±0.04 -

MRIL 0.20±0.05 0.20±0.05 0.16±0.03 0.38±0.13 0.59±0.02 0.55±0.04 -
Original SyncMap 0.84±0.08 0.83±0.0 0.64±0.07 0.72±0.07 0.82±0.04 0.83±0.0 -

Ours: Symmetrical SyncMap 0.87±0.09 0.90±0.06 0.95±0.04 1.0±0.0 1.0±0.0 0.95±0.06 -

Table 1: NMI results. A comparison is shown over Modularity Max, Word2vec, MRIL, original
SyncMap and Symmetrical SyncMap in imbalanced and real-world CGCPs. The best and the non-
statistically different results are in bold. Data are mean±s.t.d. Details of the statistical t-tests (p
values) are presented in Appendix H.

7

Under review as a conference paper at ICLR 2023

Results Overview. The proposed algorithm Symmetrical SyncMap learns nearly the optimal solutions
in all imbalanced CGCPs. It surpasses or ties other algorithms in all tests (Tables 1). Modularity
Max performs the second best, in which it wins or ties the others in 2 out of 3 probabilistic CGCP
tests. Word2vec achieves relatively higher NMI in probabilistic CGCPs than other problem structures,
whereas MRIL performs the worst overall in all tests. The original SyncMap performs good in
20-20-5 CGCPs, yet performance decrease is witnessed as more chunks become smaller.

Symmetrical SyncMap, with its inherent adaptivity, performs significantly better than all other com-
petitive algorithms, particularly in continual variations (i.e., dynamical CGCPs where environment
can change). The proposed wider memory window and symmetrical activation allow capturing states
in big chunks compactly, while at the same time the stochastic selection with suitable Pr helps to
separate small chunks (See the learned maps and Pr analysis in Appendices D and F), thus keeping
the balance between dealing with small and big chunks. In all probabilistic CGCP tests, it produces
very distinct chunks and learns the best solution (i.e., NMI=1.0). The performance downgrades
slightly during the more challenging mixed CGCP tests, due to an extra imbalanced frequency issue:
the fixed chunk inserted between two probabilistic chunks has lower frequency to appear in the
sequences. Having said that, the proposed algorithm still outperforms the others in all mixed CGCPs
with a very big lead.

Original SyncMap performs relatively better in 20-20-5 type CGCPs, with the steady decrease in
20-10-5 and 20-5-5 ones. In fixed CGCPs, it makes distinct clusters for smaller chunks, yet fails
to group nodes of the big chunk together. In probabilistic and mixed tests, nodes belong to smaller
chunks are merged into one cluster in almost every individual trial (see Figures in Appendix D).

Modularity Max shares the highest NMI score with Symmetrical SyncMap in two probabilistic
CGCP tests. However, this graph-based algorithm does not perform well in other imbalanced CGCPs.
A possible reason is that fixed chunks are less likely to appear in usual problems faced by Modularity
Max, thus leading to a problem bias. It is worth noting that comparing the results of Modularity
Max to the other algorithms in dynamical CGCPs is not fair, since a TP matrix would record all the
occurrence of state variables; thus, passing a continual changing TP matrix is not inherently suitable
for Modularity Max, leading to worse results in continual structures than that in static graphs.

Word2vec creates maps in which nodes are more dispersed than that produced by SyncMap, thus
making clustering difficult. It performs better in probabilistic chunk tests than fixed and mixed ones
(see Figures in Appendix D). For the continual problems, Word2vec lacks the ability of adaptation,
thus showing the overall lower NMI scores. MRIL fails to detect imbalanced chunks with large
number of state variables, and therefore it performs the worst in all tests. Increasing the number of
output neurons may improve the performance of fixed chunk tests.

DeepWalk: Online Learning of Social Representations

Bryan Perozzi
Stony Brook University

Department of Computer
Science

Rami Al-Rfou
Stony Brook University

Department of Computer
Science

Steven Skiena
Stony Brook University

Department of Computer
Science

{bperozzi, ralrfou, skiena}@cs.stonybrook.edu

ABSTRACT
We present DeepWalk, a novel approach for learning la-
tent representations of vertices in a network. These latent
representations encode social relations in a continuous vector
space, which is easily exploited by statistical models. Deep-
Walk generalizes recent advancements in language mod-
eling and unsupervised feature learning (or deep learning)
from sequences of words to graphs.

DeepWalk uses local information obtained from trun-
cated random walks to learn latent representations by treat-
ing walks as the equivalent of sentences. We demonstrate
DeepWalk’s latent representations on several multi-label
network classification tasks for social networks such as Blog-
Catalog, Flickr, and YouTube. Our results show that Deep-
Walk outperforms challenging baselines which are allowed
a global view of the network, especially in the presence of
missing information. DeepWalk’s representations can pro-
vide F1 scores up to 10% higher than competing methods
when labeled data is sparse. In some experiments, Deep-
Walk’s representations are able to outperform all baseline
methods while using 60% less training data.

DeepWalk is also scalable. It is an online learning algo-
rithm which builds useful incremental results, and is trivially
parallelizable. These qualities make it suitable for a broad
class of real world applications such as network classifica-
tion, and anomaly detection.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications
- Data Mining; I.2.6 [Artificial Intelligence]: Learning;
I.5.1 [Pattern Recognition]: Model - Statistical

1. INTRODUCTION
The sparsity of a network representation is both a strength

and a weakness. Sparsity enables the design of e�cient dis-
crete algorithms, but can make it harder to generalize in
statistical learning. Machine learning applications in net-
works (such as network classification [15, 37], content rec-

c�The authors, 2014. This is the author’s draft of the work. It is posted here
for your personal use. Not for redistribution. The definitive version was
published in KDD’14, http://dx.doi.org/10.1145/2623330.
2623732

�
�

� �

�

�

�

�
	

��

��

��

��

��

�

��

��

��

�

��

�	

��

��

��

��

��

�	

��

��

��

��

�

��

��

�
�

� �

�

�

�

�
	

��

��

��

��

��

�

��

��

��

�

��

�	

��

��

��

��

��

�	

��

��

��

��

�

��

��

(a) Input: Karate Graph (b) Output: Representation

Figure 1: Our proposed method learns a latent space rep-
resentation of social interactions in Rd. The learned rep-
resentation encodes community structure so it can be eas-
ily exploited by standard classification methods. Here, our
method is used on Zachary’s Karate network [44] to gen-
erate a latent representation in R2. Note the correspon-
dence between community structure in the input graph and
the embedding. Vertex colors represent a modularity-based
clustering of the input graph.

ommendation [11], anomaly detection [5], and missing link
prediction [22]) must be able to deal with this sparsity in
order to survive.

In this paper we introduce deep learning (unsupervised
feature learning) [2] techniques, which have proven success-
ful in natural language processing, into network analysis for
the first time. We develop an algorithm (DeepWalk) that
learns social representations of a graph’s vertices, by mod-
eling a stream of short random walks. Social representa-
tions are latent features of the vertices that capture neigh-
borhood similarity and community membership. These la-
tent representations encode social relations in a continuous
vector space with a relatively small number of dimensions.
DeepWalk generalizes neural language models to process a
special language composed of a set of randomly-generated
walks. These neural language models have been used to
capture the semantic and syntactic structure of human lan-
guage [6], and even logical analogies [28].

DeepWalk takes a graph as input and produces a la-
tent representation as an output. The result of applying our
method to the well-studied Karate network is shown in Fig-
ure 1. The graph, as typically presented by force-directed
layouts, is shown in Figure 1a. Figure 1b shows the output
of our method with 2 latent dimensions. Beyond the striking
similarity, we note that linearly separable portions of (1b)
correspond to clusters found through modularity maximiza-
tion in the input graph (1a) (shown as vertex colors).

To demonstrate DeepWalk’s potential in real world sce-

ar
X

iv
:1

40
3.

66
52

v2
 [

cs
.S

I]
 2

7
Ju

n
20

14

5

Beak

Beescratch

BumperCCL

Cross

DN16

DN21

DN63

Double

Feather

Fish

Five

Fork

Gallatin

Grin

Haecksel

Hook

Jet

Jonah

Knit

Kringel

MN105

MN23

MN60

MN83

Mus

Notch
Number1

Oscar

Patchback

PL

Quasi

Ripplefluke

Scabs

Shmuddel

SMN5

SN100

SN4

SN63

SN89

SN9

SN90

SN96

Stripes

Thumper
Topless

TR120

TR77

TR82

TR88

TR99

Trigger

TSN103

TSN83

Upbang

Vau

Wave

Web

Whitetip

Zap

Zig

Zipfel

a

b

c

FIG. 2 Community structure in social networks. a) Zachary’s karate club, a standard benchmark in community detection. The
colors correspond to the best partition found by optimizing the modularity of Newman and Girvan (Section VI.A). Reprinted
figure with permission from Ref. (Donetti and Muñoz, 2004). c�2004 by IOP Publishing and SISSA. b) Collaboration network
between scientists working at the Santa Fe Institute. The colors indicate high level communities obtained by the algorithm
of Girvan and Newman (Section V.A) and correspond quite closely to research divisions of the institute. Further subdivisions
correspond to smaller research groups, revolving around project leaders. Reprinted figure with permission from Ref. (Girvan
and Newman, 2002). c�2002 by the National Academy of Science of the USA. c) Lusseau’s network of bottlenose dolphins.
The colors label the communities identified through the optimization of a modified version of the modularity of Newman and
Girvan, proposed by Arenas et al. (Arenas et al., 2008b) (Section XII.A). The partition matches the biological classification
of the dolphins proposed by Lusseau. Reprinted figure with permission from Ref. (Arenas et al., 2008b). c�2008 by IOP
Publishing.

portant detecting modules in PPI networks is.

Relationships/interactions between elements of a sys-
tem need not be reciprocal. In many cases they have a
precise direction, that needs to be taken into account to
understand the system as a whole. As an example we can
cite predator-prey relationships in food webs. In Fig. 4
we see another example, taken from technology. The
system is the World Wide Web, which can be seen as a
graph by representing web pages as vertices and the hy-
perlinks that make users move from one page to another
as edges (Albert et al., 1999). Hyperlinks are directed:
if one can move from page A to page B by clicking on a

hyperlink of A, one usually does not find on B a hyper-
link taking back to A. In fact, very few hyperlinks (less
than 10%) are reciprocal. Communities of the web graph
are groups of pages having topical similarities. Detect-
ing communities in the web graph may help to identify
the artificial clusters created by link farms in order to
enhance the PageRank (Brin and Page, 1998) value of
web sites and grant them a higher Google ranking. In
this way one could discourage this unfair practice. One
usually assumes that the existence of a hyperlink between
two pages implies that they are content-related, and that
this similarity is independent of the hyperlink direction.

Problem Dolphins Karate Club

Ground-Truth 2 Chunks 2 Chunks 4 Chunks

M. Max. 0.58±0.02 0.55±0.06 0.62±0.00

Word2vec 0.31±0.05 0.02±0.03 0.11±0.05

Orig. SyncMap 0.47±0.04 0.63±0.14 0.54±0.08

Symm.
SyncMap 0.86±0.07 0.76±0.08 0.75±0.07

(a) (d)(b) (c) (e)

(f)
(g)

(h) (i)

Community 1

Community 2

Figure 5: Results of real-world scenarios with the original and Symmetrical SyncMap. (a)
Dolphins network. Colors denote labels. Figure modified from Arenas et al. (2008). (b) and (f) The
learned representations of the two models (Dolphins network). (c) NMI results. (d) The learned
representation of the original SyncMap (Karate network). (e) Dendrograms by hierarchical clustering
(ward linkage) in Karate problems by two models. (g) Karate network. Colors of nodes denote
local communities while colored shadow areas define the global communities. Figure modified
from Perozzi et al. (2014). (h) and (i) The learned representations of Symmetrical SyncMap (Karate
network). Colors indicate the true labels of the communities. See Appendix C for more analysis.

8

Under review as a conference paper at ICLR 2023

7 REAL-WORLD SCENARIOS

We study three real-world scenarios to verify the performance of Symmetrical SyncMap: (i) a
network of stochastic block model (SBM); and (ii) two social network datasets with well-established
community structures. For the SBM, we test a reference network introduced by Lee & Wilkinson
(2019), where the network is considered as a graph which was then converted to a high-dimensional
CGCP (i.e., 3 sightly imbalanced communities with a total of 90 nodes and 1192 edges). The ground-
truth is defined in Appendix C. Parameter settings of all models remained the same as in previous
imbalanced CGCP experiments. As shown in Table 1, both original and Symmetrical SyncMap yield
the optimal solution, showing the capabilities to tackle with large-scale CGCP.

We then test two well-studied benchmark networks in community detection. Hierarchical clustering
was applied to replace DBSCAN in the clustering phase, to produce dendrograms for the visualization
of hierarchies (i.e., by specifying the number of communities/chunks). Detailed settings and analysis
for baselines are in Appendix C. NMI results are shown in Figure 5(c) with statistics.

The first one is the Lusseau’s network of bottlenose dolphins (Fortunato, 2010), an imbalanced
structure with 2 ground-truth communities of sizes 20 and 42. Our algorithm yields a much higher
NMI than other algorithms. It avoids forming dense communities produced by the original SyncMap
(see Figure 5(b)(f)), allowing local relationships to be extracted, as verified in the following problem.

The second problem is the Zachary’s karate club network which contains 34 nodes and 78 undirected
and unweighted edges. We used two sets of ground-truth: (i) 2 chunks labeled by the original paper
(Zachary, 1977), and (ii) 4 chunks found through modularity-based clustering (Perozzi et al., 2014).

Symmetrical SyncMap depicts the global graph structure while preserving the topology of local
communities (Figure 5(e)(h)(i)). In contrast, the original SyncMap can only separate two global
communities with a very dense representation (Figure 5(d)(e)). This unavoidable convergence is
due to the stronger negative feedbacks over time, pulling away nodes from each community/chunk.
Note that the representation learned by our method is comparable to node embeddings models with
loss functions required and with more expensive training procedures such as DeepWalk (Perozzi
et al., 2014) and Graph Convolutional Networks (Kipf & Welling, 2016). Unlike graph-based models,
we achieve this by (i) mapping correlations from temporal input to a latent state space, (ii) keeping
equilibrium by symmetrical activation (otherwise nodes would be locked in dense communities),
and thus (iii) enabling hierarchies to be extracted from sequences. More importantly, the inherent
adaptivity, as shown in previous experiments, suggests that our model a has potential usage in
inductive applications, as it does not require any additional optimizations when dealing with new
nodes/(sub)structures, while transductive methods such as DeepWalk cannot naturally generalize to
unseen nodes or changed structures (Hamilton et al., 2017).

Having said that, we argue that these real-world scenarios usually (i) have no ground-truth and (ii)
are strongly biased towards standard algorithms. To illustrate, the absence of ground-truth has to
do with the fact that: it is not only difficult to define the social structures, but also hard to know the
existence of real chunks in nature; thus, any answer would be a guess at most. Besides, the bias is
due to the output, used as ground-truth, is found by using standard algorithms in the original papers,
which makes good results in real-world data more like “algorithms that perform similar to standard
algorithms”, rather than “algorithms that work with real-world data”.

8 CONCLUSIONS

We propose Symmetrical SyncMap, a brain inspired self-organizing algorithm built on top of the
original work to solve continual general chunking problems (CGCP). Experiments of different
CGCPs have illustrated how effective the concise modifications work on those challenging tasks. By
applying symmetrical activation to the dynamical equations in which loss/optimization functions are
not required, our algorithm not only learns imbalanced CGCP data structures with great long-term
stability and adaptivity, but also shows the potentials to uncover complex hierarchical topologies
encoded in temporal sequences. This reveals the self-organizing ability of the proposed algorithm in
analyzing the community structures of a broad class of temporal inputs. Future goals, advised by the
results presented in this paper, will be to investigate CGCP problems with large scale, hierarchies and
noisy environments, and tasks specific to representation learning in various real-world scenarios.

9

Under review as a conference paper at ICLR 2023

9 REPRODUCIBILITY STATEMENT

We took every effort to make this work reproducible. Necessary codes are provided in supplementary
materials, together with Python dependencies used to build the experiment environments. Please
refer to the README file zipped in the supplementary material for detailed instructions.

REFERENCES

Saeed Aghabozorgi, Ali Seyed Shirkhorshidi, and Teh Ying Wah. Time-series clustering–a decade
review. Information Systems, 53:16–38, 2015.

Alex Arenas, Alberto Fernandez, and Sergio Gomez. Analysis of the structure of complex networks
at different resolution levels. New journal of physics, 10(5):053039, 2008.

Toshitake Asabuki and Tomoki Fukai. Somatodendritic consistency check for temporal feature
segmentation. Nature communications, 11(1):1–13, 2020.

Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfolding
of communities in large networks. Journal of statistical mechanics: theory and experiment, 2008
(10):P10008, 2008.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word vectors with
subword information. Transactions of the Association for Computational Linguistics, 5:135–146,
2017.

Hermann Bulf, Scott P Johnson, and Eloisa Valenza. Visual statistical learning in the newborn infant.
Cognition, 121(1):127–132, 2011.

David G Clark, Jesse A Livezey, and Kristofer E Bouchard. Unsupervised discovery of temporal
structure in noisy data with dynamical components analysis. arXiv preprint arXiv:1905.09944,
2019.

Johannes C Dahmen, Peter Keating, Fernando R Nodal, Andreas L Schulz, and Andrew J King.
Adaptation to stimulus statistics in the perception and neural representation of auditory space.
Neuron, 66(6):937–948, 2010.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Katharine Graf Estes, Julia L Evans, Martha W Alibali, and Jenny R Saffran. Can infants map
meaning to newly segmented words? statistical segmentation and word learning. Psychological
science, 18(3):254–260, 2007.

Vincent Fortuin, Matthias Hüser, Francesco Locatello, Heiko Strathmann, and Gunnar Rätsch. Som-
vae: Interpretable discrete representation learning on time series. arXiv preprint arXiv:1806.02199,
2018.

Santo Fortunato. Community detection in graphs. Physics reports, 486(3-5):75–174, 2010.

Emily B Fox, Erik B Sudderth, Michael I Jordan, and Alan S Willsky. A sticky hdp-hmm with
application to speaker diarization. The Annals of Applied Statistics, pp. 1020–1056, 2011.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf.

R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman, Adam
Trischler, and Yoshua Bengio. Learning deep representations by mutual information estimation
and maximization. arXiv preprint arXiv:1808.06670, 2018.

10

https://proceedings.neurips.cc/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf

Under review as a conference paper at ICLR 2023

Faiza Khan Khattak, Serena Jeblee, Chloé Pou-Prom, Mohamed Abdalla, Christopher Meaney, and
Frank Rudzicz. A survey of word embeddings for clinical text. Journal of Biomedical Informatics:
X, 4:100057, 2019.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Teuvo Kohonen. The self-organizing map. Proceedings of the IEEE, 78(9):1464–1480, 1990.

Clement Lee and Darren J Wilkinson. A review of stochastic block models and extensions for graph
clustering. Applied Network Science, 4(1):1–50, 2019.

Qi Lei, Jinfeng Yi, Roman Vaculin, Lingfei Wu, and Inderjit S Dhillon. Similarity preserving
representation learning for time series clustering. arXiv preprint arXiv:1702.03584, 2017.

Mantas Lukoševicius. Reservoir computing and self-organized neural hierarchies. Jacobs University,
Bremen, 2012.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781, 2013.

Aljoscha C Neubauer and Andreas Fink. Intelligence and neural efficiency. Neuroscience &
Biobehavioral Reviews, 33(7):1004–1023, 2009.

Mark EJ Newman and Michelle Girvan. Finding and evaluating community structure in networks.
Physical review E, 69(2):026113, 2004.

Gergő Orbán, József Fiser, Richard N Aslin, and Máté Lengyel. Bayesian learning of visual chunks
by human observers. Proceedings of the National Academy of Sciences, 105(7):2745–2750, 2008.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representa-
tions. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 701–710, 2014.

Pierre Perruchet and Annie Vinter. Parser: A model for word segmentation. Journal of memory and
language, 39(2):246–263, 1998.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. Deep contextualized word representations. arXiv preprint arXiv:1802.05365,
2018.

David Pfau, Nicholas Bartlett, and Frank D Wood. Probabilistic deterministic infinite automata. In
NIPS, pp. 1930–1938, 2010.

Ting Qian and Richard N Aslin. Learning bundles of stimuli renders stimulus order as a cue, not a
confound. Proceedings of the National Academy of Sciences, 111(40):14400–14405, 2014.

Filippo Radicchi, Claudio Castellano, Federico Cecconi, Vittorio Loreto, and Domenico Parisi.
Defining and identifying communities in networks. Proceedings of the national academy of
sciences, 101(9):2658–2663, 2004.

Pavan Ramkumar, Daniel E Acuna, Max Berniker, Scott T Grafton, Robert S Turner, and Konrad P
Kording. Chunking as the result of an efficiency computation trade-off. Nature communications, 7
(1):1–11, 2016.

Anna C Schapiro, Timothy T Rogers, Natalia I Cordova, Nicholas B Turk-Browne, and Matthew M
Botvinick. Neural representations of events arise from temporal community structure. Nature
neuroscience, 16(4):486–492, 2013.

Erich Schubert, Jörg Sander, Martin Ester, Hans Peter Kriegel, and Xiaowei Xu. Dbscan revisited,
revisited: why and how you should (still) use dbscan. ACM Transactions on Database Systems
(TODS), 42(3):1–21, 2017.

11

Under review as a conference paper at ICLR 2023

Melanie Strauss, Jacobo D Sitt, Jean-Remi King, Maxime Elbaz, Leila Azizi, Marco Buiatti, Lionel
Naccache, Virginie Van Wassenhove, and Stanislas Dehaene. Disruption of hierarchical predictive
coding during sleep. Proceedings of the National Academy of Sciences, 112(11):E1353–E1362,
2015.

Colin Studholme, Derek LG Hill, and David J Hawkes. An overlap invariant entropy measure of 3d
medical image alignment. Pattern recognition, 32(1):71–86, 1999.

Lei Tang and Huan Liu. Relational learning via latent social dimensions. In Proceedings of the 15th
ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 817–826,
2009.

Marco Vannucci and Valentina Colla. Self–organizing–maps based undersampling for the classifica-
tion of unbalanced datasets. In 2018 International Joint Conference on Neural Networks (IJCNN),
pp. 1–6. IEEE, 2018.

Danilo Vasconcellos Vargas and Toshitake Asabuki. Continual general chunking problem and
syncmap. Proceedings of the AAAI Conference on Artificial Intelligence, 35(11):10006–10014, May
2021. URL https://ojs.aaai.org/index.php/AAAI/article/view/17201.

Jia Wu, Weiru Zeng, and Fei Yan. Hierarchical temporal memory method for time-series-based
anomaly detection. Neurocomputing, 273:535–546, 2018.

Atsushi Yokoi and Jörn Diedrichsen. Neural organization of hierarchical motor sequence representa-
tions in the human neocortex. Neuron, 103(6):1178–1190, 2019.

Wayne W Zachary. An information flow model for conflict and fission in small groups. Journal of
anthropological research, 33(4):452–473, 1977.

12

https://ojs.aaai.org/index.php/AAAI/article/view/17201

Under review as a conference paper at ICLR 2023

A DEFINITION OF NORMALIZED MUTUAL INFORMATION (NMI)

Among the large number of clustering quality measurements, we used the Normalized Mutual
Information (NMI) for measurement. Mathematically, NMI is defined as:

NMI(ˆY, Y) =
I(Ŷ ;Y)

1
2 (H(Ŷ) +H(Y))

, NMI ∈ [0, 1] (5)

where Ŷ and Y are the output of algorithms and the truth labels, respectively. I(Ŷ ;Y) is the mutual
information and H(∗) is the entropy. NMI ranges between 0 and 1, and the higher the score, the
better the clustering performance (better correlation between Ŷ and Y).

B EXAMPLES OF IMBALANCED CGCPS

(d) Mixed Chunks 20-10-5.(b) Fixed Chunks 20-20-5.(a) Probabilistic Chunks 20-5-5. (c) Mixed Chunks 15-15-5.

Dynamical Continual Env.

Figure 6: Examples of imbalanced chunking problems used in the experiments. CGCP generalizes
several problems, (a) Probabilistic chunks: a graph structure that allows random walking; (b) Fixed
chunks: temporal chunks defined originated from neuroscience; (c) and (d) Mixed chunks: integration
of fixed and probabilistic chunks. In the continual setting, the causal structure can change over time.
Dots inside each circle belong to a corresponding chunk. Lines connecting nodes without an arrow
indicate that the transition is bidirectional; for directional transitions, arrows specify the direction.

C ANALYSIS OF REAL-WORLD SCENARIOS

Lee and Wilkinson Applied Network Science (2019) 4:122 Page 5 of 50

Fig. 2 Adjacency matrix of example in Figure 1

The group sizes can be derived from Z, and are denoted by N = (N1 N2 · · · NK)T .
Essentially,Ni is the sum, or number of non-zero elements, of the i-th column of Z. In the
example, N1 = 25, N2 = 30, N3 = 35. Finally, the K × K edge matrix between groups
can be derived from Z and Y. It is denoted by E, where Eij represents the number of edges
between groups i and j in undirected graphs, and from group i to group j in directed ones.
In the example, E is symmetric as G is undirected, and E11 = 245, E22 = 341, E33 = 481,
E12 = E21 = 37, E23 = E32 = 52, and E31 = E13 = 36.
In order to describe the generation of the edges of G according to the groups the nodes

belong to, a K × K block matrix, denoted by C, is introduced. If G is undirected, for
1 ≤ i ≤ j ≤ K ,Cij ∈[0, 1] and represents the probability of occurrence of an edge between
a node in group i and a node in group j. Here C is symmetric, as is (1) in the example. If G
is directed, for 1 ≤ i, j ≤ K , Cij represents the probability of occurrence of a directed edge
from a node in group i to a node in group j, and C needs not be symmetric. Note that no
rows or columns in C need to sum to 1.
Whether G is undirected or directed, the idea of the block matrix C means that the

dyads are conditionally independent given the group memberships Z. In other words, Ypq
follows the Bernoulli distribution with success probability ZT

pCZq, and is independent of
Yrs for (p, q) $= (r, s), givenZp andZq. This implies that the total number of edges between
any two blocks i and j is a Binomial distributed random variable with mean equal to the
product of Cij and the number of dyads available. For undirected and directed graphs, the
latter term is NiNj/2 and NiNj, respectively. In fact, Fig. 2 can be viewed as a realisation
of simulating from the Binomial distribution with the respective means. Conversely, the
densities of each pair of blocks in the adjacency matrix, calculated to be




0.817 0.049 0.041
0.049 0.784 0.05
0.041 0.05 0.808



 ,

are, as expected, close to (1).

Lee and Wilkinson Applied Network Science (2019) 4:122 Page 2 of 50

Fig. 1 Network of 90 nodes




0.8 0.05 0.05
0.05 0.8 0.05
0.05 0.05 0.8



 . (1)

Given the group memberships, the block matrix, and the assumptions of an SBM (to be
detailed in “Stochastic block models” section), it is straightforward to generate a synthetic
network for simulation purposes, as has been done in the example. It will also be straight-
forward to evaluate the likelihood of data observed, for modelling purposes. However, in
applications to real data, neither the groupmemberships nor the block matrix is observed
or given. Therefore, the goal of fitting an SBM to a graph is to infer these two components
simultaneously. Subsequently, the usual statistical challenges arise:

1. Modelling: How should the SBM be structured or extended to realistically describe
real-world networks, with or without additional information on the nodes or the
edges?

2. Inference: Once the likelihood can be computed, how should we infer the group
memberships and the block matrix? Are there efficient and scalable inference
algorithms?

3. Selection and diagnostics: Can we compute measures, such as Bayesian
information criterion (BIC) and marginal likelihood, to quantify and compare the
goodness of fit of different SBMs?

A B

Figure 7: Stochastic block model (SBM) network used in experiments. (a) Graph introduced in Lee
& Wilkinson 2019, which consists of 90 nodes and 1192 edges. The nodes are divided into 3 groups,
with groups 1, 2 and 3 containing 25, 30 and 35 nodes, respectively. The nodes within the same group
are more closely connected to each other, than with nodes in another group. The connectivity of the
nodes is considered uniform transition. (b) Corresponding adjacency matrix for graph in (a).

13

Under review as a conference paper at ICLR 2023

DeepWalk: Online Learning of Social Representations

Bryan Perozzi
Stony Brook University

Department of Computer
Science

Rami Al-Rfou
Stony Brook University

Department of Computer
Science

Steven Skiena
Stony Brook University

Department of Computer
Science

{bperozzi, ralrfou, skiena}@cs.stonybrook.edu

ABSTRACT
We present DeepWalk, a novel approach for learning la-
tent representations of vertices in a network. These latent
representations encode social relations in a continuous vector
space, which is easily exploited by statistical models. Deep-
Walk generalizes recent advancements in language mod-
eling and unsupervised feature learning (or deep learning)
from sequences of words to graphs.

DeepWalk uses local information obtained from trun-
cated random walks to learn latent representations by treat-
ing walks as the equivalent of sentences. We demonstrate
DeepWalk’s latent representations on several multi-label
network classification tasks for social networks such as Blog-
Catalog, Flickr, and YouTube. Our results show that Deep-
Walk outperforms challenging baselines which are allowed
a global view of the network, especially in the presence of
missing information. DeepWalk’s representations can pro-
vide F1 scores up to 10% higher than competing methods
when labeled data is sparse. In some experiments, Deep-
Walk’s representations are able to outperform all baseline
methods while using 60% less training data.

DeepWalk is also scalable. It is an online learning algo-
rithm which builds useful incremental results, and is trivially
parallelizable. These qualities make it suitable for a broad
class of real world applications such as network classifica-
tion, and anomaly detection.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications
- Data Mining; I.2.6 [Artificial Intelligence]: Learning;
I.5.1 [Pattern Recognition]: Model - Statistical

1. INTRODUCTION
The sparsity of a network representation is both a strength

and a weakness. Sparsity enables the design of e�cient dis-
crete algorithms, but can make it harder to generalize in
statistical learning. Machine learning applications in net-
works (such as network classification [15, 37], content rec-

c�The authors, 2014. This is the author’s draft of the work. It is posted here
for your personal use. Not for redistribution. The definitive version was
published in KDD’14, http://dx.doi.org/10.1145/2623330.
2623732

�
�

� �

�

�

�

�
	

��

��

��

��

��

�

��

��

��

�

��

�	

��

��

��

��

��

�	

��

��

��

��

�

��

��

�
�

� �

�

�

�

�
	

��

��

��

��

��

�

��

��

��

�

��

�	

��

��

��

��

��

�	

��

��

��

��

�

��

��

(a) Input: Karate Graph (b) Output: Representation

Figure 1: Our proposed method learns a latent space rep-
resentation of social interactions in Rd. The learned rep-
resentation encodes community structure so it can be eas-
ily exploited by standard classification methods. Here, our
method is used on Zachary’s Karate network [44] to gen-
erate a latent representation in R2. Note the correspon-
dence between community structure in the input graph and
the embedding. Vertex colors represent a modularity-based
clustering of the input graph.

ommendation [11], anomaly detection [5], and missing link
prediction [22]) must be able to deal with this sparsity in
order to survive.

In this paper we introduce deep learning (unsupervised
feature learning) [2] techniques, which have proven success-
ful in natural language processing, into network analysis for
the first time. We develop an algorithm (DeepWalk) that
learns social representations of a graph’s vertices, by mod-
eling a stream of short random walks. Social representa-
tions are latent features of the vertices that capture neigh-
borhood similarity and community membership. These la-
tent representations encode social relations in a continuous
vector space with a relatively small number of dimensions.
DeepWalk generalizes neural language models to process a
special language composed of a set of randomly-generated
walks. These neural language models have been used to
capture the semantic and syntactic structure of human lan-
guage [6], and even logical analogies [28].

DeepWalk takes a graph as input and produces a la-
tent representation as an output. The result of applying our
method to the well-studied Karate network is shown in Fig-
ure 1. The graph, as typically presented by force-directed
layouts, is shown in Figure 1a. Figure 1b shows the output
of our method with 2 latent dimensions. Beyond the striking
similarity, we note that linearly separable portions of (1b)
correspond to clusters found through modularity maximiza-
tion in the input graph (1a) (shown as vertex colors).

To demonstrate DeepWalk’s potential in real world sce-

ar
X

iv
:1

40
3.

66
52

v2
 [

cs
.S

I]
 2

7
Ju

n
20

14

5

Beak

Beescratch

BumperCCL

Cross

DN16

DN21

DN63

Double

Feather

Fish

Five

Fork

Gallatin

Grin

Haecksel

Hook

Jet

Jonah

Knit

Kringel

MN105

MN23

MN60

MN83

Mus

Notch
Number1

Oscar

Patchback

PL

Quasi

Ripplefluke

Scabs

Shmuddel

SMN5

SN100

SN4

SN63

SN89

SN9

SN90

SN96

Stripes

Thumper
Topless

TR120

TR77

TR82

TR88

TR99

Trigger

TSN103

TSN83

Upbang

Vau

Wave

Web

Whitetip

Zap

Zig

Zipfel

a

b

c

FIG. 2 Community structure in social networks. a) Zachary’s karate club, a standard benchmark in community detection. The
colors correspond to the best partition found by optimizing the modularity of Newman and Girvan (Section VI.A). Reprinted
figure with permission from Ref. (Donetti and Muñoz, 2004). c�2004 by IOP Publishing and SISSA. b) Collaboration network
between scientists working at the Santa Fe Institute. The colors indicate high level communities obtained by the algorithm
of Girvan and Newman (Section V.A) and correspond quite closely to research divisions of the institute. Further subdivisions
correspond to smaller research groups, revolving around project leaders. Reprinted figure with permission from Ref. (Girvan
and Newman, 2002). c�2002 by the National Academy of Science of the USA. c) Lusseau’s network of bottlenose dolphins.
The colors label the communities identified through the optimization of a modified version of the modularity of Newman and
Girvan, proposed by Arenas et al. (Arenas et al., 2008b) (Section XII.A). The partition matches the biological classification
of the dolphins proposed by Lusseau. Reprinted figure with permission from Ref. (Arenas et al., 2008b). c�2008 by IOP
Publishing.

portant detecting modules in PPI networks is.

Relationships/interactions between elements of a sys-
tem need not be reciprocal. In many cases they have a
precise direction, that needs to be taken into account to
understand the system as a whole. As an example we can
cite predator-prey relationships in food webs. In Fig. 4
we see another example, taken from technology. The
system is the World Wide Web, which can be seen as a
graph by representing web pages as vertices and the hy-
perlinks that make users move from one page to another
as edges (Albert et al., 1999). Hyperlinks are directed:
if one can move from page A to page B by clicking on a

hyperlink of A, one usually does not find on B a hyper-
link taking back to A. In fact, very few hyperlinks (less
than 10%) are reciprocal. Communities of the web graph
are groups of pages having topical similarities. Detect-
ing communities in the web graph may help to identify
the artificial clusters created by link farms in order to
enhance the PageRank (Brin and Page, 1998) value of
web sites and grant them a higher Google ranking. In
this way one could discourage this unfair practice. One
usually assumes that the existence of a hyperlink between
two pages implies that they are content-related, and that
this similarity is independent of the hyperlink direction.

(a) (b)

Community 1

Community 2

Figure 8: Two community detection benchmarks used in experiments. (a) The Lusseau’s network
of bottlenose dolphins (Fortunato, 2010), modified from (Arenas et al., 2008). This network is
considered as an imbalanced structure with 2 ground-truth communities of sizes 20 and 42. (b)
The Zachary’s karate club network, modified from (Perozzi et al., 2014). This contains 34 nodes
and 78 undirected and unweighted edges. Colors within nodes denote local communities (i.e., the
ground-truth found by the modularity-based algorithm (Perozzi et al., 2014)), while colored shadow
areas define the global communities (i.e., the ground-truth collected from the original paper (Zachary,
1977)).

C.1 EXPERIMENT SETTINGS OF MODELS USED IN REAL-WORLD SCENARIOS

Here, we specify the detailed settings in the experiments of real-world problems.

Stochastic block model (SBM) network. The structure of SBM network is shown in Figure 7.
As mentioned in the main text, all settings remained the same as in previous imbalanced CGCP
experiments (see Section 6.2).

Community detection benchmarks. In the two problems of the community detection benchmarks,
MRIL was not used, since we focus on the investigation of how the given algorithms learn the
topological and hierarchical structures underlying in input sequences, as well as how well the
structures are produced using such algorithms. MRIL cannnot encode input sequences into a map
space, therefore it was not considered as a baseline.

Regarding the Modularity Max, we again used TP matrices that produced by the graphs generated
from the given input sequences, as our focus is on the ability of extracting information in input
sequences. When finding the communities, we specify the “number of communities” to the algorithm.
This can be found in the official documentation of NetworkX (a Python library for analyzing graphs),
where we set “a minimum number of communities below which the merging process stops. The
process stops at this number of communities even if modularity is not maximized.” However, it should
be noted that the process will stop before the cutoff if it finds a maximum of modularity. Based
on the given ground-truth, in the Lusseau’s network of bottlenose dolphins, we set the “number of
communities” at 2. In the Zachary’s karate club network, we set the “number of communities” at 2
and 4 for computing NMI with two sets of ground-truth, respectively.

Regarding the Word2vec, we set the latent dimension equal to 2, and kept all other parameter settings
unchanged. This is to produce a 2-D representation of the given community structures. Also, in
the previous experiments, DBSCAN was used to obtain chunks, where in the real-world problems
we replaced it to hierarchical clustering as we are more interested in the topology as well as the
hierarchical structures.

The original SyncMap and Symmetrical SyncMap shared the same changes with Word2vec, that is,
we only reduced the SyncMap space dimension k from 3 to 2. Also, hierarchical clustering is used.

14

Under review as a conference paper at ICLR 2023

Regarding the hierarchical clustering, we used “ward” as a linkage method. And we specified the
number of clusters when performing the algorithm. In details, for the Lusseau’s network of bottlenose
dolphins, we set the “number of clusters” at 2. In the Zachary’s karate club network, we set the
“number of clusters” at 2 and 4 for computing NMI with two sets of ground-truth, respectively.

C.2 RESULTS ANALYSIS

SBM network. Modularity Max performs nearly optimal in this scenario. Also, recall that it yields
relatively low NMI in fixed CGCP. The differences of the performance observed here might be
because the communities with many deterministic connections are less likely to appear in usual
problems faced by Modularity Max, thus leading to a problem bias; that is, fixed chunk structures are
not strictly meet the condition that the possibility of transition to an internal state within a chunk is
higher than that of transition to an external state belonging to other chunks. This leads to a problem
bias for Modularity Max.

í� í� í� í� í� í� í�

í��

í�

í�

í�

í�
�

�
�

�

�

�

�

�

���

��

��

��

��

����

��

��

��

��

��

��

�� �� ������
����

��
����

�� ��

:RUG�YHF�ZLWK���ODEHO�*7��.DUDWH�
�� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� � �� �� �� � �� � �� �� �� �� �� �� �� � �� � �� �� �� � �� �� �� �� �� �� �� � �� �� �� �� �� � �� �� �� � �� �� �� � �� �� ��

�

��

��

��

'HGURJUDP�RI�:RUG�YHF��'ROSKLQV�

�� �� �� �� �� �� �� �� �� �� �� �� �� � �� �� � �� � � � � �� �� �� � �� �� �� � �� �� � �
�

�

��

��

��

'HGURJUDP�RI�:RUG�YHF��.DUDWH�

í�� í�� í� í� í� í� �

í��

í�

í�

í�

í�

:RUG�YHF�ZLWK���ODEHO�*7��'ROSKLQV�

O
rig

.S
yn

cM
ap

W
or

d2
ve

c
Sy

m
m

. S
yn

cM
ap

Dolphins Network Dendrograms Karate Network

Figure 9: Analysis of real-world problems used in the experiments. Here we compare three algorithms,
namely (i) Word2vec, (ii) original SyncMap, and (iii) Symmetrical SyncMap (the proposed one).
Note that Modularity Max and MRIL do not encode input sequences into a map space. Thus, they are
not figuratively comparable.

Community detection benchmarks. Word2vec, as shown in Figure 9, always forms a latent
representation with two long tails. This shape does harm when finding hierarchical structures.

We have analyzed the two models of SyncMap in the main text. It is worth noting here that from
the dendrograms of the original SyncMap, we can conclude that the original work is not possible
to extract local relationships (i.e., hierarchies), as the nodes are all densely distributed in compact
communities.

Regarding the Modularity Max, it does not encode temporal sequences into a map space, and thus it is
not figuratively visualized. Meanwhile, although the datasets here are designed for modularity-based

15

Under review as a conference paper at ICLR 2023

models, Modularity Max failed to extract information and maximize the modularity from sequential
data, thus showing lower NMI.

D MAPS LEARNED BY DIFFERENT ALGORITHMS

Fixed Chunk Test

Chunking results: Node’ distributions in 20-10-5 problems.
Probabilistic Chunk Test Mixed Chunk Test

O
ri

gi
na

l S
yn

cM
ap

W
or

d2
ve

c

(b
) N

M
I=

0.8
3.

(c)
 N

M
I=

0.8
3.

Sy
m

m
et

ri
ca

l S
yn

cM
ap

(h
) N

M
I=

1.0
.

(i)
 N

M
I=

0.9
3.

(h
) N

M
I=

1.0
.

(d
) N

M
I=

0.5
3.

(e)
 N

M
I=

0.7
7.

(a)
 N

M
I=

0.8
3.

(f)
 N

M
I=

0.7
3.

Figure 10: Chunking results of imbalanced 20-10-5 fixed (left), probabilistic (middle) and mixed
(right) problems using the original SyncMap (top), Word2vec (middle) and the proposed Symmetrical
SyncMap (bottom). Colors of the nodes indicate the true labels of chunks. Specifically, purple for
big chunk (20), yellow for moderate chunk (10), green for small chunk (5). Note that Modularity
Max and MRIL do not encode input sequences into a map space. Thus, they are not figuratively
comparable.

E STABILITY ANALYSIS

The proposed Symmetrical SyncMap shows good stability over the long run in all imbalanced
chunking problems. Figures 11 and 12 show the NMI average with error bar (s.t.d.) at every 10,000
time step during training in all imbalanced problems.

16

Under review as a conference paper at ICLR 2023

A B

DC

FE

Figure 11: NMI over time of imbalanced tests. (a) fixed 20-20-5, (b) fixed 20-10-5, (c) fixed 20-5-5,
(d) probabilistic 20-20-5, (e) probabilistic 20-10-5, (f) probabilistic 20-5-5.

BA

C D

E F

Figure 12: NMI over time of imbalanced tests. (a) mixed 20-20-5, (b) mixed 20-10-5, (c) mixed
20-5-5, (d) continual fixed, (e) continual probabilistic, (f) continual mixed.

F PARAMETER SENSITIVITY ANAYLSIS

Table 4 shows the performance of Symmetrical SyncMap on the same imbalanced experiments
(fixed/probabilistic/mixed 20-10-5 test) but with different parameters settings. Results suggest that
Symmetrical SyncMap is robust to changes in parameters, with mostly smooth changes.

Note that the parameter Pr is designed for solving small chunks. To illustrate, if Pr = 100%, then at
every time step we apply state memory generalization to have a longer memory window. In this case,
if the current chunk is too small (e.g., only having 3 states), then it would probably not be detected.
Therefore, choosing Pr = 30% provides a trade-off between finding big and small chunks. In fact,
in the future version of our model, this parameter will no longer be used, as tiny chunk/communities
are rarely appear alone, while they usually appear inside a big chunk (i.e., hierarchies). Having said
that, the results of using Pr = 100% and Pr = 30% are both adequate.

17

Under review as a conference paper at ICLR 2023

Table 2: NMI of several Symmetrical SyncMap variations in Fixed, Probabilistic and Mixed structures
settings (20-10-5 tests).

Setting Fixed Probabilistic Mixed
k = 3 m = 3 Pr = 30% 1.0±0.0 1.0±0.0 0.92±0.06
k = 3 m = 2 Pr = 100% 0.95±0.08 0.98±0.02 0.86±0.03
k = 3 m = 3 Pr = 100% 1.0±0.0 1.0±0.0 0.95±0.05
k = 3 m = 4 Pr = 30% 0.96±0.08 1.0±0.0 0.95±0.05
k = 2 m = 2 Pr = 100% 0.90±0.10 1.0±0.0 0.87±0.07
k = 2 m = 3 Pr = 30% 0.98±0.07 1.0±0.0 0.90±0.08
k = 2 m = 4 Pr = 30% 0.95±0.08 1.0±0.0 0.94±0.07

G ALGORITHMIC DESCRIPTION OF SYMMETRICAL SYNCMAP

Algorithm 1 Symmetrical SyncMap
Input: input sequence X = {xi|i = 1, ..., τ}
Parameters: sequence length τ , map dimension k, state memory m, probability parameter Pr, input
dimension n, learning rate α
Output: A number of clusters indicating communities and
chunks.

1: Initialize SyncMap by generating weight nodes wi,0 , where i = 1...n
2: Set Wt = {wi,t|i = 1...n, t = 0...τ}
3: for t = 0 to τ do
4: Initialize PSt and NSt as empty set
5: Randomly generate a constant variable Prt ∈ [0, 1]
6: Divide m nodes into temporary set PStemp

7: mneg ← m (Symmetrical activation)
8: if m > 2 & Prt < Pr then
9: Stochastically select 2 nodes in PStemp to activate

10: Include these 2 nodes into set PSt

11: mneg ← 2 (Symmetrical activation)
12: else if m > 2 & Prt ≥ Pr then
13: PSt ← PStemp

14: end if
15: Set temporary NStemp ←Wt − PSt

16: Stochastically select mneg nodes in NStemp to activate
17: Include these mneg nodes into set NSt

18: PSt and NSt determined
19: Calculate cpt and cnt by Eq. 2
20: Update the nodes’ position by Eqs. 3 and 4
21: Normalize nodes in hypersphere radius = 10
22: end for
23: Apply clustering algorithm such as DBSCAN or Hierarchical clustering

18

Under review as a conference paper at ICLR 2023

H STATISTICAL TESTS

We used a t-test with p-value of 0.05 to verify if the best result is statistically significantly different
from other results. h is the hypothesis test result (h=0 indicates a failure to reject the null hypothesis
at the 5% significance level, and h=1 otherwise). p is the two-tailed p value, and ci is the confidence
interval for the difference in population means of two samples.

Table 3: Statistical Results.
Problems Description Num. of Samples

and Mean+s.t.d. Test Statistic

Long-term Analysis
(Figure 5) Orig. vs Symm.SyncMap 30 each model

at final time step
Two-sample

t-test
h=1, p=6.5228e-27,
ci=[0.3166;0.3899]

Prob. 20-20-5
(Table 1) M.Max vs Symm.SyncMap 30 each model

(0.96±0.04 and 1.0±0.0)
Two-sample

t-test
h=1, p=4.3546e-06,
ci=[0.0220;0.0508]

Prob. 20-20-5
(Table 1) Orig. vs Symm.SyncMap 30 each model

(1.0±0.0 and 1.0±0.0)
Two-sample

t-test
h=NaN, p=NaN,

ci=[0.0;0.0]
Prob. 20-10-5

(Table 1) M.Max vs Symm.SyncMap 30 each model
(1.0±0.0 and 1.0±0.0)

Two-sample
t-test

h=0, p=0.3215,
ci=[-0.0033;0.0098]

Prob. 20-5-5
(Table 1) M.Max vs Symm.SyncMap 30 each model

(1.0±0.0 and 1.0±0.0)
Two-sample

t-test
h=0, p=0.3216,

ci=[-0.0042;0.0125]
Mixed 20-20-5

(Table 1) Orig. vs Symm.SyncMap 30 each model
(0.84±0.08 and 0.87±0.09)

Two-sample
t-test

h=0, p=0.1568,
ci=[-0.0121;0.0731]

SBM Network
(Table 1) M.Max vs Symm.SyncMap 30 each model

(0.99±0.02 and 1.0±0.0)
Two-sample

t-test
h=0, p=0.09,

ci=[-0.0011;0.0129]
SBM Network

(Table 1) Orig. vs Symm.SyncMap 30 each model
(1.0±0.0 and 1.0±0.0)

Two-sample
t-test

h=NaN, p=NaN,
ci=[0.0;0.0]

I COMPUTATIONAL TIME ANAYLSIS

We analyze the computational time over Symmetrical SyncMap, SyncMap and Word2vec. In addition
to Karate network, we introduced two larger scale imbalanced CGCP problems (i.e., problem with
300-D input and 1200-D input). More specifically, the structure of 300-D CGCP problem includes:
Four chunks with 50 states + Two chunks with 20 states + Four chunks with 10 states + Four chunks
with 5 states. We denote this problem as 300-D (50x4 + 20x2 + 10x4 + 5x4). Using the similar
denotation, the 1200-D CGCP problem is 1200-D (300x2 + 150x2 + 50x4 + 20x2 + 10x4 + 5x4).

We ran all three problems 10-time per problem per algorithm with 200,000 as sequence length. All
tests were run on a MacBook Pro 2.4GHz Quad-Core Intel Core i5 16GB laptop as they demand
little computational effort, and computation time [second] were obtained in mean±s.t.d. Results show
that the proposed Symmetrical SyncMap is scalable. Although it is slower than the original one and
Word2vec (mainly due to the stochastic selection process), the computation time does not become
worse as the scale of the input increases. Note that both SyncMap and the proposed algorithm should
improve considerably if parallelization, GPU programming and other techniques are employed. For
example, all nodes in SyncMap can be updated at the same time.

Table 4: Computation time[s] comparison over Symmetrical SyncMap, SyncMap and Word2vec.
Problem Type Symm. SyncMap Orig. SyncMap Word2vec
Karate (34-D) 90.227±1.297 30.179±0.571 33.077±0.429

Imbalanced 300-D 98.055±3.689 34.462±0.671 43.035±0.494
Imbalanced 1200-D 118.602±1.629 44.827±0.979 72.956±1.923

J ABLATION STUDY

The proposed method is composed of two parts compared to the original SyncMap: Symmetrical
activation and genalized memory window. We perform an ablation study to evaluate the effect of each
of these two modifications. The ablation study investigated CGCP problem of mixed-20-10-5. The
key feature of this problem is that there is a fixed chunk with 10 state in between two probabilistic
chunks. The 10-time averaged NMI results are shown in Table 5.

From the NMI scores, it is hard to image what happen inside the SyncMap space. However, a better
visualization can be observed in the learned map comparison in Figure 13. To illustrate briefly, if

19

Under review as a conference paper at ICLR 2023

Table 5: NMI score of ablation study.
Model Type NMI Score

Original SyncMap (m=2) 0.84±0.07
SyncMap with Generalized Memory Window (m=3) 0.83±0.0

SyncMap with Symmetrical Activation (m=2) 0.84±0.03
Symmetrical SyncMap (m=3) 0.90±0.06

only applying symmetrical activation, the states (i.e., weight nodes in the map) of the given fixed
chunk will be very sparely distributed (Figure 13(c), i.e., the system cannot detect the fixed chunk
because it needs more memory to remember fixed chunks). On the other hand, if only applying
generalized longer memory window, the strength of the negative feedback will still dominate the
self-organizing process, thus resulting in the similar output with Original SyncMap (Figure 13(a)(b);
that is, all weight nodes are squeezed into compact clusters. Therefore, by applying symmetrical
activation and generalized memory window together, the system is stable and able to detect fixed
chunk in more general cases (Figure 13(d).

Figure 13: Learned map of (a) Original SyncMap, (b) SyncMap with Generalized Memory Window
(m=3), (c) Symmetrical SyncMap without Generalized Memory Window (m=2), and (d) Symmetrical
SyncMap. Note the nodes belong to fixed chunk is denoted by yellow color, which is slightly hard to
visualize.

K RELATED WORKS

Chunking is an extremely multidisciplinary problem. In the main text, we attempt to cover a number
of related topics from neuroscience to machine learning and try to connect them to this work. Due to
the page limit, we review additional related works here for completeness.

Latent Variable Estimation. Some literature focusing on latent variable estimation solve problems
which are related to chunking (Fox et al., 2011; Qian & Aslin, 2014; Pfau et al., 2010). However,
they have different objectives, since chunking is a self-organizing process over the variables of the
problem with respect to their temporal correlation. Even if chunks of variables can be abstracted as a
set of variables, there is still an inherent difference between chunks and latent variables.

Unsupervised Learning for Sequences. Feature extraction is commonly used to predict future input
in unsupervised learning for sequences (Clark et al., 2019; Lei et al., 2017; Mikolov et al., 2013;
Wu et al., 2018). A peculiar learning algorithm called contrastive predictive encoding (CPE) has
been proposed, which represents sequences by using a probabilistic contrastive loss in the latent
space to encode maximally useful information (Hjelm et al., 2018). CPE solves problems which are
complementary rather than competing with the problem presented here.

20

	Introduction
	Related Works
	Continual General Chunking Problems
	SyncMap
	Symmetrical SyncMap
	Memory Window: Generalizing the State Memory
	Symmetrical Activation

	Experiments of CGCP problems
	Long Term Behavior Analysis Experiment
	Imbalanced CGCP Problems

	Real-world Scenarios
	Conclusions
	Reproducibility Statement
	Definition of Normalized Mutual Information (NMI)
	Examples of Imbalanced CGCPs
	Analysis of Real-world Scenarios
	Experiment settings of models used in real-world scenarios
	Results analysis

	Maps learned by Different Algorithms
	Stability Analysis
	Parameter Sensitivity Anaylsis
	Algorithmic Description of Symmetrical SyncMap
	Statistical Tests
	Computational Time Anaylsis
	Ablation Study
	Related Works

