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Abstract

We introduce Bridged Clustering, an algorithm that leverages
existing unsupervised datasets to help achieve new supervised
objectives in scientific research. Applying supervised learn-
ing to scientific research often poses the challenge of labeling
enough samples to support scalable inference. As an alterna-
tive to excessive labeling, our algorithm leverages unlabeled
data that is either already available in existing research or eas-
ier to collect in general. Bridged Clustering leverages two dis-
tinct sets of unlabeled data and a sparse supervised dataset to
perform inference. The algorithm operates by independently
clustering the input and output feature spaces, then learn-
ing a mapping between these clusters using the supervised
set. This approach effectively bridges the gap between dis-
parate data sources, enhancing predictive performance with-
out needing extensive labeled data. We demonstrate the effi-
cacy of Bridged Clustering in a biological context, where it
successfully infers genetic information of leaf samples from
their morphological traits. In general, Bridged Clustering of-
fers a robust framework for utilizing available unlabeled data
to support new inference objectives in scientific research, es-
pecially where labeled data is scarce.

Introduction
In scientific research, it is crucial to leverage existing
datasets. Through careful processing, data collected in past
research for different objectives can be re-utilized to answer
new research questions, allowing for compounded produc-
tivity in cross-disciplinary scientific research (Tenopir et al.
2011; Castaneda and Cuellar 2020).

This paper introduces a Machine Learning algorithm that
creates a “bridge” between datasets. Specifically, in the sci-
entific setting where researchers aim to relate a set of fea-
tures Y to another set of features X , the Bridged Cluster-
ing algorithm associates separately available Y-specific data
with X -specific data to yield the prediction.

The Y- and X -specific data may come from separate
sources of past studies where researchers are only interested
in a subset of the feature-set. In addressing a new research
problem that involves inferring Y from X , the X -specific
data is seen as unlabeled input data, and the Y-specific data
is unsupervised output data disassociated with inputs.

Without leveraging unsupervised datasets, to learn a pre-
dictive function from X to Y would require a sizable su-
pervised set containing fully-labeled samples. In many re-

search contexts, labeling every sample of interest is expen-
sive and unrealistic at scale (Balcan and Sharma 2021). The
main contribution of Bridged Clustering is using unlabeled
input and output data to augment the predictive ability of a
small supervised set of examples, obtaining inferential accu-
racy on par with a larger labeled set.

Besides obtaining unsupervised data from existing re-
search, the algorithm also facilitates research where data is
newly collected. In many settings, unlabeled examples are
significantly easier to obtain than labeled ones (Ratner et al.
2017). To study a population of interest, it is typically easier
to first collect an unlabeled set of samples, and then sepa-
rately collect a sample-independent set of labels. The col-
lection of unsupervised sets can be completely independent
of each other as long as they are sampled from the same
population of interest, allowing flexibility in data sourcing.

To motivate this problem, our paper considers a setting
where the algorithm can help biologists infer genetic in-
formation of samples from their morphological structures.
Since researchers agree that it is cost-intensive to examine
genetics of every available morphological sample, there is
usually scarce fully-supervised data with both morphologi-
cal and genetic information. Data of leaf morphology alone
is often more available, as with general genetic data unspe-
cific to morphological samples (Lexer and Widmer 2008;
Stein et al. 2014). Using these two sizable but unsupervised
datasets, we can apply the Bridged Clustering algorithm to
augment the predictive ability of the small supervised set.

Figure 1: General Dataset Structure for Bridged Clustering.



The inferential function learned by the Bridged Cluster-
ing allows biologists to infer rough genetic information from
quick examinations of leaf morphology. This is an impor-
tant application because biologists often have to extrapolate
the rough genetic composition of a sample to consider the
conservational value of the species in the area, and conduct-
ing iterative genetic testing would be cost-inefficient, mak-
ing morphological examination a valuable alternative.

Related Work
Semi-supervised Learning. Our algorithm builds upon
the semi-supervised learning (SSL) paradigm, which is to
learn from both labeled and unlabeled data (Zhu and Gold-
berg 2022). The fundamental assumption of SSL is that un-
labeled data share an underlying structure with labeled data,
enabling the model to infer meaningful patterns from unla-
beled data that improve prediction accuracy. A consensus in
the research community is that SSL-based methods is cru-
cial for modern machine learning applications where labels
are scarce or expensive to obtain (Balcan and Sharma 2021).

While many SSL methods focus on enhancing features
within the input space (Van Engelen and Hoos 2020),
Bridged Clustering extends this paradigm by clustering the
output feature space as well. Similar to how clustering in the
input space enables unlabeled data to meaningfully depict
the feature space of the population, clustering the output la-
bels gives a more robust representation of the output space.

Co-training. The idea of using separate unlabeled data to
augment a small supervised set is reminiscent of the co-
training model (Bartlett et al. 1998). Co-training first learns
a separate classifier for each conditionally independent fea-
ture space (corresponding to input space and output space in
our model). The most confident predictions of each classifier
on the unlabeled data are then used to iteratively construct
additional labeled training data. In a graphical formulation,
as long as every connected component contains a labeled
point, the whole dataset can ultimately be labeled by the end
of co-training.

Co-training reveals several important facts for our model.

1. Conditional independence of complementary feature
spaces allows unlabeled data to provide inferential value.

2. Each connected component in the graph corresponds to
one variable, which is the target label for co-training
model and the latent variable for Bridged Clustering.

However, co-training and Bridged Clustering address fun-
damentally different problems. While Co-training aims to
infer the target value from both feature spaces, Bridged
Clustering seeks to predict the value of one feature (output)
from the other feature (input), using the common variable as
a latent “bridge” – not as a target.

Problem Formulation
Let D be the underlying population distribution over X ×Y .
We draw the following three datasets independently from D:

• Input Features Set X = {x1, x2, . . . , x|X |} ∼ D|X
• Output Labels Set Y = {y1, y2, . . . , y|Y|} ∼ D|Y .

Algorithm 1: Bridged Clustering Algorithm

1: Clustering in X :
2: Apply a clustering algorithm to X to obtain cluster as-

signments CX .
3: Clustering in Y:
4: Apply a clustering algorithm to Y to obtain cluster as-

signments CY .
5: Bridge Learning:
6: Using the supervised set S , learn the mapping Ax→y

between clusters in X and clusters in Y .
7: Prediction:
8: for each sample xi in X do
9: Assign xi to a cluster cx = CX (xi).

10: Find corresponding cluster in Y: cy = Ax→y(cx).
11: Predict ŷi as the centroid of cluster cy in Y .
12: end for
13: return Predicted labels Ŷ

• Sparse Supervised Set S = {(x′
i, y

′
i)}ki=1} ∼ D

Using the three sets of samples, the Bridged Clustering al-
gorithm aims to accurately estimate the missing labels Ŷ =
{ŷ1, . . . , ŷ|X |} for samples in X .

Critical Assumptions
The algorithm relies on the critical assumption that there ex-
ists a latent space T = {t1, t2, . . . , tj}(j ≪ |X |, |Y|), for
which we can learn mappings X → T and Y → T . In other
words, as we run an unsupervised clustering algorithm over
X , we obtain labels in terms of T , and running the clustering
algorithm over Y yields labels in the same space T .

To see how this assumption is useful, we return to the bio-
logical setting. Morphological data, encoded as feature vec-
tors in X , would form individual clusters in X that roughly
correspond to individual leaf species, since same-cluster
leaves that share similar morphological traits likely belong
to the same species. The same applies to genetics data in Y ,
where samples of the same species likely fall into the same
genetic cluster. In this scenario, T : {t1, t2, . . . , tj} corre-
sponds to the series of underlying species in the population.

Notice that this setting does not require researchers to
have knowledge of different species, as the space T is a la-
tent assumption that we make based on the clustering prop-
erties in X and Y . Our algorithm is useful for settings where
the T space is unknown, for instance when field researchers
sample from a new site, where there might be unknown
species or otherwise uncertain delimitation of species.

Obtaining mappings X ↔ T and Y ↔ T , we then use the
small supervised set to associate clusters in X with clusters
in Y . The cluster centroids in Y are used as predictions for
datapoints that fall into the corresponding clusters in X .

Another useful assumption is that for any sample, its fea-
ture in X and label in Y are conditionally independent given
the latent variable in T . For a leaf sample, we can assume
that its genetic components are mostly conditionally inde-
pendent of its morphological features, given that the leaf
belongs to a specific species. (That is, genetic variation be-



tween same-species samples is small, and is minimally cor-
related with the same-species morphological variation.)

Postulating conditional independence, we can see one
possible advantage of Bridged Clustering over classical re-
gression methods. Bridged Clustering is more robust to the
sample variability introduced by conditional independence.

Optimization Objectives
In essence, the Bridged Clustering Algorithm transforms the
basic predictive objective (given input xi, minimize |ŷi−yi|)
into two clustering objectives (ensure effective clustering in
X ↔ T and Y ↔ T ) and an mapping objective (ensure
correct X ↔ Y cluster association in T space).

Clustering Objectives Let CX be the function that assigns
each feature vector xi ∈ X to one of j clusters, and let C(k)

X
denote the set of feature vectors assigned to cluster k.

The clustering objective for the feature space is given by:
minCX

∑j
k=1

∑
xi∈C(k)

X
∥xi − 1

|C(k)

X |

∑
xℓ∈C(k)

X
xℓ∥2.

Let CY be the function that assigns each output vector yi ∈
Y to one of j clusters, and let C(k)

Y denote the set of output
vectors assigned to cluster k.

The clustering objective for the output space is given by:
minCY

∑j
k=1

∑
yi∈C(k)

Y
∥yi − 1

|C(k)

Y |

∑
yℓ∈C(k)

Y
yℓ∥2.

Mapping Objective With supervised set S, we determine
the most probable correspondence between clusters in X
and Y that maximizes the cluster-to-cluster association ac-
curacy. We seek the association function Ax→y such that:
maxAx→y

∑
(xi,yi)∈S 1{Ax→y(CX (xi)) = CY(yi)}.

Graphical Formulation
Now we will formulate the Bridged Clustering model graph-
ically. Given nodes for sample inputs x1, x2, . . . , x|X |, and
nodes for sample outputs y1, y2, . . . , y|Y|, perform cluster-
ing for the input and output vectors respectively. Instantiate
j nodes for cluster labels CX , and each edge (xa, CXb) in-
dicates that the ath input vector is assigned to the bth input
cluster. Instantiate j nodes for cluster labels CY , with edges
(ya, CYb) representing output cluster assignments.

Figure 2: Building connected components through super-
vised (colored) examples, simplified for illustration.

Following the two clustering procedures, we should have
2j connected components, each representing an input or
output cluster. Using the small supervised set, We build j
edges (CXa, CYb) in a way such that the greatest number of

supervised samples (xi, yi) ∈ S could have xi and yi in
the same connected component, halving the number of con-
nected components, as shown in Figure 2.

Experiments
In the experimental setting, we use the Bridged Cluster-
ing algorithm to predict genetic features of Quercus oak
leaf samples from the sample’s morphological traits. More
specifically, we test the accuracy in which our model pre-
dicts the key dimensions of genetic variation of biallelic sin-
gle nucleotide polymorphisms (SNPs) in these leaf samples.

Datasets

In the general setting for Bridged Clustering, we are given
two unsupervised training sets with an overlapping subset,
from which we sample a supervised set and a test set.

For our experiments, we are given a morphological
dataset containing 572 samples, each with 19 morpholog-
ical features, and another genetics dataset containing 179
samples, each with 6 PC features, PCs representing a ge-
netic variation of biallelic single nucleotide polymorphisms
(SNPs). There are 111 oak leaf samples that are present in
both datasets, complete with both morphological and genetic
features. Of these samples, we randomly sample a isolated
test subset, and another small supervised subset. Every sam-
ple that is not in the test set is assigned to the training group,
including supervised and unsupervised. All of these samples
belong to one of 3 members of the Quercus family: Quercus
acerifolia (QA), Quercus shumardii (QS), or Quercus rubra
(QR).

Feature Selection Based on Cluster Quality

To enable efficient clustering, we should reduce the dimen-
sions of both feature sets. Methods vary for different appli-
cations of the algorithm, but here we select features based
on how well they form clusters corresponding to the la-
tent variable of interest: species. Biologists have already
hand-labeled the species categorization information for the
samples in the dataset (3 possible species: QA, QR, QS).
Through iterative testing, we sampled the best set of features
to include into the input/output vector – the criteria is that,
with this set of features, our algorithm has the highest proba-
bility of assigning samples hand-labeled as the same species
to the same cluster. This external criteria of clustering qual-
ity can be measured in terms of cluster purity or Normalized
Mutual Information (Strehl and Ghosh 2002).

Posing the ground-truth species information against
the empirical cluster assignment, we measure how
well differently-configured clustering algorithm recognizes
species as a latent factor. With cluster quality as a standard,
we converge on the best configuration of the clustering al-
gorithm: the best subset of input/output features. We ended
up selecting 5 morphological features (Terminal extension
length, Lateral sinus radius, Lateral lobe distal width, De-
gree of axillary pubescence, Tree height) and 3 genetics fea-
tures (PC 1, 2, 3) to be included in our model.



Clustering Algorithm
Using the same standard of cluster quality, we measured
the NMI of different clustering algorithms, and opted the
K-means algorithm (Lloyd 1982), which achieved NMI =
0.619 for Morphology, and NMI = 0.539 for Genetics.

We apply the K-means clustering algorithm to the 5-
feature morphological vectors in the inputs space, and then
apply it to the 3-feature genetic vectors in the output space.
The results of clustering is shown in Figure 3, with cluster
qualities summarized in Figure 4.

Figure 3: Clustering results in the morphological input fea-
ture space and the genetics output feature space, visualized
with PCA. Note colormap is non-transferrable in (a) and (b).

(a) Morph Assignments (b) Genetic Assignments

Figure 4: Clustering quality, shown by cluster assignment
consistency for different species, in the morphological input
feature space (a) and the genetics output feature space (b).

Upon examining the results of clustering, we found a
good alignment in cluster and species delineation. Clus-
ters almost exclusively contain samples from one species,
and same-species samples are almost always assigned to the
same cluster. That means we have established a reasonably
reliable X ↔ T and Y ↔ T as we treat species classifica-
tion as the latent variable T .

Bridging Clusters
To learn the mapping between input clusters and output clus-
ters, we review the supervised samples that have been as-
signed to an input and output cluster each. For every super-
vised sample and its two cluster affiliations, we increase the
confidence that these two clusters are mutually associated.
In the end, we take the most probable 1-to-1 mapping be-
tween the input and output clusters.

Since we have the ground truth for the latent variable T ,
we can assess the reliability of our algorithm in retrieving the
correct cluster associations. The rate of success is a function
of the number of supervised samples. As shown in Figure
5, if we collect more than 10% of the 111 fully-labeled ex-
amples into our supervised set, the algorithm retrieves the
correct cluster associations with probability > 97%, and col-
lecting 20% ensures almost prefect accuracy.

Figure 5: Accuracy for cluster-cluster mapping (defined as
percentage of successful randomized trials).

Inference Results
The algorithm is finally assessed by its accuracy of infer-
ence. We run the Bridged Clustering algorithm, and for ran-
dom leaf samples, we predict the 3 genetic features from
their morphological features. For every random sample, we
measure the distance between its algorithm-predicted ge-
netic features and the actual feature value – the smaller the
distance, the more accurate our algorithm. We run this ex-
periment for different sizes of the supervised set. For each
experiment, we accumulate the test results from 500 random
trials, and observe the distribution of euclidean distances be-
tween the predicted and true genetic coordinates.

For primary baseline, we use K-Nearest-Neighbor Re-
gression, a method that solely relies on the fully-supervised
portion of the data. For every test sample, the KNN model
searches for its K closest euclidean neighbors in the input
space (in morphological coordinates), and returns the aver-
age of the genetic coordinates of these neighbors as predic-
tion. We tested KNN on the full feature set, instead of the
preprocessed feature set we curated for Bridged Clustering.



Table 1: Mean of Euclidean distances between predicted and
true genetic coordinates. BC stands for the Bridged Clus-
tering method, and KNN(i) stands for K-Nearest-Neighbor
Regression with i neighbours.

Supervised% BC KNN(1) KNN(2) KNN(3) Linear Reg
5% 11.77 13.43 12.45 12.36 199.25

10% 10.63 12.73 11.86 11.61 14.26
15% 10.42 11.93 11.30 10.95 11.36
20% 10.23 11.37 10.77 10.53 10.61
25% 10.21 11.07 10.35 10.22 10.18
30% 10.20 10.91 10.05 10.06 9.85

Besides the KNN baseline, we also experiment with training
a Linear Regression model to fit our supervised dataset.

The experiments yield results as shown in Table 1. On
average, the genetics predicted by the Bridged Clustering
algorithm are the closest to the ground-truth values, as com-
pared to the baseline predictions. Our predictions also has
smaller variances, suggesting that our algorithm returns a
more consistent estimate (See Appendix). These observa-
tions hold while the number of supervised examples is scare,
which in this case is less than 20% of all labeled samples.

As the size of the supervised set grows large relative to
the entire dataset, the unsupervised samples provide less in-
ference power and Bridged Clustering does not outperform
the baselines, suggesting a limitation of our algorithm.
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Appendix: Inference Test Results
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(a) 5% Supervision
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(b) 10% Supervision
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(c) 15% Supervision
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(d) 20% Supervision
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(e) 25% Supervision
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Figure 6: Distribution of Euclidean distances between pre-
dicted and true gene coordinates.


