
Fitting trees to ℓ1-hyperbolic distances

Joon-Hyeok Yim Anna C. Gilbert

Abstract

Building trees to represent or to fit distances is a critical component of phylogenetic
analysis, metric embeddings, approximation algorithms, geometric graph neural
nets, and the analysis of hierarchical data. Much of the previous algorithmic work,
however, has focused on generic metric spaces (i.e., those with no a priori con-
straints). Leveraging several ideas from the mathematical analysis of hyperbolic
geometry and geometric group theory, we study the tree fitting problem as finding
the relation between the hyperbolicity (ultrametricity) vector and the error of tree
(ultrametric) embedding. That is, we define a vector of hyperbolicity (ultrametric)
values over all triples of points and compare the ℓp norms of this vector with the ℓq
norm of the distortion of the best tree fit to the distances. This formulation allows
us to define the average hyperbolicity (ultrametricity) in terms of a normalized
ℓ1 norm of the hyperbolicity vector. Furthermore, we can interpret the classical
tree fitting result of Gromov as a p = q = ∞ result. We present an algorithm
HCCROOTEDTREEFIT such that the ℓ1 error of the output embedding is analyti-
cally bounded in terms of the ℓ1 norm of the hyperbolicity vector (i.e., p = q = 1)
and that this result is tight. Furthermore, this algorithm has significantly different
theoretical and empirical performance as compared to Gromov’s result and related
algorithms. Finally, we show using HCCROOTEDTREEFIT and related tree fitting
algorithms, that supposedly standard data sets for hierarchical data analysis and
geometric graph neural networks have radically different tree fits than those of
synthetic, truly tree-like data sets, suggesting that a much more refined analysis of
these standard data sets is called for.

1 Introduction

Constructing trees or ultrametrics to fit given data are both problems of great interest in scientific
applications (e.g., phylogeny), algorithmic applications (optimal transport and Wasserstein distances
are easier, for example, to compute quickly on trees), data visualization and analysis, and geometric
machine learning. An ultrametric space is one in which the usual triangle inequality has been
strengthened to d(x, y) ≤ max{d(x, z), d(y, z)}. A hyperbolic metric space is one in which the
metric relations amongst any four points are the same as they would be in a tree, up to the additive
constant δ. More generally, any finite subset of a hyperbolic space “looks like” a finite tree.

There has been a concerted effort to solve both of these problems in the algorithmic and machine
learning communities, including [1]–[5] among many others. Indeed, the motivation for embedding
into hyperbolic space or into trees was at the heart of the recent explosion in geometric graph neural
networks [6].

As an optimization problem, finding the tree metric that minimizes the ℓp norm of the difference
between the original distances and those on the tree (i.e., the distortion) is known to be NP-hard for
most formulations. [7] showed that it is APX-hard under the ℓ∞ norm. The first positive result also
came from [7], which provided a 3-approximation algorithm and introduced a reduction technique
from a tree metric to an ultrametric (a now widely used technique). The current best known result is
an O((log n log log n)1/p) approximation for 1 < p < ∞ [2], and O(1) approximation for p = 1,

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Hyperbolicity measure Value Distortion

Gromov’s δ-hyperbolicity δ = ∥∆x∥∞ ∥d− dT ∥∞ = O(δ log n) = O(∥∆x∥∞ log n)
Average hyperbolicity δ = 1

(n−1
3)
∥∆x∥1 ∥d− dT ∥1 = O(δn3) = O(∥∆x∥1)

Table 1: Connection between δ-hyperbolicity and average hyperbolicity and how these quantities
determine the distortion of the resulting tree metric.

recently shown by [1]. Both papers exploit the hierarchical correlation clustering reduction method
and its LP relaxation to derive an approximation algorithm.

While these approximation results are fruitful, they are not so practical (the LP result uses an enormous
number of variables and constraints). On the more practical side, [8] provided a robust method,
commonly known as Neighbor Join (which can be computed in O(n3) time), for constructing a tree.
Recently, [9] proposed an O(n2) method known as TreeRep for constructing a tree. Unfortunately,
neither algorithm provides a guaranteed bound on the distortion.

The main drawback with all of these results is that they assume almost nothing about the underlying
discrete point set, when, in fact, many real application data sets are close to hierarchical or nearly so.
After all, why fit a tree to generic data only to get a bad approximation? In fact, perhaps with some
geometric assumptions on our data set, we can fit a better tree metric or ultrametric, perhaps even
more efficiently than for a general data set.

Motivated by both Gromov’s δ-hyperbolicity [4] and the work of Chatterjee and Slonam [10] on
average hyperbolicity, we define proxy measures of how tree-like a data set is. We note that [4],
[11] provide a simple algorithm and analysis to find a tree approximation for which the maximum
distortion (ℓ∞ norm) is bounded by O(δ log n), where δ is the hyperbolicity constant. Moreover, this
bound turns out to be the best order we can have. In this paper, we go beyond the simple notion
of δ-hyperbolicity to define a vector of hyperbolicity values ∆(d) for a set of distance values. The
various ℓp norms of this vector capture how tree-like a data set is. Then, we show that the ℓq norm of
the distortion of the best fit tree and ultrametrics can be bounded in terms of this tree proxy. Thus,
we give a new perspective on the tree fitting problem, use the geometric nature of the data set, and
arrive at, hopefully, better and more efficient tree representations. The table below captures the
relationship between the different hyperbolicity measures and the tree fit distortion. We note the
striking symmetry in the tradeoffs.

Our main theoretical result can be summarized as

There is an algorithm which runs in time O(n3 log n) which returns a tree metric
dT with distortion bounded by the average (or ℓ1) hyperbolicity of the distances;
i.e.,

∥d− dT ∥1 ≤ 8∥∆x(d)∥1 ≤ 8

(
n− 1

3

)
AvgHyp(d).

Additionally, the performance of HCCROTTEDTREEFIT and other standard tree fitting algorithms
on commonly used data sets (especially in geometric graph neural nets) shows that they are quite far
from tree-like and are not well-represented by trees, especially when compared with synthetic data
sets. This suggests that we need considerably more refined geometric notions for learning tasks with
these data sets.

2 Preliminaries

2.1 Basic definitions

To set the stage, we work with a finite metric space (X, d) and we set |X| = n, the number of triples
in X as

(
n
3

)
= ℓ, and r =

(
n
4

)
the number of quadruples of points in X . In somewhat an abuse of

notation, we let
(
X
3

)
denote the set of all triples chosen from X (and, similarly, for all quadruples of

points). Next, we recall the notion of hyperbolicity, which is defined via the Gromov product [4].
Given a metric space (X, d), the Gromov product of two points x, y ∈ X with respect to a base point

2

w ∈ X is defined as
gpw(x, y) :=

1

2
(d(x,w) + d(y, w)− d(x, y)) .

We use the definition of the Gromov product on two points with respect to a third to establish the four
point condition and define

fpw(d;x, y, z) := max
π perm

[min(gpw(πx, πz), gpw(πy, πz))− gpw(πx, πy)]

where the maximum is taken over all permutations π of the labels of the four points. Since
fpw(d;x, y, z) = fpx(d; y, z, w) = fpy(d;x, z, w) = fpz(d;x, y, w), we sometimes denote the
four point condition as fp(d;x, y, z, w). Similarly, we define the three point condition as

tp(d;x, y, z) := max
π perm

[d(πx, πz)−max(d(πx, πy), d(πy, πz))]

which we use to define ultrametricity.

Following a standard definition of Gromov, a metric space (X, d) is said to be δ-hyperbolic with
respect to the base point w ∈ X , if for any x, y, z ∈ X , the following holds:

gpw(x, y) ≥ min(gpw(y, z), gpw(x, z))− δ.

We denote Hyp(d) = δ, the usual hyperbolicity constant (similarly, UM(d), is the usual ultrametricity
constant). We note that this measure of hyperbolicity is a worst case measure and, as such, it may
give a distorted sense of the geometry of the space. A graph which consists of a tree and a single
cycle, for instance, is quite different from a single cycle alone but with a worst case measure, we will
not be able to distinguish between those two spaces.

In order to disambiguate different spaces, we define the hyperbolicity vector as the ℓ-dimensional
vector of all four point conditions with respect to d:

∆w(d) = [fp(d;x, y, z, w)] for all x, y, z ∈
(
X

3

)
.

Similarly, we define the ultrametricity vector as the ℓ-dimensional vector of all three point conditions
with respect to d:

∆(d) = [tp(d;x, y, z)] for all x, y, z ∈
(
X

3

)
.

We use the hyperbolicity and ultrametricity vectors to express more refined geometric notions.

We define p-average hyperbolicity and p-average ultrametricity.

AvgHypp(d) =

1

r

∑
x,y,z,w∈(X4)

fp(d;x, y, z, w)p


1/p

and

AvgUMp(d) =

1

ℓ

∑
x,y,z∈(X3)

tp(d;x, y, z)p


1/p

If p = 1, then the notions are simply the average (and we will call them so). Also, for clarity, note
the usual hyperbolicity and ultrametricity constants Hyp(d) and UM(d) are the p =∞ case.
Proposition 2.1. We have the simple relations:

(a) Hyp(d) = maxx∈X ∥∆x(d)∥∞ ≥ ∥∆x(d)∥∞ for any x ∈ X .

(b) UM(d) = ∥∆(d)∥∞.

In the discussion of heirarchical correlation clustering in Section 2.4 and in the analysis of our
algorithms in Section 3, we construct multiple graphs using the points of X as vertices and derived
edges. Of importance to our analysis is the following combinatorial object which consists of the set of
bad triangles in a graph (i.e., those triples of vertices in the graph for which exactly two edges, rather
than three, are in the edge set). Given a graph G = (V,E), denote B(G), the set of bad triangles in
G, as

B(G) :=

{
(x, y, z) ∈

(
V

3

)
| |{(x, y), (y, z), (z, x)} ∩ E| = 2

}
.

3

2.2 Problem formulation

First, we formulate the tree fitting problem. Given a finite, discrete metric space (X, d) and the
distance d(xi, xj) between any two points xi, xj ∈ X , find a tree metric (T, dT) in which the points
in X are among the nodes of the tree T and the tree distance dT (xi, xj) is “close” to the original
distance d(xi, xj).

While there are many choices to measure how close dT and d are, in this paper, we focus on the ℓp
error; i.e., ∥dT − d∥p, for 1 ≤ p ≤ ∞. This definition is itself a shorthand notation for the following.
Order the pairs of points (xi, xj), i < j lexicographically and write d (overloading the symbol d) for
the vector of pairwise distances d(xi, xj). Then, we seek a tree distance function dT whose vector of
pairwise tree distances is close in ℓp norm to the original vector of distances. For example, if p =∞,
we wish to bound the maximum distortion between any pairs on X . If p = 1, we wish to bound the
total error over all pairs. Similarly, we define the ultrametric fitting problem.

We also introduce the rooted tree fitting problem. Given a finite, discrete metric space (X, d) and the
distance d(xi, xj) between any two points xi, xj ∈ X , and a distinguished point w ∈ X , find a tree
metric (T, dT) such that ∥d− dT ∥p is small and dT (w, x) = d(w, x) for all x ∈ X . Although the
rooted tree fitting problem has more constraints, previous work (such as [7]) shows that by choosing
the base point w appropriately, the optimal error of the rooted tree embedding is bounded by a
constant times the optimal error of the tree embedding. Also, the rooted tree fitting problem is closely
connected to the ultrametric fitting problem.

Putting these pieces together, we observe that while considerable attention has been paid to the ℓq
tree fitting problem for generic distances with only mild attention paid to the assumptions on the
input distances. No one has considered both restrictions on the distances and more sophisticated
measures of distortion. We define the ℓp/ℓq tree (ultrametric) fitting problem as follows.
Definition 2.2 (ℓp/ℓq tree (ultrametric) fitting problem). Given (X, d) with hyperbolicity vector
∆x(d) and AvgHypq(d) (ultrametricity vector ∆(d) and AvgUMq(d)), find the tree metric (T, dT)
(ultrametric (X, dU)) with distortion

∥d− dT ∥p ≤ AvgHypq(d) · f(n) or ∥d− dU∥p ≤ AvgUMq(d) · f(n)

for a growth function f(n) that is as small as possible. (Indeed, f(n) might be simply a constant.)

2.3 Previous results

Next, we detail Gromov’s classic theorem on tree fitting, using our notation above.
Theorem 2.3. [4] Given a δ-hyperbolic metric space (X, d) and a reference point x ∈ X , there
exists a tree structure T and its metric dT such that

1. T is x-restricted, i.e., d(x, y) = dT (x, y) for all y ∈ X .

2. ∥d− dT ∥∞ ≤ 2∥∆x(d)∥∞⌈log2(n− 2)⌉.

In other words, we can bound the maximum distortion of tree metric in terms of the hyperbolicity
constant Hyp(d) = δ and the size of our input space X .

2.4 (Hierarchical) Correlation clustering and ultrametric fitting

Several earlier works ([2], [12]) connected the correlation clustering problem to that of tree and
ultrametric fitting and, in order to achieve our results, we do the same. In the correlation clustering
problem, we are given a graph G = (V,E) whose edges are labeled “+” (similar) or “-” (different)
and we seek a clustering of the vertices into two clusters so as to minimize the number of pairs
incorrectly classified with respect to the input labeling. In other words, minimize the number of “-”
edges within clusters plus the number of “+” edges between clusters. When the graph G is complete,
correlation clustering is equivalent to the problem of finding an optimal ultrametric fit under the ℓ1
norm when the input distances are restricted to the values of 1 and 2.

Hierarchical correlation clustering is a generalization of correlation clustering that is also implicitly
connected to ultrametric and tree fitting (see [1], [2], [12], [13]). In this problem, we are given a set of
non-negativeweights and a set of edge sets. We seek a partition of vertices that is both hierarchical and

4

minimizes the weighted sum of incorrectly classified pairs of vertices. It is a (weighted) combination
of correlation clustering problems.

More precisely, given a graph G = (V,E) with k + 1 edge sets Gt = (V,Et), and k + 1 weights
δt ≥ 0 for 0 ≤ t ≤ k, we seek a hierarchical partition Pt that minimizes the ℓ1 objective function,∑

δt|Et∆E(Pt)|. It is hierarchical in that for each t, Pt subdivides Pt+1.

Chowdury, et al. [13] observed that the Single Linkage Hierarchical Clustering algorithm (SLHC)
whose output can be modified to produce an ultrametric that is designed to fit a given metric satisfies
a similar property to that of Gromov’s tree fitting result. In this case, the distortion bound between
the ultrametric and the input distances is a function of the ultrametricity of the metric space.
Theorem 2.4. Given (X, d) and the output of SLHC in the form of an ultrametric dU , we have

∥d− dU∥∞ ≤ ∥∆(d)∥∞⌈log2(n− 1)⌉.

2.5 Reductions and equivalent bounds

Finally, we articulate precisely how the tree and ultrametric fitting problems are related through the
following reductions. We note that the proof of this theorem uses known techniques from [2] and
[1] although the specific results are novel. First, an ultrametric fitting algorithm yields a tree fitting
algorithm.
Theorem 2.5. Given 1 ≤ p <∞ and 1 ≤ q ≤ ∞. Suppose we have an ultrametric fitting algorithm
such that for any distance function d on X (with |X| = n), the output dU satisfies

∥d− dU∥p ≤ AvgUMq(d) · f(n) for some growth function f(n).

Then there exists a tree fitting algorithm (using the above) such that given an input d on X (with
|X| = n), the output dT satisfies

∥d− dT ∥p ≤ 2

(
n− 3

n

)1/q

AvgHypq(d) · f(n) for same growth function f(n).

Conversely, a tree fitting algorithm yields an ultrametric fitting algorithm. From which we conclude
that both problems should have the same asymptotic bound, which justifies our problem formulation.
Theorem 2.6. Given 1 ≤ p < ∞ and 1 ≤ q ≤ ∞. Suppose that we have a tree fitting algorithm
such that for any distance function d on X (with |X| = n), the output dT satisfies

∥d− dT ∥p ≤ AvgHypq(d) · f(n) for some growth function f(n).

Then there exists an ultrametric fitting algorithm (using the above) such that given an input d on X
(with |X| = n), the output dT satisfies

∥d− dU∥p ≤ 3
p−1
p

(
1

4
+ 2q−4

)1/q

·AvgUMq(d) · f(2n) for same growth function f(n).

Proofs of both theorems can be found in the Appendix 6.1 6.2.

3 Tree and ultrametric fitting: Algorithm and analysis

In this section, we present an algorithm for the p = q = 1 ultrametric fitting problem. We also
present the proof of upper bound and present an example that shows this bound is asymptotically
tight (despite our empirical evidence to the contrary). Then, using our reduction from Section 2, we
produce a tree fitting result.

3.1 HCC Problem

As we detailed in Section 2, correlation clustering is connected with tree and ultrametric fitting
and in this section, we present a hierarchical correlation clustering (HCC) algorithm which bounds
the number of disagreement edges by constant factor of number of bad triangles. We follow with
a proposition that shows the connection between bad triangle objectives and the ℓ1 ultrametricity
vector.

5

Definition 3.1 (HCC with triangle objectives). Given a vertex set V and k + 1 edge sets, set
Gt = (V,Et) for 0 ≤ t ≤ k. The edge sets are hierarchical so that Et ⊆ Et+1 for each t. We seek
a hierarchical partition Pt so that for each t, Pt subdivides Pt+1 and the number of disagreement
edges |Et∆E(Pt)| is bounded by C · |B(Gt)| (where B denotes the set of bad triangles) for some
constant C > 0.

Note that this problem does not include the weight sequence {δt}, as the desired output will also
guarantee an upper bound on

∑
δt|Et∆E(Pt)|, the usual ℓ1 objective.

This proposition relates the ℓ1 vector norm of ∆(d), the average ultrametricity of the distances,
and the bad triangles in the derived graph. This result is why we adapt the hierarchical correlation
clustering problem to include triangle objectives.

Proposition 3.2. Given distance function d on
(
X
2

)
(with |X| = n) and s > 0, consider the

s-neighbor graph Gs = (X,Es) where Es denotes {(x, y) ∈
(
X
2

)
|d(x, y) ≤ s}. Then we have

∥∆(d)∥1 = ℓ ·AvgUM(d) =

∫ ∞

0

|B(Gs)|ds.

3.2 Main results

Our main contribution is that the HCCTRIANGLE algorithm detailed in Section 3.3 solves our
modified HCC problem and its output partition behaves “reasonably” on every level. From this
partition, we can construct a good ultrametric fit which we then leverage for a good (rooted) tree fit
(using the reduction from Section 2.
Theorem 3.3. HCCTRIANGLE outputs a hierarchical partition Pt where |Et∆E(Pt)| ≤ 4 · |B(Gt)|
holds for every 0 ≤ t ≤

(
n
2

)
= k. Furthermore, the algorithm runs in time O(n2).

By Proposition 3.2 and Theorem 3.3, we can find an ultrametric fit using the HCCTRIANGLE
subroutine to cluster our points. This algorithm we refer to as HCCULTRAFIT. Using Theorem 3.3,
we have following ℓ1 bound.
Theorem 3.4. Given d, HCCULTRAFIT outputs an ultrametric dU with ∥d − dU∥1 ≤ 4∥∆∥1 =
4ℓ ·AvgUM1(d). The algorithm runs in time O(n2 log n).

In other words, HCCULTRAFIT solves the HCC Problem 3.1 with constant C = 4. The following
proof shows why adapting HCCTRIANGLE as a subroutine is successful.

Proof of Theorem 3.4 from Theorem 3.3: Suppose the outputs of HCCTRIANGLE and
HCCULTRAFIT are {Pt} and dU , respectively. Denote di := d(ei) (d0 = 0, dk+1 = ∞) and,
for any s > 0, set

Gs = (X,Et), Ps = Pt for dt ≤ s < dt+1.

Then, for any x, y ∈
(
X
2

)
, we see that

(x, y) ∈ Es∆E(Ps) ⇐⇒ d(x, y) ≤ s < dU (x, y) or dU (x, y) ≤ s < d(x, y).

Again, we use the integral notion from Proposition 3.2. Every edge (x, y) will contribute |Es∆E(Ps)|
with amount exactly |dU (x, y)− d(x, y)|. Then, by Theorem 3.3,

∥d− dU∥1 =

∫ ∞

0

|Es∆E(Ps)|ds

≤ 4

∫ ∞

0

|B(Gs)|ds = 4∥∆(d)∥1,

as desired. Assuming that HCCTRIANGLE runs in time O(n2), HCCULTRAFIT runs in time
O(n2 log n) as the initial step of sorting over all pairs is needed. Thus ends the proof.

By the reduction argument we discussed in Section 2, we can put all of these pieces together to
conclude the following:
Theorem 3.5. Given (X, d), we can find two tree fits with the following guarantees:

• Given a base point point x ∈ X , HCCROOTEDTREEFIT outputs a tree fit dT with ∥d −
dT ∥1 ≤ 8∥∆x(d)∥1. The algorithm runs in O(n2 log n).

6

• There exists x ∈ X where ∥∆x(d)∥1 ≤
(
n−1
3

)
AvgHyp1(d). Therefore, given (X, d),

one can find a (rooted) tree metric dT with ∥d − dT ∥1 ≤ 8
(
n−1
3

)
AvgHyp1(d) in time

O(n3 log n).

3.3 Algorithm and analysis

Algorithm 1 ISHIGHLYCONNECTED: tests if two clusters are highly connected.
function ISHIGHLYCONNECTED

Input: vertex set X,Y and edge set E
For x ∈ X:

If |{y ∈ Y |(x, y) ∈ E}| < |Y |
2 :

return False
For y ∈ Y :

If |{x ∈ X|(x, y) ∈ E}| < |X|
2 :

return False
return True

3

2

3

4

3

deg

X

2

3

3

4

3

deg

Y

False

3

3

3

4

3

deg

X

3

3

3

4

3

deg

Y

True

Figure 1: Illustration of highly connectedness condition

Algorithm 2 HCCTRIANGLE: Find HCC which respects triangle objectives
function HCCTRIANGLE

Input: V = {v1, · · · , vn} and an ordering of all pairs {e1, e2, · · · , e(n2)} on V so that Et =

{e1, e2, · · · , et}.
Desired Output: hierarchical partition {Pt} for 0 ≤ t ≤

(
n
2

)
= k so that |Et∆E(Pt)| ≤

4 · |B(Gt)| holds for every t.
Init: P = {{v1}, {v2}, · · · , {vn}}
P0 ← P
For t ∈ {1, 2, · · · ,

(
n
2

)
}:

Take et = (x, y) with x ∈ Cx and y ∈ Cy (Cx, Cy ∈ P)
If Cx ̸= Cy:

If ISHIGHLYCONNECTED(Cx, Cy, Et) is true:
add C = Cx ∪ Cy and remove Cx, Cy in P .

Pt ← P
return {Pt}

In the rest of this subsection, we provide a sketch of the proof that HCCTRIANGLE provides the
desired correlation clustering (the detailed proof can be found in Appendix 6.4). We denote the
output of HCCTRIANGLE by {Pt} and also assume E = Et and Pt = {C1, C2, · · · , Ck}. The
algorithm HCCTRIANGLE agglomerates two clusters if they are highly connected, adds the cluster
to the partition, and iterates. The key to the ordering of the edges input to HCCTRIANGLE is that
they are ordered by increasing distance so that the number of edges that are in “disagreement” in

7

Algorithm 3 HCCULTRAFIT: Ultrametric fitting algorithm, uses HCCTRIANGLE

function HCCULTRAFIT(d)

Sort
(
X
2

)
as {e1, · · · , e(n2)} so that d(e1) ≤ d(e2) ≤ · · · ≤ d(e(n2)

)

{Pt} = HCCTRIANGLE(X, {et})
dU (x, y)← d(ej) where j = argmint(x, y are in same cluster in Pt)
return dU

the correlation clustering is upper bounded by the number of edges whose distances “violate” a
triangle relationship. The proof proceeds in a bottom up fashion. (It is clear that the output partition
is naturally hierarchical.) We count the number of bad triangles “within” and “between” clusters,
which are lower bounded by the number of disagreement edges “within” and “between” clusters,
respectively. The proof uses several combinatorial properties which follow from the highly connected
condition. This is the key point of our proof.

From an ultrametricity fit to a rooted tree fit: Following a procedure from Cohen-Addad, et al. [1],
we can also obtain a tree fit with the ℓ1/ℓ1 objective. Note that the algorithm HCCROOTEDTREEFIT
takes the generic reduction method from ultrametric fitting algorithm but we have instantiated it with
HCCULTRAFIT. For a self-contained proof, see the Appendix 6.3.

Proof of Theorem 3.5: This proof can be easily shown simply by applying Theorem 2.5 with
p = q = 1 and f(n) = 4

(
n
3

)
.

Algorithm 4 Find a tree fitting given an ultrametric fitting procedure
1: procedure HCCROOTEDTREEFIT

2: Input: distance function d on
(
X
2

)
and base point w ∈ X

3: Output: (rooted) tree metric dT which fits d and d(x,w) = dT (x,w) for all x ∈ X
4: M ← maxx∈X d(x,w)

5: cw(x, y)← 2M − d(x,w)− d(y, w) for all x, y ∈
(
X
2

)
6: dU ← HCCULTRAFIT(d+ cw)
7: dT ← dU − cw
8: return dT

Running Time Although ISHIGHLYCONNECTED is seemingly expensive, there is a way to implement
HCCTRIANGLE so that all procedures run in O(n2) time. Thus, HCCULTRAFIT can be implemented
so as to run in O(n2 log n) time. The detailed algorithm can be found in Appendix 6.5.

Asymptotic Tightness Consider (d,X) with X = {x1, · · · , xn} and d(x1, x2) = d(x1, x3) = 1
and 2 otherwise. Then we see that tp(d;x1, x2, x3) = 1 and 0 otherwise, so that ∥∆∥p = 1. One
can easily check that for any ultrametric dU , |ϵ(x1, x2)|p + |ϵ(x1, x3)|p + |ϵ(x2, x3)|p ≥ 21−p for
ϵ := dU − d. When p = 1, ∥d− dU∥1 ≥ ∥∆(d)∥1 =

(
n
3

)
AvgUM(d) holds for any ultrametric dU .

While HCCULTRAFIT guarantees ∥d− dU∥1 ≤ 4∥∆(d)∥1 = 4
(
n
3

)
AvgUM(d); this shows that our

theoretical bound is asymptotically tight.

Examples demonstrating how HCCULTRAFIT works and related discussion can be found in Ap-
pendix 6.7.1.

4 Experiments

In this section, we run HCCROOTEDTREEFIT on several different type of data sets, those that are
standard for geometric graph neural nets and those that are synthetic. We also compare our results
with other known algorithms. We conclude that HCCROOTEDTREEFIT (HCC) is optimal when the
data sets are close to tree-like and when we measure with respect to distortion in the ℓ1 sense and
running time. It is, however, suboptimal in terms of the ℓ∞ measure of distortion (as to be expected).
We also conclude that purportedly hierarchical data sets do not, in fact, embed into trees with low
distortion, suggesting that geometric graph neural nets should be configured with different geometric
considerations. Appendix 6.9 contains further details regarding the experiments.

8

Data set C-ELEGAN CS PHD CORA AIRPORT

n 452 1025 2485 3158
Hyp(d) 1.5 6.5 11 1
AvgHyp(d) 0.13 0.51 0.36 0.18
Bound 158.0 1384.5 2376.2 1547.1

HCC 0.90±0.19 2.60±1.11 2.42±0.44 1.09±0.15

Gromov 1.14±0.04 2.79±0.36 3.38±0.13 1.56±0.08

TR 0.83±0.16 2.55±1.34 2.91±0.63 1.28±0.21

NJ 0.30 1.35 1.06 0.49
Table 2: Connection between hyperbolicity and average hyperbolicity and how these quantities
determine the average distortion (∥d− dT ∥1/

(
n
2

)
) of the resulting tree metric.

Data set C-ELEGAN CS PHD CORA AIRPORT

HCC 4.3±0.64 23.37±3.20 19.30±1.11 7.63±0.54

Gromov 3.32±0.47 13.24±0.67 9.23±0.53 4.04±0.20

TR 5.90±0.72 21.01±3.34 16.86±2.11 10.00±1.02

NJ 2.97 16.81 13.42 4.18
Table 3: ℓ∞ error (i.e., max distortion)

4.1 Common data sets

We used common unweighted graph data sets which are known to be hyperbolic or close to tree-like
and often used in graph neural nets, especially those with geometric considerations. The data sets
we used are C-ELEGAN, CS PHD from [14], and CORA, AIRPORT from [15]. (For those which
contain multiple components, we chose the largest connected component.) Given an unweighted
graph, we computed its shortest-path distance matrix and used that input to obtain a tree metric.
We compared these results with the following other tree fitting algorithms TREEREP (TR) [9],
NEIGHBORJOIN (NJ) [8], and the classical Gromov algorithm. As TREEREP is a randomized
algorithm and HCCROOTEDTREEFIT and Gromov’s algorithm depends on the choice of a pivot
vertex, we run all of these algorithms 100 times and report the average error with standard deviation.
All edges with negative weights have been modified with weight 0, as TREEREP and NEIGHBORJOIN
both occasionally produce edges with negative weights. Recall, both TREEREP and NEIGHBORJOIN
enjoy no theoretical guarantees on distortion.

First, we examine the results in Table 2. We note that although the guaranteed bound (of average
distortion), 8

(
n−1
3

)
AvgHyp(d)/

(
n
2

)
is asymptotically tight even in worst case analysis, this bound

is quite loose in practice; most fitting algorithms perform much better than that. We also see that
the ℓ1 error of HCCROOTEDTREEFIT is comparable to that of TREEREP, while NEIGHBORJOIN
performs much better than those. It tends to perform better when the graph data set is known to be
more hyperbolic (or tree-like), despite no theoretical guarantees. It is, however, quite slow.

Also, we note from Table 3 that Gromov’s algorithm, which solves our ℓ∞/ℓ∞ hyperbolicity problem
tends to return better output in terms of ℓ∞ error. On the other hand, its result on ℓ1 error is not
as good as the other algorithms. In contrast, our HCCROOTEDTREEFIT performs better on the ℓ1
objective, which suggests that our approach to this problem is on target.

Data set C-ELEGAN CS PHD CORA AIRPORT

O(n2 logn) HCC 0.648±0.013 3.114±0.029 18.125±0.330 28.821±0.345

O(n2) Gromov 0.055±0.005 0.296±0.004 2.063±0.033 3.251±0.033

O(n2) TR 0.068±0.009 0.223±0.046 0.610±0.080 0.764±0.151

O(n3) NJ 0.336 4.659 268.45 804.67

Table 4: Running Time(s). For NJ, we implemented the naive algorithm, which is O(n3). We note
that TREEREP produces a tree and not a set of distances; its running times excluded a step which
computes the distance matrix, which takes O(n2) time.

9

Initial Tree BT(8, 3) BT(5, 4) BT(3, 5) BT(2, 8) DISEASE

n 585 776 364 511 2665
∥∆r∥1/

(
n−1
3

)
0.01887±0.00378 0.01876±0.00375 0.00150±0.00036 0.00098±0.00020 0.00013±0.00010

HCC 0.00443±0.00098 0.01538±0.00733 0.04153±0.01111 0.07426±0.02027 0.00061±0.00058

Gromov 0.18225±0.00237 0.44015±0.00248 0.17085±0.00975 0.16898±0.00975 0.18977±0.00196

TR 0.01360±0.00346 0.01103±0.00336 0.06080±0.00874 0.09550±0.01887 0.00081±0.00059

NJ 0.03180±0.00767 0.06092±0.01951 0.04309±0.00521 0.04360±0.00648 0.00601±0.00281

Table 5: Average ℓ1 error when ne = 500

In analyzing the running times in Table 4, we notice that HCCROOTEDTREEFIT runs in truly
O(n2 log n) time. Also, its dominant part is the subroutine HCCTRIANGLE, which runs in O(n2).

4.2 Synthetic data sets

In order to analyze the performance of our algorithm in a more thorough and rigorous fashion, we
generate random synthetic distances with low hyperbolicity. More precisely, we construct a synthetic
weighted graph from fixed balanced trees. We use BT(r, h) to indicate a balanced tree with branching
factor r and height h and DISEASE from [6], an unweighted tree data set. For each tree, we add
edges randomly, until we reach 500 additional edges. Each added edge is given a distance designed
empirically to keep the δ-hyperbolicity bounded by a value of 0.2.

Then we measured the ℓ1 error of each tree fitting algorithm (and averaged over 50 trials). Note that
all rooted tree fitting algorithms use a root node (for balanced trees, we used the apex; for DISEASE,
we used node 0).

For these experiments, we see quite different results in Table 5. All of these data sets are truly
tree-like. Clearly, NEIGHBORJOIN performs considerably worse on these data than on the common
data sets above, especially when the input comes from a tree with high branching factor (note that the
branching factor of DISEASE is recorded as 6.224, which is also high). We also note that Gromov’s
method behaves much worse than all the other algorithms. This is possibly because Gromov’s method
is known to produce a non-stretching tree fit, while it is a better idea to stretch the metric in this case.
The theoretical bound is still quite loose, but not as much as with the common data sets.

5 Discussion

All of our experiments show that it is critical to quantify how “tree-like” a data set is in order
to understand how well different tree fitting algorithms will perform on that data set. In other
words, we cannot simply assume that a data set is generic when fitting a tree to it. Furthermore, we
develop both a measure of how tree-like a data set is and an algorithm HCCROOTEDTREEFIT that
leverages this behavior so as to minimize the appropriate distortion of this fit. The performance of
HCCROOTEDTREEFIT and other standard tree fitting algorithms shows that commonly used data sets
(especially in geometric graph neural nets) are quite far from tree-like and are not well-represented
by trees, especially when compared with synthetic data sets. This suggests that we need considerably
more refined geometric notions for learning tasks with these data sets.

10

References
[1] V. Cohen-Addad, D. Das, E. Kipouridis, N. Parotsidis, and M. Thorup, “Fitting distances by

tree metrics minimizing the total error within a constant factor,” in 2021 IEEE 62nd Annual
Symposium on Foundations of Computer Science (FOCS), IEEE, 2022, pp. 468–479.

[2] N. Ailon and M. Charikar, “Fitting tree metrics: Hierarchical clustering and phylogeny,” in
46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05), IEEE, 2005,
pp. 73–82.

[3] M. Farach, S. Kannan, and T. Warnow, “A robust model for finding optimal evolutionary
trees,” Algorithmica, vol. 13, no. 1, pp. 155–179, 1995.

[4] M. Gromov, “Hyperbolic groups,” in Essays in group theory, Springer, 1987, pp. 75–263.
[5] L. L. Cavalli-Sforza and A. W. Edwards, “Phylogenetic analysis. models and estimation

procedures,” American journal of human genetics, vol. 19, no. 3 Pt 1, p. 233, 1967.
[6] I. Chami, Z. Ying, C. Ré, and J. Leskovec, “Hyperbolic graph convolutional neural networks,”

Advances in neural information processing systems, vol. 32, 2019.
[7] R. Agarwala, V. Bafna, M. Farach, M. Paterson, and M. Thorup, “On the approximability of

numerical taxonomy (fitting distances by tree metrics),” SIAM Journal on Computing, vol. 28,
no. 3, pp. 1073–1085, 1998.

[8] N. Saitou and M. Nei, “The neighbor-joining method: A new method for reconstructing
phylogenetic trees.,” Molecular biology and evolution, vol. 4, no. 4, pp. 406–425, 1987.

[9] R. Sonthalia and A. C. Gilbert, “Tree! i am no tree! i am a low dimensional hyperbolic
embedding,” arXiv preprint arXiv:2005.03847, 2020.

[10] S. Chatterjee and L. Sloman, “Average gromov hyperbolicity and the parisi ansatz,” Advances
in Mathematics, vol. 376, p. 107 417, 2021.

[11] É. Ghys and P. De La Harpe, “Espaces métriques hyperboliques,” in Sur les groupes hyper-
boliques d’après Mikhael Gromov, Springer, 1990, pp. 27–45.

[12] B. Harb, S. Kannan, and A. McGregor, “Approximating the best-fit tree under l p norms,” in
Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques:
8th International Workshop on Approximation Algorithms for Combinatorial Optimization
Problems, APPROX 2005 and 9th International Workshop on Randomization and Computa-
tion, RANDOM 2005, Berkeley, CA, USA, August 22-24, 2005. Proceedings, Springer, 2005,
pp. 123–133.

[13] S. Chowdhury, F. Mémoli, and Z. T. Smith, “Improved error bounds for tree representations of
metric spaces,” Advances in Neural Information Processing Systems, vol. 29, 2016.

[14] R. A. Rossi and N. K. Ahmed, “The network data repository with interactive graph analytics
and visualization,” in AAAI, 2015. [Online]. Available: https://networkrepository.com.

[15] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad, “Collective classifi-
cation in network data,” AI magazine, vol. 29, no. 3, pp. 93–93, 2008.

[16] W. H. Day, “Computational complexity of inferring phylogenies from dissimilarity matrices,”
Bulletin of mathematical biology, vol. 49, no. 4, pp. 461–467, 1987.

[17] B. H. Bowditch, “A course on geometric group theory.,” 2006.
[18] H. Samet, “The quadtree and related hierarchical data structures,” ACM Computing Surveys

(CSUR), vol. 16, no. 2, pp. 187–260, 1984.
[19] M. Elkin, Y. Emek, D. A. Spielman, and S.-H. Teng, “Lower-stretch spanning trees,” SIAM

Journal on Computing, vol. 38, no. 2, pp. 608–628, 2008.
[20] N. Ailon, M. Charikar, and A. Newman, “Aggregating inconsistent information: Ranking and

clustering,” Journal of the ACM (JACM), vol. 55, no. 5, pp. 1–27, 2008.
[21] V. Chepoi, F. Dragan, B. Estellon, M. Habib, and Y. Vaxès, “Diameters, centers, and ap-

proximating trees of delta-hyperbolicgeodesic spaces and graphs,” in Proceedings of the
twenty-fourth annual symposium on Computational geometry, 2008, pp. 59–68.

[22] W. Chen, W. Fang, G. Hu, and M. W. Mahoney, “On the hyperbolicity of small-world and
treelike random graphs,” Internet Mathematics, vol. 9, no. 4, pp. 434–491, 2013.

[23] D. Coudert, A. Nusser, and L. Viennot, “Computing graph hyperbolicity using dominating
sets*,” in 2022 Proceedings of the Symposium on Algorithm Engineering and Experiments
(ALENEX), SIAM, 2022, pp. 78–90.

11

https://networkrepository.com

[24] R. Sarkar, “Low distortion delaunay embedding of trees in hyperbolic plane,” in International
Symposium on Graph Drawing, Springer, 2011, pp. 355–366.

[25] F. Sala, C. De Sa, A. Gu, and C. Ré, “Representation tradeoffs for hyperbolic embeddings,” in
International conference on machine learning, PMLR, 2018, pp. 4460–4469.

[26] I. Chami, A. Gu, V. Chatziafratis, and C. Ré, “From trees to continuous embeddings and back:
Hyperbolic hierarchical clustering,” Advances in Neural Information Processing Systems,
vol. 33, pp. 15 065–15 076, 2020.

[27] N. Monath, M. Zaheer, D. Silva, A. McCallum, and A. Ahmed, “Gradient-based hierarchical
clustering using continuous representations of trees in hyperbolic space,” in Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
2019, pp. 714–722.

[28] M. Nickel and D. Kiela, “Poincaré embeddings for learning hierarchical representations,”
Advances in neural information processing systems, vol. 30, 2017.

[29] N. Linial, E. London, and Y. Rabinovich, “The geometry of graphs and some of its algorithmic
applications,” Combinatorica, vol. 15, no. 2, pp. 215–245, 1995.

[30] M. Nickel and D. Kiela, “Learning continuous hierarchies in the lorentz model of hyperbolic
geometry,” in International Conference on Machine Learning, PMLR, 2018, pp. 3779–3788.

[31] H. Fournier, A. Ismail, and A. Vigneron, “Computing the gromov hyperbolicity of a discrete
metric space,” Information Processing Letters, vol. 115, no. 6-8, pp. 576–579, 2015.

[32] P. K. Agarwal, K. Fox, A. Nath, A. Sidiropoulos, and Y. Wang, “Computing the gromov-
hausdorff distance for metric trees,” ACM Transactions on Algorithms (TALG), vol. 14, no. 2,
pp. 1–20, 2018.

[33] B. Nica and J. Špakula, “Strong hyperbolicity,” Groups, Geometry, and Dynamics, vol. 10,
no. 3, pp. 951–964, 2016.

[34] T. Das, D. Simmons, and M. Urbański, Geometry and dynamics in Gromov hyperbolic metric
spaces. American Mathematical Soc., 2017, vol. 218.

[35] I. Abraham, M. Balakrishnan, F. Kuhn, D. Malkhi, V. Ramasubramanian, and K. Talwar,
“Reconstructing approximate tree metrics,” in Proceedings of the twenty-sixth annual ACM
symposium on Principles of distributed computing, 2007, pp. 43–52.

12

6 Appendix

6.1 Proof of Theorem 2.5

We will follow the details from [7] (and [1] to address minor issues). This is, in fact, the generic
reduction method from ultrametric fitting.

Algorithm 5 Find a tree fitting given an ultrametric fitting procedure
1: procedure ULTRAFIT
2: Input: distance function d
3: Output: ultrametric dU which fits d
4: procedure ROOTEDTREEFIT

5: Input: distance function d on
(
X
2

)
and base point w ∈ X

6: Output: (rooted) tree metric dT which fits d and d(w, x) = dT (w, x) for all x ∈ X
7: Define m = maxx∈X d(w, x), cw(x, y) = 2m − d(w, x) − d(w, y), and βx = 2(m −

d(w, x))(x ∈ X)
8: dU ′ = ULTRAFIT(d+ cw)
9: Restrict dU (x, y) = min(max(βx, βy, dU ′(x, y)), 2m)

10: dT = dU − cw
11: return dT

Claim: For any x, y ∈ X , |dU (x, y) − (d + cw)(x, y)| ≤ |dU ′(x, y) − (d + cw)(x, y)| holds. In
other words, the restriction will reduce the error.

Proof: It is enough to check the two cases when dU differs.

Case 1: max(βx, βy) = dU (x, y) > dU ′(x, y): without loss of generality, we assume that
dU (x, y) = βx ≥ βy. We have (d + cw)(x, y) = d(x, y) + cw(x, y) ≥ (d(w, y) −
d(w, x))+(2m−d(w, x)−d(w, y)) = 2m−2d(w, x) = βx, which shows (d+cw)(x, y) ≥
dU (x, y) > dU ′(x, y). Therefore the claim holds.

Case 2: 2m = dU (x, y) < dU ′(x, y): since (d + cw)(x, y) = 2m − 2gpw(x, y) ≤ 2m, we have
(d+ cw)(x, y) ≤ dU (x, y) < dU ′(x, y). Again, the claim holds.

This completes the proof.

Claim: The restriction dU is also an ultrametric.

Proof: We need to prove dU (x, y) ≤ max(dU (x, z), dU (y, z)) for all x, y, z ∈ X . As U ′ is
ultrametric by assumption, it is enough to check only if

dU (x, y) > dU ′(x, y) or max(dU (x, z), dU (y, z)) > max(dU ′(x, z), dU ′(y, z)) holds.

Case 1: dU (x, y) > dU ′(x, y): we have max(βx, βy) = dU (x, y) > dU ′(x, y). Without loss of
generality, we assume that dU (x, y) = βx ≥ βy . Then we have dU (x, z) ≥ max(βx, βz) ≥
βx = dU (x, y), which shows dU (x, y) ≤ max(dU (x, z), dU (y, z)).

Case 2: max(dU (x, z), dU (y, z)) < max(dU ′(x, z), dU ′(y, z)): we have dU (x, z) < dU ′(x, z) or
dU (y, z) < dU ′(y, z) holds. In either case, we have the value is clipped by the maximum
value 2m so that dU (x, y) ≤ max(dU (x, z), dU (y, z)) = 2m.

Therefore, we conclude that the stronger triangle inequality still holds, which completes the proof.

Claim: By the restriction, dT satisfies tree metric.

Proof: First, we need to verify that dT is a metric. First, we have

dT (x, y) = dU (x, y)− cw(x, y) ≥ max(βx, βy)− cw(x, y) = max(βx, βy)−
1

2
(βx + βy)

=
|βx − βy|

2
= |d(w, x)− d(w, y)| ≥ 0,

1

so that dT is non-negative. Next, we will prove the triangle inequality: dT (x, z) ≤ dT (x, y) +
dT (y, z). Without loss of generality, we assume that dU (x, y) ≥ dU (y, z). Then we have

dT (x, z) = dU (x, z)− cw(x, z) ≤ max(dU (x, y), dU (y, z))− cw(x, z)

= dU (x, y)− cw(x, y) + cw(x, y)− cw(x, z)

= dT (x, y) + (d(w, z)− d(w, y))

≤ dT (x, y) + |d(w, z)− d(w, y)| ≤ dT (x, y) + dT (y, z).

Therefore, dT is (non-negative) metric. To show it is a tree metric, we examine the four point
condition of dT . For any x, y, z, t ∈ X ,

dT (x, y) + dT (z, t) = (dU (x, y)− cw(x, y)) + (dU (z, t)− cw(z, t))

= (dU (x, y) + dU (z, t))− (cw(x, t) + cw(z, t))

= (dU (x, y) + dU (z, t))− (4m− d(w, x)− d(w, y)− d(w, z)− d(w, t)),

so that any pair sum of dT differs from dU by 4m − d(w, x) − d(w, y) − d(w, z) − d(w, t). As
dU is ultrametric and thus 0-hyperbolic, dT is also 0-hyperbolic, as desired. Thus, dT is a tree
metric.

Finally, we prove that ℓp error of dT is bounded as desired. This can be done by

∥d− dT ∥p = ∥(d+ cw)− (dT + cw)∥p = ∥dU − (d+ cw)∥p
≤ ∥dU ′ − (d+ cw)∥p ≤ AvgUMq(d+ cw) · f(n),

by assumption. For 1 ≤ q <∞, we have

1

n

∑
w∈X

(AvgUMq(d+ cw))
q =

1

n

∑
w∈X

1(
n
3

) ∑
x,y,z∈(X\{w}

3)

tp(d+ cw;x, y, z)
q

=
n− 3

n2

∑
w∈X

1(
n−1
3

) ∑
x,y,z∈(X\{w}

3)

2qfpw(d;x, y, z)
q

= 2q
n− 3

n
· 1(

n
4

) ∑
x,y,z,w∈(X4)

fpq(d;x, y, z, w)

= 2q
n− 3

n
(AvgHypq(d))

q.

Therefore, there exists w ∈ X so that AvgUMq(d+ cw) ≤ 2
(
n−3
n

)1/q
AvgHypq(d). The q =∞

case can be separately checked.

Hence, there exists w ∈ X where such reduction yields a tree fitting with ℓp error bounded by

2
(
n−3
n

)1/q
AvgHypq(d) · f(n), as desired.

Note that when we use HCCULTRAFIT, then max(βx, βy) ≤ dU ′(x, y) ≤ 2m always hold so that
the clipping is not necessary.

6.2 Proof of Theorem 2.6

Our reduction is based on the technique from [16] and Section 9 of [1]. Given d on X , we will
construct a distance d′ on Z = X ∪ Y such that |X| = |Y | = n and

d′(z, w) =


d(z, w) if z, w ∈ X

M if z ∈ X,w ∈ Y or z ∈ Y,w ∈ X

c if z, w ∈ Y

for all z ̸= w ∈ Z,

for M large enough and c small enough. Then first we have

Claim: If 1 ≤ q < ∞, then AvgHypq(d
′) ≤

(
1
4 + 2q−4

)1/q · AvgUMq(d). For q = ∞, we have
Hyp(d′) ≤ 2UM(d).

2

Proof: It can be checked that if at least two of x, y, z, w is from Y , then we immediately have
fp(d′;x, y, z, w) = 0. Therefore, we get∑
x,y,z,w∈(Z4)

fp(d′;x, y, z, w)q =
∑

x,y,z,w∈(X4)

fp(d′;x, y, z, w)q +
∑
w∈Y

∑
x,y,z∈(X3)

fp(d′;x, y, z, w)q

=
∑

x,y,z,w∈(X4)

fp(d;x, y, z, w)q +
∑
w∈Y

∑
x,y,z∈(X3)

tp(d;x, y, z)q

=

(
n

4

)
AvgHypq(d)

q + n

(
n

3

)
AvgUMq(d)

q.

To bound AvgHypq , we will use the fact that

fp(d;x, y, z, w) ≤ 1

2
[tp(d;x, y, z) + tp(d;x, y, w) + tp(d;x, z, w) + tp(d; y, z, w)].

Therefore,

AvgHypq(d)
q =

1(
n
4

) ∑
x,y,z,w∈(X4)

fp(d;x, y, z, w)q

≤ 2q−2(
n
4

) ∑
x,y,z,w∈(X4)

[tp(d;x, y, z)q + tp(d;x, y, w)q + tp(d;x, z, w)q + tp(d; y, z, w)q]

=
2q−2(

n
4

) ∑
x,y,z∈(X3)

(n− 3)tp(d;x, y, z)q =
2q(
n
3

) ∑
x,y,z∈(X3)

tp(d;x, y, z)q = 2q AvgUMq(d)
q.

To sum up, we get

AvgHypq(d
′)q =

1(
2n
4

) ∑
x,y,z,w∈(Z4)

fp(d′;x, y, z, w)q

=

(
n
4

)(
2n
4

) AvgHypq(d)
q +

n
(
n
3

)(
2n
4

) AvgUMq(d)
q

≤ 1

16
AvgHypq(d)

q +
1

4
AvgUMq(d)

q

≤ 2q

16
AvgUMq(d)

q +
1

4
AvgUMq(d)

q =

(
1

4
+ 2q−4

)
AvgHypq(d)

q.

The q =∞ case can be checked separately.

Therefore, by the claim above and the assumption, we have a tree fitting dT which fits d′ with
∥dT − d′∥p ≤ AvgHypq(d

′) · f(2n). Our goal is to construct a reduction to deduce an ultrametric
fit dU on X , by utilizing dT . First,

Claim: If M and c were large and small enough respectively, then dT (x1, y) + dT (x2, y) −
dT (x1, x2) ≥ 2c holds for every x1, x2 ∈ X and y ∈ Y .

Proof: Suppose the claim fails. As d(x1, y) + d(x2, y) − d(x1, x2) = M + M − d(x1, x2), it
suggests that one of three pair distances should have distortion at least 1

3 (2M − 2c−d(x1, x2)). This
should not happen if M − c≫ AvgHypq(d

′) · f(2n).
We will interpret the above claim as a structural property. Given a tree T which realizes the tree
metric dT , one can find a Steiner node w on x1, x2, y. Then we have dT (w, y) = 1

2 [dT (x1, y) +
dT (x2, y) − dT (x1, x2)] ≥ c. Since it holds for any x1, x2 ∈ X , it suggests that every geodesic
segment [x, y] for fixed y ∈ Y should share their paths at least c. This observation allows a following
uniformization on Y .

Claim: One can refine a tree metric so that dT (y1, y2) = c for all y1, y2 ∈ Y with ℓp error non-
increasing.

3

Algorithm 6 Refine a tree fit on Z = X ∪ Y

procedure UNIFORMIZATION ON Y
2: Input: tree fit (T, dT) on Z = X ∪ Y , 1 ≤ p <∞

Output: refined tree (T ′, dT ′) on Z
4: dT ′(x1, x2)← dT (x1, x2) ∀x1 ̸= x2 ∈ X

dT ′(y1, y2)← c ∀y1 ̸= y2 ∈ Y
6: Find y0 = argminy∈Y

∑
x∈X |dT (x, y)−M |p

dT ′(x, y)← dT (x, y0) ∀x ∈ X, y ∈ Y
8: return dT ′

Proof: Pick y0 = argminy∈Y

∑
x∈X |dT (x, y) − d(x, y)|p. Then we will keep X ∪ {y0} with its

tree structure and relocate all other y ̸= y0 ∈ Y . As every geodesic segments will share their paths
at least c, we will pick a point z with dT (y, z) = c/2 on the segment, and draw edge (z, y) for all
y ∈ Y with length c/2. Then dT (y1, y2) = c as desired. Furthermore, as dT ′(x, y) = dT (x, y0) for
any x ∈ X and y ∈ Y ,

∥dT ′ − d∥pp
=

∑
z,w∈(Z2)

|dT ′(z, w)− d(z, w)|p

=
∑

x,x′∈(X2)

|dT ′(x, x′)− d(x, x′)|p +
∑

x∈X,y∈Y

|dT ′(x, y)−M |p +
∑

y,y′∈(Y2)

|dT ′(y, y′)− c|p

≤
∑

x,x′∈(X2)

|dT (x, x′)− d(x, x′)|p +
∑

x∈X,y∈Y

|dT (x, y0)−M |p +
∑

y,y′∈(Y2)

0

=
∑

x,x′∈(X2)

|dT (x, x′)− d(x, x′)|p +
∑
y∈Y

∑
x∈X

|dT (x, y0)−M |p

≤
∑

x,x′∈(X2)

|dT (x, x′)− d(x, x′)|p +
∑
y∈Y

∑
x∈X

|dT (x, y)−M |p ≤ ∥dT − d∥pp,

as desired.

Algorithm 7 Construction of a restricted tree with respect to given root r
procedure RESTRICTTREE

2: Input: Tree fitting (T, dT) on Z
Output: Tree fitting dT such that dT (x, y) = M for all x ∈ X and y ∈ Y

4: for each x ∈ X:
if dT (x, y0) > M :

6: Relocate x to point on geodesic [x, y0] so that dT (x, y0) = M
else if dT (x, y0) < M :

8: Add edge (x, x′) with length M − dT (x, y0) and relocate x to x′

return (T, dT)

Claim: One can refine a tree metric so that dT ′(x, y) = M for all x ∈ X and y ∈ Y with ℓp error
not greater than 3(p−1)/p times the original error. Furthermore, if we restrict dT ′ on X , then it is an
ultrametric.

Proof: We will use the algorithm RESTRICTTREE to obtain the restricted tree as described. It is clear
that such procedure will successfully return a tree metric dT with dT (x, y) = M for all x ∈ X and
y ∈ Y . Furthermore, as Denote ϵ := dT − d. Then for any pair x1, x2 ∈ X , its distortion does not
increase greater than |ϵ(x1, y0)|+ |ϵ(x2, y0)|, which is the amount of relocation. We can utilize this

4

y0

x
x′

y0

x

x′

dT (x, y0) > M dT (x′, y0) < M

Figure 2: This figure depicts how RESTRICTTREE works. The idea is we can relocate every vertices
so that d(x, y0) = dT (x, y0) holds for every x ∈ X .

fact by

∥dT ′ − d∥pp =
∑

z,w∈(Z2)

|dT ′(z, w)− d(z, w)|p

=
∑

x,x′∈(X2)

|dT ′(x, x′)− d(x, x′)|p +
∑

x∈X,y∈Y

|dT ′(x, y)−M |p +
∑

y,y′∈(Y2)

|dT ′(y, y′)− c|p

=
∑

x,x′∈(X2)

|dT ′(x, x′)− d(x, x′)|p

≤
∑

x,x′∈(X2)

(|ϵ(x, y0)|+ |ϵ(x, x′)|+ |ϵ(x′, y0)|)p

≤3p−1
∑

x,x′∈(X2)

(|ϵ(x, y0)|p + |ϵ(x, x′)|p + |ϵ(x′, y0)|p)

≤3p−1

 ∑
x,x′∈(X2)

|ϵ(x, x′)|p + (n− 1)
∑
x∈X

|ϵ(x, y0)|p


≤3p−1

 ∑
x,x′∈(X2)

|ϵ(x, x′)|p + n
∑
x∈X

|ϵ(x, y0)|p

 = 3p−1∥dT − d∥pp,

as desired. Then by the restriction, dT (x, y0) = M holds for all x ∈ X . Therefore,

tp(dT ′ ;x1, x2, x3) = fp(dT ′ ;x1, x2, x3, y0) = 0

holds for all x1, x2, x3 ∈
(
X
3

)
, which shows that dT ′ on X is an ultrametric.

Denote the restricted metric as dU (on
(
X
2

)
)). Then we have

∥dU − d∥p = ∥dT ′′ − d′∥p ≤ 3
p−1
p ∥dT ′ − d′∥p ≤ 3

p−1
p ∥dT − d′∥p

≤ 3
p−1
p

(
1

4
+ 2q−4

)1/q

·AvgUMq(d) · f(2n),

as desired.

6.3 Self-contained proof of ultrametric fit to rooted tree fit

Choose any base point w ∈ X and run HCCROOTEDTREEFIT. Note that d+ cw = 2(M − gpw).
Then by 3.4, we see that the output dT satisfies

∥d− dT ∥1 ≤ 8∥∆(d+ cw)∥1 = 8∥∆(M − gpw)∥1 = 8∥∆w(d)∥1.

5

Although ∥∆w(d)∥1 itself does not satisfy the guaranteed bound, we know that∑
w∈X

∥∆w(d)∥1 =
∑
w∈X

∑
x,y,z∈(X\{w}

3)

fpw(d;x, y, z)

= 4
∑

x,y,z,w∈(X4)

fp(d;x, y, z, w) = 4

(
n

4

)
AvgHyp(d)

so there exists an output dT (with appropriately chosen w) with its ℓ1 error bounded by 8 ·
4
n

(
n
4

)
AvgHyp(d) = 8

(
n−1
3

)
AvgHyp(d). As we need to check every base point w ∈ X , this

procedure runs in time O(n3 log n).

6.4 Proof of Theorem 3.3

We begin by recalling the definition of highly connectedness.

Definition 6.1. Given a graph G = (V,E) and two disjoint vertex sets X and Y , the pair (X,Y) is
said to be highly connected if both

for all x ∈ X, |{y ∈ Y |(x, y) ∈ E}| ≥ |Y |
2

, and

for all y ∈ Y, |{x ∈ X|(y, x) ∈ E}| ≥ |X|
2

hold.

Our first lemma shows that every clusters should contain reasonably many edges “within”, so that the
number of “false positive” edges can be bounded. Because highly connectedness determines whether
at least half of the edges have been connected, we can expect that the degree of every node should be
at least half of the size of clusters.

Lemma 6.2. For any C ∈ Pt with |C| ≥ 2 and x ∈ C, |{x′ ∈ C|(x, x′) ∈ Et}| ≥ |C|
2 .

Proof. We use induction on t. The lemma is obviously true when t = 0. Next, suppose we pick
C ∈ Pt with |C| ≥ 2 and the cluster C is formed at step t0 ≤ t. If t0 < t, since Pt is increasing, it is
clear that

|{x′ ∈ C|(x, x′) ∈ Et}| ≥ |{x′ ∈ C|(x, x′) ∈ Et0}| ≥
|C|
2

for all x ∈ C.

Therefore, it is enough to check when t0 = t, i.e., C is the newly added cluster at step t.

Suppose C is achieved by merging C = Ca ∪ Cb. We then have two cases to check, depending on
the sizes of Ca and Cb.

Case 1: |Ca| = 1 or |Cb| = 1: Without loss of generality, assume that |Ca| = 1 and let Ca = {a}. If
Cb is also a singleton, then there is nothing to prove. If not, then, we must have (a, y) ∈ Et

for all y ∈ Cb in order to be highly connected. And by the induction hypothesis,

|{y′ ∈ Cb|(y, y′) ∈ Et}| ≥ |{y′ ∈ Cb|(y, y′) ∈ Et−1}| ≥
|Cb|
2

for all y ∈ Cb.

Hence, we have

|{y′ ∈ C|(a, y′) ∈ Et}| = |Cb| = |C| − 1 ≥ |C|
2

and for all y ∈ Cb

|{y′ ∈ C|(y, y′) ∈ Et}| = |{y′ ∈ Cb|(y, y′) ∈ Et}|+ 1 ≥ |Cb|
2

+ 1 >
|C|
2

,

which completes the proof of Case 1.

6

Case 2: |Ca| > 1 and |Cb| > 1: By the induction hypothesis, we have

|{x′ ∈ Ca|(x, x′) ∈ Et}| ≥ |{x′ ∈ Ca|(x, x′) ∈ Et−1}| ≥
|Ca|
2

for all x ∈ Ca,

and similarly for Cb. As Ca and Cb are both highly connected, we have

|{y′ ∈ Cb|(x, y′) ∈ Et}| ≥
|Cb|
2

for all x ∈ Ca,

|{x′ ∈ Cb|(y, x′) ∈ Et}| ≥
|Ca|
2

for all y ∈ Cb.

Therefore, for any x ∈ Ca,

|{z′ ∈ C|(x, z′) ∈ Et}| = |{x′ ∈ Ca|(x, x′) ∈ Et}|+ |{y′ ∈ Cb|(x, y′) ∈ Et}|

≥ |Ca|
2

+
|Cb|
2

=
|C|
2

,

while each inequality comes from the induction hypothesis and the connectivity condition.
We can similarly show the property for any y ∈ Cb, which completes the proof of Case 2.

This completes the proof.

Next, we prove the following isoperimetric property:
Lemma 6.3. For C ∈ Pt denote ∂X := {(x, y) ∈ Et|x ∈ X, y ∈ C \X} for X ⊂ C. Then for any
proper X ,

|∂X| ≥ |C|
2

.

Proof. Without loss of generality, assume that 1 ≤ |X| ≤ |C|
2 . Then for any x ∈ X , by 6.2, there

are at least |C|
2 − |X|+ 1 edges which connects x and other vertices not in X . Therefore, we have

|∂X| ≥ |X|
(
|C|
2
− |X|+ 1

)
≥ |C|

2
.

As our version of the HCC problem bounds the number of edges in disagreement in terms of the bad
triangles, with the next lemmas, we count the number of bad triangles |B(Gt)| and bound the number
of edges in disagreement. Recall that a bad triangle is defined as a triplet of edges in which only two
of the three possible edges belong to Et. For each cluster C ∈ Pt, denote the number of bad triangles
inside C as TC . And for each cluster pair C,C ′ ∈ Pt, we count some of the bad triangles between C
and C ′ as TC,C′ . More precisely,
Definition 6.4. Given a partition Pt, denote

TC := {(x, y, z)|x, y, z ∈ C and (x, y, z) ∈ B(Gt)} for C ∈ Pt,

T(C,C′) := {(x, x′, y)|x, x′ ∈ C, y ∈ C ′ and (x, x′), (x, y) ∈ Et, (x
′, y) /∈ Et}

∪ {(x, y, y′)|x ∈ C, y, y′ ∈ C ′ and (y, y′), (x, y) ∈ Et, (x, y
′) /∈ Et} for (C,C ′) ∈

(
Pt

2

)
.

Note that TC,C′ does not count every bad triangle between C and C ′, as there might be bad triangles
in which the missing edge is inside the cluster. With these definitions, we have∑

C∈Pt

|TC |+
∑

(C,C′)∈(Pt
2)

|T(C,C′)| ≤ |B(Gt)|.

Proposition 6.5. For any cluster C ∈ Pt, the number of edges not in C is bounded by |TC |. That is,

|{(x, y) /∈ E|x, y ∈ C}| ≤ |TC |.
(In fact, it is bounded by |TC |/2.)

7

Proof. We will prove that for any e = (x, y) /∈ Et with x, y ∈ C, there exist at least two elements
in TC that contain e, which implies our result. If |C| = 1, then there is nothing to prove. For any
|C| ≥ 2 and (x, y) /∈ Et, by Lemma 6.2, there are at least |C|

2 neighbors of x and y (we will denote
each as Nx and Ny , respectively). Since Nx, Ny ⊂ C \ {x, y}, we have

|Nx ∩Ny| = |Nx|+ |Ny| − |Nx ∪Ny| ≥
|C|
2

+
|C|
2
− (|C| − 2) = 2.

For any z ∈ Nx ∩Ny , (x, y, z) ∈ TC by definition, which proves the assertion.

Lemma 6.6. For G = (V,E) and two disjoint subsets X,Y ⊂ V , suppose

|{x′ ∈ X|(x, x′) ∈ E}| ≥ |X|
2

for all x ∈ X and |{y′ ∈ Y |(y, y′) ∈ E}| ≥ |Y |
2

for all y ∈ Y.

We will further assume that X and Y are not highly connected. Then we have

|{(x, y) ∈ E|x ∈ X, y ∈ Y }| ≤ 4 · (|{(x, x′, y)|x, x′ ∈ X, y ∈ Y and (x, x′), (x, y) ∈ E, (x′, y) /∈ E}|
+ |{(x, y, y′)|x ∈ X, y, y′ ∈ Y and (y, y′), (x, y) ∈ E, (x, y′) /∈ E}|)

Proof. The key argument here is to use Lemma 6.3 and count the boundary sets. Define NY (x) :=
{y ∈ Y |(x, y) ∈ E} for x ∈ X (and NX(y) for y ∈ Y respectively.) Then for any (y, y′) ∈ ∂NY (x),
(x, y, y′) is a bad triangle and it contributes the right hand side. In other words, the right hand side of
the above equation is upper bounded by

(⋆) = 4 ·

∑
x∈X

|∂NY (x)|+
∑
y∈Y

|∂NX(y)|

 .

By 6.3, we know that for NY (x) ̸= ∅ or Y , |∂NY (x)| ≥ |Y |
2 . We will count such x ∈ X and y ∈ Y

which its neighbor set is proper, in order to make a lower bound. We divide the rest of the analysis
into three cases:

Case 1: There exists x0 ∈ X such that NY (x0) = ∅: then for any y ∈ Y , x0 /∈ NX(y) so that
NX(y) cannot be X . Thus, NX(y) ̸= ∅ immediately leads that |∂NX(y)| ≥ |X|

2 . We have

|{(x, y) ∈ E|x ∈ X, y ∈ Y }| ≤ |X| · |{y ∈ Y |NX(y) ̸= ∅}|

≤
∑

y∈Y,NX(y)̸=∅

|X|

≤ 2
∑

y∈Y,NX(y) ̸=∅

|∂NX(y)|

≤ (⋆) ≤ RHS,

which proves the lemma.

Case 2: There exists y0 ∈ Y such that NX(y0) = ∅: this case is proven as we did in Case 1.

Case 3: For any x ∈ X and y ∈ Y , NY (x) ̸= ∅ and NX(y) ̸= ∅, we will use the assumption that X
and Y are not highly connected. With this assumption, we can also assume without loss of
generality that there is an x0 ∈ X such that |NY (x0)| < |Y |

2 . Then for any y /∈ NY (x0),
NX(y) ̸= ∅ and NX(y) ̸= X (as x0 /∈ NX(y)). Thus, the boundary set exists and has at

8

least |X|
2 elements. Therefore,

RHS ≥ (⋆) ≥ 4
∑
y∈Y

|∂NX(y)|

≥ 4
∑

y∈Y,y/∈NY (x0)

|∂NX(y)|

≥ 4
∑

y∈Y,y/∈NY (x0)

|X|
2

= 4 · |X|
2
· (|Y | − |NY (x0)|)

> 4 · |X|
2
· |Y |

2
= |X| · |Y | ≥ LHS.

This completes the proof.

Proposition 6.7. For any cluster pair (C,C ′) ∈ Pt, the number of edges between C and C ′ is
bounded by 4|T(C,C′)|. (i.e., |{(x, y) ∈ E|x ∈ C, y ∈ C ′}| ≤ 4|T(C,C′)|.)

Proof. Here, we will use an induction on t. When t = 0, then there is nothing to prove. Suppose the
induction hypothesis holds for t0 < t.

Case 1: et does not connect two vertices between C and C ′ and C,C ′ are not added at step t: then
by induction hypothesis, the proposition holds at step t− 1, which is also true at step t (As
the left hand side is invariant and |T(C,C′)| is increasing).

Case 2: et = (x, y) for x ∈ C and y ∈ C ′: then it follows that our algorithm decided not to merge
two clusters, which means C and C ′ are not highly connected. Then by Lemma 6.6, the
number of edges is bounded by 4|T(C,C′)| as desired.

Case 3: et does not connect two vertices between C and C ′, but C or C ′ is newly formed at step t:
note that both clusters cannot be generated at the same time, so we assume without loss of
generality that C is the new cluster and assume it is generated by C = Ca ∪ Cb. Then by
the induction hypothesis, we have

{(x, y) ∈ E|x ∈ C, y ∈ C ′}| = {(x, y) ∈ E|x ∈ Ca, y ∈ C ′}|+ {(x, y) ∈ E|x ∈ Cb, y ∈ C ′}|
≤ 4(|T(Ca,C′)|+ |T(Cb,C′)|) (by the induction hypothesis)

≤ 4|T(C,C′)|.

This completes the proof.

We are now ready to prove Theorem 3.3.

Proof of Theorem 3.3: For Pt = {C1, C2, · · · , Ck}, denote

ei := |{(x, x′) /∈ E|x, x′ ∈ Ci}|,

ei,j := |{(x, y) ∈ E|x ∈ Ci, y ∈ Cj}|.
Then by the above propositions, we have

|Et∆E(Pt)| =
∑
i

ei +
∑
i<j

ei,j

≤
∑
i

TCi +
∑
i<j

4T(Ci,Cj)

≤ 4

∑
i

TCi
+
∑
i<j

T(Ci,Cj)

 ≤ 4 · |B(Gt)|.

9

6.5 Implementation details

To detail our implementation, we will introduce the following variables.

For x ∈ X and cluster C, denote D(x,C) := |{y ∈ C|(x, y) ∈ E}|. We further denote the
connectivity condition H(x,C) as IF(D(x,C) ≥ |C|

2).
Also for given two clusters Ca and Cb, we will denote M(Ca, Cb) := |{x ∈ Ca|H(x,Cb) = 1}|.
We can easily check that two disjoint clusters Ca and Cb are highly connected if and only if

M(Ca, Cb) +M(Cb, Ca) = |Ca|+ |Cb|.

Algorithm 8 HCCTRIANGLE: Actual Implementation
function HCCTRIANGLE

Input: X = {x1, · · · , xn}, {et}
Initialize D,H,M as 0 for vertex set X
Initialize P = {{x1}, {x2}, · · · , {xn}}, E = ∅
For t ∈ {1, 2, · · · ,

(
n
2

)
}:

Take et = (x, y) with x ∈ Ca and y ∈ Cb (Ca, Cb ∈ P)
Add D(x,Cb), D(y, Ca) by 1
Update H(x,Cb) and H(y, Ca)
If H has been updated, update M(Ca, Cb) and M(Cb, Ca) accordingly
If Ca ̸= Cb and M(Ca, Cb) +M(Cb, Ca) = |Ca|+ |Cb|:

Remove Ca, Cb and add Cnew := Ca ∪ Cb in P
D(:, Cnew)← D(:, Ca) +D(:, Cb)
Compute H(:, Cnew) and M(:, Cnew) (by using D(:, Cnew))
M(Cnew, :)←M(Ca, :) +M(Cb, :)

Pt ← P
return {Pt}

One can observe that an iteration only takes O(1) when Ca and Cb are not merged. When we merge
Cnew, we need time O(n) to compute new information of Cnew. Since such events occur exactly
n− 1 times, we can conclude that HCCTRIANGLE overall runs in time O(n2).

6.6 Asymptotic tightness of Gromov’s distortion bound

While it is well-known that Gromov’s result is asymptotically tight, we give a self-contained sketch
of the proof and provide an example that witnesses the bound. We detail the construction given
by [17]. Consider the Poincaré disk H2 and its hyperbolic n = 4m-gon Hn,r as a set of equally
spaced n points around the circle of radius r in H2. Label all the points as x1, x2, . . . , x4m, in the
counterclockwise order, and define y = x3m. Suppose dT is a tree metric fit to d and denote the
Gromov product with respect to y as gpy . Then
gpy(x0, x2m) ≥ min(gpy(x0, x1), gpy(x1, x2m)) ≥ min(gpy(x0, x1),min(gpy(x1, x2), gpy(x2, x2m))

≥ · · ·
≥ min

i∈{0,1,...,2m−1}
gpy(xi, xi+1).

Therefore there exists an i such that
dT (xi, y) + dT (xi+1, y)− dT (xi, xi+1) ≤ dT (x0, y) + dT (x2m, y)− dT (x0, x2m).

On the other hand, for r, n large enough,
[d(xi, y)+d(xi+1, y)−d(xi, xi+1)]−[d(x0, y)+d(x2m, y)−d(x0, x2m)] ≈ 2 log(sin(π/m)) ≈ 2 log n,

shows one of six pair distances should have distortion at least ≈ 1/3 log n = Ω(log n).

6.7 Examples

6.7.1 Example for HCCULTRAFIT

For the following distances d on X = {a, b, c, d, e, f}, we will compute the ultrametric fit using
HCC. We first sort all the pairs in increasing distance order. We merge {a} and {b} first; this edge

10

O

H2
y

x2m x0

x1

x2

xi
xi+1

Figure 3: This figure depicts the example that proves Gromov’s distortion bound is asymptotically
tight. By symmetry, we can conclude that Gromov’s algorithm will always return the same ℓ∞ error
regardless of the choice of base point w.

corresponds to e1 = (a, b). Then we merge {d} and {e} for e2 = (d, e). Next, when we explore
(e, f) (regardless of whether (a, d) comes first or not), we merge {d, e} and {f} with corresponding
distance 6. Then we merge {a, b} and {c} when we explore (b, c). Finally, we merge {a, b, c} and
{d, e, f} when both clusters are highly connected, and we check its corresponding fit is 8.

d a b c d e f
a 0 3 5 6 8 8
b 3 0 7 8 7 10
c 5 7 0 9 5 7
d 6 8 9 0 4 5
e 8 7 5 4 0 6
f 8 10 7 5 6 0

⇒

dU a b c d e f
a 0 3 7 8 8 8
b 3 0 7 8 8 8
c 7 7 0 8 8 8
d 8 8 8 0 4 6
e 8 8 8 4 0 6
f 8 8 8 6 6 0

Figure 4: This figure depicts the example output dU by drawing a dendrogram.

6.7.2 Example for HCCROOTEDTREEFIT

Next, given d, we want to find a tree fitting dT which restricts r ∈ X . We first compute cr and run
HCCULTRAFIT on d+ cr, denote the output dU . Then our tree fit dT is obtained by dT := dU − cr,
which is a tree metric. Furthermore, it restricts r ∈ X , so that dT (x, r) = d(x, r) for all x ∈ X .

d r a b c d e f
r 0 9 9 8 10 8 7
a 9 0 1 2 5 5 4
b 9 1 0 4 7 4 6
c 8 2 4 0 7 1 2
d 10 5 7 7 0 2 2
e 8 5 4 1 2 0 1
f 7 4 6 2 2 1 0

⇒

cr r a b c d e f
r 0 11 11 12 10 12 13
a 11 0 2 3 1 3 4
b 11 2 0 3 1 3 4
c 12 3 3 0 2 4 5
d 10 1 1 2 0 2 3
e 12 3 3 4 2 0 5
f 13 4 4 5 3 5 0

11

d+ cr r a b c d e f
r 0 20 20 20 20 20 20
a 20 0 3 5 6 8 8
b 20 3 0 7 8 7 10
c 20 5 7 0 9 5 7
d 20 6 8 9 0 4 5
e 20 8 7 5 4 0 6
f 20 8 10 7 5 6 0

⇒

dU r a b c d e f
r 0 20 20 20 20 20 20
a 20 0 3 7 8 8 8
b 20 3 0 7 8 8 8
c 20 7 7 0 8 8 8
d 20 8 8 8 0 4 6
e 20 8 8 8 4 0 6
f 20 8 8 8 6 6 0

dT =

d r a b c d e f
r 0 9 9 8 10 8 7
a 9 0 1 4 7 5 4
b 9 1 0 4 7 5 4
c 8 4 4 0 6 4 3
d 10 7 7 6 0 2 3
e 8 5 5 4 2 0 1
f 7 4 4 3 3 1 0

Figure 5: This figure depicts how the output dT looks like. This tree structure in fact can easily be
obtained by utilizing the structure of dendrogram we computed.

6.8 Rooted tree structure

We discuss how the tree structure of dT , the output of HCCROOTEDTREEFIT, is
related to that of dU . As fitting dU is an agglomerative clustering procedure,
one may consider its linkage matrix Z with specified format in scipy library (See
https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html). At each
step, we utilize the data to construct desired rooted tree by adding Steiner node. Detailed algorithm is
as follows (For the simplicity, we will describe the procedure when X = [n] = {0, 1, · · · , n− 1}).

6.9 Experiment details

6.9.1 TREEREP

We adapted code from TREEREP, which is available at https://github.com/rsonthal/TreeRep. We
removed its dependency upon PyTorch and used the numpy library for two reasons. First, we have
found that using the PyTorch library makes the implementation unnecessarily slower (especially for
small input). Second, to achieve a fair comparison, we fixed the randomized seed using numpy. All
edges with negative weight have been set to 0 after we have outputted the tree.

6.9.2 GROMOV

We used the duality of Gromov’s algorithm and SLHC (observed by [13]) and simply used reduction
method (from ultrametric fitting to rooted tree fitting). scipy library was used to run SLHC. This
procedure only takes O(n2) time to compute.

12

https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html
https://github.com/rsonthal/TreeRep

Algorithm 9 Construct rooted tree from linkage matrix Z

1: procedure ULTRALINKAGEFIT
2: Input: distance function d
3: Output: linkage matrix Z which depicts ultrametric fit dU
4: procedure CONSTRUCTROOTEDTREE

5: Input: distance function d on
(
[n]
2

)
and base point 0 ≤ r ≤ n− 1

6: Output: Rooted tree (T, dT) which fits d and d(r, x) = dT (r, x) for all 0 ≤ x ≤ n− 1
7: Define m = max0≤x≤n−1 d(r, x), cr(x, y) = 2m − d(r, x) − d(r, y), and βx = 2(m −

d(r, x))(0 ≤ x ≤ n− 1)
8: Define dr(x)← d(r, x) for 0 ≤ w ≤ n− 1
9: Z = ULTRALINKAGEFIT(d+ cr)

10: For t ∈ {0, 1, · · · , n− 2}:
11: x, y, d← Z[t, 0], Z[t, 1], Z[t, 2]
12: Add node n+ t in T with dr(n+ t) = m− d/2
13: Add edge (x, n+ t) in T with weight dr(x)− dr(n+ t)
14: Add edge (y, n+ t) in T with weight dr(y)− dr(n+ t)
15: (Collapse node 2n− 2 and the root node r)
16: return (T, dT)

6.9.3 NEIGHBORJOIN

For NEIGHBORJOIN, we implemented simple code. Note that it does not contain any heuristics on
faster implementation. All edges with negative weight have been set to 0 after we have outputted the
tree.

6.9.4 Hardware setup

All experiments have used shared-use computing resource. There are 4 CPU cores each with 5GiB
memory. We executed all the code using a Jupyter notebook interface running Python 3.11.0 with
numpy 1.24.2, scipy 1.10.0, and networkx 3.0. The operating system we used is Red Hat Enterprise
Linux Server 7.9.

6.9.5 Common data set

For C-ELEGAN and CS PHD, we used pre-computed distance matrix from
https://github.com/rsonthal/TreeRep. For CORA, AIRPORT, and DISEASE, we used
https://github.com/HazyResearch/hgcn and computed the shortest-path distance matrix of
its largest connected component. The supplementary material includes the data input that we utilized.

6.9.6 Synthetic data set

To produce random synthetic tree-like hyperbolic metric from a given tree, we do the following.

1. Pick two random vertices v, w with dT (v, w) > 2 (If not, then run 1 again.)

2. Add edge (v, w) with weight dT (v, w)− 2δ (for δ = 0.1).

3. We repeat until new ne = 500 edges have been added.

4. We compute shortest-path metric of the outputted sparse graph.

We excluded pair with dT (v, w) ≤ 2 because: if it is 1, then the procedure simply shrinks the edge. if
it is 2, then one can consider the procedure as just adding an Steiner node (of v, w and their common
neighbor), which does not pose hyperbolicity.

6.9.7 Comparison

For the comparison, we have fixed the randomized seed using numpy library (from 0 to nseed - 1).
For common data set experiments, we run nseed = 100 times. For synthetic data set experiments, we
run nseed = 50 times.

13

https://github.com/rsonthal/TreeRep
https://github.com/HazyResearch/hgcn

Error Average ℓ1 error Max ℓ∞ error

HCC 0.260±0.058 1.478±0.213

Gromov 0.255±0.041 1.071±0.092

TR 0.282±0.067 1.648±0.316

NJ 0.224 1.430
QT 1.123 1.943

Table 6: Experiments on unit cube in R2. The data set does not have some hyperbolicity feature so
that the result kind may be different from the main experiments.

6.10 Detailed Comparisons

In comparison with [1] As [1] presented an O(1) approximation that minimizes the ℓ1 error, it
can be deduced that the total error of its output is also bounded by O(AvgHyp(d)n3), while the
leading coefficient is not known. It would be interesting to analyze the performance of LP based
algorithms including [1] if we have some tree-like assumptions on input, such as AvgHyp(d) or the
δ-hyperbolicity.

In comparison with [10] We bounded the total error of the tree metric in terms of the average
hyperbolicity AvgHyp(d) and the size of our input space X . As the growth function we found
is O(n3), it can be seen that the average error bound would be O(AvgHyp(d)|X|), which is
asymptotically tight (In other words, the dependency on |X| is necessary).

While the setup [10] used is quite different, the result can be interpreted as follows: they bounded the
expectation of the distortion in terms of the average hyperbolicity AvgHyp and the maximum bound
on the Gromov product b (or the diameter D). The specific growth function in terms of AvgHyp and
b is not known, or is hard to track. By slightly tweaking our asymptotic tightness example, it can also
be seen that the dependency on b should be necessary. It would also be interesting to find how tight
the dependency in terms of b is.

In comparison with QUADTREE There are a number of tree fitting algorithms in many applications,
with various kinds of inputs and outputs. One notable method is QUADTREE (referred in, for example,
[18]) which outputs a tree structure where each node reperesents a rectangular area of the domain.
There are two major differences between QUADTREE and ours: first, QUADTREE needs to input data
points (Euclidean), while ours only requires a distance matrix. Also, the main output of QUADTREE
is an utilized tree data structure, while ours (and other comparisons) focus on fitting the metric.

We conducted a simple experiment on comparing QUADTREE and others including ours. First, we
uniformly sampled 500 points in [0, 1]2 ⊂ R2 and ran QUADTREE algorithm as a baseline algorithm.
While defining edge weights on the output of QUADTREE is not clear, we used 2−d for depth d edges.
Note that the input we sampled is nowhere hyperbolic so that it may not enjoy the advantages of
fitting algorithms which use such geometric assumptions.

There is a simple reason why QUADTREE behaves worse when it comes to the metric fitting problem.
QUADTREE may distinguish two very close points across borders. Then its fitting distance between
such points is very large; it in fact can be the diameter of the output tree, which is nearly 2 in this
experiment. That kind of pairs pose a huge error.

14

	Introduction
	Preliminaries
	Basic definitions
	Problem formulation
	Previous results
	(Hierarchical) Correlation clustering and ultrametric fitting
	Reductions and equivalent bounds

	Tree and ultrametric fitting: Algorithm and analysis
	HCC Problem
	Main results
	Algorithm and analysis

	Experiments
	Common data sets
	Synthetic data sets

	Discussion
	Appendix
	Proof of Theorem 2.5
	Proof of Theorem 2.6
	Self-contained proof of ultrametric fit to rooted tree fit
	Proof of Theorem 3.3
	Implementation details
	Asymptotic tightness of Gromov's distortion bound
	Examples
	Example for HCCUltraFit
	Example for HCCRootedTreeFit

	Rooted tree structure
	Experiment details
	TreeRep
	Gromov
	NeighborJoin
	Hardware setup
	Common data set
	Synthetic data set
	Comparison

	Detailed Comparisons

