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Abstract

A major challenge in the current computer-aided detection (CAD) of polyps in CT colonography 

(CTC) is to reduce the number of false-positive (FP) detections while maintaining a high 

sensitivity level. A pattern-recognition technique based on the use of an artificial neural network 

(ANN) as a filter, which is called a massive-training ANN (MTANN), has been developed 

recently for this purpose. The MTANN is trained with a massive number of subvolumes extracted 

from input volumes together with the teaching volumes containing the distribution for the 

“likelihood of being a polyp;” hence the term “massive training.” Because of the large number of 

subvolumes and the high dimensionality of voxels in each input subvolume, the training of an 

MTANN is time-consuming. In order to solve this time issue and make an MTANN work more 

efficiently, we propose here a dimension reduction method for an MTANN by using Laplacian 

eigenfunctions (LAPs), denoted as LAP-MTANN. Instead of input voxels, the LAP-MTANN uses 

the dependence structures of input voxels to compute the selected LAPs of the input voxels from 

each input subvolume and thus reduces the dimensions of the input vector to the MTANN. Our 

database consisted of 246 CTC datasets obtained from 123 patients, each of whom was scanned in 

both supine and prone positions. Seventeen patients had 29 polyps, 15 of which were 5–9 mm and 

14 were 10–25 mm in size. We divided our database into a training set and a test set. The training 

set included 10 polyps in 10 patients and 20 negative patients. The test set had 93 patients 

including 19 polyps in seven patients and 86 negative patients. To investigate the basic properties 

of a LAP-MTANN, we trained the LAP-MTANN with actual polyps and a single source of FPs, 

which were rectal tubes. We applied the trained LAP-MTANN to simulated polyps and rectal 

tubes. The results showed that the performance of LAP-MTANNs with 20 LAPs was 

advantageous over that of the original MTANN with 171 inputs. To test the feasibility of the LAP-

MTANN, we compared the LAP-MTANN with the original MTANN in the distinction between 

actual polyps and various types of FPs. The original MTANN yielded a 95% (18/19) by-polyp 

sensitivity at an FP rate of 3.6 (338/93) per patient, whereas the LAP-MTANN achieved a 
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comparable performance, i.e., an FP rate of 3.9 (367/93) per patient at the same sensitivity level. 

With the use of the dimension reduction architecture, the time required for training was reduced 

from 38 h to 4 h. The classification performance in terms of the area under the receiver-operating-

characteristic curve of the LAP-MTANN (0.84) was slightly higher than that of the original 

MTANN (0.82) with no statistically significant difference (p-value).

Keywords

Computer-aided diagnosis (CAD); nonlinear dimension reduction; pixel-based machine learning; 
virtual colonoscopy

I. Introduction

Colorectal cancer is the second leading cause of cancer deaths in the United States. Early 

detection and removal of polyps (the precursors of colorectal cancers) is a promising 

strategy for enhancing patients’ chance of survival. CT colonography (CTC) is an emerging 

technique for mass screening of colorectal carcinoma. The diagnostic performance of CTC 

in detecting polyps, however, remains uncertain because of a propensity for perceptual 

errors and substantial variations among readers in different studies. Computer-aided 

detection (CAD) of polyps has the potential to overcome these difficulties with CTC. CAD 

provides for radiologists the locations of suspicious polyps for their review, thus improving 

the diagnostic performance in the detection of polyps.

Automated detection of polyps with CAD schemes is a very challenging task, because the 

polyps have large variations in shapes and sizes and there are numerous colon folds and 

residual leftover colonic materials on the colon wall that mimic polyps. A number of 

researchers have recently developed automated or semi-automated CAD schemes in CTC. 

Although the performance of current CAD schemes has demonstrated a great potential, 

some limitations remain. One of the major limitations is a relatively large number of false-

positive (FP) detections, which is likely to confound the radiologists’ image interpretation 

task and thus lower their efficiency. A large of number of FPs could adversely affect the 

clinical application of CAD for colorectal cancer screening. Therefore, methods for removal 

of computer FPs are in strong demand.

The common sources of FPs are haustral folds, residual stool, rectal tubes, and extra-colonic 

structures such as the small bowel and stomach, as reported in [1], [2]. Various methods 

have been proposed for the reduction of FPs, with variable success. Summers et al. [3], [4] 

employed the geometric features on the inner surface of the colon wall, such as the mean, 

Gaussian, and principal curvatures, to find polyp candidates. Yoshida et al. [5] and Näppi et 

al. [6] further characterized the curvature measures by using a shape index and curvedness 

to distinguish polyp candidates from the normal tissues of the colon wall. Paik et al. [7] and 

Kiss et al. [8] presented another solution for polyp detection in which they utilized the 

normal vector (rather than the curvature) and sphere fitting as references to extract some 

geometric features on the polyp surfaces. Because these traditional surface shape-based 

descriptions are sensitive to the irregularity of the colon wall, these CAD methods share a 

relatively high FP rate. Gokturk et al. [9] developed a scheme based on statistical pattern 
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recognition, and they applied a 3-D pattern-processing method to the reduction of FPs. Acar 

et al. [10] used edge-displacement fields to model the changes in consecutive cross-sectional 

views of CTC data, as well as quadratic discriminant analysis. Jerebko et al. [11], [12] used 

a standard ANN to classify polyp candidates and improved the performance by 

incorporating a committee of ANNs and a committee of support vector machines. Yao et al. 

[13] explored image segmentation methods to reduce FPs. Iordanescu and Summers [14] 

developed an image-segmentation-based approach for the reduction of FPs due to rectal 

tubes.

The performance of a CAD scheme usually involves a trade-off between sensitivity and 

specificity. It is important to remove as many types of FPs as possible, while the sensitivity 

of a CAD scheme is maintained. For addressing this issue, a 3-D massive-training artificial 

neural network (MTANN) and a mixture of expert 3-D MTANNs were developed for 

elimination of a single type of FP [1] and multiple types of FPs [2], respectively. The 

mixture of expert 3-D MTANNs consists of several expert 3-D MTANNs in parallel, each of 

which is trained independently by use of a specific type of non-polyp and a common set of 

various types of polyps. Each expert MTANN acts as an expert for distinguishing polyps 

from a specific type of non-polyp. It was demonstrated in [15] that this mixture of expert 

MTANNs was able to eliminate various types of FPs at a high sensitivity level.

The training of an MTANN is, however, very time-consuming, [1], [2], [15]–[19]. For 

example, the training of a 3-D MTANN with ten polyps and ten FPs may take 38 h on a 

workstation [1], [2]. The training time will increase when the number of training cases 

increases. To address this time issue and make an MTANN work more efficiently, we 

propose here an MTANN coupled with a Laplacian-eigenfunction-based dimension 

reduction. In the MTANN framework, the input features are the large number of 

neighboring voxel values in each subvolume extracted from a CTC volume, and thus they 

have some underlying geometric structures and are highly dependent each other. Motivated 

by this fact, we employ a manifold-based dimension-reduction technique, a Laplacian 

eigenfunction [20], to improve the efficiency of the original MTANN. This will be 

demonstrated by use of both simulation and actual clinical data. Other nonlinear dimension 

reduction techniques such as the diffusion map [21] and Isomap [22] would have 

comparable results because they can take the local geometry information fairly well, 

whereas the classical principal-component analysis (PCA) is known for being sensitive to 

outliers and cannot incorporate the local intrinsic structure.

The paper is organized as follows. In Section II, we first describe our CTC database and 

review the basics of an MTANN, and we then explain the technical details for improvement 

by using Laplacian eigenfunctions. In Section III, we compare the results of the application 

of MTANNs with and without LAPs in experiments with both simulated and actual polyps. 

Finally, we further discuss the statistical issues of employment of LAPs in Section IV and 

give a conclusion in Section V.
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II. Materials and Methods

A. Database

The database used in this study consisted of 246 CTC datasets obtained from 123 patients 

acquired at the University of Chicago Medical Center. Each patient was scanned in both 

supine and prone positions with a multi-detector-row CT scanner (LightSpeed QX/i, GE 

Medical Systems, Milwaukee, WI) with collimations between 2.5 and 5.0 mm, 

reconstruction intervals of 1.25–5.0 mm, and tube currents of 60–120 mA with 120 kVp. 

Each reconstructed CT section had a matrix size of 512 × 512 pixels, with an in-plane pixel 

size of 0.5–0.7 mm. In this study, we used 5 mm as the lower limit on the clinically 

significant size of polyps. Seventeen patients had 29 colonoscopy-confirmed polyps, 15 of 

which were 5–9 mm and 14 were 10–25 mm in size. We divided our database into a training 

set and a test set. The training set contained 10 polyps in 10 patients and 20 negative 

patients. The test set included 93 patients containing 19 polyps in 7 patients and 86 negative 

patients. We applied an initial CAD scheme for detection of polyps in CTC to our CTC 

database. The initial polyp-detection scheme is a standard CAD approach which consists of 

1) colon segmentation based on CT value-based analysis and colon tracing [23], 2) detection 

of polyp candidates based on morphologic analysis of the segmented colon [5] followed by 

connected-component analysis [24]–[26], 3) calculation of 3-D pattern features of the polyp 

candidates [6], [27], [28], and 4) quadratic discriminant analysis [29] for classification of the 

polyp candidates as polyps or non-polyps based on the pattern features. The initial CAD 

scheme yielded a 95% (18/19) by-polyp sensitivity with 5.1 (474/93) FPs per patient for the 

test set. The major sources of FPs included rectal tubes, stool, haustral folds, colonic walls, 

and the ileocecal valve. These CAD detections were used for experiments for evaluating the 

performance of 3-D MTANNs.

B. Basics of an MTANN Framework

Supervised nonlinear image-processing techniques based on artificial neural networks 

(ANNs), called “neural filters” [30] and “neural edge enhancers” [31] were developed for 

reduction of the quantum mottle in X-ray images and for supervised detection of subjective 

edges traced by cardiologists [32], respectively. The neural filters and neural edge enhancers 

were extended to accommodate various pattern-classification tasks, and a 2-D MTANN was 

developed [15]. A 2-D MTANN was originally developed for distinguishing a specific 

opacity from other opacities in thoracic CT [15]. The 2-D MTANN was applied to the 

reduction of FPs in the computerized detection of lung nodules in chest radiography [17], 

low-dose CT [15], [18], and the suppression of ribs in chest radiographs [16]. A 3-D 

MTANN was recently developed for processing 3-D volume data in CTC [1], [2]. The 

architecture of a 3-D MTANN is shown in Fig. 1. A 3-D MTANN consists of a linear-output 

multilayer ANN model for regression, which is capable of operating on voxel data directly 

[31], [32]. The linear-output multilayer ANN model employs a linear function instead of a 

sigmoid function as the activation function of the unit in the output layer because the 

characteristics of an ANN were improved significantly with a linear function when applied 

to the continuous mapping of values in image processing [31]. Note that the activation 

functions of the units in the hidden layer are a sigmoid function for nonlinear processing, 

and those of the unit in the input layer are an identity function, as usual. The 3-D MTANN is 
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trained with input CTC volumes and the corresponding teaching volumes for enhancement 

of polyps and suppression of non-polyps. The input to the expert 3-D MTANN consists of a 

collection of voxel values in a subvolume, Vs, extracted from an input volume, denoted as a 

vector , where each Ii denotes one input voxel in Vs. Here, n is the 

number of voxels in a sub-volume of a fixed size. The pixel values of the original CTC 

images are normalized first such that − 1000 HU (Hounsfield units) is zero and 1000 HU is 

one. The output of an MTANN is a continuous scalar value, which corresponds to the center 

voxel (p = 0, q = 0, r = 0)in the subvolume, Vs. The output at (x, y, z)is denoted by

(1)

The entire output volume is obtained by scanning of the input subvolume of the MTANN on 

the entire input CTC volume. The input subvolume and the scanning of the MTANN can be 

analogous to the kernel of a convolution filter and the convolutional operation of the filter, 

respectively. Note that only one unit is employed in the output layer.

The teaching volume for polyps contains a 3-D Gaussian distribution with standard 

deviation σT, which approximates the average shape of polyps, and that for non-polyps 

contains only zeros. This distribution represents the likelihood of being a polyp

(2)

For enrichment of the training samples, a massive number of overlapping subvolumes are 

extracted from a training volume VT, and the same number of single voxels are extracted 

from the corresponding teaching volume as teaching values. The centers of consecutive 

subvolumes differ by just one pixel. All pixel values in each of the subvolumes may be 

entered as input to the 3-D MTANN, whereas one pixel from the teaching image is entered 

into the output unit in the 3-D MTANN as the teaching value. The error to be minimized in 

training is given by

(3)

where i is a training case number, Oi is the output of the MTANN for the th case, Ti is the 

teaching value for the ith case, and P is the total number of training voxels in the training 

volume. The MTANN is trained by a linear-output back-propagation algorithm [31], [32] 

which was derived for the linear-output ANN model by use of the generalized delta rule 

[33].

After training, the MTANN is expected to output the highest value when a polyp is located 

at the center of the subvolume, a lower value as the distance from the subvolume center 

increases, and approximately zero when the input subvolume contains a non-polyp. The 

entire output volume is obtained by scanning of the whole input CTC volume to the 
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MTANN. For the distinction between polyps and non-polyps, a 3-D scoring method based 

on the output volume of the trained MTANN is applied. A score for a polyp candidate is 

defined as

(4)

where

(5)

is a 3-D Gaussian weighting function with standard deviation σ with its center 

corresponding to the center of the volume for evaluation, VE ; VE is the volume for 

evaluation, which is sufficiently large to cover a polyp or a non-polyp; and O(x, y, z)is the 

output of the trained MTANN. The use of the 3-D scoring method allows us to combine the 

individual voxel-based responses (outputs) of a trained 3-D MTANN as a single score for 

each candidate. The score is the weighted sum of the estimates of the likelihood that a polyp 

candidate volume contains an actual polyp near the center, that is, a high score would 

indicate a polyp and a low score would indicate a non-polyp. The same 3-D Gaussian 

weighting function is used as in the teaching volumes. Thresholding is then performed on 

the scores for the distinction purpose.

C. LAP-MTANN: A 3-D MTANN Based on Manifold Embedding by Use of Laplacian 
Eigenfunctions

One drawback of the original MTANN described above is that the selected patterns are 

regarded as independent inputs to the ANN and the correlation among close sampled 

patterns is ignored. The training patterns sampled from common candidate volumes are 

highly overlapped, as illustrated in Fig. 3, and thus the corresponding voxel values are 

strongly dependent on each other. This intrinsic dependence structure of the selected 

patterns should be incorporated in the MTANN scheme.

Another drawback of the original MTANN is that the training is very time-consuming. This 

is caused by the high dimensionality of the input vector to the linear-output ANN and the 

large number of training subvolumes extracted from the training volumes. The use of a 

smaller subvolume can reduce the dimensionality of the input layer. However, the input 

subvolume to an MTANN has to be large enough to cover a sufficient part of a polyp 

candidate. A practical choice of a sphere-shaped subvolume gives n = 171 (see Fig. 2). This 

also limits the application of an MTANN to polyp candidates of large size. For reducing the 

training time, one possibility is to reduce the number of training subvolumes. The reduction 

of the number of training patterns, however, will obviously lead to an insufficiently trained 

MTANN and directly make the MTANN lose the power to distinguish polyps from non-

polyps. To address the issue of dimensionality, we employed an unsupervised 

dimensionality reduction technique for reducing the dimensionality of the input layer.
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Dimensionality reduction techniques have long been an active research topic in pattern 

recognition and many other fields. The generic formulation of dimensionality reduction is 

stated as follows: Given a set of points I1,..., IN in , find a set of points C1,..., CN in 

 such that Ci “represents” Ii well. PCA is perhaps one of the most popular linear 

dimension reduction methods because of its relative simplicity and effectiveness [34]. With 

the increasing research interests in reproducing kernel Hilbert space, a nonlinear extension 

of PCA based on kernel methods has been proposed in [35]. Other nonlinear dimension 

reduction approaches have also been proposed, such as Isomap [22] and locally linear 

embedding [36]. Recently, Belkin et al. have presented a dimension reduction method based 

on manifold embedding with Laplacian eigenfunctions [20]. They assumed that the original 

data resided in a low-dimensional manifold, and they constructed an adjacency map to 

approximate the geometric structure. Motivated by the above observation, we propose using 

Laplacian eigenfunctions to embed the underlying geometric patterns in the input sub-

volume, without abuse of the notation denoted as , into a lower-dimensional manifold 

M and then applying ANN to the embedded patterns , where . The method not 

only incorporates the correlation among inputs, but also achieves the dimension reduction of 

inputs. This implementation procedure is stated below.

Step 1) Normalization of Data. We first normalize the inputs 

 by subtracting the sample mean μ = (μ1,... μn), where 

, for j = 1,..., n, and then dividing by the estimated standard 

deviation . We will use B to denote the normalized data.

Step 2) Construction of an adjacency graph. Following the above, we let 

denote the correlation coefficient between Bi and Bj, i, j = 1,..., N. Now let G denote a 

graph with N nodes. The th node corresponds to the ith input . We 

connect nodes i to j with an edge if rij < ε for some specified constant ε > 0. That is, an 

edge is put only for close ε-neighbors. This implementation reflects the general 

phenomenon that faraway nodes are usually less important than close neighbors.

Step 3) Assigning of a weight matrix. For each connected edge between nodes i and j, 

we assign the Gaussian weight

(6)

where t is a suitable constant and t = 1.0 in our computation. Otherwise, we assign Wij = 

0. Thus, W is a symmetric matrix. The weight matrix W approximates the manifold 

structure of the inputs {Ii: i = 1,..., N} in an intrinsic way. In other words, it models the 

geometry of inputs by preserving the local structure. The justification for our choice of 

the Gaussian weight relating to the heat kernel can be found in [20].

Step 4) Laplacian eigenfunctions and embedding map. Let D be a diagonal matrix 

whose entries are the row or column sums of W, , and let L = D − W be the 
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associated Laplacian matrix. Next, compute the eigenvectors and eigenvalues for the 

generalized eigendecomposition problem

(7)

Let V0,..., Vd−1 be the eigenvectors, ordered according to their eigenvalues, λ0 < λ1 < ... < 

λd−1. Let the n × d size transformation matrix be

(8)

The transformed data are given by the linear projection of the original data onto the 

transformation matrix, i.e., , where Ci is a d-dimensional 

vector. The overall embedding map is given as Ii → (f0(i,..., fd−1(i)). Laplacian eigenmap 

embedding is optimal in preserving local information. The generalized eigen-decomposition 

in (7) is derived from the following optimization problem:

(9)

where F is a constraint to avoid a trivial solution. The optimal manifold embedding aims at 

minimizing the L2 distance between transformed data in the low-dimensional manifold 

weighted by the adjacency matrix. The Laplacian matrix of a graph D is analogous to the 

Laplace Beltrami operator on manifolds [20].

In the context of dimension reduction, the optimal embedding projection matrix Vlap is 

trained with all the training data via the generalized eigendecomposition equation, (7). In the 

testing phase, we apply the projection matrix to each test sample independently and 

transform it to the low-dimensional space.

D. Simulation Experiments

To understand the basic properties of a LAP-MTANN for FP reduction, we carried out an 

experiment with simulated polyps and rectal tubes, which are one of the major sources of 

FPs. A polyp is modeled as a sphere with diameter d, and a rectal tube is modeled as a 

hollow cylinder with diameter dT, length ln, and wall thickness tw, as shown in Fig. 4. We 

employed these simple models with the aim of understanding the essential role of a LAP-

MTANN. We trained a LAP-MTANN with ten actual polyps and ten rectal tubes (see the 

top part of Fig. 3). We did this because this simplified simulated phantom could reveal the 

fundamental mechanism of the proposed approaches. The simulated CTC volumes with 

polyps and rectal tubes of five different sizes (d: 6, 8, 10, 12, 15, and 25 mm; dT: 10, 12, 14, 

15, and 16 mm) are illustrated in the top part of Fig. 4.

According to the measurements of actual polyps and rectal tubes in clinical CTC volumes, 

the CT values for the simulated polyps and rectal tubes were set to 60 and 180, respectively. 

The length ln was 70 mm and the wall thickness tw was 2 mm.
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E. Experiments With Actual CTC Data

To evaluate and compare our proposed 3-D LAP-MTANNs with the original 3-D MTANNs, 

we carried out experiments with actual polyps and non-polyps in our CTC database.

Ten representative polyp volumes (the same actual polyps as used above for simulation) 

from 46 true-positive volumes in our CTC database and ten non-polyp volumes from the 

training set were selected manually as the training cases for a 3-D MTANN (see the top part 

of Fig. 5). The selection was based on the visual appearance of polyps and non-polyps in 

terms of size, shape, and contrast to represent the database. A three-layer structure was 

employed for the 3-D MTANN, because it has been shown theoretically that any continuous 

mapping can be approximated by a three-layer ANN. Based on our previous studies [1], [2], 

the size of the training volume and the standard deviation of the 3-D Gaussian distribution 

were selected to be 15 × 15 × 15 voxels and 4.5 voxels, respectively. A quasisphere cubic 

subvolume of kernel size 7 × 7 × 7 containing 2×(9+21)+3×37 = 171 voxels was employed 

as the input subvolume for a 3-D MTANN, as shown in Fig. 2 above. Thus, the input layer 

of the original MTANN has 171 units. The training subvolumes were sampled by every 

other voxel in each dimension; thus, the total number of training subvolumes for both true 

positives (TPs) and FPs were 8 × 8 × 8 × 20 = 10240. This sampling scheme also explains 

the strong dependence structure among the closely sampled patterns which are measured by 

the correlation coefficient rij for the i and jth patterns; see Section II-C for details. The 

number of hidden units was determined to be 25 by an algorithm for designing the structure 

of an ANN [37].

We used receiver-operating-characteristic (ROC) analysis [38] to assess the performance of 

the original MTANN and the LAP-MTANN in the task of distinguishing polyps from non-

polyps. The area under the maximum-likelihood-estimated binormal ROC curve (AUC) was 

used as an index of performance. We used ROCKIT software [46] to determine the p-value 

of the difference between two AUC values [39]. For the evaluation of the overall 

performance of a CAD scheme with 3-D LAP-MTANNs, free-response ROC (FROC) 

analysis was used [40].

III. Results

A. Simulation Experiments

The actual training rectal tubes and their output volumes of the trained 3-D LAP-MTANN 

with 20 LAPs and the trained original 3-D MTANN were comparable and are illustrated in 

the lower part of Fig. 5. Both output volumes were well suppressed around the rectal-tube 

locations. The simulated polyps and rectal tubes and their output are illustrated in Fig. 6. 

Polyps are represented by bright voxels, whereas rectal tubes appear mostly dark with some 

bright segments around them. Overall, the LAP-MTANN performed comparably to the 

MTANN; see Figs. 7 and 8 for the illustration on polyps and non-polyps. The LAP-MTANN 

performed better than the original MTANN for some polyps and non-polyps, whereas the 

original MTANN did better for several cases, as seen in Fig. 9 for selected ROIs for 

illustration. The scores [defined in (4)] of the 3-D LAP-MTANN and the original 3-D 

MTANN for various-sized simulated polyps and rectal tubes are shown in Fig. 10. The 
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original 3-D MTANN scores for polyps smaller than 4.5 mm overlapped with those of rectal 

tubes, indicating that simulated polyps larger than 4.5 mm could be distinguished from rectal 

tubes. On the other hand, although the difference between the 3-D LAP-MTANN scores for 

polyps larger than 11 mm and for rectal tubes becomes smaller, there was no overlap 

between the curves for polyps and rectal tubes. This result indicates that the performance of 

the 3-D LAP-MTANN can be superior to that of the original 3-D MTANN in the distinction 

of polyps from rectal tubes.

To investigate the effect of different numbers of LAPs used, we plotted the scores of the 

LAP-MTANNs with various numbers of LAPs for simulated polyps and rectal tubes in Fig. 

11. When the number of LAPs increased from 20 to 100, the scores varied slightly, but had 

the same trend. The maximum scores for rectal tubes were well separated from the minimum 

scores for polyps. This adds evidence that the classification performance of the LAP-

MTANNs with different numbers of LAPs is approximately at the same level. To investigate 

the effect of different scanning kernel sizes of subvolumes on the performance of a LAP-

MTANN, we trained the LAP-MTANN with a larger kernel size of 9 × 9 × 9 voxels (437 

voxels in each spherical subvolume). We used the top 20 LAPs for this larger-kernel LAP-

MTANN. The training time for this LAP-MTANN was about 4 h, which was the same as 

that with a kernel size of 7 × 7 × 7 voxels, because the numbers of LAPs and training 

subvolumes were the same. It turns out that the scores for simulated polyps and rectal tubes 

dropped almost uniformly from a kernel size of 7 to that of 9, and there is no obvious 

advantage to employing large kernels in this case.

B. Training

We trained an original 3-D MTANN with the parameters described in the previous section. 

The training with 500 000 iterations took 38 h, and the mean absolute error between the 

teaching and output values converged approximately to 0.091. To compare with the 

proposed LAP-MTANN, we used all of the same above data and parameters with 20 top 

LAPs (i.e., n = 20). Certainly, different numbers of top LAPs selected would change the 

result slightly, but the difference was not statistically significant in our studies. We will 

further justify our choice of n below. The training of a LAP-MTANN was performed with 

500 000 iterations, and the mean absolute error converged approximately to 0.10. The 

training time was reduced substantially to 4 h.

C. Evaluation of the Performance of LAP-MTANNs

Table I shows the effect of various numbers of top LAPs on the performance of LAP-

MTANNs in the distinction between actual polyps and non-polyps. The AUC values of the 

3-D LAP-MTANNs with various numbers of LAPs were statistically significantly different 

from that of the original 3-D MTANN. The ROC curve of the 3-D LAP-MTANN with 20 

LAPs is plotted in Fig. 12 together with that of the original MTANN. Fig. 13 shows FROC 

curves indicating the overall performance of the original 3-D MTANN and the 3-D LAP-

MTANN for FP reduction. The original MTANN was able to eliminate 31% (151/489) of 

FPs without removal of any of the 18 TPs, i.e., a 95% (18/19) overall by-polyp sensitivity 

was achieved with 3.6 (338/93) FPs per patient. The LAP-MTANN achieved a comparable 

performance: it eliminated 25% (122/489) of FPs without removal of any TPs. At a 

Suzuki et al. Page 10

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



sensitivity of 89% (17/19), the original MTANN produced 3.3 (308/92) FPs per patient, 

whereas the LAP_MTANN produced 2.9 (271/489) FPs per patient.

D. Analysis of the Performance of Laplacian Eigenmaps for Dimension Reduction

In order to gain further insights into Laplacian eigenmaps, we investigated the performance 

of Laplacian eigenmaps for dimension reduction from the pattern recognition perspective. 

To evaluate the fit of Laplacian eigenmaps, we used the residual variance defined as

(10)

where L is the Laplacian matrix of the original data in the high-dimensional space, L̂ is the 

matrix of the Euclidean distance in the low-dimensional embedding recovered by the 

algorithm, R and is the correlation coefficient over all entries of two matrices. The residual 

variance measures how well the low-dimensional embedding represents the original data in 

the high-dimensional space. Fig. 14 plots the residual variance as a function of different 

numbers of dimensions after applying Laplacian eigen-maps to the entire training data. The 

residual variance decreases as the dimensionality d increases. The curve does not show an 

“elbow” at which the curve ceases to decrease significantly with extra dimensionalities, 

which is an indication of intrinsic dimensionality. This is usually the case for real-world 

data.

IV. Discussion

In the scheme of MTANN, the input patterns consist of a large number (171 in this study) of 

neighboring voxel values. Many of these voxels are redundant and may contain much noise 

in the dataset. On the one hand, large volumes of patterns require a long time for training; on 

the other hand, this can make the classification task more difficult because of the curse of 

dimensionality. A reduction of the training time is necessary for practical clinical 

applications. Dimension reduction can reduce the training time considerably and improve 

the performance of an MTANN significantly. In our proposed procedure, we first apply the 

classical PCA to eliminate noise in the data. The PCs of input voxels are the linear 

combinations of voxels which preserve the variations in the data. The variations of the PCs 

of the voxel values can approximate the variations of the underlying features. However, the 

patterns actually overlap close-by patterns. The more they overlap, the more they depend on 

each other. These close patterns usually have some intrinsic manifold structures, and this 

information can be employed for more accurately embedding the patterns in a lower-

dimensional space.

Laplacian eigenfunctions are a well-known manifold learning technique for dimension 

reduction. They construct a graph by regarding each pattern as a node and then compute the 

graph Laplacian eigenfunctions. In our proposed scheme, we measure the dependence of 

patterns by correlation coefficients and map the close-by patterns to close-by points in the 

reduced lower dimensional space via the Laplacian eigenfunctions. Fig. 15 is an illustration 

of a subset of 512 training patterns selected from a polyp. One can observe that the top 

Laplacian functions can learn the intrinsic dependence structures and map close ones to their 

clusters, whereas the classical PCs just spread the patterns out. Thus, the Laplacian approach 
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fits the MTANN scheme very well. We note that other closely related manifold-based 

dimension reduction techniques have also been employed in CAD, for example by Summers 

et al. [41], who have applied a diffusion map for feature selection purposes, which is 

different from our usage.

Various manifold learning techniques for dimension reduction have been proposed. The 

kernel PCA [42] is one of the most widely used methods for dimension reduction. The 

kernel PCA projects original data into a high-dimensional feature space via a positive 

definite kernel function and performs PCA in that space. The kernel PCA has been applied 

successfully to denoising [42] and other areas [43]. On the other hand, Laplacian eigenmaps 

deal with data in the original input space, and the generalized eigendecomposition is applied 

to the adjacency graph weight matrix directly. Thus, these two methods are two different 

techniques in nonlinear dimension reduction. Kernel PCA aims at preserving global 

properties, whereas Laplacian eigenmaps try to capture neighborhood information of the 

data. In our application, the neighborhood dependency information is essentially important, 

because this is how subvolumes are extracted (please see Section II-B for details). 

Therefore, Laplacian eigenmaps would be more suitable in this particular application.

In practice, one trains each specific LAP-MTANN for each specific type of FPs beforehand 

and then applies trained LAPMTANNs to process CTC cases. Note that the processing time 

of new CTC cases has also been reduced to about one tenth of the original MTANN 

processing time of about 11.7 s per patient based on our database. Nevertheless, the CTC 

diagnosis is not necessarily real-time. The accuracy in terms of AUC values has also 

improved slightly from 0.82 to 0.84. We expect that further greater improvement can be 

obtained in practice, because multiple LAP-MTANNs would be applied, with each trained 

for a specific task.

The training of an original 3-D MTANN took 38 h. By incorporating Laplacian-

eigenfunction-based dimension reduction, we reduced the training time substantially to 4 h. 

Once trained, the processing time of an original 3-D MTANN and that of a LAP-MTANN 

are both short, i.e., 11.7 s and 1.16 s per patient, respectively. In the development stage of a 

new CAD scheme, however, one may want to change the parameters of an MTANN, 

training cases for the MTANN, and the parameters of an initial detection scheme to optimize 

the entire CAD scheme. In this case, MTANNs need to be trained a number of times. One 

can see the result of a LAP-MTANN after 4 h, whereas the result of an original MTANN 

can be seen after 38 h. Moreover, when a mixture of expert MTANNs is used for reducing a 

large variety of FPs, the training time increases as the number of MTANNs increases. If six 

MTANNs are used, the training of an original mixture of expert MTANNs and that of a 

mixture of expert LAP-MTANNs take 244 (more than 10 days) and 24 h, respectively. 

Therefore, a LAP-MTANN is desirable especially in the development stage.

One limitation of the study is the use of a limited number of cases with polyps in our study. 

Evaluation with use of a larger database will generally give more reliable results regarding 

the performance of a LAP-MTANN. However, it should be noted that, although the 3-D 

LAP-MTANN trained with only 10 polyps, the performance for 29 polyps, including the 10 

polyps and 19 nontraining polyps, was very similar at a high sensitivity level. This 
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observation indicates the robustness of the 3-D LAP-MTANN and is consistent with the 

observations in our previous studies [1], [2], [16]–[19], [31], [44], [45]. Thus, we expect that 

the performance of the 3-D LAP-MTANN on a larger database would be potentially 

comparable to that demonstrated in this study.

V. Conclusion

We have developed 3-D LAP-MTANNs with the aim of improving the efficiency of an 

MTANN. With Laplacian eigen-functions, we were able to reduce the time required for 

training of MTANNs substantially while the classification performance was maintained in 

terms of the reduction of FPs in a CAD scheme for detection of polyps in CTC.
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Fig. 1. 
Architecture of a LAP-MTANN consisting of a massive-subvolume training scheme, 

dimension reduction by Laplacian eigenfunctions, and a linear-output ANN model. The 

input CTC volumes including a polyp or a non-polyp are divided voxel by voxel into a large 

number of overlapping 3-D subvolumes. Instead of all voxel values in each subvolume, only 

the top n Laplacian eigenfunctions of them are entered as an input vector to the linear-output 

ANN.
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Fig. 2. 
Dimensionality reduction of the scanning spherical input subvolume to the linear-output 

ANN via Laplacian eigenfunctions. Each square matrix represents a cross section at a 

certain z position in the input subvolume, where z0 represents the central slice of the 

subvolume. A gray square in each section indicates the input voxel to the linear-output 

ANN, and a white square indicates an unused voxel. The 171-dimensional original input 

vector is converted to the Laplacian eigenfunction (LAP) vector. The top n LAPs are 

extracted and entered to the linear-output ANN.
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Fig. 3. 
Illustration of highly overlapping training subvolumes. For simplicity, a 5 × 5 2-D subregion 

is used in this illustration. A subregion overlaps 80% of the next subregion. The subregion at 

the top left corner (enclosed by dashed lines) overlaps 4% of the subregion four pixels to the 

right and four pixels down from the top left corner one (enclosed by dashed lines).
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Fig. 4. 
Polyp phantom (a sphere) and a rectal tube phantom (a hollow cylinder). These simple 

phantom models are employed for understanding the essential role of a LAP-MTANN.
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Fig. 5. 
Illustrations of training polyps and the corresponding output volumes of the trained original 

3-D MTANN and 3-D LAP-MTANNs with top 20 eigenfunctions and rectal tubes and the 

corresponding output volumes of the original 3-D MTANN and 3-D LAP-MTANNs in a 

resubstitution test. Shown are the central axial slices of 3-D volumes. Teaching volumes for 

polyps contain 3-D Gaussian distributions at the center, whereas those for non-polyps are 

completely dark, i.e., the voxel values for non-polyps are zero. In the output volumes of the 

original 3-D MTANN and the 3-D LAP-MTANNs, polyps are represented by bright voxels, 

whereas non-polyps are dark.
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Fig. 6. 
Illustrations of simulated polyps and rectal tubes and the corresponding output volumes of 

the original 3-D MTANN and the LAP-MTANN with 20 eigenfunctions.
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Fig. 7. 
Illustrations of training non-polyps and the corresponding output volumes. The true polyps 

used for training are the same as for the simulation. The central axial slices of the 3-D 

volumes are shown.
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Fig. 8. 
Illustrations of the performance of the trained 3-D original and LAPMTANNs with the top 

20 eigenfunctions on polyps and non-polyps, and the corresponding output volumes. The 

central axial slices of the 3-D volumes are shown. The performance of the LAP-MTANN is 

comparable to that of the original MTANN.
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Fig. 9. 
Illustrations of selected non-polyps, where the LAP-MTANN performs better than the 

original MTANN on the first three and the original MTANN performs better than the LAP-

MTANN on the last two. The central axial slices of the 3-D volumes are shown.
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Fig. 10. 
Effect of the size of simulated polyps on the distinction between simulated polyps and rectal 

tubes based on LAP-MTANN and MTANN scores. Based on the scores, polyps larger than 

4.5 mm can be distinguished from rectal tubes by the original 3-D MTANN, whereas polyps 

of all sizes can be distinguished from rectal tubes by the 3-D LAP-MTANN with 20 

eigenfunctions.
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Fig. 11. 
LAP-MTANN scores with various numbers of selected top Laplacian eigenfunctions in the 

distinction between simulated polyps and rectal tubes.
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Fig. 12. 
Comparison between the performance of the LAP-MTANN with 20 Laplacian 

eigenfunctions and that of the original MTANN. The difference between the AUC values for 

the ROC curves was not statistically significant (p = 0.48).
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Fig. 13. 
FROC curves indicating the performance of the LAP-MTANN with 20 Laplacian 

eigenfunctions and that of the original MTANN.

Suzuki et al. Page 28

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 14. 
Residual variances with different numbers of dimensions after application of Laplacian 

eigenmaps to the entire training data for dimension reduction.
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Fig. 15. 
The top two PCs (upper graph) and Laplacian eigenfunctions (lower graph) of a set of 512 

training patterns.
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