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Abstract

The potential for pre-trained large language models (LLMs) to use natural language feedback
at inference time has been an exciting recent development. We build upon this observation
by formalizing an algorithm for learning from natural language feedback at training time
instead, which we call Imitation learning from Language Feedback (ILF). ILF requires only
a small amount of human-written feedback during training and does not require the same
feedback at test time, making it both user-friendly and sample-efficient. We further show
that ILF can be seen as a form of minimizing the KL divergence to the target distribution
and demonstrate proof-of-concepts on text summarization and program synthesis tasks. For
code generation, ILF improves a Codegen-Mono 6.1B model’s pass@1 rate from 22% to
36% on the MBPP benchmark, outperforming both fine-tuning on MBPP and on human-
written repaired programs. For summarization, we show that ILF can be combined with
learning from human preferences to improve a GPT-3 model’s summarization performance
to be comparable to human quality, outperforming fine-tuning on human-written summaries.
Overall, our results suggest that ILF is both more effective and sample-efficient than training
exclusively on demonstrations for improving an LLM’s performance on a variety of tasks.

*Equal contribution.
†Work done while at NYU.
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Figure 1: A high-level overview of how Imitation learning from Language Feedback (ILF) improves a base
LLM πθ via learning from natural language feedback. After πθ generates multiple outputs y1, y2, y3 for a
given task, human annotators provide natural language feedback about how the outputs can be improved.
Another model, πRefine, intakes both the original outputs and the natural language feedback, and generates
refinements of y1, y2, y3 that incorporate the feedback. The higher quality refinements are then used to
fine-tune πθ.

1 Introduction

Despite achieving strong performance across a variety of NLP tasks (e.g. summarization, question answering,
and dialog (Radford & Narasimhan, 2018; Radford et al., 2019; Brown et al., 2020; Rae et al., 2021, inter
alia)), large language models (LLMs) often generate text that violates human preferences. Examples of
these violations include misinformation (Lin et al., 2021), offensive language (Gehman et al., 2020), factually
incorrect summaries (Stiennon et al., 2020), and buggy or insecure code (Chen et al., 2021; Kang et al.,
2022).

We hypothesize that these failures can be attributed in large part to modern LLM pre-training set-ups.
For instance, modern pre-training datasets often consist mostly of minimally filtered text scraped from the
Internet, which often contains insecure (Kang et al., 2022) or buggy (Chen et al., 2021) code and toxic
text (Gao et al., 2020). This training signal also consists exclusively of offline demonstrations, without any
signal from trial-and-error or interactive guidance that penalizes the model’s buggy outputs. As such, we
hypothesize that supervising LLMs with explicit human-written feedback on the model’s own outputs can
be more effective at training models to produce functionally correct code.

In particular, an intuitive and rich form of feedback to provide to LLMs is natural language feedback. We
argue that LLMs are naturally able to incorporate written feedback, which has been shown to significantly
improve a code generation model’s pass rates when the feedback is provided at test time (Nijkamp et al.,
2022; Austin et al., 2021). In our work, we build upon this observation by exploring the use of natural
language feedback during the training process itself, rather than just during inference. We conjecture that
such feedback provides expressive and targeted information about a code generation model’s current failings
in a sample-efficient manner. More broadly, this approach also represents a weak version of scalable over-
sight (Amodei et al., 2016; Bowman et al., 2022), in that model overseers can improve a model merely by
evaluating its outputs, without manually generating new demonstrations, in a way that takes advantage of
the capabilities that are being supervised. To train LLMs with language feedback, we propose an algorithm
called Imitation learning from Language Feedback (ILF), which extends our previous non-archival work in
Scheurer et al. (2022), who study the impact of learning from language feedback on text summarization
models. Scheurer et al. (2022) improves a summarization model by training the base model on improved
summaries generated from the model’s original summaries and human-written feedback. Our work builds
upon Scheurer et al. (2022) in a number of ways: (1) by formalizing the algorithm and generalizing it into
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a form that can be applied to any task (our ILF algorithm in Section 2); (2) by detailing how the reward
function can be adapted for both text summarization (Section 4.1) and code generation (Section 3.1); (3)
by demonstrating a proof-of-concept of ILF for code generation; and (4) by scaling up our work on ILF for
summarization via crowdsourced human annotations and conducting extensive experiments demonstrating
the effectiveness of our method against other baselines.

ILF improves the quality of outputs generated by a baseline model πθ by training a separate model πRefine
to use language feedback to revise the low-quality outputs. (We refer to the revised outputs as refinements.)
We then improve πθ by fine-tuning it on the πRefine-generated refinements that are of sufficiently high quality,
yielding a final improved model πθ∗ . The high-level algorithm is shown in Figure 1. This procedure may be
run iteratively to continue improving the model, which we show can be seen as minimizing the expected KL
divergence from a target ground truth distribution (Section 2).

We demonstrate the efficacy of ILF on two tasks – a proof-of-concept for code generation, and a larger scaled-
up study of ILF for text summarization. For code generation, we show that ILF improves a CodeGen-Mono
6.1B model’s pass@1 rate on the Mostly Basic Python Problems (MBPP) benchmark (Odena et al., 2021)
from 22% (after being fine-tuned on the ground truth programs provided by the MBPP dataset) to 36%. It
also significantly outperforms zero-shot performance (26%→ 36%, see Section 3.3). For text summarization,
we show that ILF improves LM-generated summaries monotonically with the amount of feedback provided
(with experiments of up to 5K samples of feedback). In all data regimes, ILF leads to comparable or better
results than fine-tuning on human-written summaries, suggesting that our approach is a strong alternative to
supervised learning on human demonstrations. We also show that combining ILF with best-of-N sampling,
where the samples are ranked by a model trained from binary comparison feedback, results in even higher
quality summaries that are comparable to the quality of human-written summaries. Taken together, these
results establish that learning from language feedback is a promising avenue for training LLMs.

2 High-Level Method

Here, we formally describe the problem we aim to tackle before introducing our algorithm.

2.1 Preliminaries

Suppose we start with vocabulary V and a pre-trained autoregressive language model πθ parameterized by
θ. πθ : V∗ → [0, 1] is a probability distribution over sequences of tokens x ∈ V∗, where V∗ is the set of
all finite concatenations of tokens in V. We also have a distribution of tasks t ∼ pT and a reward function
R(x, t) which outputs some real-valued reward that encodes how high-quality a particular output x is for
task t. Lastly, we define a fine-tuning function Finetune(πθ,D) that applies a gradient-based optimization
algorithm to πθ using the associated loss objective calculated over dataset D.

2.2 Imitation Learning from Language Feedback

Our high-level goal is to sample diverse outputs x1 ∼ πθ(·|t) for any given task t sampled from the task
distribution. We do so by fitting πθ to approximate a ground truth distribution π∗

t (x1) that assigns a
probability to x1 that is proportional to its quality, as measured by the reward function R. Fitting πθ
to approximate π∗

t can be seen as minimizing the expected KL divergence from π∗
t to πθ over the task

distribution pT :
min
θ

E
t∼pT

[KL(π∗
t , πθ(· | t))] (1)

where
π∗
t (x1) ∝ exp (βR(x1, t)) . (2)

Minimizing the objective in Equation 1 is equivalent to supervised learning, i.e. minimizing the cross-entropy
loss:

L(θ) = − E
t∼pT

[Lθ(t)] , (3)
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where
Lθ(t) =

∑
x1

π∗
t (x1) log πθ(x1|t). (4)

Rather than computing this loss over the exponentially large space of all possible x1’s, we instead use Monte-
Carlo sampling over a small set of x1’s drawn from π∗

t . However, this is still intractable because we cannot
sample directly from π∗

t . Instead, we approximate π∗
t using importance sampling with a proposal distribution

qt(x1):

Lθ(t) =
∑
x1

qt(x1)π∗
t (x1)

qt(x1) log πθ(x1|t) (5)

which assigns higher weights to higher quality programs x1.

2.3 Proposal Distribution q

Intuitively, we aim to design qt to be as close as possible to π∗
t , which we accomplish by incorporating pieces

of natural language feedback f that give information about how to transform a low-reward program x0 into
a higher-reward program x1. This can be achieved by: (i) identifying a low-quality output x0 ∼ πθ(·|t) that
currently has low reward R(x0, t), (ii) asking for natural language feedback f about how to improve x0, (iii)
using f to transform the original output x0 into a refinement x1 that incorporates the feedback and has
reward R(x1, t) > R(x0, t), and (iv) assigning higher weight to x1.

We can formalize this procedure as follows. Let πψ(x1|t, x0, f) be a distribution over outputs x1 that improve
x0 by incorporating the feedback f and pF (f | t, x0) be the distribution of pieces of feedback f for output x0
and task t. We can then define our proposal distribution as

qt(x1) =
∑
x0,f

πθ(x0|t)× pF (f |t, x0)× πψ(x1|t, x0, f), (6)

which results from marginalizing qt(x1) over all pairs of (x0, f) and factorizing the joint distribution of x1, x0,
and f given t.

In some tasks (i.e. summarization), we assume that every initial output x0 ∼ πθ(·|t) is low-quality and can
be improved upon (Section 4). However, for other tasks (i.e. code generation), we may be able to identify
initial outputs that are already high-quality and do not need feedback. For example, if the code is already
functionally correct. In this case, we specify an additional quality function ϕ(x, t) such that

ϕ(x, t) :=
{

1, if R(x, t) ≥ γ
0, otherwise (7)

for some reward threshold γ. We can then modify Equation (6) to place all support on pairs of (x0, x1)
where ϕ(x0, t) = 0 and ϕ(x1, t) = 1:

qFiltered
t (x1) =

∑
x0,f

πθ(x0|t)× δ0 (ϕ(x0, t) |x0, t))× pF (f |t, x0)× πψ(x1|t, x0, f)× δ1(ϕ(x1, t) | t, x1) (8)

where we write δi(j) for the Kronecker delta distribution, where

δi(j) =
{

1, if i = j
0, if i ̸= j

To sample from qFiltered
t and qt, we defer discussion to Sections 3 and 4 respectively.

Now that we have devised a way to sample from qt, we can rewrite Equation 5 as

Lθ(t) = E
xi

1∼qt

π∗
t (xi1)

qt(xi1)︸ ︷︷ ︸
wi

log πθ(xi1|t), (9)
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where wi is the importance weight of the i-th sample from qt. However, since we can only sample from qt,
we cannot directly compute wi. Instead, we assume that qt(xi1) is relatively constant for all samples xi1 due
to the high quality of human feedback. This allows us to simply compute the un-normalized value of π∗

t (xi1)
(from Equation 2) and use self-normalization instead. If we sample using low temperatures (resulting in
β → ∞), then this is approximately equivalent to computing the likelihood of only the best refinement x∗

1
for each task t, i.e.

L(θ) ≈ − E
t∼pT

[log πθ(x∗
1|t)] (10)

Notably, this objective is equivalent to supervised learning over the best refinements per task. Using natural
language feedback simply allows us easier access to these refinements.

Our objective of approximating the ground truth distribution π∗
t , which is proportional to the reward R, has

clear connections to maximizing reward in reinforcement learning (RL). However, the goal in RL is to find
the best policy that maximizes the reward, whereas our algorithm results in a training dataset of high-quality
outputs x1 for task t, which allows us to train our model to generate a diverse set of outputs that achieve
high rewards on average. The broad diversity of high-quality outputs endows downstream users and systems
with more control over which aspects they prefer and want to avoid.

3 Code Generation

Program synthesis, the automatic generation of computer programs from an input specification (e.g. a
natural language task description or a set of input-output examples) (Manna & Waldinger, 1971), is an
important task for the field of software engineering. Effective program synthesis can not only improve the
efficiency of software developers (Ziegler et al., 2022), but also increase the accessibility of writing code
in general. Recently, pre-trained large language models (LLMs) have demonstrated impressive success on
program synthesis (Chen et al., 2021; Li et al., 2022a; Austin et al., 2021; Nijkamp et al., 2022; Xu et al.,
2022a, inter alia) but still struggle to consistently generate correct code, even with large-scale pre-training
(Chen et al., 2021). We select code generation as a testbed for our approach not only due to its importance
but also due to the ready availability of a precise reward function (i.e. functional correctness of the code) and
evidence that current state-of-the-art code generation models still perform poorly on difficult programming
challenges (OpenAI, 2023).

3.1 ILF for Code Generation

In code generation, each task consists of pairs (t, u) ∈ T of a natural language task description t ∈ T
(e.g. “Write a function that computes the prime factorization of an input integer.”) and a suite u =
UnitTests(t) ∈ U of unit tests associated with task t. Our reward function R is a unit test verification
function Eval : V∗ × T → {0, 1} that indicates whether a program x ∼ πθ(· | t) passes all the unit tests in
UnitTests(t):

Eval(x, t) :=

 1, if x passes test suite
UnitTests(t),

0, otherwise
(11)

We use Eval(x, t) as our reward function R(x, t) and the identity function as our quality function ϕ(x, t).
It follows that Equation 8 can be adapted for code generation as follows:

qFiltered
t (x1) =

∑
x0,f

[πθ(x0|t)× δ0 (Eval(x0, t) |x0, t))× pF (f |t, x0)× πψ(x1|t, x0, f)

×δ1(Eval(x1, t) | t, x1)] (12)

This proposal distribution is guaranteed to place higher probability mass on higher-quality programs (in
terms of unit test pass rate) than πθ since the term δ1(Eval(x1, t) | t, x1) equals 0 for incorrect programs x1.

We approximate sampling from qFiltered
t by considering each of the terms in Equation 12 in order:
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def sum_every_other(lst):
"""Return the sum of 
every other element of 
lst, starting with 
index 0."""
return sum(lst[::2])

Refinement generated by
using the feedback and original 
program 

Incorrect program 
generated by 

def sum_every_other(lst):
"""Return the sum of 
every other element of 
lst, starting with 
index 0."""
return sum(lst)

"The code is wrong because it 
attempts to sum every element 
instead of every other one. Fix it by 
slicing lst using increment 2 
before taking the sum."

Natural language feedback 
provided by human

Fine-tune        on refinem
ents

Failed unit 
tests

Passed unit 
tests

Figure 2: An overview of imitation learning from lan-
guage feedback (ILF) for code generation. Given an
initial LLM πθ, we sample programs from πθ that do
not pass unit tests (indicated by the red X). Human
annotators write natural language feedback for the in-
correct program and a model πRefine generates a re-
finement - i.e. an improved version of the original
program that incorporates the feedback and passes the
unit tests. Finally, we fine-tune πθ on the refinements.

1. We first sample from πθ(x0|t) ×
δ0 (Eval(x0, t) |x0, t)) by rejection sam-
pling from πθ. In other words, we sample
programs x0 from πθ for task t and only
keep those that fail the test suite (i.e.
Eval(x0, t) = 0; step 2 of Algorithm 1).

2. We approximate sampling from
pF (f |t, x0, Eval(x0, t) = 0) by having
humans annotate programs x0 (paired with
their corresponding task descriptions t
and test suites u) with natural language
feedback (step 3 of Algorithm 1).

3. We approximate sampling from
πψ(x1|t, x0, f) by sampling from πRefine,
a model capable of generating refine-
ments given the task description, original
programs, and human-written feedback.

4. Finally, the term δ1(Eval(x1, t) | t, x1) cor-
responds to another filter: we only keep re-
fined programs x1 that pass the test suite.

The complete algorithm is summarized in Figure 2
and Algorithm 1. Next, we consider more concrete
details of how this sampling is accomplished.

Using πRefine to Incorporate Feedback ILF
assumes the availability of feedback but not neces-
sarily of the repaired code/refinements, for a variety
of reasons. We assume that program synthesis may be a task for which writing high-level natural lan-
guage feedback is often less laborious than performing program repair. Although writing feedback involves
identifying at a high level what is wrong with the program and how it should be fixed, program repair may
involve the additional steps of refactoring, looking through documentation, and testing. Moreover, past work
(Austin et al., 2021; Nijkamp et al., 2022) has indicated that certain large LLMs can proficiently incorporate
the feedback at inference time, assuming access to accurate and high-quality feedback. As such, ILF as-
sumes access to some model πRefine that is capable of producing a refinement given the original program and
feedback. In many cases, πRefine can perform this task via few-shot prompting, without additional training
(Nijkamp et al., 2022). We explore such possibilities in Appendix A.4. As such, ILF for code generation
does not necessarily require extra training data for πRefine.

Algorithm 1 A single round of imitation learning from natural language feedback for code generation.
1: Input: Dataset D, initial LLM πθ, unit test verification function Eval, LLM πRefine : V∗ → [0, 1] trained

to incorporate feedback into code
2: C ← {(x0, t, u) |x0 ∼ πθ(·|t), Eval(x0, t) = 0, (t, u) ∈ D}
3: Cannotated ← {(x0, f, t) | (x0, t, u) ∈ C} ▷ Humans write feedback f for x0 ∈ C.
4: DRefined ← {(t, x1) ∼ πRefine(· | t, x0, f) |Eval(x1, t) = 1, (x0, f, t) ∈ Cannotated} ▷ πRefine generates

refinements x1 that incorporate feedback f into x0.
5: πθ∗ ← Finetune(πθ,DRefined)
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πRefine can take a variety of forms, but due to constraints on available funding and compute resources, we
fine-tune a pre-trained CodeGen-Mono 6.1B model as our πRefine.1 For the fine-tuned πRefine, we create
a training dataset by further annotating a subset of Cannotated with refinements x1 that repair incorrect
programs x0 by incorporating feedback f , such that Eval(x1, t) = 1 for (x0, f, t) ∈ Cannotated. Further
details of our dataset and annotation procedure are in Section 3.2.

3.2 Experiments and Results

Having described our high-level approach, we now explain the experimental setup we use to test
ILF for code generation. Our data and code are open-sourced at https://github.com/nyu-mll/
ILF-for-code-generation.

Dataset We train and evaluate our models on the Mostly Basic Python Problems (MBPP) dataset (Odena
et al., 2021). MBPP contains 974 Python programming tasks designed to be solvable by entry-level coders.
Each task contains a natural language task description t (e.g., “Write a function to return the prime factor-
ization of the input.”), a ground truth solution, and a suite u of three unit tests. Since the task descriptions
are sometimes ambiguous, we include one unit test in the task description. The addition of the unit test
helps to specify the input and output format of each task. We hold out the remaining unit tests for the
evaluation of our generated programs.

MBPP includes a designated prompt/training/validation/test split of the dataset, but we re-split the dataset
into the following splits:

• MBPPRefine: These are tasks with IDs in the range 111-310 for which CodeGen-Mono 6.1B did
not generate any correct completions. For the experiments where πRefine is a fine-tuned model, this
split is used to train πRefine.

• MBPPTrain: These are tasks with IDs in the range 311-974 for which Codegen-Mono 6.1B did not
generate any correct completions. This split is first used to evaluate the correctness of refinements
generated by πRefine. Then, the correct refinements in this split are used to train πθ to obtain πθ∗

(step 5 in Algorithm 1).

• MBPPTest: These are tasks with IDs in the range 11-110 that we use to evaluate the final performance
of πθ∗ . Unlike the previous two splits, we use all tasks in this split, rather than only the tasks for
which CodeGen-Mono 6.1B did not originally generate correct programs for. This allows us to
better compare the baseline performance of πθ with that of πθ∗ .

We use this modified split so that a larger portion of the dataset can be used to train the final model πθ∗ ,
whereas smaller portions are allocated for training πRefine and evaluating πθ∗ . We do not make use of the
prompt split (IDs 1-10).

Models Throughout this paper, we use a pre-trained CodeGen-Mono 6.1B model (Nijkamp et al., 2022)
as our πθ. It is pre-trained sequentially on ThePile (Gao et al., 2020), BigQuery (Nijkamp et al., 2022),
and BigPython (Nijkamp et al., 2022). We selected this model because it is open-source, can be fine-tuned
on a single 4× 100 A100 (80 GB) node, and demonstrated pass@k scores comparable to Codex-12B (Chen
et al., 2021; Nijkamp et al., 2022).

To implement our algorithm, we independently fine-tune two separate instances of CodeGen-Mono 6.1B to
create πRefine and the final model πθ∗ . We train πRefine using pairs of incorrect programs and human-written
feedback as inputs, with human-written refinements as targets (using the format in Figure 7). In contrast, we
train πθ∗ using natural language task descriptions from MBPP as the inputs and πRefine-generated refinements
as the targets. Further training details are in Appendix A.2.

1We also investigate using few-shot gpt-3.5-turbo and gpt-4 as our πRefine in Appendix A.4, to demonstrate that ILF
does not necessarily require training a custom πRefine model. Oftentimes, prompting an off-the-shelf LLM suffices.
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Evaluation We evaluate all code generations in this paper using the pass@k metric introduced in Kulal
et al. (2019). It estimates the rate for which ≥1 of k model samples passes all the unit tests. We use the
empirical estimate of this quantity from Chen et al. (2021), an unbiased estimator given by:

pass@k := Etask

[
1−

(
n−c
k

)(
n
k

) ]
(13)

for n total programs (where n ≥ k) and c correct programs for the given task.

Human Annotation We hire annotators via Surge AI2 to write both natural language feedback and
refinements for incorrect programs generated by CodeGen-Mono 6.1B. For each task that CodeGen-
Mono 6.1B generated no correct programs for, we ask the workers to first select one of the incorrect
programs to write feedback and refinement for. We specify that the workers should select a sample that
seems relatively easy to correct (i.e. could be minimally corrected to pass the unit tests). Then, they are
asked to write feedback that describes what is wrong with the current code and how to fix it. For the
refinement, they are asked to copy over the original code and make the minimum number of edits necessary
to incorporate the feedback and pass all the unit tests. The full set of worker instructions can be found in
Appendix A.3.

We keep all annotations for which the refinement passes all tests in the task’s test suite, the feedback is correct
(as manually verified by the authors), and the Levenshtein edit distance between the refinement and the
original program is less than 50% of max(len(refinement), len(original program)). The final dataset consists
of 195 triples of (incorrect program, human-written feedback, human-written refinement). On average,
workers are paid $23 per annotated sample and take 27 minutes/sample, with a 10th percentile of 4 minutes
and a 90th percentile of 43 minutes.

Although the ILF algorithm only requires the collection of human-written feedback for the tasks in
MBPPTrain (assuming access to some πRefine that is already fine-tuned or can generate refinements via
few-shot prompting), we collect both human-written feedback and refinement for all splits of the data so
that we can conduct further analyses of our method. For instance, this allows us to compare fine-tuning on
πRefine-generated refinements with fine-tuning on human-written refinements. When scaled to other pairs of
model and task, ILF requires new feedback annotations, but it is possible that using ILF on one dataset will
improve the model’s abilities on another dataset for a similar task. We leave analyses of further scaling ILF
across different tasks and models to future work.

Table 1: Initial zero-shot CodeGen-Mono 6.1B performance on the entire MBPP dataset. “1+ Correct”
refers to the percentage of tasks for which CodeGen-Mono 6.1B generated at least one program that
passed all unit tests.

Metric
Zero-Shot

CodeGen-Mono
6.1B

Pass@1 31%
Pass@10 63%
1+ Correct 67%

CodeGen-Mono 6.1B Incorporates Feedback We first verify that our baseline model can use feedback
to repair incorrect code, a prerequisite for ILF to work. We evaluate CodeGen-Mono 6.1B’s ability to
generate refinements given pairs of (incorrect code, natural language feedback), both in a few-shot manner
and after fine-tuning. Feedback is only required for tasks for which πθ is initially unable to produce a correct
response, so we first evaluate CodeGen-Mono 6.1B zero-shot on all of MBPP, generating 30 programs per
task with temperature 0.8. Table 1 shows the resulting pass rates. There were 321 tasks for which zero-shot

2www.surgehq.ai
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Table 2: Evaluations of 1-shot refinements generated by CodeGen-Mono 6.1B (before ILF) given either
related or unrelated text feedback in the prompt. Feedback is provided only for tasks on which CodeGen-
Mono 6.1B previously did not output any correct programs.

Prompt Type CodeGen-Mono 6.1B
Pass@1 ↑ Pass@10 ↑

Code + feedback 2.0% 13.8%
Code + unrelated feedback 0.4% 4.0%

CodeGen-Mono 6.1B yielded no correct samples (from Table 1: (100% − 67%) × 974 tasks ≈ 321). We
then annotate one incorrect program per task with both feedback and refinement, as described in Section
3.2.

Few-Shot Feedback Incorporation We use the human feedback annotations to create few-shot feedback
prompts, formatted as in Figure 7. We evaluate CodeGen-Mono 6.1B’s ability to produce refinements
that incorporate the feedback and pass the unit tests. However, producing a refinement that passes the
unit tests does not guarantee that the feedback has been incorporated; there can be multiple solutions to a
programming task, including ones that are functional but completely different and not using the feedback to
improve upon the original code. Alternatively, the model may already be able to repair programs without
feedback. Thus, we also evaluate the pass rate after shuffling the feedback samples in the dataset, to evaluate
if the model’s ability to repair code degrades when presented with unrelated feedback.

The results are shown in Table 2. CodeGen-Mono 6.1B’s ability to incorporate relevant feedback on
this particular set of program is low, with pass@10 reaching only 13.8%. However, the gap in accuracy
between CodeGen-Mono 6.1B-generated refinements on relevant versus irrelevant feedback is significant,
with pass@10 decreasing by 71% (relative; 13.8% → 4.0%), indicating that the model is indeed using the
feedback.

Training πRefine Next, we examine whether we can improve our ability to repair programs given feedback
by fine-tuning a separate model specifically to perform this task. As mentioned prior in Section 3.1, ILF
does not strictly require training a separate model for πRefine. A large pre-trained language model may be
able to refine the model outputs in a few-shot manner, without further training. However, due to the closed
nature of some models and the amount of compute and API funds required for larger models, we also choose
to fine-tune our own πRefine. Our training examples consist of triples of incorrect program, human-written
feedback, and human-written refinement. We train the model to maximize the likelihood of the refinement
given the program and feedback. The incorrect programs are generated by CodeGen-Mono 6.1B zero-shot
on MBPP tasks, and the feedback and refinements are written by human annotators, as discussed in Section
3.2. We only include tasks for which none of CodeGen-Mono 6.1B’s generated programs are correct,
yielding 44 tasks in the training dataset (forming the split MBPPRefine) and 128 tasks in the evaluation
dataset (forming the split MBPPTrain). We ask human annotators to write refinements of the original code
that incorporated their own previously written feedback, passed the unit tests, and make only minimal edits
to the code (see Section 3.2). The format of the training data also matches the few-shot prompt format
(Figure 7) but without the in-context examples of refinements. We denote this model as πRefine, as described
in Section 2.3.

Table 3 shows the pass rates for πRefine on MBPPTrain, which were produced by sampling 30 refinements per
task with temperature 0.8. Fine-tuning significantly improves CodeGen-Mono 6.1B’s ability to incorpo-
rate feedback compared to 1-shot refinement, increasing pass rates more than three-fold (2→19% pass@1,
13.8→47% pass@10, from Tables 2 and 3). Furthermore, 61% of tasks had at least one correct refinement.
This is particularly significant when considering the fact that we selected only tasks for which a non-fine-tuned
CodeGen-Mono 6.1B model did not originally output any correct programs for (the rightmost column in
Table 3). For the 61% of validation tasks that πRefine generated a correct refinement for, we randomly
selected one such correct program for each task to form the training dataset for our final model πθ∗ , yielding
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Table 3: Pass rates of πRefine-generated refinements versus zero-shot CodeGen-Mono 6.1B programs for
tasks in MBPPTrain. MBPPTrain contains only tasks for which CodeGen-Mono 6.1B did not generate any
correct completions.

Metric πRefine
Zero-shot

CodeGen-Mono 6.1B

Pass@1 19% 0%
Pass@10 47% 0%
1+ correct 61% 0%

a final training dataset of 78 examples. However, we show in Appendix A.6 that πRefine’s ability to generate
correct refinements declines monotonically as the number of bugs addressed in the feedback increases.

Table 4: Final performance of πθ∗ on MBPPTest, compared to other ablations and baselines. All results are
calculated using 30 output samples with temperature 0.8. All the methods are built on the CodeGen-Mono
6.1B model.

Method Feedback Source Fine-Tuning Data Pass Rates of πθ∗

Pass@1 Pass@10

ILF Humans πRefine refinements 36% 68%

Ablations 1-shot InstructGPT 1-shot InstructGPT refinements 19% 55%
2-shot InstructGPT 2-shot InstructGPT refinements 25% 59%

Gold Standard - Human-written refinements 33% 68%

Baseline - MBPP ground truth programs 22% 63%

Zero-Shot - - 26% 59%

3.3 ILF Yields Pass Rates Higher Than Fine-Tuning on Ground Truth Data or Human-Written
Programs Alone

Given that our refinements improve over the initial programs, we now fine-tune on the refinements to improve
our code generation model. As discussed earlier, we use the correct refinements (as evaluated by the unit
tests) that πRefine generated for its evaluation dataset as the training dataset for πθ∗ . Since πθ∗ is meant
to generate code from a natural language task description (rather than to incorporate feedback into a
refinement), the inputs of our training dataset are the MBPP prompts and the targets are the 78 πRefine-
generated refinements described in the previous section. We also compare the performance of π∗

θ against
that of CodeGen-Mono 6.1B evaluated in a zero-shot manner, CodeGen-Mono 6.1B fine-tuned on
the ground truth programs from the MBPP dataset, and CodeGen-Mono 6.1B fine-tuned on our human-
written refinements. In realistic use cases, human-written refinements are not readily available, so we consider
fine-tuning on this dataset to be a gold standard. ILF does not require ground truth programs or human-
written refinements – we merely use them here for evaluation. For all fine-tuning experiments, we train on
programs corresponding to the same set of task IDs as the ones used in πθ∗ ’s training dataset.

Additionally, we evaluate the impact of ablating the human annotations in our algorithm by using an LLM
in place of humans to generate the feedback and refinements (replacing steps 3 and 4 in Algorithm 1).
For the LLM, we use GPT-3.5 fine-tuned with Feedback Made Easy (FeedME; text-davinci-002 on the
OpenAI API)3. We refer to this model as InstructGPT, which is the series of OpenAI models that FeedME
belongs to (OpenAI, 2022b). We use InstructGPT to generate both the feedback and refinements on the
original programs. We use the same prompt format as for πRefine (Figure 7), with two slight modifications:
(1) the feedback prompt ends at “Feedback:” whereas the refinement prompt uses the entire prompt (with
the previously InstructGPT-generated feedback inserted after “Feedback:”), and (2) we use k in-context

3Details at beta.openai.com/docs/model-index-for-researchers
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examples, with k indicated in Table 4. We then fine-tune CodeGen-Mono 6.1B on the model-generated
refinements.

The results of our ILF algorithm compared to the baselines and ablations are shown in Table 4. ILF yields
the highest pass@1 and pass@10 rates, despite how few samples of feedback and refinements we use. The
pass@1 rate in particular shows a significant increase in improvement over the baseline of fine-tuning on
MBPP ground truth programs, increasing from 22% to 36%. Pass@1 improvements are especially helpful
for assisting with software engineering, where it is more helpful to suggest a single correct completion rather
than 10 possible completions for the user to select from.

ILF also outperforms both zero-shot inference and fine-tuning on human-written refinements on the pass@1
metric, yielding increases of 26% → 36% and 33% → 36% in pass@1 rates, respectively. However, training
on human-written refinements yielded comparable pass@10 rates as ILF, which is unsurprising since πRefine
was trained on human-written refinements. When human-written feedback and πRefine-generated refinements
are ablated (the “Ablations” section of Table 4), ILF also outperforms training on both 1-shot and 2-shot
InstructGPT-generated refinements, with increases of 19%→ 36% and 25%→ 36%, respectively.
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Figure 3: Histogram of the perplexities of the various training data sources, as measured using a pre-trained
CodeGen-Mono 6.1B model.

Analysis of Training Data Sources However, we also note the surprising fact that merely training
on a small sample of the MBPP gold programs did not make a significant difference in accuracy over
zero-shot inference. We speculate that the gold programs from the MBPP dataset may be somewhat out-of-
distribution for CodeGen-Mono 6.1B. To test this hypothesis, we computed the perplexity of the MBPP
gold programs, the πRefine-generated refinements, and the human-written refinements using the pre-trained
CodeGen-Mono 6.1B model. The results are shown in Figure 3. While the distributions of all three
data sources look similar, the MBPP dataset contains more high-perplexity programs (i.e. programs with
perplexity ≥ 102) than either the πRefine-generated refinements or the human-written refinements. As a
result, it is likely easier for CodeGen-Mono 6.1B to learn from the latter two datasets, since they are
closer to CodeGen-Mono 6.1B’s original distribution while still being functionally correct.

Furthermore, ILF is particularly useful for settings where large amounts of gold code are not available. In this
setting, ILF can be thought of as a method of not only generating more training data, but training data that
is closer to the model’s original outputs in data representation space and that specifically repairs the kinds of
bugs that the original model generates. As a result, fine-tuning the model on πRefine-generated refinements
does not require adjusting the weights as much as fine-tuning the model on the MBPP gold programs would,
even though both training datasets contain the same number of functionally correct programs.

11



Published in Transactions on Machine Learning Research (02/2024)

Figure 4: Training dataset size versus CodeGen-Mono 6.1B pass rates on MBPP tasks 11-111 after fine-
tuning on InstructGPT-generated refinements, versus the performance of πθ∗ (the model produced by our
approach). X marks the performance of πθ∗ , whereas the solid lines plot the performance of CodeGen-
Mono 6.1B after fine-tuning on correct refinements generated by InstructGPT, using feedback also generated
by InstructGPT. The dashed line indicates the zero-shot pass rate of a pre-trained CodeGen-Mono 6.1B
model.

3.4 Scaling Up Model Feedback Does Not Offer the Same Benefits As Human Feedback

Since high quality human feedback can be expensive to collect, we also evaluated how much model feedback
might yield the same benefit as our sample of human-written feedback. To do so, we randomly select k tasks
from the set of MBPP tasks for which CodeGen-Mono 6.1B did not originally output a correct answer, and
prompt InstructGPT to generate both the feedback and the refinement. We then evaluate the refinements
for correctness and train CodeGen-Mono 6.1B on the correct refinements. We use k ∈ {50, 100, 200} and
generate 30 output samples at temperature 0.8 for all stages of the experiment. We are limited to these
k values due to the small number of tasks we have in MBPPTrain, but future work may investigate scaling
up these experiments by using larger datasets or automatically generating new tasks and unit tests for the
training dataset. Further training details are listed in Appendix A.2.

The results are shown in Figure 4. Although increasing the quantity of InstructGPT-generated feedback
offers modest improvements in pass rates, these improvements do not yield pass rates as high as those of πθ∗ ,
even though πθ∗ uses only a total of 122 pieces of feedback throughout its training process (44 for training
πRefine and 78 for generating refinements to train πθ∗ on). However, as pre-trained large language models
continue to improve dramatically in quality, we expect that this gap between human- and model-written
feedback will increasingly narrow.

We also analyze some of the qualitative differences between human-written and model-generated feedback in
Appendix A.5 and provide some specific examples in Appendix A.7. In summary, model-generated feedback
is more likely to be less correct, less relevant, and less informative (i.e. addresses fewer bugs) than human-
written feedback.

4 Summarization

We also adapt and evaluate ILF on the real-world task of text summarization. Applying ILF to summa-
rization differs from applying it to code generation in a number of ways. Unlike code generation, text
summarization has no automated method for evaluation that is completely precise. Although automated
metrics such as ROUGE, BLEU, and METEOR exist, past work has shown that these metrics often do
not correlate highly with human-rated evaluations of summarization quality, especially on aspects related to
coherence and relevance (Fabbri et al., 2021). As such, we utilize human evaluations to compare the per-
formance of ILF versus baseline methods on text summarization. We also utilize an instruction-fine-tuned
text-davinci-001 model to rank the generated refinements and select which ones to train on.

Furthermore, we assume that all summaries generated by πθ can be improved upon. This eliminates the need
to filter for only low-quality initial outputs and simplifies the proposal distribution to Equation 6. Taken
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together, the high-level algorithm for ILF applied to summarization is shown in Figure 5 and detailed in
Algorithm 2.

4.1 ILF for Text Summarization

<B><Query> <B><Query> <B><Query> a...a lower-
case vowel.

e a A

Is  incorporated?feedback

Make it lowercase.

“A” is a vowel.

Give an example of 
a lowercase vowel.

}
Figure 5: In ILF for text summarization, πRefine
generates refinements of the original output
based on the feedback. We use an LM to pick the
best refinement and fine-tune the original LM to
maximize the likelihood of the chosen refinement.

In text summarization, each task consists of a context c
(a source document) that we aim to generate improved
outputs x1 (e.g., high-quality summaries) for, according
to human preferences. As before, x1 are refinements of
initial outputs x0 that are generated via incorporating
language feedback f . To implement the reward function
R (from Equation 2), we condition an instruction-fine-
tuned LLM on a binary question such as Does this new
text [x1] incorporate the feedback [f ] provided on the initial
text [x0]? Answer Yes or No., where the label y is either
ygood (“Yes”) or ybad (“No”).4 Then if we let I be an
indicator variable that indicates whether x1 is a high-
quality summary of c, we can approximate the reward
function R using the probability of the positive answer
ygood, i.e.:

R(x1, c) := Pr(x1 is a high-quality summary of c) (14)
= p(I|x1, c) (By definition) (15)
= p(I|x1, c, x0, f) (Conditional independence) (16)

≈ p(ygood, x0, f, x1, c)
p(ygood, x0, f, x1, c) + p(ybad, x0, f, x1, c) (17)

where we assume that I, x1, and c are conditionally independent given x0 and f .

4.2 Dataset

We evaluate the effectiveness of ILF on the task of text summarization using the TL;DR dataset (Völske
et al., 2017), which consists of Reddit titles, posts, and their corresponding summaries. Stiennon et al. (2020)
adapt this dataset and show that it is a more realistic task for evaluating summarization models compared
to the commonly used CNN/DM dataset (Hermann et al., 2015). To ensure the quality of our dataset, we
follow the same preprocessing steps as outlined in Stiennon et al. (2020) and extract a train dataset with
5000 samples, a development dataset with 200 samples, a validation dataset with 500 samples, and a test
dataset with 698 samples5.

We then hire experienced annotators through Surge AI6 to create our language feedback dataset, which we
open source along with our code.7 For each sample, we first generate three summaries for each Reddit post
using the instruction-fine-tuned model text-davinci-001(FeedME) (Ouyang et al., 2022; OpenAI, 2022b).
Two of these summaries are used for a binary comparison, in which annotators indicate their preference.
The third summary serves as the initial output for which we solicit language feedback. This feedback should
address the single most important shortcoming of the summary and can be related to coverage (how well the
summary covers the important information in the post), accuracy (the factual accuracy of the summary),
coherence (the coherence of the summary on its own), or other. We do not impose any restrictions on how
the feedback should be written. In addition to providing feedback, annotators are also asked to write an ideal

4For the complete prompts, please see Appendix B.2.
5The train and development datasets are taken from Stiennon et al. (2020)’s train dataset, and the validation and test set

are taken from their test dataset.
6https://surgehq.ai
7Data: https://huggingface.co/datasets/JeremyAlain/SLF5K; Code: https://github.com/JeremyAlain/imitation_

learning_from_language_feedback
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summary that is maximally 48 tokens long. The same crowd worker annotates all three tasks for a given
sample. Overall, the dataset collection and human evaluations cost 40K$. On selected samples of the binary
comparison task, we achieve an author-annotator agreement of 81.0% and annotator-annotator agreement
of 70.0%. The human summaries we collect are of excellent quality, as demonstrated in a human evaluation,
where we compare our human-written summaries to the ones automatically extracted from Reddit (Völske
et al., 2017) (also used as baselines in Stiennon et al. (2020); Scheurer et al. (2022)). We find that our
human-written summaries are preferred 72.0±3.2% of the time, making them a much stronger baseline than
the Reddit-sourced summaries.

Algorithm 2 Imitation learning from natural language feedback for text summarization.
1: Input: Number of iterations K, sequence of sets of source documents C = [C1, ..., CK ], language model

πθ, refinement language model πRefine, reward model R
2: for k in 1...K do
3: Initialize fine-tuning dataset Dk = {}
4: for document c in Ck do
5: x0 ∼ πθ(x0|c)
6: Human provides feedback f on (c, x0)
7: {x1

1, . . . , xN1 } ∼ πRefine(x1|c, x0, f)
8: x1 = argmaxxi

1
R(xi1|x0, f, c) ▷ The highest-reward refinement is selected.

9: Add (c, x1) to Dk
10: end for
11: πθ∗ ← Finetune(πθ,Dk)
12: end for

4.3 Refinement Ranking and Selection Methods

To select the best refinements to train πθ on, we compare the following methods.

Generating Refinements We condition FeedME on the initial summaries of our train dataset (generated
with FeedME) and the human-written feedback and generate 5 refinements x1

1, ..., x5
1 using the instructions

in App. B.1.

Scoring Refinements with InstructRM We chose a refinement with a scoring function R that scores
refinements for how effectively they incorporate feedback. For R we use the instruction-fine-tuned LM
FeedME and ask it whether a refinement is better than the initial summary (see §4.1 for more details). We
then evaluate the probability that the refinement incorporates language feedback on the initial summary
and is accordingly a high-quality summary, i.e., p(ygood|prompt). LMs are sensitive to the exact prompt
used (Perez et al., 2021; Lu et al., 2021), so we write 5 different prompts (see App. B.2) and select the
refinement with the highest average p(ygood|prompt) and call this method InstructRM Ensemble.

Scoring Refinements with Embedding Similarity Previous work (Scheurer et al., 2022) use a con-
trastive pre-trained text-embedding function (Neelakantan et al., 2022) to embed the feedback f and refine-
ments x1

1, ..., x5
1 and select the refinement with the highest cosine similarity to the feedback. They use this

scoring function because feedback would often describe what the ideal text should look like. This method is
less general because it assumes that good refinements are semantically similar to the feedback, which is not
necessarily the case for all tasks or forms of feedback.

4.3.1 Refinement Ranking Results

We now evaluate the above ranking methods on the development dataset by calculating the fraction of times
the refinement selected by a method is better than a randomly-selected refinement (“win rate”), according
to a ranking given by human evaluators (see App. B.5 for more details). The results, shown in Table 5, show
that the embedding similarity selection does not outperform random selection, while most (4/5) InstructRM
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Table 5: We compare various ranking methods for selecting refinements using a human evaluation. Instruc-
tRM Ensemble is used throughout our paper.

Scoring Function Win Rate in % vs. Random
Selection

Task-Specific
Heuristic Max Length 65.0± 2.7

Zero-Shot

Embedding Similarity 48.3± 3.0
InstructRM Prompt 1 55.0± 3.0
InstructRM Prompt 2 58.0± 2.9
InstructRM Prompt 3 56.5± 2.9
InstructRM Prompt 4 55.8± 2.8
InstructRM Prompt 5 50.0± 3.0
InstructRM Ensemble 56.0 ± 3.0
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FeedME (zero-shot)

Figure 6: The rate with which human evaluators prefer summaries generated by all methods. The solid
lines mark the fine-tuning methods and the dashed brown line marks zero shot generation. “ILF + OPT-
RM (best-of-64)” combines learning from natural language feedback and binary preferences, and “OPT-RM
best-of-64 FeedME” uses learning from binary preferences to rank and select the best summaries generated
by FeedME. “ILF + OPT-RM (best-of-64)” generates summaries of a similar quality to human summaries.

prompts do. While the embedding similarity worked well in previous work (Scheurer et al., 2022), it does not
perform well on our dataset. We believe this is because the feedback we collect, written by many annotators,
is much more diverse, while in Scheurer et al. (2022), the authors wrote the feedback themselves. InstructRM
Ensemble has a win rate of 56.0 ± 3.0% against random selection, demonstrating that an LM can evaluate
its own output to some extent. Based on these results, we recommend using the InstructRM Ensemble
approach, as it performs well and is less sensitive to the particular prompt.

Throughout our paper, we use InstructRM Ensemble as our scoring function to select refinements and refer
to our method of generating and selecting refinements as Refinement with Feedback + Best of N.
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4.4 Comparing Feedback Learning Algorithms

In this section, we compare ILF against other methods for learning from feedback, including learning from
binary feedback and supervised fine-tuning. We present an overview of each method and then provide the
results of our evaluations.

4.4.1 Feedback Learning Methods

Fine-tuning on Refinements (ILF) For this evaluation, we use a single iteration of ILF to learn from
language feedback. We fine-tune GPT3-175B (davinci) (Brown et al., 2020)8 to maximize the log-likelihood
of the refinement given the input prompt (consisting of the Reddit title, and post), i.e., log p(x1|prompt),
using the refinements generated with Refinement with Feedback + Best of N. For all our fine-tuning methods
we add λ log p(prompt) to the loss (Radford & Narasimhan, 2018; OpenAI, 2022a), which maximizes the
log-probability of the prompt. The prompt-loss weight λ ∈ [0, 1] is chosen on our development dataset (see
paragraph “Fine-tuning on Human Summaries”). The selected hyperparameters are detailed in App. C.4
and the fine-tuning prompts in App. B.3.

Fine-tuning on Human Summaries Here we fine-tune GPT3-175B on the dataset of human-written
summaries xhuman, with the objective of maximizing the log-probability of human summaries given the input
prompt (consisting of the Reddit title and post) with the additional loss term, i.e. log p(xhuman|prompt) +
λ log p(prompt). To ensure the best performance of our fine-tuned models, we conduct thorough hyperpa-
rameter tuning on the human-written summary datasets of various sizes (100, 1K, 5K). The hyperparameters
optimized include the number of training epochs, the prompt loss weight λ, and the learning rate multiplier,
as detailed in the OpenAI documentation (OpenAI, 2022a). We use the perplexity of the predicted summaries
on the development dataset to select the most effective hyperparameters. The selected hyperparameters are
applied to all datasets, i.e., fine-tuning on refinements, initial summaries, and human-written summaries,
with the same sample size. More details on hyperparameter tuning can be found in Appendix C.4.

Fine-tuning on Initial Summaries We fine-tune GPT3-175B on the dataset of initial summaries (gen-
erated by FeedME). The objective is to maximize the log probability of the initial summary given the prompt
(consisting of the Reddit title and post) with the additional loss term i.e. log p(x0|prompt)+λ log p(prompt).
Details on hyperparameter tuning can be found in the paragraph Fine-tuning on Human Summaries and
Appendix C.4.

Learning from Binary Feedback: Best-of-N We compare ILF against binary feedback as a baseline,
the standard approach for learning from feedback. One way of learning from binary feedback is to train a
reward model and use it to do best-of-N sampling. We use best-of-N because it is often competitive with
RL from human feedback (Nakano et al., 2021), a highly effective but more sophisticated approach Stiennon
et al. (2020); Ouyang et al. (2022). To train the RM, we fine-tune OPT-13B (OPT-RM) (Zhang et al.,
2022) to classify whether a summary x0 is high quality or not. To do so, we use the instruction Is the above
an excellent summary of the given text? An excellent summary is coherent, accurate, concise, and detailed.
Answer with Yes or No., where the label y is either ygood (“ Yes") or ybad (“ No"). Given human labels on
which of two summaries is preferred, we label the preferred summary with ygood and the other summary
with ybad. We then fine-tune the LM to maximize log p(y|x0) + λ log p(x0), where λ ∈ [0, 1], chosen using
the development dataset, and y ∈ {ygood, ybad}. Using the fine-tuned LM, we evaluate a given summary
by computing p(ygood|x0) and select the summary with the higher probability. We find that this approach
leads to more accurate RMs than other RM training methods, such as the commonly used method from
Stiennon et al. (2020); see Appendix C.3 for comparisons and Appendix B.4 for the used prompts. We
perform Bayesian hyperparameter optimization for OPT-RM and sweep over the learning rate, batch size,
and prompt-loss weight λ, using classification accuracy on the development dataset as the selection criteria
(see Appendix C.4 for more details).

8FeedME cannot be fine-tuned via OpenAI’s API.
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ILF + Learning from Binary Feedback As a final step, we combine ILF and learning from binary
feedback, by first fine-tuning GPT3-175B on the refinements as described in the paragraph fine-tuning on
refinements (ILF). We then train the reward model, OPT-RM, and use it to perform best-of-N sampling, as
outlined in the paragraph on learning from binary feedback. At test time, we generate 64 summaries with our
fine-tuned model and rank them based on their probability of being a high-quality summary, pnorm(ygood|x0),
using OPT-RM. The summary with the highest normalized probability is then selected.

4.4.2 Evaluation of Feedback Learning Methods

We evaluate the effectiveness of our learning algorithm, by comparing it to human written reference sum-
maries, several fine-tuning baselines, and OPT-RM on the task of text summarization using 100, 1K, and 5K
train samples. Using a test dataset of 698 samples, we generate a summary for each method and evaluate
them with human evaluators who rank them based on quality, using a standard ranking scheme that allows
for ties between summaries (see App. C.4 for more details). Based on the rankings, we calculate the fraction
of times each method’s sampled summary outperforms the human-written reference summary, referred to as
the “win rate”. We sample summaries up to 48 tokens in length (as in Stiennon et al. (2020)) using nucleus
sampling (Holtzman et al., 2019) with p = 0.95 and temperature t = 1.0 (see App. C.4 for further details on
hyperparameters and postprocessing). We use best-of-64 sampling with summaries sampled from FeedME
for learning from binary feedback.

4.4.3 Results

ILF Versus Other Fine-Tuning Methods Our results, shown in Fig. 6, demonstrate that fine-tuning on
refinements (ILF) outperforms all other fine-tuning methods9), including sampling from FeedME, with a win
rate against human summaries of 31.3±1.7% (for fine-tuning on 5K samples), while the other methods achieve
win rates of 27.3± 1.7% (fine-tuning on initial summaries), 28.9± 1.7% (fine-tuning on human summaries),
and 22.5± 1.6% (FeedME). It is surprising that ILF outperforms fine-tuning on human summaries across all
sample sizes, despite human-written summaries generally being of higher quality (see Fig. 15, top). Further
evaluation (see App. C.8, Fig. 11) shows that the model fine-tuned on 1K refinements (ILF) exhibits
significantly lower loss when evaluated on the validation dataset of refinements compared to the model fine-
tuned on human summaries when evaluated on the validation dataset of human summaries, suggesting that
the model is more adept at approximating the distribution of refinements. Overall, these results demonstrate
the effectiveness of our proposed ILF approach in accurately incorporating feedback and improving model
performance, even outperforming fine-tuning on human summaries.

(Scheurer et al., 2022) found that ILF with 100 feedback samples outperformed FeedME, while here we find
it underperforms FeedME with 100 feedback samples. Prior work uses author-written feedback that often
conveys what the refinement should include, while our work includes more varied, crowdsourced feedback. As
a result, we observe that embedding similarity does not properly rank refinements on our human feedback
dataset (Table 5), and we believe the difference in feedback may be a significant source of differences in
results in this section as well; see Appendix C.8.4 for more discussion.

Combining ILF With Learning From Binary Feedback Our results demonstrate that using OPT-RM
for best-of-64 sampling on FeedME summaries outperforms all fine-tuning methods and sampling approaches
across all sample sizes. The improved performance of OPT-RM best-of-64 FeedME comes at the cost of
added inference time for best-of-N sampling. Combining ILF and learning from binary feedback (ILF +
OPT-RM (best-of-64)) achieves human-level summarization performance with a win rate of 50.8 ± 1.9%
using 5K samples for training. This suggests that both methods independently learn valuable information
about human preferences that can be cumulative when used together. It should be noted that the result
for ILF + OPT-RM (best-of-64) is obtained through a separate human evaluation with different comparison
summaries (see App. Fig. 12), and was added to Fig. 6 for reference.

9Fine-tuning on 100 refinements is tied with fine-tuning on 100 initial summaries.
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Lastly, we provide further analyses in Appendixes C.8.5 and C.9 demonstrating that the feedback is important
for high-quality refinements and that the refinements do frequently incorporate the most important point in
the feedback.

5 Related Work

Learning from Human Feedback Our algorithm is inspired by a number of past works that have trained
models to learn from feedback. A common technique is reinforcement learning from human feedback (RLHF
Christiano et al., 2017; Ziegler et al., 2019; Stiennon et al., 2020; Ouyang et al., 2022), which trains models
to satisfy human preferences. However, our algorithm is closer to works that use natural language feedback,
rather than comparisons between different choices. Elgohary et al. (2020); Austin et al. (2021); Nijkamp
et al. (2022) all demonstrate that code LLM performance generally improves when prompted with natural
language feedback, though Nijkamp et al. (2022) observes that the feedback is more effective when it is given
one step at a time. Our work differs from these in that ILF learns from the feedback at training time, not
at inference time.

Bai et al. (2022a) also uses natural language feedback during the training process, but as part of an RLHF
algorithm instead where the feedback is used to solicit different responses from the digital assistant, the
responses are ranked by crowdworkers, and the rankings are used to train the preference model. However,
they note that this form of learning from natural language feedback does not measurably improve their code
generation model more than simply prompting.

Other work aims to use natural language as a learning signal in other ways. Radford et al. (2019), Raffel
et al. (2020), and Brown et al. (2020) investigate using explanations for gold labeled outputs of classification
tasks, whereas our work addresses the more general text generation setting. Furthermore, explanations are
notably different from feedback – explanations describe why a labeled output is correct, whereas feedback
describes how to improve a candidate output. Explanations can also be used to train text classification
models, with mixed results (Camburu et al., 2018; Stacey et al., 2021; Pruthi et al., 2021; Wiegreffe et al.,
2021; Hase & Bansal, 2021; Lampinen et al., 2022, inter alia). In addition, some work learns from language
feedback for ranking rather than generating outputs (Weston, 2016; Li et al., 2016; Hancock et al., 2019; Li
et al., 2022b; Xu et al., 2022b). Matiana et al. (2021) learn text embeddings of language feedback, where
improvements could benefit the refinement-scoring step of our algorithm.

Language has also been widely used in RL settings for various purposes (see Luketina et al., 2019, for an
overview), such as specifying tasks (“instruction following”; Wei et al., 2022a; Ouyang et al., 2022, inter
alia), driving exploration (Tam et al., 2022), inferring reward functions (Lin et al., 2022; Sumers et al., 2021;
Fidler et al., 2017, inter alia), and training a model via strong supervision Andreas et al. (2017); Kaplan
et al. (2017), reward shaping Goyal et al. (2019), or by providing descriptions of trajectories (Nguyen et al.,
2021). In contrast, we use language to correct faulty behavior. Other work uses language feedback at test
time to correct mistakes in a model’s behavior, e.g., image segmentation (Rupprecht et al., 2018) or code
generation Elgohary et al. (2020); Austin et al. (2021). In contrast, we use feedback to train models, and
our approach does not require human intervention at test time.

Lastly, our work builds upon our previous report (Scheurer et al., 2022), which showed that LLMs can refine
outputs with language feedback. There, we introduced the same three-step algorithm that ILF builds upon
and applied the algorithm only to text summarization. Our present work extends (Scheurer et al., 2022) in
a number of ways, including: (1) formalizing the theoretical justification of ILF (Section 2); (2) adapting
ILF to multiple tasks (e.g. both code generation and text summarization); (3) conducting more extensive
summarization experiments analyzing the best methods for ranking refinements and selecting the best final
summary; and (4) using larger-scale human crowdsourcing to both rate output summaries and generate
feedback and refinements.

LLMs for Program Synthesis Our work also builds on a large body of literature that explores the use
of pre-trained LLMs for neural program synthesis. Many general purpose LLMs, although not pre-trained
specifically for code generation, have demonstrated impressive proficiency at solving code challenges since
they are pre-trained on large corpora of text such as The Pile (Gao et al., 2020) that contain a small
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percentage of code content (Austin et al., 2021; Wang & Komatsuzaki, 2021; Black et al., 2022; Nijkamp
et al., 2022). Yet other recent LLMs for program synthesis are trained on solely source code files (Wang
et al., 2021; Zan et al., 2022; Li et al., 2022a; Xu et al., 2022a), or on both text and source code documents –
sometimes either in succession (Chen et al., 2021; Nijkamp et al., 2022; Bai et al., 2022a), in a mixed corpus
(Workshop et al., 2022), or on mixed natural language-programming language documents (Feng et al., 2020).

Bayesian Inference for LLMs Several other works draw connections between Bayesian Inference and
learning algorithms for LMs. Korbak et al. (2022) show that KL-regularised RL is equivalent to variational
inference: approximating a Bayesian posterior which specifies how to update a prior LM to conform with
evidence provided by a reward function. Dohan et al. (2022) further argues that the process of generat-
ing output through multiple rounds of interaction between prompted LMs and other agents (e.g. humans
providing language feedback) can be seen as executing probabilistic programs.

6 Conclusion

We have shown that ILF can significantly improve the quality of LLM generations for both code generation
and text summarization, even with just a small sample of human-written feedback and refinements. Combin-
ing ILF with learning from binary preferences further improves the quality of the LLM’s outputs. We have
also shown that this approach is theoretically justified as minimizing the expected KL divergence between πθ
and a target ground-truth distribution, where we acquire signal from the latter via human-written natural
language feedback.

This approach is also appealing because it is not model-specific (in the sense that ILF can be used with any
type of base model πθ, assuming the existence of a sufficiently capable LLM to act as πRefine), and can be
conducted in multiple rounds to continuously improve the model. ILF also does not involve training separate
policies for modeling the reward signal and advantage values, as RL-based feedback learning algorithms often
do (Stiennon et al., 2020). Furthermore, it is notable that our approach generates training data that is not
only correct, but targets the specific kinds of weaknesses that are more likely in the given model’s generations.
In essence, it provides an online and on-policy training signal that is missing from the offline pre-training and
fine-tuning set-ups of modern LLMs. Our approach is also remarkably sample-efficient, improving the pass@1
rate from 22% to 36% compared to the baseline, despite fine-tuning on only 78 examples. For summarization,
we train on only 5000 examples to achieve approximately human-level summarization quality.

Our work opens up multiple avenues for promising future work. For instance, ILF can be applied iteratively
over the course of multiple rounds whenever new information arrives (e.g. new Python syntax or world
knowledge) or new bugs/quality issues are discovered. Our preliminary experiments in Appendix C.8.2
indicate that ILF benefits from the data gathered over multiple rounds, although continual fine-tuning may
cause the model to occasionally forget past feedback. More extensive experimentation is required to study
how to effectively apply numerous rounds of ILF. Additionally, the tasks we study in this paper require only
shorter outputs, and it remains to be seen how ILF generalizes to longer output sequences. It would also
be useful to study how to generalize the implementation of ILF across a variety of domains and tasks. In
this work, we designed separate reward functions for each task, but it would be beneficial to explore more
generalizable reward functions that are easier to transfer between domains.

As the pace of progress of modern LLM research continues to accelerate, it may soon be feasible to par-
tially or fully automate the generation of natural language feedback (similar to ‘supervised learning from
constitutional AI’ (SL-CAI; Bai et al., 2022b) and our experiments in Section 3.4), greatly reducing both the
time and cost necessary for collecting feedback. This direction of work is also particularly appealing because
the learning signal is process-based rather than outcome-based, which has been shown to mitigate reward
hacking and improve the correctness of intermediate reasoning steps (Uesato et al., 2022).

Although further work is required to extend our method, ILF represents an exciting step forward in training
LLMs with feedback that is rich, interactive, and sample-efficient.
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A Appendix

A.1 Code Generation Prompt Formats

OLD CODE:
"""
Write a python function to find 
the sum of the three lowest 
positive numbers from a given list 
of numbers.
>>> Example: 
sum_three_smallest_nums([10,20,30,
40,50,60,7]) = 37
"""
def sum_three_smallest_nums(lst):

lst.sort()
return sum(lst[:3])

FEEDBACK:
This code finds the sum of the smallest 3 
numbers, not the smallest 3 positive numbers. 
It needs to disregard negatives and 0.

REFINEMENT:

Prompt

"""
Write a python function to find 
the sum of the three lowest 
positive numbers from a given list 
of numbers.
>>> Example: 
sum_three_smallest_nums([10,20,30,
40,50,60,7]) = 37
"""
def sum_three_smallest_nums(lst):

lst = [x for x in lst if x > 
0]

lst.sort()
return sum(lst[:3])

Expected completion

Figure 7: An example of a zero-shot LLM prompt for repairing incorrect code based on human-written
feedback.

A.2 Code Generation Training Details

For the experiments in Section 3.3, we run a hyperparameter sweep for all methods except for ILF. The hyper-
parameter value ranges that we sweep include learning rate ∈ {1.0−6, 5.0−6, 1.0−5}, batch size ∈ {32, 64, 128},
and number of epochs ∈ {1, 2, 5}. The tasks for the training and validation datasets are from MBPPTrain
and MBPPRefine, respectively, while the programs are sourced from the method (e.g. InstructGPT, MBPP,
human-written, or zero-shot CodeGen-Mono 6.1B). For ILF, we use the best hyperparameters obtained
for the sweep over MBPP programs instead of sweeping over ILF-generated programs, since the tasks in
MBPPRefine are already used to train πRefine. All pass rates reported in Table 4 are obtained by evaluating
each method on MBPPTest using the best hyperparameters found during the sweep on MBPPRefine.

For the experiments in Section 3.4, we separately tune hyperparameters for each size of dataset. As in our
other experiments, we train and validate using the tasks from MBPPTrain and MBPPRefine, respectively, cou-
pled with the refinements generated by InstructGPT that pass the unit test suites. We sweep the same hyper-
parameter value ranges as the experiments in the previous section (i.e. learning rate ∈ {1.0−6, 5.0−6, 1.0−5},
batch size ∈ {32, 64, 128}, and number of epochs ∈ {1, 2, 5}).

We implement all experimental pipelines with the HuggingFace transformers (v4.12.5) (Wolf et al., 2020),
Huggingface datasets (v2.7.1) (Lhoest et al., 2021), and Pytorch (v1.11) (Paszke et al., 2019) libraries.
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A.3 Code Generation Annotator Instructions

Given a natural language description of a Python programming challenge and its accompanying unit tests,
you will be shown 10 sample model-generated Python solutions that do not pass the tests. Please
do the following:

1) Select one model-generated code sample that seems relatively easy to correct (such that it can be minimally
corrected to pass the unit tests). If no such code sample exists (ie every code sample would require extensive
correction, select the corresponding option and move on to the next task.

2) Write 1-4 sentences of natural language feedback for the code sample that does two things: (a)
describes what is wrong with the code sample, and (b) how it can be fixed. You can use individual
variable or method names, but please do not include entire lines of code. Try to describe the necessary
logic using mostly natural language, not Python expressions. Below are some examples of good versus bad
feedback:

Good:

“The current code is wrong because it returns items using the heappop method in the
hq module, which gets the smallest items even though the task description actually asks for
the largest items. Instead, the code should use the nlargest function in hq to get the largest
n integers.”

Bad (because it only describes what to change, and not what was originally wrong with the
code):

“The code should use the nlargest function in hq to get the largest n integers.”

Bad (because it gives the actual code needed to fix the function, instead of describing the
desired fix using words only):

“The current code is wrong because it returns items using the heappop method in the
hq module, which gets the smallest items even though the task description actually asks for
the largest items. Instead, the function should return [hq.heappop(nums) for i in range(n)].”

3) Write a refinement for the code that consists of copying the original model sample and making minimal
edits to the code such that it correctly solves the challenge and can pass all the unit tests.

Here is an example. We only show a couple of model samples here for brevity, but in practice you will be
shown up to 10 model samples per task.

Example 1:

Prompt:

"""

Write a function to find the similar elements from the given two tuple lists .

>>> Example : similar_elements ((3 , 4, 5, 6) ,(5, 7, 4, 10)) = (4, 5)

"""

def similar_elements (test_tup1 , test_tup2 ):

Unit Tests:
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def check ( candidate ):

assert candidate ((3 , 4, 5, 6) ,(5, 7, 4, 10)) == (4, 5) , " candidate ((3 , 4, 5,
6) ,(5, 7, 4, 10)) == (4, 5)"

assert candidate ((1 , 2, 3, 4) ,(5, 4, 3, 7)) == (3, 4) , " candidate ((1 , 2, 3, 4)
,(5, 4, 3, 7)) == (3, 4)"

assert candidate ((11 , 12, 14, 13) ,(17, 15, 14, 13)) == (13 , 14) , " candidate
((11 , 12, 14, 13) ,(17, 15, 14, 13)) == (13 , 14)"

Model Sample 0:

"""

Write a function to find the similar elements from the given two tuple lists .

>>> Example : similar_elements ((3 , 4, 5, 6) ,(5, 7, 4, 10)) = (4, 5)

"""

def similar_elements (test_tup1 , test_tup2 ):

"""

Similar to sets , I want to get the values that are in both the given lists .

"""

if len( test_tup1 ) == len( test_tup2 ):

return set( test_tup1 ) & set( test_tup2 )

else:

raise Exception (" Tuple lists of different lengths ")

Unit test results for model sample 0: failed: candidate((3, 4, 5, 6),(5, 7, 4, 10)) == (4, 5)

Model Sample 1:

"""

Write a function to find the similar elements from the given two tuple lists .

>>> Example : similar_elements ((3 , 4, 5, 6) ,(5, 7, 4, 10)) = (4, 5)

"""

def similar_elements (test_tup1 , test_tup2 ):

"""

Args:

test_tup1 and test_tup2 are two list of tuples of same length

Returns :

a tuple of similar elements from the first list and second list
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"""

res = []

for x,y in zip(test_tup1 , test_tup2 ):

res. append (x if x == y else (x,y))

return tuple (res)

Unit test results for model sample 1 : failed: candidate((3, 4, 5, 6),(5, 7, 4, 10)) == (4, 5)

Example annotator response:

1) Which model completion are you choosing to write feedback and a refinement for?

Completion 0

2) What feedback do you have for this model sample? Write 1-4 sentences of natural language feedback
for the code sample that does two things: (a) describes what is wrong with the code sample, and (b)
how it can be fixed. You can use individual variable or method names, but please do not include entire
lines of code. Try to describe the necessary logic using mostly natural language, not Python expressions.

The logic is mostly correct, but the function returns the wrong type. It should always return a tuple, not a
set or Exception. The return statement should convert the output to a tuple prior to returning, and the raise
Exception statement should return an empty tuple instead.

3) How can you minimally edit the code such that it correctly solves the challenge and can pass all the
unit tests? (Please copy over the original completion and edit it only as necessary.)

"""

Write a function to find the similar elements from the given two tuple lists .

>>> Example : similar_elements ((3 , 4, 5, 6) ,(5, 7, 4, 10)) = (4, 5)

"""

def similar_elements (test_tup1 , test_tup2 ):

"""

Similar to sets , I want to get the values that are in both the given lists .

"""

if len( test_tup1 ) == len( test_tup2 ):

return tuple (set( test_tup1 ) & set( test_tup2 ))

else:

return tuple ()
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A.4 Alternative πRefine Models

We also explore prompting pre-trained LLMs such as gpt-3.5-turbo and gpt4 as πRefine, instead of fine-
tuning a CodeGen-Mono 6.1B model. Although such models are closed-source and require API credits to
access, the use of few-shot prompting removes the need to acquire a separate training dataset and computa-
tional resources for fine-tuning a custom πRefine model. We use the same prompt format as in Appendix A.1,
but with two in-context examples added. The results are shown in Table 6. Although the custom-trained
πRefine model still yields the strongest results, both gpt-3.5-turbo and gpt-4 still yield significantly higher
pass@1 and pass@10 rates compared to both the zero-shot baseline and ablations in Table 4. As expected,
all the variations on ILF perform comparably to the gold standard of training on human-written refinements
(the second-to-last row in Table 4). This demonstrates that ILF effectively improves the base model even
when different kinds of πRefine model are used, and does not necessarily require extra data for training πRefine.

Table 6: Final performance of πθ∗ (trained with ILF) on MBPPTest, compared across multiple types of
πRefine models.

Method Feedback Source Source of Refinements Pass Rates of πθ∗

Pass@1 Pass@10

ILF
Humans Fine-tuned CodeGen-Mono 6.1B 36% 68%
Humans 2-shot gpt-3.5-turbo 34% 68%
Humans 2-shot gpt-4 32% 65%

A.5 Human Feedback Is More Informative Than InstructGPT Feedback

Table 7: The proportion of the feedback that addressed each type of bug, for feedback sourced from humans
and InstructGPT. Each sample of feedback can be tagged with multiple categories, so the quantities in each
column do not necessarily add up to 100%.

Feedback Category % of Feedback
Human InstructGPT

Logic 30% 46%
Formatting 36% 14%
Missing step 10% 6%
Algebra 10% 8%
Recursion 4% 14%
Regex 6% 6%
Function semantics 2% 4%
Dynamic program-
ming

2% 0%

Extra step 0% 12%
No feedback needed 0% 14%
Unrelated 0% 8%

To better understand why human feedback produced greater improvements in pass rate than InstructGPT
feedback, we randomly selected 50 samples of feedback for each source (i.e. human or InstructGPT) and
annotated the number and types of bugs that each feedback sample addressed. The results are shown in
Tables 7 and 8. We observed that InstructGPT often gave no feedback (e.g. “The code is correct” or
“Great job!”), provided feedback that was irrelevant or incorrect, or restated the task description instead
of addressing what should be repaired about the code. Despite this, InstructGPT’s refinements were often
correct even if the feedback itself wasn’t. Human-written feedback addressed more bugs on average and
did not contain irrelevant feedback. We provide further examples of the differences between human and
InstructGPT feedback in Appendix A.7.
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Table 8: Descriptive statistics for the human- versus InstructGPT-generated feedback. The * indicates that
the metric was computed on the random sample of 50 that we manually inspected, whereas the other metrics
are computed from the full dataset.

Source of Feedback

Human Instruct-
GPT

Avg. num. of bugs ad-
dressed*

1.8 1.1

Avg. num. of words 68.9 ± 48.2 24.2 ± 28.6
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Figure 8: The number of bugs addressed in the feedback versus the pass rate of πRefine’s refinements.

A.6 πRefine Struggles To Incorporate Feedback Addressing Many Bugs

Lastly, we explored whether the number of bugs addressed in the feedback affected πRefine’s ability to repair
the original code sample. The results are shown in Figure 8. The greater the number of bugs addressed, the
lower the average pass rate of πRefine’s refinements. This suggests that a promising direction for future work
might consist of automatically decomposing the feedback into multiple steps and having πRefine incorporate
the feedback one step at a time. Indeed, Nijkamp et al. (2022) show that the CodeGen models are often
more effective at following instructions when the instructions are given across multiple turns, and recent
Chain-of-Thought work (Wei et al., 2022b) illustrates a similar prompting technique.
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A.7 Examples of Human Versus InstructGPT Feedback on Generated Programs

Table 9: Examples of natural language feedback written by humans versus InstructGPT for incorrect pro-
grams generated by CodeGen-Mono 61.B.

Incorrect program generated by CodeGen-
Mono 6.1B

Human feedback InstructGPT feedback

"""
Write a function to assign

frequency to each tuple in
the given tuple list.

>>> Example : assign_freq ([(6 ,
5, 8) , (2, 7) , (6, 5, 8) ,
(6, 5, 8) , (9, ), (2, 7)] )

= ’[(6, 5, 8, 3) , (2, 7,
2) , (9, 1)]’

"""

from collections import
Counter

def assign_freq ( test_list ):
"""
>>> assign_freq ([(6 ,

5, 8) , (2, 7) , (6, 5, 8) ,
(6, 5, 8) , (9, ), (2, 7)] )

= ’[(6, 5, 8, 3) , (2, 7,
2) , (9, 1)]’

"""
counter = Counter (x

for x in test_list )
res = []
for key , val in

counter . items ():
temp = (key ,

val)
res. append (

temp)
return str(res)

“The only issue with this
code is that it does not
dereference the key. When
you set temp = (key, val),
the key is an entire tuple
instead of the values in the
tuple. Thus, you need the
asterisks to get the values"

“The function works as in-
tended."

"""
Write a function to get the

angle of a complex number .

>>> Example : angle_complex (0 ,1
j) =1.5707963267948966

"""

import cmath
def angle_complex (a,b):

return cmath . phase (
complex (a,b))

“Only one thing is wrong
in the code that complex
method can take the com-
plex number as argument
example complex(a+b) not
like complex(a,b) we have
to replace, by + and the
code is fine."

“The code should use the
atan2 function to get the
angle of a complex num-
ber."
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Table 9: Continued from previous page

Incorrect program generated by CodeGen-
Mono 6.1B

Human feedback InstructGPT feedback

"""
Write a function to count the

same pair in three given
lists .

>>> Example : count_samepair
([1 ,2 ,3 ,4 ,5 ,6 ,7 ,8] ,
[2 ,2 ,3 ,1 ,2 ,6 ,7 ,9] ,
[2 ,1 ,3 ,1 ,2 ,6 ,7 ,9]) =3

"""

def count_samepair (list1 ,list2
, list3 ):
count = 0
for i in range (len( list1 ))
:

for j in range (len(
list2 )):

if list1 [i]== list2
[j] and list2 [j]== list3 [i]:

count +=1
return count

“One extra for loop for list2
is causing the issue, it finds
more matching elements
between list1,2,3. The pos-
sible solution for the code
is to remove the unneces-
sary for loop of list2 itera-
tion, and check all the lists
same index element at the
time, and return the count
of this element."

“The code above is very
inefficient. It is check-
ing every possible combina-
tion of pairs of elements in
the three lists. It would
be much more efficient to
use a set to keep track of
the pairs that have already
been seen."

"""
Write a function to find

number of lists present in
the given tuple .

>>> Example : find_lists (([1 ,
2, 3, 4], [5, 6, 7, 8])) =
2

"""

def find_lists ( Input ):
result = 0
for x in Input :

if isinstance (x, list)
:

result += 1
return result

“The code works for tu-
ples of more than one list,
but not in case of one sin-
gle list. Python goes one
level down and reads the
elements when given a sin-
gle list and does not see an
instance of list. I would
just check for the case of
‘type(Input) == list’ and
turn the input into a 1-
sized list of lists in this
case."

“The function find_lists
needs to return the num-
ber of lists present in the
given tuple, not the num-
ber of items in the tuple."
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Table 9: Continued from previous page

Incorrect program generated by CodeGen-
Mono 6.1B

Human feedback InstructGPT feedback

"""
Write a function to calculate

magic square .

>>> Example : magic_square_test
([[7 , 12, 1, 14] , [2, 13,
8, 11] , [16 , 3, 10, 5], [9,

6, 15, 4]])=True
"""

def magic_square_test (
my_matrix ):
"""
>>> magic_square_test ([[7 ,

12, 1, 14] , [2, 13, 8,
11] , [16 , 3, 10, 5], [9, 6,

15, 4]])=True
"""
def is_square (x):

return x==x*x
def is_magic_square (
my_matrix ):

sides =[]
for i in range (len(

my_matrix )):
sides . append (sum(

my_matrix [i]))
if not is_square (sum(

sides )):
return False

sides =[]
for i in range (len(

my_matrix )):
sides . append (sum ([

my_matrix [i][j] for j in
range (len( my_matrix ))]))

if not is_square (sum(
sides )):

return False
diagonals =[]
for i in range (len(

my_matrix )):
diagonals . append (

my_matrix [i][i])
if not is_square (sum(

diagonals )):
return False

diagonals =[]
for i in range (len(

my_matrix )):
diagonals . append (

my_matrix [i][ len( my_matrix )
-1-i])

if not is_square (sum(
diagonals )):

return False
return True

return is_magic_square (
my_matrix )

“The logic behind check-
ing whether the sum of
rows, columns, and diago-
nals is a magic number or
not is not correct, the code
checks if the sum of squares
of itself in the is_square
method is wrong. In-
stead of checking all the
sums of rows, columns, and
diagonals at every point,
the logic should be like
saving all the sums for
rows, columns, and diag-
onals in one array(sides)
and then checking if there
are all same values present
in this array because for
magic_square_test all the
sums should be equal."

“The function
magic_square_test should
return whether my_matrix
is a magic square."
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Table 9: Continued from previous page

Incorrect program generated by CodeGen-
Mono 6.1B

Human feedback InstructGPT feedback

"""
Write a python function to

count characters at same
position in a given string
( lower and uppercase
characters ) as in english
alphabet .

>>> Example :
count_char_position (" xbcefg
") = 2

"""

def count_char_position (str1):
counter = 0
for i in range (0, len(str1
)):

if str1[i] == str1[i].
upper ():

counter += 1
return counter

“a) The first thing that the
code sample gets incorrect
is that it increments the
counter when each charac-
ter in the string is an up-
per case character. The
prompt is asking for how
many characters in str1
have the same numerical
position as their respective
alphabetic counterpart and
the code does not check for
this at all. b) The way to
fix it would be to create
a separate j variable that
keeps track of the ordi-
nal value that corresponds
with the alphabetic charac-
ter that we would expect to
be compared to the respec-
tive character in str1. j and
i would increment at the
same time so that the code
is both iterating through
the alphabet AND iterat-
ing through str1 simultane-
ously. The other fix would
be to automatically con-
vert str1 to lowercase so
that we don’t have to worry
about checking the ordinal
codes of both the lowercase
and uppercase versions of
the same alphabetic char-
acter."

“Great job!"
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B ILF for Text Summarization Prompts

B.1 Summarization Prompts

We report all prompt templates used to generate Intial Summaries, Refinement with Feedback, and
Refinement without Feedback in Table 10.

Table 10: Prompt templates used for summarization.

Methods Format
Initial Summary Write an excellent summary of the given text.

Title: {title}

Text: {text}

TL;DR:
Refinement with
Feedback

Write an excellent summary that incorporates the
feedback on the given summary and is better than
the given summary.

Title: {title}

Text: {text}

Summary: {summary}

Feedback on Summary: {feedback}

Improved TL;DR:
Refinement without
Feedback

Write an excellent summary that is better than the
given summary.

Title: {title}

Text: {text}

Summary: {summary}

Improved TL;DR:
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B.2 InstructRM Prompts

We instructed one of the authors of this paper (who at the time had not been involved in the research project)
to write 5 prompts that would achieve the goal of selecting high-quality summaries, i.e., refinements. The
author did not have any domain knowledge or prior information on what kinds of prompts would work. The
instructions provided to the author can be viewed here. We report all 5 prompt templates in Table 11.

Table 11: Prompt templates used for InstructRM Ensemble.

InstructRM Prompts Format
Prompt 1 Here’s a summary of a Reddit post, feedback on the

summary, and a new summary. You will be asked to
determine whether the new summary incorporates
the feedback provided.

A good summary is a short piece of text that has the
essence of the original text. A good summary tries to
accomplish the same purpose and conveys the same
information as the original text.

Post title: {title}

Below, there’s the content of the post that was sum-
marized.

Original post: {text}

Original summary: {summary}

A human then provided feedback on the above sum-
mary.

Feedback: {feedback}

Based on this feedback, a new summary was written.

New summary: {refinement}

Does this new summary incorporate the feedback
provided? Answer Yes or No.

Answer:
Prompt 2 Post title: {title}
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Original post: {text}

Original summary: {summary}

Feedback: {feedback}

New summary: {refinement}

Question: Does the new summary incorporate the
feedback provided? Answer Yes or No.

Answer:
Prompt 3 You will be given a Reddit post title, its content,

an original summary of that post, and feedback for
that summary. Then, your goal will be to determine
whether the new summary improves upon the origi-
nal with respect to provided feedback.

Post title: {title}

Post content: {text}

Original summary: {summary}

Feedback: {feedback}

New summary: {refinement}

Question: Does the new summary incorporate the
feedback provided? Answer True or False.

Answer:
Prompt 4 Here’s a summary of a Reddit post, feedback on the

summary, and a new summary. You will be asked to
determine whether the new summary incorporates
the feedback provided.
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A good summary is a short piece of text that has the
essence of the original text. A good summary tries to
accomplish the same purpose and conveys the same
information as the original text. Remember, you will
be asked to determine whether the new summary
incorporates the feedback provided.

Post title: {title}

Below, there’s the content of the post that was sum-
marized.

Original Post: {text}

Remember, you will be asked to determine whether
the new summary incorporates the feedback pro-
vided. Here’s the original summary.

Original summary: {summary}

Remember, you will be asked to determine whether
the new summary incorporates the feedback pro-
vided. A human then provided feedback on the above
summary.

Feedback: {feedback}

Based on this feedback, a new summary was written.

New summary: {refinement}

Does this new summary incorporate the feedback
provided? Answer Yes or No.

Answer:
Prompt 5 Here’s a summary of a Reddit post, feedback on the

summary, and a new summary. You will be asked to
determine whether the new summary incorporates
the feedback provided.

The feedback was:
Feedback: feedback
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Here’s the post that was summarized in the first
place.

Post title: {title}

Original Post: {text}

Remember, you will be asked to determine whether
the new summary incorporates the feedback pro-
vided. Here’s the original summary.

Original summary: {summary}

Remember, you will be asked to determine whether
the new summary incorporates the feedback pro-
vided. A human then provided feedback on the above
summary. Here’s the feedback again.

Feedback: {feedback}

Based on this feedback, a new summary was written.

New summary: {refinement}

Does this new summary incorporate the feedback
provided? Answer True or False.

Answer:

B.3 Fine-tuning Prompts

In Table 12, we report the prompts we use for fine-tuning on summaries and fine-tuning on feedback +
refinements. The completion for fine-tuning on summaries indicates that we can have completions generated
from various sources, i.e., either initial summaries from FeedME, refinements generated with our method, or
ideal human written summaries. For fine-tuning feedback + refinements, we first generate the feedback and
then the refinement.

Table 12: Prompt templates used for Fine-tuning on Summaries and Feedback + Refinement.

Methods Prompt Completion
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Fine-tuning on
Summaries Write an excellent summary of the given

text.
{summary/refinement/human summary}

Title: {title}

Text: {post}

TL;DR:

Fine-tuning on
Feedback

+ Refinements
Write an excellent summary that incorpo-
rates the feedback on the given summary
and is better than the given summary.

{feedback}

Improved TL;DR: {refinement}
###

Title: {title}

Text: {post}

Summary: {summary}

Feedback on summary:

B.4 Reward Model Prompts

Table 13: Prompt templates used for training the reward model with the language model loss. Both classi-
fication and comparison prompts are shown.

Reward Model
Type

Prompt Completion

Binary RM Title: {title} {" Yes"/" No"}

Text: {post}

TL;DR: {summary_A/summary_B}

Question: Is the above an excellent sum-
mary of the given text? An excellent sum-
mary is coherent, accurate, concise, and de-
tailed. Answer with Yes or No.
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Answer:
Comparison RM Title: {title} {" A"/" B"}

Text: {post}

Summary A: {summary_A}

Summary B: {summary_B}

Question: Which summary is the better
one? An excellent summary is coherent, ac-
curate, concise, and detailed. Answer with
A or B.

Answer:

B.5 Summarization Ranking Procedure Details

We use a standard ranking scheme where each of K summaries is given a rank between 1 and K (inclusive).
Sometimes refinements are exact copies of the initial summaries or are very similar in terms of quality, which
is why we allow for summaries to be tied. When calclating the win rate we assign 0.5 wins for tied samples.
We assign the rank r′ to all summaries ranked in a tie, where r′ = r+(r+n−1)

2 , r is the rank of the tied elements,
and n is the number of ties at the rank. For example, we map a ranking of (1, 2, 2, 4, 5) → (1, 2.5, 2.5, 4, 5)
and a ranking of (1, 2, 3, 3, 3)→ (1, 2, 4, 4, 4).

B.6 Dataset Collection and Analysis

Annotation process To ensure the high quality of our human annotations, we employ experienced anno-
tators sourced through the data-labeling company Surge AI. During an onboarding and evaluation process,
we calculate author-annotator agreement on the binary comparison task and manually review the quality
of the written feedback and ideal summaries to ensure their high quality. Then we select 31 qualified an-
notators for all annotation tasks, though they can choose which tasks to participate in and for how long.
To further ensure the quality of our annotations, we provide detailed instructions, which we provide to the
annotators, and update throughout the process to ensure continuous improvement (these instructions can be
found in Appendix C). To measure the agreement rate between the annotators and the authors, we select a
sample of 10 Reddit posts from the training dataset as a gold standard and have 17 annotators label them.
When comparing the binary comparison annotations with our own ones, this results in an author-annotator
agreement rate of 81.0%. We also calculate the average agreement rate between all the possible annotator
combinations, yielding an annotator-annotator agreement of 70%. By utilizing these thorough processes and
evaluations, we can ensure the accuracy and reliability of our human annotations.

Dataset Analysis The feedback we collect typically addresses the most critical shortcomings of the sum-
maries. In 92.0% of our train samples, the annotators’ feedback was complete and addressed all important
shortcomings of the summary, as reported by the annotators. Across our train dataset, we observe that the
majority of the feedback pertains to coverage (77.0%), with smaller percentages relating to accuracy (16.0%),
coherence (5.0%), and other categories (2.0%). We also analyze the length of the various summaries and
feedback, measured in the average number of tokens. Our human-written summaries have an average length
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of 41.0±0.1 tokens, the extracted human summaries from Reddit had an average length of 32.5±0.1 tokens,
the initial summaries generated by FeedME have an average length of 29.3 ± 0.1 tokens, and the feedback
written by annotators on these initial summaries has an average length of 20.4± 0.2 tokens.

In addition to these analyses, we also measure the time it takes annotators to complete various tasks (i.e.,
binary comparison, feedback writing, and ideal summary writing) on our development dataset. We ignore
outliers and consider only samples with annotation times of at least 20 seconds and at most 420 seconds (7
minutes). Annotators take 61.5± 5.3 seconds on average on the binary comparison task, 182.5± 6.3 seconds
on the feedback task, and 195.5 ± 6.1 seconds on the ideal summary task. We plot the annotation times
on the development dataset for the tasks of annotating binary comparisons, writing feedback, and writing
ideal summaries as histograms in Fig. 9. The annotators are much faster at annotating binary comparisons
than feedback or ideal summaries. Writing feedback takes less time than writing ideal summaries, which is
expected, as critiquing a task is usually easier than solving it. These comprehensive evaluations demonstrate
the high quality and thoroughness of our dataset and annotation processes.
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(a) Binary comparison task.
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Figure 9: Histogram Plot of annotation times (in seconds) of the (9a) binary comparison task, (9b) feedback
annotation task, and (9c) the human summary writing task. The evaluation is conducted on the development
dataset. We observe that annotators are much quicker at the binary comparison task, which is expected.
The results also show that writing feedback takes less time than writing an ideal summary.

C Annotator Instructions

Overall we completed many annotations to create datasets and evaluate our algorithm. The instructions were
task-specific and also continuously updated. In the following, we provide the instructions we used to create
our train dataset and the instructions we provided for evaluating the summary quality (of 6 summaries). We
will not share more instructions for brevity but can provide them upon request.

C.1 Train Dataset Annotation Instructions

Task Overview

You are given a Reddit Post, which you first need to read carefully. You then need to complete 5 subtasks
which consist of comparing two summaries, writing feedback on a summary, classifying the type of feedback,
indicating whether there is additional Feedback, and writing an ideal summary. When doing these tasks,
please adhere to the guidelines below.

What makes for a good summary? Roughly speaking, a good summary is a short piece of text that has
the essence of the original text. A good summary tries to accomplish the same purpose and conveys the same
information as the original text. We would like you to consider these different dimensions of summaries:

Essence: Is the summary a good representation of the post? How well does the summary cover the important
information in the post?

Clarity: Is the summary reader-friendly? Does it express ideas clearly?

Accuracy: Does the summary contain the same information as the post?
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Purpose: Does the summary serve the same purpose as the original post?

Concise: Is the summary short and to the point?

Style: Is the summary written in the same style as the original post?

Generally speaking, we give higher weight to the dimensions at the top of the list. The evaluation can be
complicated though, since none of the above dimensions are simple yes/no matters, and there aren’t hard
and fast rules for trading off different dimensions. Use your best judgment and common sense to make these
trade-offs. In case the subreddit, title, and Reddit post leave open some ambiguity about what happened,
it is important to accurately reflect that in your annotations and not just interpret the text in a certain
way. Always look at all the subreddit, title, and Reddit Post and use all information given to make your
judgments (sometimes the title may contain crucial information that does not appear in the post but should
nevertheless be used).

First, read the Subreddit category, title, and post carefully. A Subreddit is a forum dedicated to a specific
topic on the website Reddit. Take your time with this step and re-read the parts that you might not have
understood at first. Below is a detailed description of the task you will need to complete for each Reddit
post.

Below is a detailed description of each task you will need to complete for each Reddit post:

1. Comparison Task: Given a pair of summaries, indicate which is better.
Details: Use the above description of what makes a good summary. It is alright to choose either
summary if both summaries are identical copies of each other or if there is no distinguishing feature
that makes one summary superior to the other. However, if there is a small detail that makes one
summary better than the other, that is enough reason to select that summary.

2. Feedback Task: Write short and simple feedback on the given summary about the single, most
important shortcoming of the summary. The feedback should NOT mention what category (Accu-
racy, Coverage, Coherence, other) the feedback belongs to, nor should it assume knowledge about
the definitions of “Coverage”, “Accuracy”, or “Coherence” (see below). Otherwise, the feedback
should be as short and simple as possible while still addressing the most important shortcoming of
the summary.
Details: You can write the feedback in one or several sentences, but it should only address the
single, most important shortcoming of the summary and be as short as possible. There are no
other restrictions as to how you write the feedback and what exactly it addresses. If there are no
shortcomings in the summary, the feedback can also mention a positive thing about the summary.
Use the description of what makes a good summary to trade off the various dimensions that make
for a good summary. Often the feedback will (but does not have to) address one of the following
axes.

• Coverage: For this axis, answer the question, “how well does the summary cover the important
information in the post?” A summary has good coverage if it mentions the main information
from the post that’s important to understand the situation described in the post. A summary
has poor coverage if someone reading only the summary would miss several important pieces of
information about the situation in the post. A summary with good coverage should also match
the purpose of the original post (e.g., to ask for advice).

• Accuracy: For this axis, answer the question, “does the factual information in the summary
accurately match the post?” A summary is accurate if it doesn’t say things that aren’t in the
article, doesn’t mix up people, and is generally not misleading. If the summary says anything at
all that is not mentioned in the post or contradicts something in the post, it is NOT accurate.

• Coherence: For this axis, answer the question, “how coherent is the summary on its own?” A
summary is coherent if, when read by itself, it’s easy to understand and free of English errors.
A summary is not coherent if it’s difficult to understand what the summary is trying to say.
Generally, it’s more important that the summary is understandable than being free of grammar
errors.
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Additional Rules: The feedback should NOT mention what category (Accuracy, Coverage, Co-
herence, other) the feedback belongs to, nor should it assume knowledge about the definitions of
“Coverage”, “Accuracy”, “Coherence”, or “other” (as defined above). Example: One should NOT
write "This is missing in the area of coverage", or "This summary lacks in the category of accuracy,
because ...". The feedback should be understandable to a person who has never read the definition
of "Coverage", "Accuracy", and "Coherence". You are, however, ALLOWED to use those words if
they make sense on their own, e.g., you CAN say, "This summary does not cover the important
parts of the text because", or "This summary is inaccurate as it states ...", or "This is not a coherent
summary because ...".

3. Feedback Type Task: If your feedback falls into the categories Accuracy-related, Coherence-
related, or Coverage-related, mark it as such by checking the corresponding checkbox for the (single)
category it is related to. If your feedback is not related to any of these three categories, then check
the "Other" checkbox.

4. More Feedback Task: Answer with Yes if there is additional Feedback about an important short-
coming of the summary that you would want to mention and No otherwise.

5. Ideal Summary Task: Ideal Summary Task: Write a short summary for the Reddit post that is
ideal in your view.
Details: The ideal summary should be ideal in terms of all the criteria mentioned above, i.e., essence,
clarity, accuracy, coverage, purpose, conciseness, coherence, and style. In other words, you should
not be able to find an obvious critique of the ideal summary that you write. It is okay to reuse
parts of previous summaries but only if those parts should be a part of an ideal summary. The
ideal summary should maximally be 48 tokens long (otherwise, you can’t submit your annotation).
Tokens are generated by taking your ideal summary and splitting up certain words into individual
pieces (this is necessary to train our AI). The interface will show you how many tokens your ideal
summary has already taken up.

C.2 Summary Quality Evaluation Instructions

Task Overview

You will be given a Subreddit category, a title, and a Reddit Post, which you first need to read carefully.
Your task is then to compare 6 summaries and rank them according to quality.

What makes for a good summary? Roughly speaking, a good summary is a short piece of text that has
the essence of the original text. A good summary tries to accomplish the same purpose and conveys the same
information as the original text. We would like you to consider these different dimensions of summaries:

Essence: Is the summary a good representation of the post? How well does the summary cover the important
information in the post?

Clarity: Is the summary reader-friendly? Does it express ideas clearly?

Accuracy: Does the summary contain the same information as the post?

Purpose: Does the summary serve the same purpose as the original post?

Concise: Is the summary short and to the point?

Style: Is the summary written in the same style as the original post?

Generally speaking, we give higher weight to the dimensions at the top of the list. The evaluation can be
complicated though, since none of the above dimensions are simple yes/no matters, and there aren’t hard
and fast rules for trading off different dimensions. Use your best judgment and common sense to make these
trade-offs. In case the subreddit, title, and Reddit post leave open some ambiguity about what happened,
it is important to accurately reflect that in your annotations and not just interpret the text in a certain
way. Always look at all the subreddit, title, and Reddit Post and use all information given to make your
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judgments (sometimes the title may contain crucial information that does not appear in the post but should
nevertheless be used).

First, read the Subreddit category, title, and post carefully. A Subreddit is a forum dedicated to a specific
topic on the website Reddit. Take your time with this step and re-read the parts that you might not have
understood at first. Below is a detailed description of the task you will need to complete for each Reddit
post.

Comparison Task: Given 6 summaries, indicate which is better by ranking them according to quality. Rank
1 is considered the highest rank, and Rank 6 is considered the lowest rank. The summary with the best
quality should be ranked highest, i.e., as Rank 1, and the summary with the worst quality should be ranked
lowest, i.e. Rank 6. Use the above description of what makes a good summary. Ties between summaries
are allowed, but only if summaries are exact copies of each other or if there is no distinguishing feature
that makes one summary superior to the other. However, if there is a small detail that makes one summary
better than the other, that is enough reason to rank that summary as better than the other summary. We
use Standard Competition ranking (i.e., example rankings of 122456). In standard competition ranking,
items that compare equally receive the same ranking number, and then a gap is left in the ranking numbers.
The number of ranking numbers that are left out in this gap is one less than the number of items that are
compared equally. Equivalently, each item’s ranking number is 1 plus the number of items ranked above it.

C.3 Reward Model

Here we describe the various RMs that we evaluate in more detail. We evaluate the final RM that we use,
which produces a language output (e.g., “ Yes" or “ No") and a standard reward model that produces a
scalar output.

Standard RM. Akin to Stiennon et al. (2020), we remove the last embedding layer of a language model
and train it to output a scalar value. This scalar value predicts which summary, x ∈ {x0

0, x1
0}, is better as

judged by a human, given a context c. We use the OPT 13B LM, introduced in (Zhang et al., 2022), as the
base model for our RM and fine-tune it on the human preference comparisons that we collected. It is worth
noting that it is not possible to add linear layers on top of GPT-3 models provided via the API, which is
why we use the OPT model.

Reward Model with Language Output. In addition to the classic RM (Stiennon et al., 2020), we train
an RM to output language tokens instead of a scalar value. To do so, we fine-tune an LM to classify whether
a summary x0 is high quality or not, by training it to predict a label y ∈ {ygood, ybad}. We then fine-tune
the LM to maximize λ log p(x0) + log p(y|x0), where λ ∈ [0, 1], chosen using the development dataset. The
complete loss can also be written as:

L(pθ, x, y) = −λ ·
|x|∑
t=1

log pθ(xt|x<t)−
|y|∑
t=1

log pθ(yt|x, y<t).

where the subscript t indicates the token index. We evaluate the fine-tuned LM on a given summary x0 by
computing p(ygood|x0). The best RM overall uses the following instruction Is the above an excellent summary
of the given text? An excellent summary is coherent, accurate, concise, and detailed. Answer with Yes or
No., which we refer to as the OPT-RM (when fine-tuning OPT-13B) and GPT-3 Binary (when fine-tuning
GPT-3-175B). We also explore fine-tuning on another prompt, where we provide both summaries A and B
to the LM and instruct it to indicate which summary is preferred, i.e. Question: Which summary is the
better one? An excellent summary is coherent, accurate, concise, and detailed. Answer with A or B. We
then fine-tune the LM on the label of the preferred summary (according to binary human feedback), i.e. on
y ∈ {yA, yB}. We evaluate the fine-tuned LM on a given summary x0 by computing p(yA|x0). We refer to
this RM as Comparison RM. We explore two RMs, namely, OPT-13B Zhang et al. (2022), and GPT-3-175B
and refer to Appendix C.4 for the hyperparameters we use and to Appendix B.4 for the prompt templates).

Results We evaluate all RMs on our validation dataset, and calculate the accuracy of predicting the
preferred summary out of two, based on human preferences. Table 15 shows the complete results, and here
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we report on some of the RMs trained on 5K samples. The OPT model with the standard RM loss achieves
an accuracy of 71.8 ± 2.0% on the validation dataset. The results further show that both of our methods
for training OPT with the LM loss outperform the standard RM loss, with OPT comparison achieving an
accuracy of 72.6 ± 1.9%, and OPT-RM an accuracy of 73.4 ± 1.9%. We obtain similar results with fine-
tuning GPT-3-175B, achieving an accuracy of 71.2± 2.0% with the GPT3 Comparison, and an accuracy of
74.2± 2.0% with GPT-3 Binary, which outperforms the OPT-RM.

Based on these results, we further evaluate the OPT Binary and GPT-3-175B Binary models on the devel-
opment dataset that we use to evaluate the scoring functions in §4.3. We calculate the fraction of times the
refinement selected by an RM is better than a randomly-selected refinement (“win rate”), according to a
ranking given by human evaluators (see App. B.5 for more details). The results can be found in Table 14.
OPT-RM achieves a win rate of 63.3 ± 2.7%, and the GPT-3-175B Binary model achieved a win rate of
61.8 ± 2.9%. In this evaluation, OPT-RM outperforms GPT-3 Binary. When considering the results from
both the validation and development datasets, both OPT-RM and GPT-3-Binary seem to perform similarly.
Given that we have more control over the training process of OPT, the possibility of releasing the model,
and the cost involved in training using OpenAI’s API, we select OPT-RM model as our reward model for
comparison with ILF. In Figure 10, we show the validation accuracy of OPT-RM trained on 100, 1K, and
5K samples on a log-log plot. The figure shows scaling when increasing the dataset size.

We further evaluate results for fine-tuning OPT-RM on the dataset of Stiennon et al. (2020), and also eval-
uating their model with 1.3B parameters on our dataset. We observe that the binary preference distribution
of the training dataset has a significant impact on the performance of the reward model. For example,
OPT-RM trained on 5K samples of our own train dataset (i.e., our final reward model) achieves an accuracy
of 61.9± 0.2% on the test set from Stiennon et al. (2020) (not shown in Table 15). When this same model is
trained on 90K samples from the train dataset of Stiennon et al. (2020), it achieves an accuracy of 69.3±0.2%
on their test set (also not shown in Table 15). In contrast, this same model trained on 90K samples from
their train dataset achieves an accuracy of only 68.6± 2.0% on our validation dataset, which is significantly
lower than the accuracy of 73.4±1.9% achieved by the model trained on 5K samples of our own train dataset.
Similar patterns can be observed when comparing the OPT Binary model with 1.3B parameters trained on
5K samples of our own train dataset to the released 1.3B reward model trained by Stiennon et al. (2020)
on approx. 64K samples of their own train dataset. The former model achieves an accuracy of 69.6± 2.0%
on our validation dataset, while the latter only achieves an accuracy of 63.8± 2.1% (note, though, that the
RMs are trained with different loss functions). These results highlight two important considerations: (1)
preference distributions can vary significantly and have a strong effect on what a reward model learns, and
(2) the sample efficiency of a reward model depends heavily on the train and test distributions. If the test
distribution differs from the train distribution, reward models may be very sample inefficient and fail to
accurately learn the true distribution, even when given significantly more samples.

Table 14: In a human evaluation, we compare reward models and ranking methods on the development
dataset (in the same way as in Fig 5). Both RMs are trained on 5K samples and outperform the zero-shot
methods.

Scoring Function Win Rate vs Random Selection (in %)

Task Specific Heuristic Max Length 65.0± 2.7

Zero-Shot Embedding Similarity 48.3± 3.0
InstructRM Ensemble 56.0 ± 3.0

Fine-tuning on 5K samples OPT Binary 63.3 ± 2.7
GPT-3 Binary 61.8± 2.9
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Table 15: In a human evaluation, we evaluate various RMs on the development dataset and validation
dataset. We also report the results of training on the train dataset of Stiennon et al. (2020) and evaluating
on our development and validation datasets. We calculate the accuracy of predicting which of two summaries
is preferred by a human.

Models No. Params Training
Dataset Size

Dev. Acc.
(%)

Val. Acc.
(%)

LM Loss / Our dataset

OPT
Comparison

13B 5K 66.5± 3.3 72.6± 1.9

OPT RM 1.3B 5K 70.0± 3.2 69.6±2.0
OPT RM 13B 100 54.5± 3.5 53.4± 2.2
OPT RM 13B 1K 68.5± 3.2 67.2± 2.1

OPT RM 13B 5K 69.5 ± 3.2 73.4 ± 1.9
GPT-3

Comparison
- 5K 68.0 71.2± 2.0

GPT-3
Binary

- 5K - 74.2 ± 2.0

RM Loss / Our dataset OPT 13B 5K 68.5± 3.2 71.8± 2.0
RM Loss / Stiennon et al.
(2020) train dataset Stiennon

et al. (2020)
RM

1.3B 64K 58.0± 3.4 63.8± 2.1

LM Loss / Stiennon et al.
(2020) train dataset OPT Binary 13B 90K 69.0± 3.2 68.6± 2.0

C.4 ILF for Text Summarization Hyperparameters

C.4.1 Generating Refinements

For all summarization experiments we sample up to 48 tokens (as in Stiennon et al., 2020) with nucleus
sampling Holtzman et al. (2019) with p = 0.95 and temperature t = 1.0. We strip non-alphanumeric
characters (e.g., newlines) from the beginning of sampled summaries. We further remove empty white
spaces in the generated summaries and remove all text that comes after a new line token / n. Due to the
maximum token length, sampled summaries sometimes end with incomplete sentences. Thus, we remove
ending sentences that do not end in “.”, “!”, or “?”. The described temperature and post-processing are
applied to all summary generations, i.e., for generating initial summaries, refinements, and test summaries.

C.5 Fine-tuning on Summaries

We conduct independent hyperparameter optimization sweeps with three dataset sizes of human summaries
of 100, 1K and 5K samples, and then use the same hyperparameters for fine-tuning on refinements (ILF)
and fine-tuning on initial summaries. We choose to run the hyperparameter sweep on Human summaries
since this will not give an unfair advantage to our algorithm that fine-tunes on refinements. For the sweep,
we utilize the train dataset of human summaries (consisting of 100, 1K, and 5K samples) and evaluate on
the development dataset. Unfortunately, the OpenAI API only provides validation loss and token accuracy
for batches of the development dataset, making it impossible to evaluate the model on the full development
dataset during training. As a result, we utilize the model API to evaluate on the full development dataset
after fine-tuning and calculate the perplexity of the generated summaries as a performance measure.
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Table 16: We report the chosen hyperparameters of fine-tuning on 100, 1K, and 5K samples of Human
Summaries. A * symbol indicates that this hyperparameter is optimal but used only for fine-tuning on
Human Summaries. For fine-tuning on Refinements and Initial Summaries we inadvertently use the
prompt loss weight 0.

Samples Epochs Prompt Loss Weight Learning Rate
100 1 0 0.05
1K 1 0.05∗ 0.02
5K 1 0.1 0.2

To determine the optimal hyperparameters, we perform a sweep over a range of values for the following
parameters: epochs {1, 2, 3, 4}, prompt loss weight {0, 0.01, 0.05, 0.1}, and learning rates {0.02, 0.05, 0.1, 0.2}.
We first sweep over epochs and select the best value, then perform a sweep using that value for the prompt
loss weight, and so on. Our empirical observations indicate that the number of epochs has the greatest impact
on perplexity, with training for more than one epoch resulting in overfitting. The selected hyperparameters
can be found in Table 16.

During the fine-tuning phase for the Refinements and Initial Summaries datasets with 1K samples
each, we made an error in our hyperparameter selection. Instead of using a prompt loss weight of 0.05, we
mistakenly used a value of 0, when fine-tuning on human summaries. While this error may have slightly
impacted our results, the difference in perplexity between the two settings is minimal, with a value of 6.68
for a prompt loss weight of 0.05 and 6.71 for a prompt loss weight of 0. Despite this mistake, our method
still outperforms fine-tuning on human summaries for 1K samples, as well as fine-tuning on initial summaries
using suboptimal hyperparameters.

C.6 Multiple Iterations of ILF for Text Summarization

To evaluate multiple iterations of ILF, i.e., multiple iterations of refining-and-fine-tuning, we fine-tune GPT-
3-175B on a refinement dataset with 200 and 300 samples. Thus we conduct a hyperparameter optimization
on a train dataset of 200 and 300 refinements and evaluate on a development dataset of 200 refinements
(instead of human summaries). To determine the optimal hyperparameters, we perform a sweep over a range
of values for the following parameters: epochs {1, 2, 3, 4}, prompt loss weight {0, 0.01, 0.05, 0.1}, and learning
rates {0.02, 0.05, 0.1, 0.2}. We first sweep over epochs and select the best value, then perform a sweep using
that value for the prompt loss weight, and so on. For fine-tuning on 200 refinements we select the following
hyperparameters: epochs = 1, prompt loss weight = 0.05, learning rate multiplier = 0.1. For fine-tuning
on 300 refinements we select epochs = 1, prompt loss weight = 0, and learning rate multiplier = 0.2. The
results are reported in Section C.8.2.

C.7 Fine-tuning Reward Models

OPT Reward Model. For fine-tuning the OPT Reward Model, we perform bayesian hyperparameter
optimization for each of the three different types of reward models: Standard, Comparison and Classification
(see section C.3). We sweep over the learning rate in the range of [1e−5, 1e−6] and the batch size {32, 64}
for all the models. For the reward models using the language loss, we also optimize the prompt-loss weight
{0.0, 0.01, 0.05, 0.1, 0.5, 1.0}. We run 10 iterations per model and evaluate all the sweeps with the 200
development examples. We use a linear learning rate scheduler and a weight decay of 0.1 for all the runs.
The optimal batch size is 32 for all the models. The best prompt loss weight is 0.01 for both the Comparison
and Classification RMs. As for the learning rate, we use 9.3e−6 for the Standard RM, 5.8e−6 for the
Classification RM and 1e−6 for the Comparison RM. In the final fine-tuning, we select the best RM in the
validation split over 10 epochs.
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Figure 10: The validation accuracy versus training dataset size of OPT-RM trained on 100, 1K, and 5K
samples on a log-log plot.

GPT-3 Reward Model. In order to fine-tune GPT-3-175B as an RM, we utilize the OpenAI API. We fine-
tune two types of RMs: the Comparison RM, which learns to predict which of two summaries is superior,
and the Classification RM, which predicts whether a given summary is of high quality or not. For cost
considerations, we conduct hyperparameter tuning on a training dataset of 1K samples (instead of 5K) and
evaluate on a development dataset of 200 samples. We use a dataset with 1K samples for cost reasons. We
then apply the same hyperparameters when fine-tuning on 5K samples while implementing early stopping in
terms of epochs. Due to the binary nature of the human preference annotations in the classification reward
model, the effective train dataset size for this model is doubled to 2K samples.

In order to determine the optimal hyperparameters, we perform a sweep over a range of values for the number
of epochs {1, 2, 3, 4} and the prompt loss weights {0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5}. The OpenAI API
provides classification accuracy (for both the comparison and classification tasks) for the full development
dataset after each epoch, allowing us to select the appropriate number of epochs and prompt loss weight.
When fine-tuning on 5K samples, we utilize early stopping to prevent overfitting, using 1 epoch and a prompt
loss weight of 0 for the comparison model and 4 epochs and a prompt loss weight of 0.001 for the classification
model. We use default values for all other hyperparameters, which may vary depending on the dataset size.

C.8 Additional Text Summarization Results

C.8.1 Results: ILF + OPT-RM

In this section, we present the full results of our best-performing method ILF + OPT-RM and other additional
methods (see §4.4.1 for a description of ILF + OPT-RM and §4.4.3 for a discussion of the results). We
conduct the same evaluation as described in §4.4.2, i.e. in a human evaluation, annotators rank various
test summaries based on quality. We then calculate the win rate against human written summaries, which
we use as an evaluation metric. Importantly, all methods evaluated here are trained on datasets with 5K
samples. Note that the methods compared here are not exactly the same as the methods compared in Fig. 6.
Concretely, the test summaries generated by the methods fine-tuning on refinements (ILF), fine-tuning on
human summaries, and OPT-RM best-of-64 FeedME are the same as in Fig. 6, for the test summaries
generated by corresponding methods trained on 5K samples. Here, however, we don’t evaluate FeedME and
fine-tuning on initial summaries. However, we evaluate ILF + OPT-RM (best-of-64), our best-performing
model, which we also added to Fig. 6 for reference. We also evaluate a new method called Fine-tuned on
Feedback + Refinements, which we describe below.
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Figure 11: Evaluation of models fine-tuned on 5K initial summaries, refinements, and human summaries
on 500 samples from the corresponding validation datasets. For example, the model fine-tuned on human
summaries is evaluated on 500 human summaries from the validation dataset. The model fine-tuned on
refinements has a significantly lower negative log-likelihood than the model fine-tuned on human summaries.

For fine-tuning on feedback + refinements, we use a title, post, and summary as input and the model is trained
to predict the corresponding feedback and refinement. Our motivation for this approach is that generating
feedback first may improve the quality of the resulting refinements, similar to the findings of previous work on
self-prompting methods Saunders et al. (2022); Bai et al. (2022b) and the Chain of Thought (CoT) prompting
technique Wei et al. (2022b). CoT has been shown to improve the performance of models across various
tasks Wei et al. (2022b) when allowing the model to reason before answering a question. For fine-tuning on
feedback and refinements, we utilize the initial summaries that were used to gather human feedback, as well
as the refinements generated by our method. We use the loss log p(x1, f |prompt) + λ log p(prompt), i.e. we
learn to predict the refinement and the feedback. We employ the same hyperparameters as in the fine-tuning
on refinements algorithm (including the prompt loss weight). During testing, we require initial summaries,
from which we generate feedback and refinements. As initial summaries, we use the test samples generated
by FeedME (as evaluated in Figure 6). To ensure compatibility with the 48-token length restriction of the
test summaries, we append the special end token / n ### to the end of the feedback and refinements during
training. At test time, we set the maximum number of tokens to generate 300, and terminate generation
when the stop-word / n ### appears. We then apply the same postprocessing procedure outlined in
Appendix C.4.1 to shorten the refinements to 48 tokens. We refer to Appendix B.3 for the exact prompt
templates we used.

We present all the results in Fig. 12. We find that fine-tuning on a set of 5K refinements achieves a win
rate of 36.0± 1.8%, while ILF + OPT-RM (best-of-64) has a win rate of 50.8± 1.9%, achieving human-level
summarization performance (see §4.4.3 for a more detailed discussion). OPT-rM best-of-64 FeedMe achieves
a win rate of 45.1 ± 1.9%, fine-tuning on a set of 5K human-generated summaries achieves a win rate of
35.4± 1.8%, and fine-tuning on a combination of 5K feedback and refinements has a win rate of 26.1± 1.7%.
It is worth noting that the performance of fine-tuning on feedback and refinements is lower than that of
fine-tuning on refinements alone. We attribute this to the increased difficulty of generating both feedback
and refinements and believe that this discrepancy may be due to limitations in our models, dataset size, or
hyperparameters. Previous work has demonstrated the feasibility of training models to generate feedback
Saunders et al. (2022); Bai et al. (2022b), so we believe that further optimization and experimentation may
improve the performance of this method. We further want to note that the results for fine-tuning on 5K
refinements, 5K human summaries, and best-of-64 FeedME deviate from the results in Fig 6. This is because
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we compare different methods with each other, and human annotations generally contain some amount of
noise (given that different people annotate the same samples).
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Figure 12: How often human evaluators prefer summaries from ILF: Fine-tuned on Refinements, OPT-
RM best-of-64 FeedME, ILF + OPT-RM (best-of-64), fine-tuning on human summaries, and fine-tuning on
feedback + refinements (all methods fine-tuned on 5K samples). ILF + OPT-RM (best-of-64) generates
summaries of a similar quality to human summaries. Fine-tuning on feedback + refinements performs worse
than fine-tuning on refinements (ILF).

C.8.2 Multiple Iterations of ILF

Our experiments suggest that ILF is an effective method for leveraging language feedback in the training of
LMs. Here we explore ILF in its most general form by doing multiple iterations of refining-and-fine-tuning.

Dataset Improvement. In this experiment, we evaluate the effectiveness of iterative refinement of the
dataset distribution using ILF. To this end, we first fine-tune GPT-3-175B on 100 refinements from iteration
1 of ILF (i.e. doing one iteration of refining initial summaries, as we did in the main results of our paper, see
§4.4.2) and refer to this fine-tuned model as M100

1 . The notation we use here is that the subscript indicates
the iteration of ILF that the refinements were generated in, and the superscript indicates the number of
overall samples the model is fine-tuned on. We also refer to the dataset of 100 refinements from iteration 1
as D100

1 . As a baseline, we fine-tune M100
1 on an additional 100 refinements from ILF iteration 1, resulting

in M200
1 , i.e., a model trained on 200 refinements from ILF iteration 1. We then compare this baseline

to two iterations of ILF. Specifically, we use M100
1 to generate summaries for an additional 100 samples

(the same Reddit posts as for the baseline) and collect human feedback on those summaries. We then use
this feedback to generate 5 refinements using the FeedME10 and then select the best refinement using our
InstructRM method. We refer to these 100 selected refinements from the second iteration of ILF as D100

2 .
Finally, we fine-tune M100

1 on D100
2 to obtain the model M200

1,2 , which has been trained on a total of 200
refinements generated in both the first and second iterations of ILF. All fine-tuning was performed using
the same hyperparameters as described in Appendix C.4 for fine-tuning on 100 refinements. We refer to
Table 17 for an overview of all models and train datasets.

In this human evaluation, we compare the performance of the summaries generated by the baseline model
(M200

1 ) with those generated by two iterations of ILF (M200
1,2 ) on our test set. Human evaluators are asked to

indicate their preferred summary for each comparison, and the win rate of M200
1,2 against M200

1 is calculated
and plotted in Fig. 13 (left)11. Our results show that two iterations of ILF outperform one iteration with a
win rate of 53.2± 1.9% indicating that applying multiple rounds of ILF can improve the data distribution.
However, we also want to investigate whether multiple rounds of ILF lead to better models than directly

10Ideally, one would use the same model M100
1 to generate the refinements. However, in our case, this is not possible since

we fine-tuned GPT-3-175B, which is not an instruction-fine-tuned model.
11Note, we set the win rate manually to 50% at 100 samples, since the baseline is equivalent to one iteration of ILF.
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Table 17: Datasets (refinements) over which the models M are trained, and which they generate. The
superscript indicates the number of samples, whereas the subscript indicates the ILF step. In this figure we
do not show FeedME which is used to generate the refinements given feedback.
* these samples are new samples from the interval [100,200] of D200

1

.

Initial Model Fine-tuned Model Fine-tuning Dataset Produces Dataset
ILF Iter. 1 ILF Iter. 2 ILF Iter. 3

GPT-3-175B M100
1 D100

1 – – D100
2

M100
1 M200

1 D100∗
1 , – – –

GPT-3-175B M200
scratch,1 D200

1 – – –
GPT-3-175B M300

scratch,1 D300
1 – – –

M100
1 M200

1,2 D100
1 D100

2 – D100
3

M200
1,2 M300

1,2,3 D100
1 D100

2 D100
3 –

GPT-3-175B M200
scratch,1,2 D100

1 + D100
2 – –

GPT-3-175B M300
scratch,1,2,3 D100

1 + D100
2 + D100

3 –

fine-tuning on the same number of refinements from the first round from scratch. In other words, while
our current baseline consists of further fine-tuning M100

1 on an additional 100 samples, it is also possible to
directly fine-tune GPT-3-175B on 200 refinements from the first iteration of ILF from scratch, i.e. M200

scratch,1.
We aim to determine the relative effectiveness of these two approaches in improving model performance on
the text summarization task.

Model Improvement In this experiment, we aim to compare the performance of multiple rounds of
ILF to directly fine-tuning on a comparable number of refinements from the first iteration of ILF. As a
baseline, we fine-tune GPT-3-175B on 200 and 300 refinements from the first iteration of ILF and conduct
hyperparameter tuning as described in the Appendix C.4. We then compare these baselines to two and
three rounds of ILF. For the two-round ILF model, we use the previously described M200

1,2 . To obtain the
three-round ILF model, we use M200

1,2 to generate summaries for an additional 100 samples (on the same
Reddit posts as for the baseline), gather human feedback, generate 5 refinements with GPT-3-175B using
the feedback, and select the best refinement using InstructRM, resulting in D100

3 . We then fine-tune M200
1,2 on

D100
3 to obtain the model M300

1,2,3. It is important to note that while our baselines fine-tune GPT-3-175B from
scratch on 200 and 300 refinements, the models M200

1,2 and M300
1,2,3 are obtained by continuously fine-tuning

a model iteratively on additional refinements. This difference in approach may introduce a discrepancy in
the results, as we use different hyperparameters, and the dataset size may affect the learning dynamics. To
control for this potential difference, we also fine-tune GPT-3-175B from scratch on the refinements generated
through various iterations of ILF. Specifically, as an alternative to M200

1,2 , we fine-tune GPT-3-175B from
scratch on a concatenation of 100 refinements from the first round of ILF (i.e., D100

1 ) and 100 refinements
from the second round of ILF (i.e., D100

2 ), and refer to the resulting model as M200
scratch1,2. Similarly, as an

alternative to M300
1,2,3, we fine-tune GPT-3-175B from scratch on a concatenation of 100 refinements from the

first round of ILF (D100
1 ), 100 refinements from the second round of ILF D100

2 , and refinements from the
third round of ILF (i.e. D100

3 ), and refer to the resulting model as M300
scratch1,2,3. It is worth noting that the

refinements from the second and third rounds of ILF (i.e. D100
2 and D100

3 ) are based on summaries generated
using models that were continuously fine-tuned (i.e. M100

1 and M200
1,2 ). As such, the models M200

scratch1,2 and
M300
scratch1,2,3 are not a direct application of ILF, but rather an approximation of the distribution induced by

ILF. We refer to Table 17 for an overview of all models and train datasets.

Using a human evaluation, we compare the performance of the three methods on the test dataset: the
baseline, ILF with continuous fine-tuning, and ILF approximated by fine-tuning from scratch. The results
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Figure 13: Left: Win rate of 2 iterations of ILF against fine-tuning on the same number of refinements from
the first iteration of ILF. Right: Win rate of 3 iterations of ILF, and approximating 3 iterations of ILF by
fine-tuning from scratch, against fine-tuning on the same number of refinements from the first iteration of
ILF.

are shown in Fig. 13 (right). With this more realistic baseline, we find that directly applying ILF does
not improve upon the baselines, with win rates of 49.4 ± 1.9% and 50.9 ± 1.9% for 200 and 300 samples,
respectively. However, approximating ILF by fine-tuning from scratch on the distributions induced by ILF
significantly improves upon the baseline for 300 samples, with a win rate of 55.6 ± 1.9%. The method is
slightly worse than the baseline for 200 samples, with a win rate of 48.9 ± 1.9%. We currently hypothesize
that continuous fine-tuning may lead to catastrophic forgetting, while fine-tuning from scratch may not have
this problem. This could explain why M300

scratch1,2,3 performs significantly better than M300
1,2,3 for 300 samples.

Specifically, M200
1,2 may actually generate an improved distribution in the third iteration of ILF. However,

when further fine-tuning M200
1,2 on this improved distribution D100

2 , the model may forget what it learned
previously. On the other hand, the model M300

scratch1,2,3 that learns from scratch on the concatenation of
all datasets produced by ILF may actually benefit from the improved dataset distribution because it does
not unlearn anything. It is, however, unclear why M200

scratch1,2 does not benefit from the improved data
distribution D100

2 . It is also possible that the hyperparameters play a significant role in the final performance
of the various models and that the dataset size has a strong influence on model performance (e.g., fine-tuning
on more samples may be more stable than fine-tuning on fewer samples). In future work, we plan to conduct
more elaborate experiments to answer these questions and better understand the effects of the dataset size
and number of iterations on ILF. Specifically, we aim to run multiple iterations of ILF and use M200

scratch1,2
as the model to generate summaries in the third round of ILF (instead of M200

1,2 ). This would be a direct
implementation of ILF, rather than an approximation of it, as we would be fine-tuning the same model with
which we are also generating an improved distribution. We also hope to investigate the effect of the dataset
size and number of iterations on ILF. Overall, our results suggest that ILF has the potential to improve the
performance of natural language processing systems by continuously incorporating human feedback into the
training of language models, but further research is needed to fully understand the best ways to leverage
this approach.

C.8.3 Part-of-Speech Distribution for Fine-tuning Datasets

We evaluate the negative log-likelihood of GPT-3-175B on the three fine-tuning datasets, i.e. on initial
summaries, refinements, and human summaries. We use the training dataset with 1K samples and calculate
the negative log-likelihood over different Part-of-Speech tags. We use Stanza Qi et al. (2020) as the PoS
tagger for this experiment and then we separate the words into three groups: function words, content words,
and others. The function words are words that have little lexical meaning: articles, pronouns, adpositions,
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conjunctions, auxiliary verbs, particles and interjections. On the other hand, content words are words that
contain semantic information: nouns, adjectives, adverbs and lexical verbs. We keep numbers and symbols
under the group others. With this analysis, we want to spot different patterns between model-generated
(initial summaries and refinements) and human-written summaries. Note that a high negative log-likelihood
implies a high loss. We present the results in Fig 14. Since the average loss is higher for human summaries,
we normalize all the loss values by transforming them to have mean 0 and standard deviation 1. Overall,
the word distribution is very similar for all three fine-tuning datasets. In terms of normalized mean loss, it
is interesting how the content words have a bigger influence on the refinements dataset. We believe that this
is related to our results in section 4.4.3, where we obtain the best results when fine-tuning on refinements.

C.8.4 Comparison to Results of Scheurer et al. (2022)

Here we relate our results to our previous non-archival work, Scheurer et al. (2022). In Fig. 2 of Scheurer
et al. (2022), they compare their method of fine-tuning on refinements against various baselines, such as fine-
tuning on initial summaries, sampling from FeedME (called InstructGPT), and sampling from GPT-3-175B.
They calculate the win rate of all methods against human written summaries (Völske et al., 2017) that are
automatically extracted from Reddit. As shown in §4.2 and App.B.6, our human summaries are preferred
72.3 ± 3.2% to the human summaries of Völske et al. (2017). This implies that the win rates in Scheurer
et al. (2022) are much higher than in our case since we use a much stronger baseline.

We now present three differences between the results found in Scheurer et al. (2022) and the results found
in our paper. Then we will provide various potential reasons that could explain the differences. First,
when comparing the results (in relative terms) in Scheurer et al. (2022) Fig. 2 to our results in Fig. 6
where we fine-tune on 100 samples, we see differences in performance. Scheurer et al. (2022) reports that
fine-tuning on refinements outperforms fine-tuning on initial summaries. And both methods outperform
sampling from FeedME (i.e., InstructGPT). In our experiments fine-tuning on 100 refinements achieves a
win rate of 19.6±1.5% against human summaries, fine-tuning on initial summaries a win rate of 19.6±1.5%,
and FeedME a win rate of 20.8± 1.5%. Thus both fine-tuned methods perform equally and are worse than
sampling from FeedME.

Second, we compare the results of refining a summary with feedback. Note that Scheurer et al. (2022) uses
an embedding-based scoring function to select refinements, whereas we use InstructRM. In Scheurer et al.
(2022) Fig. 3 (left) Refine with Feedback + Best of N achieves a win rate of 67.0 ± 3.1% against
initial summaries (sampled from FeedME), Refine with Feedback achieves a win rate of 60.5 ± 3.0%,
Refine without Feedback achieves 50.3± 2.6% and Human Summaries have a win rate of 60.8± 3.4. In
our Fig. 15 (left) Refine with Feedback + Best-of-5 achieves a win rate of 69.1± 1.9%, Refine with Feedback
achieves a win rate of 63.9 ± 2.0%, Refinement without Feedback achieves a win rate of 59.4 ± 2.0% and
Human Summaries a win rate of 83.2 ± 1.7%. The difference in the human summaries is expected, given
that we use better human summaries. The Refinement without Feedback method achieves higher results in
our work than in Scheurer et al. (2022).

Third, it is also noteworthy that using the embedding similarity as a scoring function worked well in Scheurer
et al. (2022), while it does not work in our setting (see Table 5 and §4.3.1 for a discussion of the results).
We believe this is because the feedback we collect is written by many annotators and is thus much more
diverse, while in Scheurer et al. (2022), the authors themselves wrote the feedback.

Here we now list various differences in the setup of Scheurer et al. (2022) and our paper, which could all
account for the different results.

1. Scheurer et al. (2022) use an embedding similarity as a scoring function, while we use InstructRM
Ensemble. Looking at Tab. 5 and the corresponding discussion in §4.3.1, already shows that the
methods are very different.

2. The human-written summaries are of much higher quality in our paper than in Scheurer et al. (2022)
(see §4.2 and App. B.6)
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Figure 14: Distribution of tokens of various fine-tuning datasets with 1K samples in terms of content and
function words. We only evaluate the various completions, i.e., summaries, since the prompts are the same
for all distributions.

3. In Scheurer et al. (2022), the annotation instructions specifically state that the feedback should
mention how to improve a summary. In our work, we collect much more unrestricted and diverse
feedback. This difference is also apparent in the fact that the embedding similarity does not work
well as a scoring function in our setting.

4. In Scheurer et al. (2022), the authors themselves annotated the data, i.e., they wrote the feedback
and evaluated the final summaries. In our case, we use independent evaluators who are trained on
this task. Using 31 annotators overall also gives us a more diverse and less biased estimate of our
methods. Also, doing human evaluations is inherently noisy and will never lead to the exact same
results.

5. The evaluation in Scheurer et al. (2022) was done on a different dataset than in this work. Specifically,
they used only 100 samples to evaluate their method, while we use a test set of 698 samples.

6. The hyperparameters in Scheurer et al. (2022) used for sampling and fine-tuning are different from
the hyperparameters used in our work.

7. Overall, we use different prompts than Scheurer et al. (2022) (see App. B.3 and App. B.1)

C.8.5 Does Language Feedback Improve Refinements of Summarizations?

The improvements from ILF suggest that the refinements used for fine-tuning are high-quality, so here
we investigate whether language feedback is responsible for the high quality. To do so, we have human
evaluators rank Refinement with Feedback + Best of N summaries against summaries from several other
methods, similar to §4.3. We use the human ranking to compute a win rate between each method and
the initial summary. We compare against Refinement with Feedback, which randomly chooses a refinement
∈ x1

1, . . . , x5
1. This ablation helps to evaluate the importance of choosing a refinement with our scoring

function R, i.e., InstructRM Ensemble. We also evaluate Refinement without Feedback, which instructs the
LM to refine the initial summary but without feedback. This ablation helps to evaluate the importance
of using language feedback. Lastly, we evaluate Human Summaries and Initial Summaries i.e., the initial
summary x0 generated by FeedME. We evaluate all methods on the validation dataset.

Results Fig. 15 (left) shows the win rates of summaries from various methods against initial summaries.
Surprisingly, instructing a model to improve its output without feedback already leads to a significant
improvement (win rate of 59.4 ± 2.1% over the initial summaries). Refinements with Feedback achieve an
improved win rate of 63.9±2.0%, showing that language feedback is useful for improving refinement quality.
Refinement with Feedback + Best of N achieves an even better win rate of 69.1 ± 1.9%, highlighting that

60



Published in Transactions on Machine Learning Research (02/2024)

50 55 60 65 70 75 80 85
Win Rate vs. 

 Initial Summaries (%)

 Human
 Summaries

 Refinement
 (w/o

 Feedback)

 Refine w/
 Feedback

 Refine w/
 Feedback +

 Best-of-5

0 20 40 60
% of summaries 

 incorporating most important 
 feedback point

 Human
 Summaries

 Refinement
 (w/o

 Feedback)

 Refine w/
 Feedback

 Refine w/
 Feedback +

 Best-of-5

Figure 15: Left: Human evaluators prefer summaries from all refinement methods to the initial summaries
(FeedME). Refine with Feedback + best-of-5 is rated highest. Right: Refine with Feedback + best-of-5
generally does incorporate the most important feedback point.

Best-of-N with the InstructRM Ensemble further improves the refinements. Overall, language feedback is
important for high-quality refinements, especially when using Best-of-N sampling.

C.9 Do Refinements of Summarizations Incorporate the Feedback?

To determine whether refinements are of higher quality due to incorporating feedback rather than improving
the summary in other ways, we conduct a study on the validation dataset in which crowd workers evaluate
how often the most important point of the feedback is incorporated in the refinements produced by various
methods. As shown in Fig. 15, right, our method Refinement with Feedback + Best of N incorporates
the most important point in the feedback most frequently (57.4 ± 2.2% often). Refinement with Feedback
incorporates feedback 49.6 ± 2.2% of the time, showing that Best-of-N sampling improves how often the
feedback is incorporated. For reference, Refinement without Feedback fixes the most important point in the
feedback 30.8±2.1% of the time, despite the model not receiving the language feedback. Human Summaries
address the most important point in the feedback 74.0± 1.9% of the time when writing the summary from
scratch despite not receiving the feedback explicitly. Our results suggest that refinements are high-quality
in part because they incorporate the most important point in the feedback.
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D Broader Impacts

Our work, like many other human feedback-based machine learning works, relies upon hand-labelled human
annotations. Since these annotations are often provided by small groups of expert annotators, the resulting
model may exhibit social (Liang et al., 2023; Srivastava et al., 2023), political (Hartmann et al., 2023; Perez
et al., 2023), or moral biases (Simmons, 2023) learned from the human annotations. Past work has also
shown that such human feedback-based models may have difficulty modeling the full spectrum and diversity
of human opinions (Santurkar et al., 2023), and may even rely upon modeling the most productive annotators
rather than modeling the task itself (Geva et al., 2019). Continued training on multiple rounds of feedback
may also result in further amplification of biases present in the dataset (Taori & Hashimoto, 2023). As such,
the deployment of feedback-based models warrants careful attention to the diversity, biases, and steerability
of the model.
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