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ABSTRACT

Large Language Models (LLMs) have demonstrated remarkable performance
across various domains, yet their capabilities in molecular reasoning remain in-
sufficiently explored. Current approaches tend to rely heavily on general-purpose
prompting, which lacks domain-specific molecular semantics, while those that
use fine-tuning strategies often face challenges with interpretability and reasoning
depth. To address these issues, we introduce MolReasoner, a two-stage frame-
work designed to transition LLMs from memorization towards chemical reason-
ing. First, we propose Mol-SFT, which initializes the model’s reasoning abili-
ties by distilling high-quality reasoning Chain-of-Thought (CoT) trajectories from
GPT-4o, enriched with structural features and functional group information, and
verified for chemical accuracy, enabling the model to internalize coherent and
chemically meaningful reasoning. In the Mol-RL stage, we propose verifiable and
extensible multi-level rewards, where language- and structural-similarity rewards
provide fine-grained semantic and structural alignment. Moreover, we introduce
more comprehensive metrics, together with a multi-dimensional expert-aligned
pipeline to rigorously assess reasoning quality. Extensive experiments demon-
strate that MolReasoner outperforms existing methods, and marking a significant
shift from memorization-based outputs to robust chemical reasoning. The code for
MolReasoner is included in the supplementary materials and will be open-sourced
in the near future.

1 INTRODUCTION

Given the significance of molecular science (Moore et al., 2002) — spanning applications such as
drug discovery (Drews, 2000) and materials design (Tibbitt et al., 2015), — as well as the grow-
ing need for deeper insights into molecular structures, molecular reasoning tasks have become vital
for uncovering underlying chemical relationships and intrinsic patterns in molecular data, directly
supporting molecular design, property prediction, and the generation of novel molecules. In paral-
lel, large language models (LLMs) (Hurst et al., 2024; Team et al., 2023; Yang et al., 2025) have
recently achieved impressive capabilities across diverse domains, prompting interest in utilizing
LLMs to enhance molecular comprehension and generation. To bridge molecular science and lan-
guage modeling, one notable research direction is the translation between molecular descriptors and
natural language (Edwards et al., 2022).

The extensive knowledge and reasoning capabilities of LLMs make them promising candidates for
complex text-related molecular tasks. Early Prompt-based approaches (Wu et al., 2024; Guo et al.,
2023; Liu et al., 2024b) utilize general-purpose LLMs without domain-specific fine-tuning, relying
on intentionally engineered instructions or in-context examples. However, as illustrated in Figure 1,
these methods are limited in capturing molecular semantics due to the absence of chemistry-specific
adaptation, leading to a heavy reliance on superficial linguistic cues or templates rather than accu-
rately encoding underlying chemical structures. This issue can result in detrimental errors, including
incorrect atom counts and the generation of chemically implausible structures, underscoring the lim-
itations of general-purpose LLMs in effectively reasoning about molecular content.

Subsequently, Fine-tuning methods without explicit reasoning (Fang et al., 2024; Yu et al., 2024;
Liu et al., 2023; Li et al., 2024) emerged, training LLMs directly on molecule-text pairs formatted
as question-answer or instruction-following tasks. However, as shown in Figure 1, these methods
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(a).Prompt-based Methods

(b).Fine-tuning Methods without explicit reasoning

(c).MolReasoner

Please generate the molecular structure (SELFIES) based on the following description. Please think step by step and return the final answer in <answer> </answer> 
tags.
Description:
The molecule is a 3,3'-lysobisphosphatidate obtained by deprotonation of the phosphate OH group of (S,S)-bis-(3-oleoylglycero)-1-phosphate; major species at pH 
7.3. It is a conjugate base of a (S,S)-bis-(3-oleoylglycero)-1-phosphate.

Invalid or inconsistent molecules.

[C][C][C][C][C][C][C][C][/C][=C][\\C][C][C][C][C][C][C][C][=Branch1][C][=O][O][C][C@
H1][Branch1][O][C][O][P]… (Lack of Chain-of-Thought)

To generate the SELFIES representation, …\n\n1. **Identify the Base 
Molecule**:…\n2. **Oleoyl Chain**: …The oleoyl chain is represented as 
[C@@H1][C@@H1][C@@H1][C@@H1][C@@H1][C@@H1][C@@H1][C@@H1][C@@
H1][C@@H1][C@@H1]…[C@@H1][C@@H1][C@@H1][C@@H1][C@@H1]…[C@@H1
][C@@H1][C@@H1] （Repeatd fragments w/o answer format）

Invalid or Inconsistent Molecule

<think>\nOkay, so I‘m trying to design a SELFIES structure for this molecule…
But wait…
but I need to think about the exact arrangement..
but that's not possible…
Wait, perhaps the…, but that's not correct.
So the chain would be C1-P-O-C2-C3-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-
CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂ (Repetitive self-questioning w/o
answer format)

Hallucinations in Reasoning

To deduce the molecular structure …n\n1. **Identify the Core 
Structure**:...\n\n2. **Understand the Phosphate Group**:...\n\n3. 
**Incorporate the Oleoyl Groups**: …, Oleic acid has a straight chain of 18 
carbon atoms with a double bond at the 9th position (C9). Therefore, each 
oleoyl group can be represented as a long hydrocarbon chain (C18) with a double 
bond.\n\n4. **Construct the Glycerol Backbone**:…, and one hydroxyl group is 
linked to the phosphate group.\n\n5. **Connect the Components**: \n - Start 
with the two glycerol molecules.\n - Attach the oleoyl groups to the first and 
second carbon atoms of each glycerol molecule.\n -... **Use the Provided 
Fragments**:...\n - The fragment <|C020|> represents the glycerol 
backbone.\n - The fragment <|C030|> represents the oleoyl groups.\n\nBy 
following these steps, we can construct the molecular structure of 3,3'-
lysobisphosphatidate.\n\nThe final answer is:\n
<answer>[C][C][C][C][C][C][C][C][/C][=C][\\C][C][C][C][C][C][C][C][=Branch1][C][=O
][O][C][C@H1][Branch1][C][O][C][O][P][=Branch1][C][=O][Branch1][C][O-
1][O][C][C@@H1][Branch1][C][O][C][O][C][=Branch1][C][=O][C][C][C][C][C][C][C][/
C][=C][\\C][C][C][C][C][C][C][C]</answer>

Chemical Knowledge Alignment

Structured and Consistent Reasoning

Consistent Molecule

Figure 1: Examples of text-based molecule generation. (a) Prompt-based methods often hallu-
cinate and yield chemically invalid molecules due to a lack of chemistry-specific adaptation. (b)
Fine-tuning without explicit reasoning encourages memorization over generalization, reducing
interpretability. (c) MolReasoner provides structure-grounded Chain-of-Thought reasoning, yield-
ing interpretable and chemically valid candidates.

typically utilize supervision signals limited exclusively to final outputs, lacking explicit guidance
through intermediate reasoning steps, causing supervised memorization rather than genuine molec-
ular reasoning. Therefore, the models are incapable of genuinely internalizing chemical principles
and logical reasoning processes, severely limiting their generalization ability toward unseen molec-
ular structures (Chu et al., 2025). Furthermore, the absence of explicit reasoning undermines in-
terpretability, which in turn reduces model reliability and restricts its applicability in high-stakes
molecular applications. These limitations underscore that existing methods fail to fully exploit the
potential of LLMs in molecular tasks, largely due to insufficient reasoning capabilities. Motivated
by the above observation, we pose and try to answer the central research question: Can we go beyond
mere memorization and teach LLMs to reason on molecular tasks?

A natural approach to addressing this issue is to construct Chain-of-Thought (CoT) data (Wei et al.,
2022), which provides explicit reasoning processes alongside question-answer pairs. However, man-
ually crafting such detailed reasoning is prohibitively costly, as it demands substantial input from
domain experts. Recent advances in Large Reasoning Models (LRMs) (Jaech et al., 2024; Liu et al.,
2024a) propose an alternative by leveraging Reinforcement Learning (RL) to promote reasoning
based solely on outcome-based supervision. While this reduces the reliance on handcrafted reason-
ing data, it encounters another obstacle — the cold-start problem. Without prior reasoning guidance
or domain-specific adaptation, models initially struggle to discover effective reasoning strategies,
resulting in sparse reward signals early in training.

To address these challenges and shift molecular LLMs from memorization toward genuine reason-
ing, we propose MolReasoner, a two-stage training framework comprising Mol-SFT for initializ-
ing reasoning procedures and Mol-RL for activating deeper internal chemical reasoning knowledge.
Specifically, Mol-SFT leverages molecule–text pairs augmented with reasoning trajectories gener-
ated via GPT-4o (Hurst et al., 2024), further enriched with structural features and functional group
information to ensure coherent and chemically meaningful reasoning. These distilled trajectories
allow the model to internalize reasoning formats and acquire initial molecular reasoning capabil-
ity. Since format-only rewards are inadequate for complex chemical knowledge, Mol-RL enhances
reasoning with verifiable multi-level rewards, where language- and structural-similarity signals pro-
vide fine-grained semantic and structural alignment. Ablation studies show that both rewards are
effective and indispensable, providing an extensible paradigm for molecular reinforcement learning.

Besides, we introduce fragment- and functional group–level metrics to better assess structural con-
sistency and hallucination, and design a multi-dimensional expert-aligned evaluation. Results and
case studies show that MolReasoner produces significantly higher-quality trajectories than exist-
ing baselines, validating its advantage in molecular reasoning. Overall, MolReasoner represents a
paradigm shift from memorization to genuine reasoning: instead of merely recalling training an-
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Stage 1. Warm-up Stage: Mol-SFT

Caption

Molecule

Distillation

Molecule Captioning w/ CoT

Text-based de novo Molecule Generation w/ CoT

1. Understand the SELFIES String…
2. Interpretation of Fragments…
3. Analysis of Chemical Characteristics…
4. Generate the Chemical Description…
<answer> The molecule is a …</answer>

1. Understand the Text Description…
2. Extract Key Structural Features…
3. Combine Fragments and Components…
4. Verify Structural Information…

<answer> [C][C@H1][C@@H1][Branch2]…</answer>

Molecular
Validation

Response
Validation

Knowledge-Guided CoT Construction

Cold Start SFT w/
Knowledge-Guided CoT

GPT-4o

Mol-SFT

Learning CoT Reward Format Providing Shallow Reasoning Prior

To generate the SELFIES 
representation, …\n\n1. **Identify 
the Base Molecule**:…\n2. **Oleoyl 
Chain**: …The oleoyl chain is 
represented as 
[C@@H1][C@@H1][C@@H1][C@@H1]
[C@@H1][C@@H1][C@@H1][C@@H1]
..C@@H1][C@@H1]

Qwen

To reconstruct or deduce the molecular structure…, 1. 
**Identify the Base Structure**…, which consists of two 
glycerol moieties linked to oleic acid and a phosphate 
group…6. **Linking the Oleoyl Chains**:…Each oleoyl chain 
is a long hydrocarbon chain (C18) with a double bond (C=C) 
at the appropriate position,…the final representation of 
the structure is:
<answer>[C][C][C][C]…[=Branch1][C][C]…[C][C][C]</answer>

Qwen w/
Cold Start

Stage 2. Reinforcement Learning Stage: Mol-RL

Qwen w/ Cold Start

Sampled Answer

GRPO

Format
Reward

Accuracy
Reward

Structural
Similarity 
Reward

Language 
Similarity 
Reward

Multi-Level Reward

To deduce the...2. **Understand the Phosphate 
Group**: ...the phosphate group has a negative charge 
(O-)...3. **Incorporate the Oleoyl Groups**: ...(C18) 
with a double bond…5. **Connect the 
Components**:...Attach the oleoyl groups to the first 
and second carbon atoms of each glycerol 
molecule...Link the phosphate group to the third carbon 
atom of each glycerol molecule... 7. **Use the 
Fragments**:...The fragment <|O=P([O-])(O)O|> 
represents the phosphate...final answer is:
<answer>[C][C][C]...[P][=Branch1][C][=O]…[C]</answer>

Chemical Consistency and Validity Deep Global and Local Reasoning

Figure 2: MolReasoner is a two-stage training framework: (1) Mol-SFT initially utilizes
molecule–text pairs, augmented by reasoning trajectories generated via GPT-4o, to bootstrap rea-
soning capabilities; and (2) Mol-RL subsequently refines the reasoning ability through a carefully
designed reward function that encourages precise alignment between molecular structures and their
corresponding textual descriptions.

swers, the model learns to understand molecular structures and their associated textual semantics,
generating solutions grounded in coherent and interpretable reasoning.

2 METHODOLOGY

In the course of this work, we dedicate to the molecule-text translation task (Edwards et al., 2022),
which evaluates a model’s capability to align molecular representations with corresponding natural
language descriptions through effective reasoning. Further details can be found in the appendix.
Additionally, the appendix includes a comprehensive review of related research on molecular lan-
guage models and large-scale reasoning models. In the following section, we present the training
pipeline of MolReasoner. Started with detailing the construction of CoT data for cold-start, we then
introduce how the Mol-SFT and Mol-RL stages enhance the molecular reasoning abilities of the
model.

2.1 KNOWLEDGE-GUIDED COT DATA CONSTRUCTION

To warm up before RL, we propose a knowledge-guided CoT data construction pipeline tailored
specifically for molecular tasks, which aims to familiarize LLMs with interpretable reasoning pro-
cesses. There are two molecular translation tasks: 1) molecule captioning and 2) text-based de novo
molecule generation. Leveraging the ChEBI-20 (Edwards et al., 2021) training set, which provides
paired records of molecules and their natural-language descriptions, we construct CoT datasets using
tailored prompt template, chemical knowledge injection, and rigorous output filtering strategies.

Inspired by prior work (Jang et al., 2024b; Ouyang et al., 2024; Jang et al., 2024a) incorporating
structural knowledge to promote model reasoning, we further enrich our prompts with compre-
hensive and detailed chemical structure information. As showcased in the appendix, we extract
statistical structural features (e.g., , number of rings, aromaticity, molecular weight) to anchor the
model’s understanding of molecular structures. Additionally, considering the crucial role of func-
tional groups in defining molecular properties, we adopt the EFGs (Lu et al., 2021) approach to iden-
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tify key functional groups and hydrocarbon fragments, integrating these into prompts to strengthen
the alignment between chemical structures and linguistic descriptions. This multi-level guidance —
combining structural descriptors and functional fragments — enables the model to produce coherent
and chemically meaningful reasoning trajectories.

While previous studies (Taylor et al., 2022; Edwards et al., 2022) use SMILES for molecule rep-
resentation, its grammar and token order sensitivity often result in invalid or chemically implau-
sible outputs. To overcome this limitation, Mol-Instructions (Fang et al., 2024) adopts the SELF-
IES (Krenn et al., 2022) representation. SELFIES ensures chemical validity by construction, elim-
inating common structural errors such as mismatched parentheses, invalid atomic symbols, and il-
logical branching patterns.

With these foundations, for the molecule captioning task, given an input molecule represented as
a SELFIES sequence, we employ a unified prompt template guiding GPT-4o (Hurst et al., 2024)
to reason step-by-step using the provided structural information. Generated reasoning trajectories
are then distilled into semantically accurate captions. Through stringent semantic consistency fil-
tering, we obtain approximately 18,000 high-quality CoT samples. For the more challenging text-
based de novo molecule generation task, prompts are designed to simulate the reasoning process of
chemists, explicitly guiding the model to identify molecular components from textual descriptions
and systematically assemble them into valid SELFIES. After filtering for structural validity and se-
mantic coherence, we acquire approximately 24,000 high-quality CoT samples. Notably, although
both tasks originate from the same molecular dataset, differences in task directionality, CoT prompt
design, and filtering criteria result in varying numbers of high-quality samples.

2.2 WARM-UP STAGE: MOL-SFT

The effectiveness of LLMs in molecular tasks is often constrained by poor structure–semantic align-
ment, incoherent reasoning trajectories, and limited comprehension of chemical semantics. Thus,
we introduce the Molecular Supervised Fine-Tuning (Mol-SFT) stage, designed to establish foun-
dational reasoning formats and linguistic logic tailored specifically to molecular tasks.

In the Mol-SFT stage, we utilize synthetic CoT examples to explicitly guide the model in learning
step-by-step reasoning processes. Specifically, we employ approximately 42,000 high-quality CoT
samples from our constructed molecule captioning and text-based generation datasets. Training is
performed via a standard autoregressive language modeling objective:

LMol-SFT(θ) = −
T∑

t=1

log p(yt | x, y<t; θ) (1)

where x denotes the instruction prompt, {y1, y2, . . . , yT } represents the reasoning trajectory and fi-
nal answer, and θ denotes the model parameters. This stage enables the model to internalize molec-
ular reasoning formats, domain-specific terminology, and linguistic structures via example-based
learning. After Mol-SFT, the model demonstrates an enhanced capability to follow structured rea-
soning instructions and generate coherent reasoning chains. This warm-up phase provides shallow
reasoning priors and format awareness, laying essential groundwork for subsequent reinforcement
learning-based refinement.

2.3 REINFORCEMENT LEARNING STAGE: MOL-RL

To further refine molecular reasoning capabilities, we introduce Mol-RL, which guides the model
in optimizing both reasoning pathways and generation outcomes. In this stage, we employ Group
Relative Policy Optimization (GRPO), where the policy model πθ generates multiple candidate re-
sponses for each input. These candidate responses are then evaluated using tailored, chemically
verifiable reward functions, which provide explicit feedback signals to encourage high-quality and
chemically coherent reasoning trajectories. The GRPO algorithm is detailed in the appendix. For
molecule captioning, we introduce a verifiable reward function Rcap designed to encourage correct
formatting and semantically accurate natural-language descriptions:

Rcap =

{
0.5 + 1.5×Rlanguage, if format is correct,
0.0, if format is incorrect.

(2)
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The format is considered correct if the final output is enclosed within <answer>...</answer>
tags. The language-similarity reward Rlanguage is computed as the mean of six standard evaluation
metrics (BLEU-2, BLEU-4, METEOR, ROUGE-1, ROUGE-2, and ROUGE-L) (Papineni et al.,
2002; Banerjee & Lavie, 2005; Lin, 2004) comparing the generated caption to the reference descrip-
tion.

In the text-based de novo molecule generation task, we propose a verifiable reward Rgen to improve
the structural integrity and semantic alignment of generated molecules:

Rgen =

{
0.5 + 1.5×Rstructural, if format is correct,
0.0, if format is incorrect.

(3)

where the structural-similarity reward Rstructural is computed as the mean of four key components —
fingerprint similarity, SELFIES-level language similarity, fragment similarity, and functional group
matching — to provide a holistic and chemically aware measure of structural alignment.

Rstructural =
1

4
(FPsim + SELFIESsim + FRAGsim + FGmatch) (4)

We compute fingerprint similarity based on three widely used molecular fingerprints: Morgan,
MACCS, and RDKit (Tanimoto, 1958; Durant et al., 2002). The final score is calculated as the
mean of these three, providing a balanced measure of molecular similarity:

FPsim =
1

3
(Morgan + MACCS + RDKit) (5)

Additionally, SELFIESsim is assessed by computing the character-level BLEU score between the
predicted and reference SELFIES sequences.

In addition to the two similarity-based rewards, we observe that fragment and functional group hallu-
cinations are regularly presented during the molecular reasoning process. Even though the generated
molecules may be chemically valid, they can exhibit significant inconsistencies with the reference
structures. To address this issue, we introduce two additional rewards: fragment similarity and func-
tional group matching. We use EFGs (Lu et al., 2021) to identify differing fragments between the
generated molecules and the reference molecules. Fragment similarity is then computed by jointly
considering the Jaccard overlap and fragment-level recall, effectively capturing both coverage and
precision of structural subcomponents. Here, Fpred and Fref refer to the sets of fragments in the
predicted and reference molecules, respectively. The final fragment similarity score is given by:

FRAGsim = 0.5× |Fpred ∩ Fref|
|Fpred ∪ Fref|

+ 0.5× |Fpred ∩ Fref|
|Fref|

(6)

Additionally, the functional group matching reward computes the difference in the number of func-
tional groups, excluding CH-only groups, between the predicted and reference molecules, using an
exponential decay formulation.

FGmatch = exp

(
−
∑

k |countpred(k)− countref(k))|∑
k countref(k) + ε

)
(7)

where countpred(k) refers to the number of occurrences of functional group k in the predicted
molecule, and countref(k) refers to that of functional group k in the reference molecule. We set
ε = 10−5 to ensure numerical stability.

By incorporating chemical awareness and granularity through multi-level reward feedback, the
model learns to align chemical knowledge from global molecular semantics to local molecular struc-
tural details during inference, thereby ensuring greater consistency in generated chemical structure.
As a result, the model transitions from merely producing “valid” molecules to generating “high-
quality” structures that are both chemically coherent and semantically aligned with the input, im-
proving its generation capabilities.

3 EXPERIMENTS

This section outlines our experimental setup and presents the results that demonstrate the effective-
ness of MolReasoner. Due to the space limits, we refer to the appendix for implementation details.
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Method Size BLEU-2↑ BLEU-4↑ METEOR↑ ROUGE-1↑ ROUGE-2↑ ROUGE-L↑

Closed-Source Model

GPT-4o - 0.1194 0.0433 0.1651 0.2315 0.0738 0.1792
GPT-4o-mini - 0.1080 0.0400 0.1545 0.2310 0.0723 0.1776

Open-Source Model

Qwen2.5-7B-Instruct 7B 0.0792 0.0258 0.2132 0.2091 0.0601 0.1483
DeepSeek-R1-Qwen-7B 7B 0.1173 0.0469 0.1544 0.2209 0.0749 0.1693
LLaMA3.1-8B-Instruct 8B 0.1670 0.0769 0.2164 0.2806 0.1182 0.2250
Qwen3-8B 8B 0.0974 0.0289 0.1733 0.2067 0.0501 0.1567
LLaMA3.1-70B-Instruct 70B 0.1466 0.0658 0.1832 0.2736 0.1072 0.2203
Qwen2.5-72B-Instruct 72B 0.1519 0.0647 0.1949 0.2729 0.0948 0.2067
LLaMA3 + MSR 8B 0.0993 0.0237 0.1657 0.2274 0.0595 0.1559
Mol-Instructions + LLaMA2 7B 0.0956 0.0667 0.1891 0.2801 0.1823 0.2582
Mol-Instructions + LLaMA3 8B 0.0060 0.0023 0.0168 0.0124 0.0023 0.0119
MolReasoner (Ours) 7B 0.4383 0.3220 0.4754 0.5530 0.3662 0.4821

Table 1: Performance of Molecule Captioning. MolReasoner outperforms all closed-source and
open-source baselines across BLEU-2/4, METEOR, and ROUGE metrics, establishing the new
state-of-the-art in this molecule captioning task.

3.1 DATASETS

With validity-based filtering criteria, we generate approximately 42,000 high-quality CoT samples
from the training set of ChEBI-20 — 24,000 samples for molecule captioning and 18,000 for text-
based de novo molecule generation. These samples form for the initial warm-up training stage.
For the later reinforcement learning stage, we construct two GRPO training datasets derived from
ChEBI-20.

3.2 EVALUATION AND BASELINES

We utilize the test set of ChEBI-20 as our benchmark. The molecules are represented using SELF-
IES, following Mol-Instructions (Fang et al., 2024). Evaluation is performed using task-specific
metrics.

Molecule Captioning. Following Mol-Instructions (Fang et al., 2024), we adopt standard language
generation metrics, including BLEU, ROUGE, and METEOR, to assess the similarity between gen-
erated molecular descriptions and ground-truth references.

Text-based de novo Molecule Generation. We use RDKit to validate the chemical correctness of
generated strings and compute exact match rates. In addition, we evaluate molecular similarity using
Tanimoto scores, Levenshtein distance, and BLEU scores.

To further assess the structural fidelity of generated molecules, we propose three fragment-level
metrics: (1) Frag-J: Measures the Jaccard similarity between the fragment sets of the predicted
and reference molecules. Higher values indicate larger structural overlap. (2) Frag-R: Assesses
whether key structural fragments in the reference molecule are recalled in the prediction. (3) FG-
Match (Functional Group Matching): Computes the difference in the number of functional groups
between the prediction and the reference using an exponential decay formulation; a higher score
indicates greater similarity. Unlike Mol-Instructions, which evaluates only valid molecules, we
report all metrics across the entire set of generated molecules to capture overall model performance.

Baselines. Our primary goal is to examine how general-purpose LLMs can be adapted for molec-
ular reasoning when equipped with explicit reasoning strategies. Therefore, we deliberately select
baselines that are LLM-based models. For prompt-based methods, we compare our model against
leading general-purpose LLMs, including GPT-4o, GPT-4o-mini, Qwen2.5-7B-Instruct, DeepSeek-
R1-Distill-Qwen-7B, LLaMA3.1-8B-Instruct, Qwen3-8B, LLaMA3.1-70B-Instruct, Qwen2.5-72B-
Instruct, and LLaMA3 with MSR (Jang et al., 2024a). In addition, we include Mol-Instructions
combined with LLaMA2 and LLaMA3 as representative fine-tuning approaches that do not ex-
plicitly incorporate reasoning, thereby providing strong LLM-based molecular baselines. We use
Qwen2.5-7B-Instruct as our base model for all experiments; further training details are provided in
the appendix.
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Method Size BLEU↑ Exact↑ Levenshtein↓ RDK FTS↑ MACCS FTS↑ MORGAN FTS↑ Frag-J↑ Frag-R↑ FG-Match↑ VALIDITY↑

Closed-Source Models

GPT-4o - 0.1949 0.0045 49.3545 0.0926 0.2066 0.0836 0.1296 0.1777 0.3753 0.2916
GPT-4o-mini - 0.0522 0.0058 49.1371 0.0863 0.2032 0.0883 0.0987 0.1324 0.3898 0.1946

Open-Source Models

Qwen2.5-7B-Instruct 7B 0.0002 0.0024 40.0076 0.0776 0.1585 0.0520 0.0773 0.1037 0.3601 0.2395
DeepSeek-R1-Qwen-7B 7B 0.0000 0.0018 50.6957 0.0619 0.1327 0.0461 0.1101 0.1428 0.3847 0.0697
LLaMA3.1-8B-Instruct 8B 0.0094 0.0027 40.2092 0.0556 0.1470 0.0470 0.0701 0.0918 0.3587 0.2319
Qwen3-8B 8B 0.0000 0.0036 28.2564 0.3692 0.4733 0.3059 0.3406 0.3566 0.5280 0.0118
LLaMA3.1-70B-Instruct 70B 0.0787 0.0055 44.1626 0.0824 0.2323 0.0785 0.1398 0.1963 0.3574 0.4641
Qwen2.5-72B-Instruct 72B 0.0000 0.0048 18.0588 0.1584 0.3456 0.1432 0.1696 0.2300 0.3436 0.1134
LLaMA3 + MSR 8B 0.1227 0.0000 49.2581 0.1194 0.2401 0.0629 0.1690 0.2650 0.2457 0.9412
Mol-Instructions+ LLaMA2 7B 0.3049 0.0470 39.4268 0.2914 0.4427 0.2524 0.3333 0.4092 0.4324 0.9994
Mol-Instructions+ LLaMA3 8B 0.3470 0.0737 40.5716 0.3341 0.4718 0.2936 0.3868 0.4499 0.4882 0.9127
MolReasoner (Ours) 7B 0.7841 0.0758 26.9255 0.4373 0.6759 0.3627 0.5213 0.6414 0.5390 0.9679

Table 2: Performance of Text-based de novo Molecule Generation. MolReasoner surpasses both
closed-source and open-source baselines across all metrics, achieving state-of-the-art performance
in this molecule generation task.

3.3 MAIN RESULTS

In this experiment, we compare MolReasoner with prompt-based methods and fine-tuning methods
without explicit reasoning, evaluating its performance on two tasks: 1) molecule captioning (Table
1) and 2) text-based de novo molecule generation (Table 2). Across all tables, bold indicates the best
and underline the second-best results. The results demonstrate that MolReasoner shows significant
advantages in both reasoning capability and generation quality. In the molecule captioning task,
MolReasoner outperforms multiple metrics. For example, the BLEU-2 score is 0.4383, which is 2.62
times higher than the best baseline; the BLEU-4 score is 0.3220, which is 4.19 times higher than the
best baseline; the METEOR score is 0.4754, which is 2.20 times higher than the best baseline; the
ROUGE-1 score is 0.5530, which is 1.97 times higher than the best baseline; the ROUGE-2 score is
0.3662, which is 2.01 times higher than the best baseline; and the ROUGE-L score is 0.4821, which
is 1.87 times higher than the best baseline. In the text-based de novo molecule generation task,
MolReasoner achieved a BLEU score of 0.7841, which is 2.57 times higher than the best baseline;
an Exact score of 0.0758, which is 1.61 times higher than the best baseline; a RDK FTS score of
0.4373, which is 1.18 times higher than the best baseline; a MACCS FTS score of 0.6759, which
is 1.43 times higher than the best baseline; a MORGAN FTS score of 0.3627, which is 1.19 times
higher than the best baseline; a Frag-J score of 0.5213, which is 1.53 times higher; a Frag-R score of
0.6414, which is 1.80 times higher than the best baseline; and a FG-Match score of 0.5390, which
is 1.02 times higher than the best baseline.

Compared to prompt-based methods without domain adaptation, MolReasoner shows notable im-
provements in semantic understanding and structural accuracy. These general-purpose models typ-
ically lack in-depth chemical knowledge, leading to issues such as functional group hallucinations,
SELFIES being valid but semantically off-track, and ignoring structural details. By guiding the
reasoning process, MolReasoner generates more accurate and chemically plausible descriptions.
Models such as DeepSeek-R1-Distill-Qwen-7B, Qwen3-8B, and Qwen2.5-72B-Instruct, despite in-
corporating reasoning during pretraining, still suffer from conflicting reasoning chains, semantically
collapsed CoT, and misleading captions, resulting in poor BLEU and validity scores; representative
cases are shown in the appendix. In molecule captioning, these models often fail to capture the over-
all structure and chemical properties of the molecules, and the generated descriptions may contain
misleading information, impacting the final molecular understanding.

Compared to fine-tuning without explicit reasoning method — Mol-Instructions, MolReasoner en-
hances the accuracy and semantic consistency of the generated molecular descriptions through the
introduction of reasoning-enhanced mechanisms, overcoming the limitation of traditional methods
that rely solely on the final answer. Particularly in the text-based de novo molecule generation task,
MolReasoner strengthens the reasoning process, ensuring that the generated molecules not only ad-
here to chemical logic but also maintain high consistency in structure and semantics, exhibiting
greater reliability. Overall, MolReasoner overcomes the limitations of both prompt-based methods
and fine-tuning methods without explicit reasoning methods, achieving stronger generation perfor-
mance and higher chemical plausibility in both captioning and generation tasks.
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Method Size BLEU-2↑ BLEU-4↑ METEOR↑ ROUGE-1↑ ROUGE-2↑ ROUGE-L↑

Closed-Source Model
GPT-4o - 0.1194 0.0433 0.1651 0.2315 0.0738 0.1792

Ours
Warm-up 7B 0.3822 0.2683 0.4185 0.4970 0.3100 0.4304
+ FAR 7B 0.3853 0.2715 0.4206 0.4999 0.3101 0.4317
+ BLEU2 7B 0.4388 0.3190 0.4731 0.5484 0.3598 0.4762
+ BLEU4 7B 0.4377 0.3207 0.4751 0.5503 0.3644 0.4799
+ METEOR 7B 0.4379 0.3187 0.4752 0.5493 0.3607 0.4756
+ ROUGE1 7B 0.4380 0.3205 0.4752 0.5522 0.3634 0.4786
+ ROUGE2 7B 0.4369 0.3211 0.4711 0.5530 0.3652 0.4805
Zero-RL + Rlanguage 7B 0.1339 0.0582 0.2385 0.2782 0.1028 0.2076
MolReasoner + Rlanguage 7B 0.4383 0.3220 0.4754 0.5530 0.3662 0.4821

Table 3: Ablation study of different reward functions and the effect of the warm-up stage for
Molecule Captioning. ”Warm-up” denotes the base model without reinforcement learning. ”FAR”
is Format Accuracy Reward; ”BLEU2/4,” ”METEOR,” and ”ROUGE” are their respective metric
rewards. ”Zero-RL + Rlanguage” trains without warm-up, while ”MolReasoner + Rlanguage” is the
final model. MolReasoner achieves the best performance with Rlanguage, highlighting its superiority
in captioning.
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Figure 3: Performance of all models across five key evaluation metrics in the two tasks: Text-based
de novo Molecule Generation and Molecule Captioning. To provide a more intuitive comparison,
all scores are normalized by dividing them by the scores of MolReasoner.

3.4 MULTIDIMENSIONAL EVALUATION AND QUALITATIVE ANALYSIS

To obtain a more comprehensive evaluation of the whole model responses, we developed a multidi-
mensional scoring methodology that assesses both the reasoning process and the final output. This
framework extends beyond standard task-specific metrics to include five key dimensions: Clarity
of Logic, Factual Correctness, Conciseness, Format correctness and Outcome Correctness. To
implement this framework, we engaged domain experts to manually score a subset of responses,
establishing a gold-standard dataset. This expert-annotated data served as few-shot examples in a
detailed prompt for the powerful large language model, GPT-5. Through this process, we config-
ured GPT-5 to act as a reliable and scalable automated rater, aligning its scoring with the nuanced
judgment of our human experts.

The performance of each model is visualized using a radar map Figure 3, providing an intuitive
comparison across five metrics and revealing nuanced performance profiles. This map shows that
MolReasoner’s superiority lies not just in the accuracy of its final answers, but in its reasoning
process. This process is highly explainable and readable, and it demonstrates more precise chemical
information recognition than baselines.

3.5 ABLATION STUDY

3.5.1 REWARD ABLATION FOR MOLECULE CAPTIONING

We systematically evaluate the impact of introducing different stages and reward functions as shown
in Table 3. First, introducing a knowledge-guided CoT warm-up already brings substantial improve-
ments, confirming that structured reasoning enhances molecular understanding. Adding Format
Accuracy Reward (FAR) further stabilizes and refines outputs. Incorporating BLEU and ROUGE
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Method BLEU↑ Exact↑ Levenshtein↓ RDK FTS↑ MACCS FTS↑ MORGAN FTS↑ Frag-J↑ Frag-R↑ FG-Match↑ VALIDITY↑

Closed-Source Model
GPT-4o 0.1949 0.0045 49.3545 0.0926 0.2066 0.0836 0.1296 0.1777 0.3753 0.2916

Ours
Warm-up 0.7466 0.0652 27.2543 0.4179 0.6601 0.3502 0.4830 0.6047 0.5130 0.9263
+ FAR 0.7599 0.0740 27.1335 0.4225 0.6612 0.3516 0.4903 0.6097 0.5174 0.9670
+ FPsim 0.7637 0.0740 27.1249 0.4312 0.6718 0.3566 0.5018 0.6166 0.5181 0.9671
+ FRAGsim 0.7637 0.0742 27.1155 0.4294 0.6647 0.3588 0.5151 0.6344 0.5330 0.9674
+ FGmatch 0.7684 0.0746 26.9617 0.4347 0.6754 0.3603 0.5168 0.6375 0.5387 0.9633
Zero-RL + Rstructural 0.1563 0.0039 34.9341 0.1121 0.3407 0.0990 0.2017 0.2875 0.3167 0.7223
MolReasoner + Rstructural 0.7841 0.0758 26.9255 0.4373 0.6759 0.3627 0.5213 0.6414 0.5390 0.9679

Table 4: Ablation study on different reward functions and the effect of warm-up stages for Text-
based de novo Molecule Generation. ”FAR” stands for Format Accuracy Reward, ”FPsim” refers
to the fingerprint similarity combining RDK, MACCS, and MORGAN, ”FRAGsim” refers to the
fragment similarity score combining Frag-J and Frag-R, ”FGmatch” refers to the functional group
matching score, and ”Zero-RL” indicates the model trained without warm-up.

rewards then drives consistent gains across language metrics. Notably, even without warm-up, Zero-
RL with our language-similarity reward surpasses GPT-4o, underscoring the effectiveness of the
reward itself. Finally, MolReasoner—combining warm-up, format accuracy, and multi-level re-
wards—achieves the best overall performance, validating the synergistic effect of our design.

3.5.2 REWARD ABLATION ON TEXT-BASED DE NOVO MOLECULE GENERATION

In the ablation study for the text-based de novo molecule generation task, we evaluated the impact
of introducing different stages and reward functions, comparing the results with baseline models
such as GPT-4o. The results in Table 4 show that introducing a knowledge-guided CoT warm-up
significantly improves generation quality and reasoning capability. Adding the Format Accuracy
Reward (FAR) further refines outputs, while incorporating chemistry-specific rewards such as fin-
gerprint, fragment, and functional group similarity substantially enhances structural fidelity and
semantic consistency beyond what format rewards alone can achieve. Even without warm-up, Zero-
RL with structural rewards already surpasses GPT-4o in validity. With warm-up, format, and struc-
tural rewards combined, MolReasoner outperforms all baselines, yielding more accurate, valid, and
chemically meaningful molecule designs.

4 LIMITATIONS

Despite the strong empirical gains of MolReasoner, several limitations remain. First, our reliance on
synthetic CoT rationales generated by GPT-4o may introduce biases and errors, and we lack a cali-
brated confidence estimate for its reasoning chains. Second, the reward functions, while effective at
improving structural similarity and validity, do not account for properties such as synthetic acces-
sibility or 3D conformational feasibility; more comprehensive and experimentally grounded evalu-
ations are needed. Finally, the two-stage fine-tuning and on-policy reinforcement learning pipeline
incurs significant computational cost, which may limit scalability to larger models and molecule
libraries; optimizing for efficiency will be a key direction for our future work.

5 CONCLUSION

In this paper, we introduce MolReasoner, a two-stage training framework designed to advance large
language models (LLMs) beyond memorized knowledge and toward effective reasoning in molecu-
lar tasks. Experimental results demonstrate that the integration of supervised fine-tuning (Mol-SFT)
with reinforcement learning (Mol-RL) overcomes the limitations of rote memorization, significantly
improving accuracy, interpretability, and structural understanding. The ability to translate between
molecular structures and human language reveals vast potential to transform fields such as drug dis-
covery, chemical synthesis, and materials science, paving the way for a future where the interface
between LLMs and reasoning drives scientific innovation.
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6 ETHICS STATEMENT

In developing MolReasoner, we prioritized ethical considerations to ensure the responsible use of
our models and methodologies. First, this research does not involve human subjects, and all datasets
used (e.g., ChEBI-20) are publicly available and copyright-compliant. We applied strict data fil-
tering to guarantee chemical validity and minimize the risk of introducing biased or misleading
molecule–text pairs. Nevertheless, we acknowledge that biases inherent in benchmark datasets
(e.g., underrepresentation of certain molecular families) may propagate into the model’s outputs.
We adhere to all relevant legal and ethical research guidelines, including respecting open-source
licenses during dataset construction and providing comprehensive model documentation. Our work
is conducted with a strong commitment to research integrity, ensuring that our contributions remain
beneficial to the scientific community and the AI for Science domain while addressing the ethical
responsibilities associated with molecular AI technologies.

7 REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our work. The proposed MolRea-
soner training pipeline is described in detail in the main text and appendix, including the Mol-SFT
and Mol-RL stages. Details of dataset construction, reward design, and evaluation metrics are pro-
vided in the main text and appendix. We provide the code in the supplement material. Through these
efforts, we aim to enable future research to reliably reproduce, validate, and extend our findings.
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A THE USE OF LARGE LANGUAGE MODELS

The authors declare that the human authors are the sole contributors to this work. This paper was
written and edited exclusively by the authors. Large Language Models (LLMs) were used solely as
a general-purpose tool to aid in the writing and editing process. Specifically, an LLM was utilized
for:

• Text Polishing: Improving the grammar, syntax, and flow of certain paragraphs to enhance
overall readability.

• Data Augmentation and Model Evaluation: Assisting in generating synthetic data for su-
pervised fine-tuning and served as a tool for evaluating model responses. Detailed prompts
and methods for this data synthesis are provided in the main paper and in the ’Prompts’
section of the appendix. All data generated or evaluated with the assistance of the LLM
were thoroughly verified by the authors.

The authors have reviewed, edited, and verified all content generated or augmented by the LLM and
take full responsibility for the entire contents of the paper. The use of LLMs does not constitute
authorship.

B RELATED WORK

In this section, we provide a review of literature related to molecular language models and large
reasoning models.

B.1 MOLECULAR LANGUAGE MODELS

Early approaches to molecular understanding represent molecules as 1D sequences. KV-PLM Zeng
et al. (2022) leverages SMILES Weininger (1988) to represent molecules and employs a masked-
language-modeling objective for pretraining on biomedical texts. MolT5 Edwards et al. (2022),
based on T5 Raffel et al. (2020), is specifically designed for molecular translation tasks. More re-
cently, LlaSMol Yu et al. (2024) fine-tunes a suite of open-source LLMs on self-curated molecular
instruction datasets. Mol-Instructions Fang et al. (2024) adopts the SELFIES Krenn et al. (2022)
molecular descriptor and introduces a dedicated instruction dataset for biomolecular research. The
introduction of molecular graph encoders has led to the development of multimodal molecular lan-
guage models. MoMu Su et al. (2022) and MoleculeSTM Liu et al. (2022) employ cross-modal
contrastive learning to bridge the representation spaces of molecular graphs and text. MolCA Liu
et al. (2023) combines SMILES with 2D molecular representations for molecule-to-text generation.
More recent work, such as 3D-MoLM Li et al. (2024) and BioT5+ Pei et al. (2024), incorporates
3D molecular structures to enhance LLMs’ ability to model molecular understanding. Despite these
advancements, these models remain limited in their reasoning capabilities due to the absence of
Chain-of-Thought (CoT) Wei et al. (2022) fine-tuning. This gap restricts their performance in tasks
requiring complex molecular understanding and reasoning, thereby limiting their practical utility in
more demanding biomedical applications.

B.2 LARGE REASONING MODELS

Recent advancements have led to the emergence of Large Reasoning Models (LRMs) Jaech et al.
(2024); Team et al. (2023); Liu et al. (2024a), which extend the capabilities of traditional LLMs
by enabling deliberative, multi-step reasoning. These models distinguish themselves through the
explicit representation of reasoning processes, which is crucial for tackling complex tasks requir-
ing structured problem-solving. The development of LRMs is closely tied to policy optimization
techniques for model alignment, with the canonical approach being Reinforcement Learning from
Human Feedback (RLHF) Ouyang et al. (2022) with Proximal Policy Optimization (PPO) Schul-
man et al. (2017). However, the computational demands and complexity of this approach, which
involves managing multiple models (i.e., policy, reference, reward, and critic), have driven the ex-
ploration of more efficient alternatives. One such alternative is Group Relative Policy Optimization
(GRPO), introduced in the training of DeepSeekMath Shao et al. (2024). GRPO is a variant of PPO
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that eliminates the need for a separate critic network, thereby reducing both memory and compu-
tational overhead. The efficiency and versatility of GRPO have enabled its application in a variety
of high-stakes domains beyond its initial focus on mathematics, including puzzles Xie et al. (2025),
medicine Lai et al. (2025), and finance Liu et al. (2025). Despite the progress in LRM development,
their application to molecular tasks remains relatively underexplored, presenting a promising avenue
for this paper.

C MOLECULE-TEXT TRANSLATION

Advancing the use of LLMs in molecular science requires moving beyond structural representations
toward explicit structure-level reasoning grounded in natural language. Such reasoning abilities
are essential for interpreting molecular semantics, inferring molecular functions, and generating
chemically plausible structures from textual inputs. To systematically evaluate these capabilities,
researchers Edwards et al. (2022) introduced the molecule-text translation task, designed to assess
a model’s proficiency in aligning and reasoning between molecular representations and natural lan-
guage descriptions. This task comprises two complementary sub-tasks:

• Molecule Captioning: Given a molecular descriptor (e.g., SMILES Weininger (1988), SELF-
IES Krenn et al. (2022), or IUPAC name Favre & Powell (2013)), the objective is to generate
a coherent natural-language description capturing structural characteristics, functional roles, and
potential applications of the molecule. This evaluates the model’s ability to interpret molecular
structures and abstract their semantics into text.

• Text-based de novo Molecule Generation: Conversely, this task requires the model to generate
valid molecular descriptors from natural language descriptions, testing its capacity to map textual
semantics to relevant chemical motifs, and produce syntactically and chemically valid molecular
structures.

Previous studies Taylor et al. (2022); Edwards et al. (2022) uses SMILES for molecule representa-
tion, its grammar and token order sensitivity often result in invalid or chemically implausible outputs.
primarily employed SMILES for molecular representation. However, the grammar and token-order
sensitivity inherent in SMILES frequently lead to invalid or chemically implausible outputs. To
overcome this limitation, we adopt SELFIES representations, following the Mol-Instructions frame-
work Fang et al. (2024). SELFIES ensures chemical validity by construction, eliminating common
structural errors such as mismatched parentheses, invalid atomic symbols, and illogical branching
patterns.

C.1 GROUP RELATIVE POLICY OPTIMIZATION

The core innovation of Group Relative Policy Optimization (GRPO) Shao et al. (2024) lies in
its group-based redefinition of the advantage function. In contrast to PPO, GRPO removes the
value function and estimates advantages relative to a sampled response group. Specifically, given
a question-answer pair (q, a), the old policy πθold samples a group of G responses {oi}Gi=1. The
advantage for the i-th response is computed by normalizing the corresponding group-level rewards
{Ri}Gi=1:

Âi,t =
ri − mean({Ri}Gi=1)

std({Ri}Gi=1)
. (8)

Additionally, GRPO employs a clipped objective combined with a KL-divergence penalty term,
defined as:

JGRPO(θ) = E(q,a)∼D,{oi}G
i=1∼πθold (·|q)

[
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

(
min

(
ri,t(θ)Âi,t, clip (ri,t(θ), 1− ε, 1 + ε) Âi,t

)
− βDKL(πθ ∥ πref)

)] (9)
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where the importance ratio ri,t(θ) is given by:

ri,t(θ) =
πθ(oi,t | q, oi,<t)

πθold(oi,t | q, oi,<t)
. (10)

D TRAINING SETUP.

We use Qwen2.5-7B-Instruct as the base model. During the warm-up stage, we fine-tune the model
separately on CoT data for both tasks. The learning rate is set to 1× 10−5, with a total of 4 epochs,
and a cosine learning rate scheduler is applied to stabilize training. Following warm-up, we perform
GRPO reinforcement learning. In this stage, the batch size is 256, the learning rate is 1× 10−7, and
each sample generates 8 candidate outputs (rollouts). A temperature of 0.7 is applied to encourage
output diversity. We train the models for 15 epochs to fully optimize generation performance across
both tasks. All experiments are run on 8 Tesla-A100-80G GPUs. For molecule captioning and text-
based de novo molecule generation, Mol-SFT requires approximately 1 GPU hour. Mol-RL requires
approximately 1200 GPU hours.

E PROMPTS

In this section, we present the input prompts used for knowledge-guided chain-of-thought data con-
struction with GPT-4O, and also the prompts used to evaluate the quality of the model responses.
These prompts cover both the tex-based de novo molecule generation and the molecule captioning
tasks.

Example 1: Molecule captioning task

You are a professional chemist. Given a molecule’s SELFIES and structural features, and
identified functional fragments, your task is to generate a natural, concise, and chemically
accurate description of the molecule. Do not reproduce or reference the original SELFIES
string. Instead, decode it internally and abstractly summarize the key structural features it
represents.
SELFIES:
[O][=C][Branch1][C][O-1][C][C][S][S][C][Ring1][Branch1]
Structural Info:
1. The molecule has 1 ring(s), including 0 aromatic ring(s).
2. The molecular weight is approximately 149.22 g/mol.
Fragments:
<|O=C[O-]|><|SS|><|C030|><|C020|><|C020|>
Please provide a step-by-step analysis that explains how you would interpret this molecular
structure and summarize it into a concise and chemically accurate natural language descrip-
tion. Let’s think step by step and return the final answer in <answer> The molecule is a
monocarboxylic acid anion and a member of dithiolanes. It is a conjugate base of an aspara-
gusic acid. It derives from a hydride of a 1,2-dithiolane. </answer> tags.

Example 2: Text-based molecule generation task

You are a professional biochemist designing molecular structures. Given the molecular
description, basic structural information, and identified fragments. Your goal is not to
re-predict the molecule’s SELFIES, but to generate a logical, chemically sound reasoning
chain that explains how one could deduce or construct this structure based on the given in-
formation.
Description:
1. The molecule is an aldehyde that is thiphene substituted by a formyl group at position.
2. It has a role as a metabolite. It is a member of thiophenes and an aldehyde
Structural Info:
1. The molecule has 1 ring(s), including 1 aromatic ring(s).
2. The molecular weight is approximately 112.15 g/mol.
Fragments:
<|C=O|><|c1ccsc1|>
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Please provide a step-by-step molecular reasoning chain that explains how you would re-
construct or deduce the molecular structure. Let’s think step by step and return the final
answer in <answer> [O][=C][C][=C][C][=C][S][Ring1][Branch1] </an-
swer> tags.

Example 3: Example for quality evaluation of the model responses

You are a professional chemist and an expert evaluator. Your task is to assess and score
a molecular description (Chain of Thought, or CoT) generated by an AI model, based on
specific criteria. Your evaluation must be strict, objective, and consistent with the provided
examples. Please score the CoT on a scale of 1-5 across three key dimensions:

1. CLARITY OF LOGIC & INSIGHTFULNESS

This criterion evaluates whether the CoT’s reasoning process is coherent and if it provides
valuable chemical insights.

• 5 (Outstanding): The reasoning is exceptionally clear, with a flawless logical
progression. The CoT provides profound chemical insights beyond simple facts,
demonstrating expert-level thought.

• 4 (Excellent): The logical flow is very clear and the analysis is systematic. It
provides accurate insights but may lack particularly novel or deep observations.

• 3 (Acceptable): The reasoning is mostly clear, but there may be minor logical
jumps. The insights provided are correct but basic.

• 2 (Lacking): The reasoning is disorganized or difficult to follow. The connection
between analysis and conclusions is weak.

• 1 (Poor): There is no recognizable logic or insight. The CoT is a disorganized list
of facts with no meaningful analysis.

2. FACTUAL CORRECTNESS

This criterion evaluates the accuracy of all factual statements within the CoT.
• 5 (Completely Accurate): All chemical statements, nomenclature, and factual de-

tails are entirely correct with no inaccuracies.
• 4 (Minor Errors): Contains one or two subtle, inconsequential errors that do not

affect the overall conclusion.
• 3 (Partially Accurate): Contains a few identifiable factual errors or inaccuracies

that do not fundamentally break the reasoning.
• 2 (Multiple Errors): Contains several clear and misleading factual errors.
• 1 (Severely Flawed): Riddled with serious factual errors, making the entire analy-

sis untrustworthy.

3. REDUNDANCY & CONCISENESS

This criterion measures the efficiency of the CoT. A high-quality CoT should contain only
necessary steps, avoiding repetition.

• 5 (Extremely Concise): Every step in the CoT is essential. There are no redundant
sentences or repeated analyses; the text is efficient and to the point.

• 4 (Concise): Most steps are necessary. There may be one or two sentences that
could be trimmed, but the overall text is not redundant.

• 3 (Acceptable): Contains some redundant information that could be merged or
removed, but the overall structure remains clear.

• 2 (Verbose): Contains repetitive analysis or unnecessary information that makes
the text feel bloated.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

• 1 (Extremely Verbose): The text is filled with a large amount of repetitive or
irrelevant content, making it difficult to read.

Important Note: Adjusting for Scoring Bias
Please be aware that human experts tend to be more lenient and generous in their scoring
than you. When a CoT is of high quality, experts often assign scores of 4 or 5 even if there
are minor imperfections. In contrast, your current scoring may be too conservative.
When performing your evaluation, please adjust your internal scoring scale to align with this
more generous, expert-like style. For high-quality CoTs, do not hesitate to assign 4s and
5s.

Your final evaluation must be returned as a JSON object, and it must contain only this
JSON. The JSON must include the following keys:

• clarity score: The score for Clarity of Logic & Insightfulness (1-5)
• factual score: The score for Factual Correctness (1-5)
• conciseness score: The score for Redundancy & Conciseness (1-5)

FEW-SHOT EXAMPLES

Follow these examples strictly, mimicking the format and scoring style:
Example 1:
...
Human expert’s score: { ”clarity score”: 5, ”factual score”: 4, ”conciseness score”: 4, }
Example 2:
...
Human expert’s score: { ”clarity score”: 3, ”factual score”: 5, ”conciseness score”: 4, }
Example 3:
...
Human expert’s score: { ”clarity score”: 4, ”factual score”: 3, ”conciseness score”: 5, }
Please rate the following model response:

F SUCCESS AND FAILURE CASES

In this section, we present representative success and failure cases for both molecule generation and
molecule captioning tasks, with some basic analysis of their respective error modes. Table 5 and 6
show the model responses for molecule generation, while Table 7 and 8 show those for molecule
captioning.
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Table 5: Case I used to illustrate the model responses of the molecule generation task. The
top block shows the prompt used to test the models, and the following blocks show the response of
prompt-based method(Qwen2.5-72B-Instruct), the model after fine-tuning without explicit reason-
ing and our method.

Prompt
You are a professional biochemist designing molecular structures. Please generate the molecular struc-
ture (SELFIES) based on the following description. Please think step by step and return the final
answer in <answer> ... </answer> tags.
The molecule is a phosphatidylcholine 32:0 in which the 1- and 2-acyl groups are specified as hexade-
canoyl (palmitoyl). A synthetic phospholipid used in liposomes and lipid bilayers to study biological
membranes. It is also a major constituent of pulmonary surfactants. It has a role as a surfactant
and a mouse metabolite. It is a phosphatidylcholine 32:0 and a 1-acyl-2-hexadecanoyl-sn-glycero-3-
phosphocholine. It derives from a hexadecanoic acid.
Ground truth: [C][C][C][C][C][C][C][C][C][C][C][C][C][C][C][C][=Branch1][C][=O][O][C]
[C@H1][Branch2][Ring1][Branch1][C][O][P][=Branch1][C][=O][Branch1][C][O-
1][O][C][C][N+1][Branch1][C][C][Branch1][C][C][C][O][C][=Branch1][C][=O][C][C]
[C][C][C][C][C][C][C][C][C][C][C][C][C]

Prompt-based method: Qwen2.5-72B-Instruct
To generate the SELFIES (SELF-referencING mOLECULAR stringS) for the phosphatidylcholine
32:0 with 1- and 2-acyl groups specified as hexadecanoyl (palmitoyl), we need to break down the
structure step by step.
Step-by-Step Breakdown
1. Hexadecanoyl (Palmitoyl) Chain: Hexadecanoyl is a 16-carbon saturated fatty acid. SELFIES for
hexadecanoyl: [C][C][C][C][C][C][C][C][C][C][C][C][C][C][C][C][O][=O]
2. Glycerol Backbone: Glycerol is a three-carbon alcohol. SELFIES for glycerol: [C][O][C][O][C][O]
3. Phosphate Group: The phosphate group is attached to the third carbon of glycerol. SELFIES for
phosphate: [P][O][O][O][O]
4. Choline Head Group: Choline is a quaternary ammonium compound. SELFIES for choline:
[N][C][C][C][O][C][C][C][C][C][C][C]...(approx. 100 [C])[C][C]
(Hallucinated structure. Repetitive fragments. Format not followed.)

Model after fine-tuning Without Explicit Reasoning
[C][C][C][C][C][C][C][C][C][C][C][C][C][C][C][C][=Branch1][C][=O][O][C][C@H1[Branch2]
[Ring1][Branch1][C][O][P][=Branch1][C][=O][Branch1][C][O][O][C][C][N+1][Branch1][C][C]
[Branch1][C][C][C][O][C][=Branch1][C]
(Valid but incorrect molecule. No reasoning. Format not followed.)

Our method
<think>
To deduce the molecular structure of the phosphatidylcholine 32:0 with specified acyl groups, we
can follow a logical reasoning chain based on the provided description, structural information, and
fragments. Here’s a step-by-step breakdown:
1. Identify the Core Structure: Phosphatidylcholine is a type of ...
2. Determine the Glycerol Backbone: The glycerol backbone is a three-carbon molecule with ...
3. Acyl Groups: The description specifies that the 1- and 2-acyl groups are hexadecanoyl (palmitoyl).
Hexadecanoyl refers to a fatty acid with 16 carbon atoms (C16). Therefore, ...
4. Phosphocholine Head Group: The third carbon of the glycerol is attached to a phosphocholine
group. This group ...
. . . (omitted structural construction and molecular weight calculation steps)
8. Use the Provided Fragments: The fragments given in the description can be used to construct the
molecular structure. For example, the fragment ...
. . . (omitted rest of structural deducing reasoning, less central to SELFIES construction)
The final answer, representing the constructed molecular structure, is:
<answer>[C][C][C][C][C][C][C][C][C][C][C][C][C][C][C][C][=Branch1][C][=O][O][C]
[C@H1][Branch2][Ring1][Branch1][C][O][P][=Branch1][C][=O][Branch1][C][O-
1][O][C][C][N+1][Branch1][C][C][Branch1][C][C][C][O][C][=Branch1][C][=O][C][C]
[C][C][C][C][C][C][C][C][C][C][C][C][C]</answer>
(Clear reasoning. Valid and correct molecule output. Desired format.)
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Table 6: Case II used to illustrate the model responses of the molecule generation task. The
top block shows the prompt used to test the models, and the following blocks show the response of
prompt-based method(DeepSeek-R1-Distill-Qwen-7B), the model after fine-tuning without explicit
reasoning and our method.

Prompt
You are a professional biochemist designing molecular structures. Please generate the molecular struc-
ture (SELFIES) based on the following description. Please think step by step and return the final
answer in <answer> ... </answer> tags.
The molecule is a 1-O-acyl-sn-glycero-3-phosphocholine in which the acyl group is specified as
caproyl (hexanoyl). It is a 1-O-acyl-sn-glycero-3-phosphocholine, a hexanoate ester and a lysophos-
phatidylcholine 6:0.
Ground truth: [C][C][C][C][C][C][=Branch1][C][=O][O][C][C@@H1][Branch1][C][O][C][O][P]
[=Branch1][C][=O][Branch1][C][O-1][O][C][C][N+1][Branch1][C][C][Branch1][C][C][C]

Prompt-based method: DeepSeek-R1-Distill-Qwen-7B
<think>
Okay, so I need to figure out how to construct the SELFIES notation for this molecule. Let me
start by understanding the structure. The molecule is ... But in SELFIES, it’s represented as
[C][C@H1][C@@H1][Branch2]. Hmm, maybe I should break it down....(another round of reason-
ing)The hexanoyl would be a chain of six carbons with an ester group, so maybe [C][C][C](O)=O
connected to the hexanoyl.
Wait, perhaps it’s better to structure it step by step. The choline part is
...(reasoning to construct the SELFIES)I think the correct SELFIES would be:
[C][C@H1][C@@H1][Branch2]O[C][C][C](O)=O[C][C][C]. Wait, that might not be accurate. Let
me make sure.Alternatively, maybe it’s [C][C@H1][C@@H1][Branch2]O[C][C][C](O)=O[C][C][C].
No, that doesn’t seem right because ... Putting it all together, the SELFIES should be:
[C][C@H1][C@@H1][Branch2]O[C][C][C](O)=O[C][C][C]. Wait, no, the hexanoyl is ... Hmm, I’m
getting confused. Let me try to write it step by step.1. Choline: [C][C@H1][C@@H1][Branch2]...
So, perhaps: [C][C@H1][C@@H1][Branch2]O[C][C][C](O)=O[C][C][C][C][C][C]
Wait, that still doesn’t look right. Maybe I should ... Putting it all together, the SELFIES would
be:[C][C@H1][C@@H1][Branch2]O[C][C][C](O)=O[C][C][C][C][C][C]
Wait, no, the hexanoyl should be... The glycerol’s C2 has the hexanoyl: [C][C][C](O)=O.
Wait, perhaps SELFIES is:[C][C@H1][C@@H1][Branch2]O[C][C][C](O)=O[C][C][C][C][C][C].
But I’m not confident. Maybe I should represent the glycerol as ... Putting it all together, the SELFIES
would be:[C][C@H1][C@@H1][Branch2]O[C][C][C](O)=O[C][C][C][C][C][C]. Wait, that seems
too long.
(Frequent self-doubt. Format not followed.)

Model after fine-tuning Without Explicit Reasoning
[C][C][C][C][C][C][=Branch1][C][=O][O][C][C@H1][Branch2][Ring1][Branch1][C][O][P][=Branc
h1][C][=O][Branch1][C][O][O][C][C][N+1][Branch1][C][C][Branch1][C][C][C][O]
(Lack of Chain-of-Thought. Format not followed. Generally accurate yet deviates subtly from
the ground truth.)

Our method
<think>
To deduce the molecular structure of 1-O-acyl-sn-glycero-3-phosphocholine with a caproyl (hexanoyl)
acyl group, we can follow a logical reasoning chain based on the provided description, structural
information, and fragments. Here’s a step-by-step breakdown:
1. Identify the Core Structure: The molecule is a type of phospholipid, specifically ...
2. Acyl Group: The acyl group is specified as caproyl, which is a straight-chain fatty acid with six
carbon atoms (hexanoate). This means the acyl group is -C(=O)CH2CH2CH2CH2CH3.
3. Glycerol Backbone: The glycerol backbone consists of three carbon atoms, where ...
4. Phosphocholine Group: The phosphocholine group consists of a phosphorus atom bonded to ...
5. Construct the Molecular Structure: Start with the glycerol backbone: C1 is attached to ...
6. Verify the Molecular Weight: The molecular weight of the constructed molecule should be ...
7. Check the Chemical Connectivity: Ensure that all atoms are connected correctly and ...
8. Finalize the Structure: Once the structure is constructed and verified, it can be represented in a
standardized format, such as SELFIES or a similar notation.
The final answer, representing the constructed molecular structure, is:
<answer>[C][C][C][C][C][C][=Branch1][C][=O][O][C][C@@H1][Branch1][C][O][C][O][P][=Bra
nch1][C][=O][Branch1][C][O-1][O][C][C][N+1][Branch1][C][C][Branch1][C][C][C] </answer>
(Clear and transparent reasoning. Valid and correct molecule output. Desired format.)
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Table 7: Case I used to illustrate the model responses of the molecule captioning task. The
top block shows the prompt used to test the models, and the following blocks show the response
of prompt-based method(GPT-4O), the model after fine-tuning without explicit reasoning and our
method.

Prompt
You are a professional chemist. Your task is to generate a natural, concise, and chemically accurate
description of a given molecule. Please provide a step-by-step analysis explaining how you interpret
the molecular structure, identify key features and functional groups, and summarize it into a clear and
informative description. Think step by step, and your final answer must be returned in the format:
<answer> ... </answer>. For example:
<answer>The molecule is an epoxy(hydroxy)icosatrienoate that is the conjugate base of 11-hydroxy-
(14R,15S)-epoxy-(5Z,8Z,12E)-icosatrienoic acid, obtained by deprotonation of the carboxy group;
major species at pH 7.3. It is a conjugate base of an 11-hydroxy-(14R,15S)-epoxy-(5Z,8Z,12E)-
icosatrienoic acid.</answer>
[C][S][C][C][C@H1][Branch1][C][NH3+1][C][=Branch1][C][=O][N][C@@H1][Branch1]
[C][C][C][=Branch1][C][=O][O-1]
Label: The molecule is a peptide zwitterion obtained by transfer of a proton from the carboxy to the
amino terminus of Met-Ala. It is a tautomer of a Met-Ala.

Prompt-based method: GPT-4O
To interpret and generate a precise description of the given molecule from its SELFIES notation, follow
these analytical steps:
Step 1: Understand SELFIES Notation SELFIES (Self-referencing Embedded Strings) is a high-level
representation of molecular structures. Each character or symbol corresponds to ...
Step 2: Parse and Identify Atoms [C]: Represents carbon atoms. [S]: Represents a sulfur atom.
[C@H1]: A chiral carbon ...
Step 3: Build the Backbone: By interpreting the sequence, the molecule exhibits a linear carbon chain
with branching points, functional groups (amino and carboxylate), and stereochemical centers.
Step 4: Identify Functional Groups and Stereochemistry: An amino group [NH3+1] exists as a pro-
tonated NH3+. Two carbonyl groups (=O) are present 2014one possibly as part of an amide and the
other as a carboxylate. The sulfur atom [S] suggests a thioether or thioamide moiety.
Step 5: Summarize the Molecule: Integrating stereochemistry, charges, and functional groups results
in the clear identification of the compound.
<answer> The molecule is a sulfinyl-dipeptide derivative containing a protonated amino group at one
terminus and a negatively charged carboxylate group at the other. It includes a sulfur atom within the
backbone structure, flanked by two stereogenic centers marked with opposing stereochemistry (R and
S configurations). The carbon skeleton features both an amide linkage and carboxylate functionality,
consistent with its zwitterionic form at physiological pH (7.3).</answer>
(Inaccurate SELFIES parsing. Overgeneralized functional group assignments. Unsupported
structural assumptions.)

Model after fine-tuning Without Explicit Reasoning
The molecule is zwitterionic form of N(6),N(6),N(6)-trimethyl-L-lysine arising from transfer of a pro-
ton from the carboxy to the amino group; major species at pH 7.3 It is a tautomer of a N(6),N(6),N(6)-
trimethyl-L-lysine.
(Lack of Chain-of-Thought. Format not followed.)

Our method
<think>
To interpret the provided molecular structure based on the SELFIES, structural information, and func-
tional fragments, we can follow these steps:
1. Identify the Core Structure: The molecule appears to be a peptide, specifically a dipeptide,
consisting of ...
2. Analyze the Functional Groups: The key functional groups include: An amino group (NH3+),
which is ...
3. Examine the Amino Acid Residues: The structure includes L-methionine and L-alanine: L-
methionine contributes ...
4. Consider the Zwitterionic Nature: At a pH of 7.3, the amino group is likely ...
5. Summarize the Findings: Based on the analysis, we can conclude that the molecule is a ...
Now, we can formulate a concise and chemically accurate description of the molecule:
<answer>The molecule is a peptide zwitterion obtained by transfer of a proton from the carboxy to
the amino group of Met-Ala; major species at pH 7.3. It is a tautomer of a Met-Ala. </answer>
(Clear reasoning. Valid and correct caption output. Desired format.)
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Table 8: Case II used to illustrate the model responses of the molecule captioning task. The
top block shows the prompt used to test the models, and the following blocks show the response of
prompt-based method(Qwen2.5-72B-Instruct), the model after fine-tuning without explicit reason-
ing and our method.

Prompt
You are a professional chemist. Your task is to generate a natural, concise, and chemically accurate
description of a given molecule. Please provide a step-by-step analysis explaining how you interpret
the molecular structure, identify key features and functional groups, and summarize it into a clear and
informative description. Think step by step, and your final answer must be returned in the format:
<answer> ... </answer>. For example:
<answer>The molecule is an epoxy(hydroxy)icosatrienoate that is the conjugate base of 11-hydroxy-
(14R,15S)-epoxy-(5Z,8Z,12E)-icosatrienoic acid, obtained by deprotonation of the carboxy group;
major species at pH 7.3. It is a conjugate base of an 11-hydroxy-(14R,15S)-epoxy-(5Z,8Z,12E)-
icosatrienoic acid.</answer>
[C][S][C][C][C@H1][Branch1][S][N][C][=Branch1][C][=O][C@@H1][Branch1][C][N][C][C][Bra
nch1][C][C][C][C][=Branch1][C][=O][O]
Label: The molecule is a dipeptide formed from L-leucine and L-methionine residues. It has a role as
a metabolite. It derives from a L-leucine and a L-methionine.

Prompt-based method: Qwen2.5-72B-Instruct
Step-by-Step Analysis:
Step 1: Identify the Backbone Structure. The given structure is a linear chain of carbon atoms with
several branches and functional groups. The main chain can be identified as a series of carbon atoms
connected by single and double bonds.
Step 2: Identify Functional Groups. Carbonyl Groups: There are two carbonyl groups (C=O) present
in the structure. Amine Groups: There are two amine groups (N) ...
Step 3: Determine Stereochemistry C@H1: Indicates a chiral center with the R configuration...
Step 4: Summarize the Molecule. Combining the information from the steps above, we can describe
the molecule as follows:
<answer>The molecule is a branched, chiral compound with a linear carbon backbone. It contains
two carbonyl groups, two amine groups, and sulfur atoms. The chiral centers are configured as (R)
and (S) at the specified positions. The structure suggests a complex organic molecule with potential
biological activity due to its functional groups and stereochemistry.</answer>
Misidentification of the molecule.Lack of treatment of charge states or protonation. Overly
vague final description.

Model after fine-tuning Without Explicit Reasoning
The molecule is a L-histidine derivative that is N(alpha)-acetyl-L-histidine substituted by a methyl
group at position 5 on the imidazole ring. It has a role as a human urinary metabolite. It is a L-histidine
derivative and a N(alpha)-acetyl-L-histidine. It is a conjugate acid of a N(alpha)-acetyl-N(epsilon)-
methyl-L-histidine(1-).
(Lack of Chain-of-Thought. Format not followed. Misidentification of molecule)

Our method
<think>
To generate a concise and chemically accurate description of the molecule based on the provided
SELFIES, structural features, and functional fragments, we can follow these steps:
1. Identify the Core Structure: The molecule appears to be a peptide, specifically a dipeptide, given
the presence of amino acid fragments and the presence of an amine (N) and a carboxylic acid (C=O
and O).
2. Analyze the Functional Groups: The presence of sulfur (S) atoms suggests the inclusion of
methionine, an amino acid containing a sulfur atom. The presence of amine (N) and carboxylic acid
(C=O and O) groups confirms the peptide nature of the molecule.
3. Determine the Amino Acid Composition: The fragments indicate the presence of L-leucine and L-
methionine. L-leucine is recognized by the branched carbon structure, while L-methionine is identified
by the sulfur atom.
4. Consider the Stereochemistry: The notation (C@H1) and (C@@H1) indicates that there are chiral
centers in the molecule, which is typical for amino acids.
5. Summarize the Findings: Based on the analysis, we can summarize the key features of the
molecule, including its composition, structure, and biological relevance.
Now, we can formulate the final answer:
<answer>The molecule is a dipeptide composed of L-leucine and L-methionine joined by a peptide
linkage. It has a role as a metabolite. It derives from a L-leucine and a L-methionine. </answer>
(Clear reasoning. Valid and correct caption output. Desired format.)
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