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Abstract

Deep learning training algorithms have been an enormous success in recent years in many
fields, including speech, text, image, and video. Deeper and deeper layers are proposed
with huge success, with ResNet structures having around 152 layers. Shallow convolution
neural networks(CNNs) are still active research, where some phenomena are still unexplained.
Activation functions used in the network are of utmost importance, as they provide non-
linearity to the networks. ReLU’s are the most commonly used activation function. We show
the hidden layer’s complex piece-wise linear(PWL) activation. We show that these PWL
activations work much better than ReLU activations in our networks for convolution neural
networks and multilayer perceptrons. Result comparisons in PyTorch for shallow and deep
CNNs are given to strengthen our case further.

1 Introduction

Deep learning architectures have found tremendous success in speech recognition, image recognition, language
recognition, and translation in recent years. For speech, language recognition, and translation, deep recurrent
neural networks(RNNs)Rumelhart et al. (1986a)Jordan (1997)Hopfield (1982) have shown improvements
over older technologies. These networks can process images and sequences of images such as videos, text,
and speech. The RNN structure consists of cells and gates. These cells store important information over
time, and the gates decide the passage of information in and out of the cells. RNNs face vanishing gradient
problems and cannot process words over a long period. To address this situation, networks such as long shot
term memory(LSTM)Hochreiter & Schmidhuber (1997), gated recurrent unit(GRU)Chung et al. (2014), and
transformersVaswani et al. (2017) are shown. These networks are designed to handle long sequences over
time and are also used for image processing. Convolutional Neural Networks(CNNs)(Lecun et al. (1998),
Zhang (1988), Zhang et al. (1990)) are more widely used in image based applications. Combination networks
such as CNN-LSTM, CNN-transformer are also used for visual recognitionDonahue et al. (2014)Liu et al.
(2021) and time series analysisShi et al. (2015)

CNNs are used for image-based applications as a feature extractor, where one does not need to explicitly extract
features for classifying images. Applications for CNNs include in diabetic retinopathy screeningGulshan et al.
(2016), lesion detectionLakhani & Sundaram (2017)Kijowski et al. (1987), skin lesion classificationNahata &
Singh (2020), human action recognitionIjjina & Chalavadi (2016) Parisi (2020), face recognition Kamencay
et al. (2017) Wechsler et al. (1998), document analysisSimard et al. (2003) Marinai et al. (2005) and in many
other applications. CNNs can be trained using gradient approaches such as backpropagation (Rumelhart et al.
(1986b), Kaminski & Strumillo (1997), Lippmann (1987), Lakshmi Narasimha et al. (2008)), and conjugate
gradient (Hestenes & Stiefel (1952),Shewchuk (1994),Charalambous (1992), Fletcher (1987)).

Despite their popularity, CNNs still have some limitations, such as their poorly understood shift-invariance,
overfitting of the data, and the use of oversimplified nonlinear activation functions such as ReLU Nair &
Hinton (2010), and leaky ReLU Maas (2013b)Nwankpa et al. (2018).

Nonlinear activation functions such as ReLUNair & Hinton (2010) and leaky ReLU Maas (2013b) have
been widely used in several computer visionGlorot et al. (2010) and deep neural networkGoodfellow et al.
(2016) applications. These activation functions are not as complex as sigmoids Bishop (2006b) or hyperbolic
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tangent functions(Tanh)Abdelouahab et al. (2017) but are favored because they partially solve the vanishing
gradient problem Hochreiter (1998). These ReLU activations do not guarantee optimal results, as different
sets of activations can lead to optimal results for each filter. For example, a CNN for an image classification
application with 20 filters might need 20 different activations. The number of filters required for a particular
application has yet to be discovered.

Although these activations lead to universal approximationCybenko (1989) in multilayer perceptrons, many
attempts have been made to create adaptive or fixed piecewise linear activation function [Nicolae (2018),
Guarnieri et al. (1999), Barry & Goldman (1988),Campolucci et al. (1996),Jagtap et al. (2020)]. Adaptive
activation functions for deep CNNs are introduced inAgostinelli et al. (2015), where the author trains the
slope and hinges on the curve using gradient descent techniques. The author has shown promising results in
terms of testing accuracies in CIFAR-10 and CIFAR-100 image recognition datasetKrizhevsky (2009) and
high-energy physics involving Higgs boson decay modesBaldi et al. (2015).

This paper briefly reviews the multilayer perceptron’s (MLP’s) architecture, notation, training, and properties.
Section 2 reviews the CNN architecture, notation, and its back propagation algorithm. In Section 3, we
investigate a trainable piecewise linear (PWL) activation since they can approximate the optimal mix of
activations through universal approximation. In section 4, we compare our results with ReLU activations.
Finally, Section 7 discusses additional work and concludes this paper.

2 Prior Work

In this section, we review our notation for a single hidden layer cascade connected MLP, briefly summarize
several commonly used feedforward classifier training methods, and describe some of the MLP’s properties.

2.1 MLP Structure and notation

Figure 1: Single Hidden Layer MLP
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A cascade-connected MLP with one hidden layer is shown in figure 1. Input weight w(k, n) connects the nth

input to the kth hidden unit. Output weight woh(i, k) connects the kth hidden unit’s activation op(k) to the
ith output. yp(i) is the pth pattern, ith output activation which is linear activation in figure1. In the training
pattern {xp, tp} for a MLP, the pth input vector xp is initially of dimension N and the pth desired output
(target) vector tp has dimension M. The pattern number p varies from 1 to Nv. The threshold is handled by
augmenting xp with an extra element Xp(n+1) which is equal to one where, xp = [xp(1), xp(2), ...., xp(N +1)]T

For the pth pattern, the kth hidden unit’s net function np(k) is then

np(k) =
N+1∑
n=1

w(k, n) · xp(n) (1)

which can be summarized as
np = W · xp (2)

where np denotes the Nh dimensional column vector of net function values and the input weight matrix W is
Nh by (N+1). For the pth pattern, the kth hidden unit’s output, op(k), is given as

op(k) = f(np(k)) (3)

where f(.) denotes a nonlinear hidden layer activation function, such as ReLUNair & Hinton (2010) which is
represented as

f(np(k)) =
{

np(k), if np(k) ≥ 0
0, if np(k) < 0

(4)

The threshold in the hidden layer is handled by augmenting op with an extra element op(Nh + 1) which is
equal to one where op = [op(1), op(2), ...., op(Nh + 1)]T . The network’s output vector for the pth pattern is
npo. The ith element npo(i) of the M-dimensional output vector npo is

npo(i) =
Nh+1∑
k=1

wo(i, k) · op(k) (5)

which can be summarized as
Npo = Wo · op (6)

Wo is the output weight matrix with dimensions M by (Nh + 1).

The output layer net vector npo is passed through an activation function for ith output which is given in
terms of pth pattern and ith output, yp(i) as,

yp(i) = fo(npo(i)) (7)

where fo(.) denotes an output hidden layer activation function. The most commonly used activation function
for approximation data is the linear activation; sigmoid activation is mainly used in logistic regression, and
softmax activation Zhang & Sabuncu (2018) is used for classification models, which is defined in equation (8).

The softmax output activation function is

yp(i) = exp(npo(i))∑M
k=1 exp(npo(k))

(8)

The most commonly used objective function for a classification task is cross entropy loss functionZhang &
Sabuncu (2018)

Ece = 1
Nv

Nv∑
p=1

[−
M∑

i=1
tp(i) · log(yp(i))] (9)
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where tp(i) is the pth pattern and ith class one hot encoded output. tp(i) is found from icp(i), where icp(i) is
the class number. For approximation or regression, mean square error(MSE)Sammut & Webb (2010) defined
in equation (10) is the most widely used objective function. The MSE can also be used in the classification
task with output resetGORE et al. (2005)Li et al. (2004).

E = 1
Nv

Nv∑
p=1

M∑
i=1

[tp(i)− yp(i)]2 (10)

2.2 CNN structure and notation

In this section, we first review notation and training of a convolutional neural network with a single convolution
layer. Then, we extend the notation to cover CNNs with multiple hidden layers.

Figure 2: Shallow CNN with Linear softmax cross-entropy classifier

The CNN network structure is shown in figure 2. Let fp denote the pth input image and let ic(p) denote the
correct class number of the pth pattern, where p varies from 1 to Nv, and Nv is the total number of training
images or patterns.

During forward propagation, a filter of size Nf x Nf is convolved over the image f1 with Nr rows Nc

columns.The number of channels is denoted by C, where color input images have C equal to 3 and grayscale
images have C equal to 1.

For the kth filter, the net function output for the ith row and jth column is

np(k, i, j) = tr(k) +
Nf∑

m=1

Nf∑
n=1

C∑
c=1

wf (k, m, n, c) · fp(m + (i− 1)s, n + (j − 1)s, c) (11)

where, np is of size (K by Mo by No), where K is the number of filters, Mo is the height of the convolved
image output and No is the width of the convolved image output. wf (k, m, n, c) is the filter of size (K by Nf

by Nf by C). The threshold vector tr is added to the net function output as shown in equation (11). The
stride s is the number of filter shifts over input images. Note that the output np(k, i, j) in 11 us a threshold
plus a sum of C separate 2-D convolution, rather than a 3-D convolution.

To achieve non-linearity, the convolved image with element np(k, i, j) is passed through a ReLU activation
Nair & Hinton (2010) as

op(k, i, j) = f ′(np(k, i, j)) (12)
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where, op(k, i, j) is the kth filter’s hidden unit activation output for the ith row, jth column for the pth pattern
of size (K by Nrb by Ncb), where Nrb by Ncb is the row and column size of the output of the convolved image
respectively.

The net function npo for ith element of the CNN’s output layer for the pth pattern is

npo(i) = to(i) +
Mo∑

m=1

No∑
n=1

K∑
k=1

wo(i, m, n, k) · op(k, m, n) (13)

where Wo is the 4-dimensional matrix of size (M by Mo by No by K), which connects hidden unit activation
outputs or features to the output layer net vector npo, op is a 3-dimensional hidden unit activation output
matrix of size (Mo ·No ·K) and to is the vector of biases added to net output function as in equation (13).

Before calculating the final error, the vector npo is passed through an activation function such as softmax in
8. Finally, the cross entropy loss function is calculated using equation 9. The objective function is reduced
with respect to the unknown weights. In this chapter, we discuss CNN training of classification models. We
minimise the loss function Ece using steepest descent Lemaréchal (2012)Lemaréchal (1944)Barton (1991),
Tyagi et al. (2021)Tyagi (2018). The most common optimizer used for CNN weight training is the Adams
optimizer Ada (2014). It is computationally efficient and easier to implement than optimal learning factor
LeCun et al. (1998b). It uses momentum and adaptive learning rates to converge faster, which is said to be
inherited from RMSPropTieleman & Hinton (2012) and AdaGradDuchi et al. (2011). The default parameters
are given in Ada (2014).

3 Training algorithm

3.1 Scaled conjugate gradient algorithm

Conjugate gradient (CG) Tyagi et al. (2022) line searches in successive conjugate directions and converges
faster than the steepest descent. To train an MLP using the CG algorithm (CG-MLP), we update all the
network weights w simultaneously as follows:

w← w + z · p (14)

where z is the learning rate that can be derived as LeCun et al. (1998a),Tyagi et al. (2022).

z = −
∂E(w+z·p)

∂z
∂2E(w+z·p)

∂z2

|z=0 (15)

The direction vector p is obtained from the gradient g as

p← −g + B1 · p (16)

where p = vec (P, Poh, Poi) and P, Poh and Poi are the direction vectors corresponding to weight arrays
(W, Woh, Woi). CG uses backpropagation to calculate g. B1 is the ratio of the gradient energy from two
consecutive iterations. If the error function were quadratic, CG would converge in Nw iterations Boyd &
Vandenberghe (2004), where the number of network weights is Nw = dim(w). CG is scalable and widely
used in training large datasets, as the network Hessian is not calculated Le et al. (2011). Therefore, in a CG,
the step size is determined using a line search along the direction of the conjugate gradient.

SCG Møller (1993) scales the conjugate gradient direction by a scaling factor determined using a quasi-Newton
approximation of the Hessian matrix. This scaling factor helps to accelerate the algorithm’s convergence,
especially for problems where the condition number of the Hessian matrix is large. SCG requires the
computation of the Hessian matrix (or an approximation) and its inverse. A critical difference between CG
and SCG is how the step size is determined during each iteration, with SCG using a scaling factor that helps
to accelerate convergence. Other variations of CG exist Tyagi et al. (2014). However, in this study, we choose
to use SCG.
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3.2 Levenberg-Marquardt algorithm

The Levenberg-Marquardt (LM) algorithm Tyagi et al. (2022) is a hybrid first- and second-order training
method that combines the fast convergence of the steepest descent method with the precise optimization of
the Newton method Levenberg (1944). However, inverting the Hessian matrix H can be challenging due to its
potential singularity or ill-conditioning Bishop (2006a). To address this issue, the LM algorithm introduces a
damping parameter λ to the diagonal of the Hessian matrix as

HLM = H + λ · I (17)

where I is an identity matrix with dimensions equal to those of H. The resulting matrix HLM is then
nonsingular, and the direction vector dLM can be calculated by solving:

HLM dLM = g (18)

The constant λ represents the LM algorithm’s trade-off value between first and second order. When λ is
close to zero, LM approximates Newton’s method and has minimal impact on the Hessian matrix. When
λ is large, LM approaches the steepest descent, and the Hessian matrix approximates an identity matrix.
However, the disadvantage of the LM algorithm is that it scales poorly and is only suitable for small data
sets Tyagi et al. (2022).

3.3 Basic MOLF-Adapt

In basic MOLF-Adapt MLP training Tyagi et al. (2020), the input weight matrix W is initialized randomly
using zero-mean Gaussian random numbers. To initialize the output weight matrix Wo, we use output weight
optimization (OWO) Tyagi et al. (2022). OWO minimizes the error function from equation (10) with respect
to Wo by solving the M sets of Nu equations in Nu unknowns given by

C = R ·WT
o (19)

where the cross-correlation matrix C and the auto-correlation matrix R are C = 1
Nv

∑Nv

p=1 Xap · tT
p and

R = 1
Nv

∑Nv

p=1 Xap · XT
ap respectively. In terms of optimization theory, solving equation (19) is merely

Newton’s algorithm for the output weights Tyagi et al. (2022). After initialization of W , Woi, Woh, we
begin a two step procedure in which we modify W and perform OWO to modify Wo. In the W modification
step, we first find the input weight negative gradient matrix G and solve

D ·Ri = G (20)

for D, where Ri = 1
Nv

∑Nv

p=1 xap · xT
ap. It has been shown Tyagi et al. (2020) that the improved input weight

change matrix D is the negative gradient matrix that results when the inputs are whitened. In MOLF, the
idea is to use an Nh dimensional learning factor vector z and to write the updated outputs as

yp(i) =
N+1∑
n=1

woi(i, n)xp(n) +
Nh∑
k=1

woh(i, k)f(np(k))

np(k) =
N+1∑
n=1

(w(k, n) + zkd(k, n)xp(n))

(21)

where, d(k, n) is an element of the matrix D. We use Newton’s method to obtain z by solving

Hmolf · z = gmolf (22)

where Hmolf and gmolf are the Hessian and negative gradient, respectively, of the error with respect to z. Our
implementation of Newton’s method solves equation (22) for z using orthogonal least squares (OLS) Tyagi
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et al. (2020). After finding z, we update the input weight matrix W as

W←W + diag(z) ·D (23)

OWO solves Eq. 19 for the output weights in the second half of a training epoch. However, in every third
epoch, the basis functions are pruned. In an MLP, pruning removes less useful weights or hidden units to
promote sparsity, prevent overtraining, and reduce testing errors. The previous work from the authors Tyagi
et al. (2020) contains the algorithm details.

3.4 Softmax classifier

The softmax classifier Tyagi et al. (2022) is a generalized logistic regression classifier that outputs approximate
class probabilities. Structurally, it is a linear model with softmax functions Duda et al. (2012) at the output
units. For the pth pattern, it maps the input vector xp to the output class labels as

yp = Ws · xp (24)

where Ws is a weight matrix. The performance measure is a cross-entropy loss function Tyagi et al. (2022)
defined as

Esoftmax = − 1
Nv

Nv∑
p=1

M∑
i=1

log( eyp(i)∑M
j=1 eyp(j)

) (25)

The softmax classifier is often trained using the L-BFGS training algorithmTyagi et al. (2022).

3.5 Piecewise Linear Unit Activation

Piecewise linear (PWL) functions are composed of ReLU activations Goodfellow et al. (2016). Activations
such as sigmoidBishop (2006b) and Abdelouahab et al. (2017) can be approximated using ReLU units.
Several investigators have tried adaptive PWL activation functions in MLPsGuarnieri et al. (1999) and deep
learningAgostinelli et al. (2015) and have published promising results. One includes hybrid piecewise linear
units(PLU) with an activation function that is a combination of Tanh and ReLU activationsNicolae (2018).

Figure 3: Fixed PWL activations
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From figure 3, we see that PLU combines ReLU and Tanh activations. The equation for calculating fixed
PWL activations is given as

op(k) = max [α(np(k) + c)− c, min(α(np(k) + c)− c, np(k))] (26)

where, α and c are user chosen parameters. It is proposed that the α can be a trainable parameter. The paper
Nicolae (2018) demonstrates the performance of fixed PWL in an MLP for parametric functions, 3D surface
approximation, and invertible network datasets. The author shows that fixed PLUs work better than ReLU
functions as PLUs are represented using more hinges than ReLU functions. The author also shows promising
results using CNN for the CIFAR-10 Krizhevsky (2009) dataset. The fixed PWL activation function has
only three linear segments, hinges H = 3, and will not be adaptive until the α parameter is trained in every
iteration. Since the H is fixed and there is minimal or no training, there is no universal approximation.

3.6 Piecewise Linear Activation

An alternate piecewise linear activation has been demonstratedAgostinelli et al. (2015), designed explicitly
for deep networks with trainable PWL activations. This method, therefore, outperforms the fixed PWL
activation in section 3.5. The adaptive PWL activations here can equal those of section 3.5 and generate
more complicated curves. The author has implemented an adaptive piecewise linear activation unit where the
number of hinges H is a user-chosen hyperparameter. The author shows the best results for CIFAR-10 data
using H = 5 and H = 2 and for CIFAR-100 data using H = 2 and H = 1(no activation hinge training). The
initialization for their adaptive activations is not correctly specified.

The equation for calculating the adaptive activation is given as

op(k) = max(0, np(k)) +
H∑

s=1
as

k ·max(0,−np(k) + bs
k) (27)

where, as
i and bs

i for i = 1..H are learned using gradient descent. ai variables control the slopes of the linear
segments and bs

i determine the locations of sample points.

Figure 4: 2 ReLU curves Figure 5: 4 ReLU curves

figure 4 shows adaptive PWL with slope a as 0.2 and b as 0. Similarly, figure 5 shows adaptive PWL with
slope a as -0.2 and b as -0.5.

4 Proposed work

4.1 Mathematical Background

Section 3.6 describes an adaptive PWL activation that trains the locations and slopes of the hinges. The
author claims that a small number of hinges achieved better results. In section 3.5, we see that a network
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with two hinges outperforms ReLU for a particular application. Only one hinge is needed on the PWL curve
to approximate a linear output. Similarly, to approximate a quadratic output, the number of hinge sets on
the PWL curve should be more significant than three. Therefore, the number of hinges should not be less for
more complicated datasets. This can also result in fewer hidden layers and filters as the network does not
need to train longer.

We further investigate the use of PWL activations in CNNsRane (2016), and we first determine that PWL
activations can approximate any other existing activation functions. Consider a CNN filter’s net function n1
defined as

n1 = t +
N∑

m=1
wi(m) · x(m) (28)

where t is the threshold, wi(m) is the mth filter weight, and x(m) is the mth input to the net function. The
filter can be represented as {wi, t}. The continuous PWL activation f(n1) is

f(n1) =
Ns∑

k=1
ak · r(n1 − nsk) (29)

where Ns denotes the number of segments in the PWL curve, r() denotes a ramp (ReLU) activation, and nsk

is the net function value at which the kth ramp switches on.

Figure 6: Approximate sigmoid using 2 ReLU curves Figure 7: Approximate sigmoid using 4 ReLU curves

Figures 6 and 7 show approximate sigmoid curves generated using ReLU activations where figure 6 has Ns =
2 ReLU curves and figure 7 has Ns = 4 ReLU curves. Comparing the two figures, we see that larger values of
Ns lead to better approximation. The contribution of f(n1) to the jth net function n2(j) in the following
layer is

+n2(j) = f(n1) · wo(j) (30)

Decomposing the PWL activation into its Ns components, we can write

+n2(j) =
Ns∑

k=1
ak · r(n1 − nsk) · wo(j)

=
Ns∑

k=1
w′

o(j, k) · r(n1(k))

(31)

where w′
o(j, k) is ak ·wo(j) and n1(k) is n1 – nsk. A single PWL activation for filter {wi, t} has now become

Ns ReLU activations f(n1(k)) for Ns filters, where each ramp r(n1 − dk), is the activation output of a filter.
These Ns filters are identical except for their thresholds. Although ReLU activations are efficiently computed,
they have the disadvantage that back-propagating through the network activates a ReLU unit only when the
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net values are positive and zero; this leads to problems such as dead neuronsMaas (2013a), which means
if a neuron is not activated initially or during training, it is deactivated. This means it will never turn on,
causing gradients to be zero, leading to no training of weights. Such ReLU units are called dying ReLULu
(2020). Using section ??, In the next section, we will define a much more robust PWL calculation which can
be initialized using any pre-defined activation such ReLUNair & Hinton (2010), leaky ReLUMaas (2013b)
and also which can be differentiable.

4.2 Piecewise Linear Activations(PLA) and initialization

PWL activations in subsection ?? have some limitations. The calculation fails when the distance between the
heights of two hinges is very close, which can happen as we train the hinges. In this section, we derive new
notation and calculate PWL activation activation using linear interpolation.

Figure 8: Piecewise Linear Curve

Figure 8 show a PWL activation for K hidden units, which consists of multiple ramps where ns(1, k) is the
first hinge of the kth hidden unit and a(1, k) is its activation value. These hinge values ns are constant
throughout training. From the figure, we can observe that the PWL curve which passes through the activation
of each of the 7 hinges. We define total number of hinges as H. The equation for the above figure is given in
equation ??. Let s denote the maximum value of a net function, and r denote the minimum value of the
net function. The activations are calculated between two points, where the net values between the first two
hinges are calculated with ns(1, k) denoted as m1 and ns(2, k) denoted as m2. Similarly, activations output
between the next two hinges are calculated by denoting ns(2, k) denoted as m1 and ns(3, k) denoted as m2.
We do this for H hinges. m1 and m2 for each hinge is calculated as m1 = ⌈ np

δns⌉ and m2 = m1 + 1. Given the
net function np(k), op(k) is calculated as,

w1p(k) = ns(m2, k)− np(k)
ns(m2, k)− ns(m1, k) (32)

w2p(k) = np(k)− ns(m1, k)
ns(m2, k)− ns(m1, k) (33)
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op(k) =
{ a(H, k)

w1p(k) · a(m1, k) + w2p(k) · a(m2, k)
a(1, k)

for np(k) > s
for s > np(k) > r

for np(k) < r

}
(34)

where, w1p(k) and w2p(k) are the slope equation for each of the two hinges for kth hidden unit. np(k) is the
pth pattern and kth hidden unit net function and op(k) is its activation function. For all the activation values
less ns(1, k) has zero slope hence np(k) = a(1, k). Similarly, for all the values greater than ns(H, k) has zero
slope; therefore, np(k) = a(H, k).

4.3 Example of PWL activation calculation

For initialization of PWL activation, we first need to initialize the PWL using the most widely used activations
such as sigmoidBishop (2006b), ReLUNair & Hinton (2010) and leaky ReLUMaas (2013b), etc. We then
decide the total number H on the net function. This method can be done individually for each of the hidden
units. This paper uses the same number of ns hinges for each hidden unit. We find the minimum and
maximum hinge values from the net function output. This is achieved by randomly selecting data from
each of the classes and performing convolution, then selecting the minimum and maximum value from the
convolution output.

Below, we show the calculation for PWL activations for k = 1 hidden unit as follows. As discussed above, we
first need to find the initial activation. For this example, we use sigmoid activation as shown in figure 9

Figure 9: Sigmoid Curve

The figure shows that x axis is the net function np and the y axis is its corresponding sigmoid activation.
The range of sigmoid is from 0 to 1. Step 2 is finding the minimum and maximum value from convolution
output. In this case, we select the values as −4 and 4. Now, we need to decide ns samples on the sigmoid
curve. This step is user chosen. Here, for this example we choose H = 7. We show our selection of hinges
and activations in table format as shown in Table 1

H 1 2 3 4 5 6 7
Fixed hinges (ns1) -4 -2.67 -1.33 0 1.33 2.67 4
Activations for
hinges(a1)

0.02 0.07 0.21 0.5 0.79 0.94 0.98

Table 1: PWL samples and activations for one hidden unit

From table 1, we can see that there are total H = 7 hinges ranging from -4 to 4, which are our minimum and
maximum values from the net function and its sigmoid activations as activation samples a. Finally, we plot
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these points on the sigmoid curve from figure 9. The curve after plotting these points should look like figure
10

Figure 10: Sigmoid with Fixed Samples

Figure 10 is the plot for a fixed piecewise sigmoid activation for net versus activations values where 7 hinges
are plotted onto the sigmoid curve. For the final piecewise linear curve, we remove the sigmoid curve and
linearly join 2 points using the linear interpolation technique.

Linear interpolation involves estimating a new value of a function between two known fixed points Hazewinkel
(2001)Davis (1963).

Figure 11: Linear interpolation between 2 points

figure 11 relates the use of linear interpolation between 2 fixed ns points. If we have a new sample net value
n1(1), its corresponding activation value is as shown in the figure. To find o1(1) between a(1, 1) and a(2, 1),
we use the following equation.

o1(1) = ns(2, 1)− n1(1, 1)
ns(2, 1)− ns(1, 1) · a(1, 1) + n1(1)− ns(1, 1)

ns(2, 1)− ns(1, 1) · a(2, 1) (35)

12
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Finally, we use the equation 34 to find all the activation output. The plot of net versus activation is shown in
figure 8.

4.4 PLA gradients

The above-discussed PWL activations A are trained via the steepest descent. The negative gradient matrix
Ga with respect to Ece is calculated as,

ga(k, m) = − ∂Ece

∂a(k, m) (36)

where k is the hidden unit number and m is the Hth hinge.

ga(k, m) = 2
Nv

Nv∑
p=1

M∑
i=1

(tp(i)− yp(i)) · ∂yp(i)
∂a(u, m) (37)

∂yp(i)
∂a(u, m) = woh(i, u) · ∂op(i)

∂a(u, m) (38)

∂op(i)
∂a(u, m) = woh(i, u) · ((δ(m−m1) · w1(p, u)) + (δ(m−m2) · w2(p, u))) (39)

where, for the pth pattern and kth hidden unit of the net value we find m1 and m2, where the pth pattern
of kth hidden unit of the net value lies between the two fixed piecewise linear sample values m1 and m2 of
the uth hidden unit as described in the search algorithm. Also we need to find w1(p, u) and w2(p, u) from
equations 32 and 33. A search algorithm is used to find the correct m sample for a particular pattern’s hidden
unit is foundRane (2016). The equation 39 solves for the pth patterns uth hidden unit of the piecewise linear
activations and accumulates the gradient for all the pth patterns of their respective uth hidden units.

Adams optimizerAda (2014) is used to find the learning factor and update the activation weights. which are
updated as follows

A = A + z ·Ga (40)

4.5 PLA OLF

Using the gradient Ga, the optimal learning factor for activations training is calculated as, The activation
function vector op can be related to its gradient as,

op(k) = w1(p, k) · [a(k, m1) + z · go(k, m1)] + w2(p, k) · [a(k, m2) + z · go(k, m2)] (41)

The first partial derivative of E with respect to z is

∂E

∂z
= 2

Nv

Nv∑
p=1

M∑
i=1

(tp(i)− yp(i)) · ∂yp(i)
∂z

(42)

where

∂yp(i)
∂z

=
Nh∑
k=1

woh(i, k) · ((w1(p, k) · go(k, m1)) + (w2(p, k) · go(k, m2))) (43)

where, m1 and m2 for the pth pattern and kth hidden unit of the net vector np(k) is again found, and find
go(k, m1) and go(k, m2) from the gradient calculated from equations (37, 38, 39)

13



Under review as submission to TMLR

Also, the Gauss-NewtonShepherd (1997) approximation of the second partial is

∂2E(z)
∂z2 = 2

Nv

Nv∑
p=1

M∑
i=1

[
∂yp(i)

∂z

]2

(44)

Thus, the learning factor is calculated as

z =
−∂2E(z)

∂z2

∂E
∂z

(45)

After finding the optimal learning factor, the piecewise linear activations, A, are updated in a given iteration
as

A = A + z ·Ga (46)

where z is a scalar optimal learning factor and Ga is the gradient matrix calculated in equation 45 and 36.

The Adapt-ACT-OLF algorithm can be summarized as follows:

Algorithm 1 Adapt-ACT-OLF algorithm
1: Initialize W, Woi, Woh, Nit

2: Initialize Fixed hinges ns and hinge activation a as described in subsection 4.3 , it← 0
3: while it < Nit do
4: Find gradient G and Ghwo from equations 36 and 20.
5: Find learning factor z
6: Calculate gradient and learning factor for activation from equation 36 and equation 45 respectively

and update the activations as in equation 46.
7: OWO step : Solve equation (19) to obtain Wo
8: it ← it + 1
9: end while

4.6 PLA adavantages

In this subsection, we demonstrate the advantage of adaptive activations using a simple sine data function
and a more complicated Rosenbrock functionRosenbrock (1960). For each of the experiments, we will compare
the approximation results for Basic MOLF-Adapt algorithm explained in section 3.3 with constant activation
functions such as sigmoid, Tanh,ReLU and leaky ReLU and with Adapt-ACT-OLF algorithm described in 1
with initial activations as sigmoid, Tanh, ReLU and leaky ReLU respectively.

4.6.1 Sinusoidal Approximation

The sine data used for training is generated using one feature and 5000 uniformly distributed random samples
in the range of 0 to 4π. The output generated is the sine function of the uniformly distributed random samples.
Similarly, we randomly choose 100 uniformly distributed random samples for testing data in the range of
0 to 2π. The training for each of the basic molf-adapt and Adapt-ACT-OLF algorithm performed using
100 iterations. We use 1 hidden unit for each training algorithm with 20 samples for the Adapt-ACT-OLF
algorithm. We also show results for basic molf-adapt with 10 hidden units. Here, we used 20 samples as
piecewise linear activations would have 10 smaller ReLu like functions.

Figure 12 shows Basic MOLF-Adapt model prediction with one hidden unit after 100 iterations using the
above-mentioned fixed activations. We can observe From the figure that none of the fixed activations
approximate the sine function labeled as original target in figure12a. Next, we increase the hidden unit to
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10. Figure 12b shows Basic MOLF-Adapt model prediction with ten hidden units after 100 iterations using
the above-mentioned fixed activations. From the figure, we can observe that Tanh and sigmoid functions,
which are curve-based approximates, but activation functions such as relu and leaky relu, which are a form of
piecewise linear, do not approximate even if there are more hidden units. Next, we will demonstrate adaptive
activations trained with initial activations as mentioned above.

(a) Basic MOLF-Adapt with fixed activations
with one hidden unit

(b) Basic MOLF-Adapt with fixed activations
with ten hidden units

Figure 12: Basic MOLF-Adapt with fixed activations

Figure 13 shows Adapt-ACT-OLF model prediction with ten hidden units after 100 iterations with initial
activations as each of the mentioned fixed activations. From the figure, we can observe that the model
trained using the adaptive activations approximates the function with similar output no matter what initial
activations are used.

Figure 13: Adaptive activations algorithm with 20 samples

Figure 14 shows the hidden units after the model is trained for each fixed initial hidden unit. We can observe
that figure 14c and figure 14d are trained with initial activation as ReLU and Leaky ReLU mimics the input
versus output, which is sinusoidal which very high activation output but the activation outputs for sigmoid
and Tanh are not as high as shown in figure 14a and figure 14b. We also observed that as the activation
output is so high, the trained output weights were equally small, with the input weight range being close to
similar to the model trained with Tanh’s activation.
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(a) Sigmoid (b) Tanh (c) ReLU (d) Leaky ReLU

Figure 14: Adaptive Activation hidden units

4.6.2 Rosenbrock Approximation

In this subsection, we demonstrate an approximation of the rosenbrockRosenbrock (1960). The input is
generated using constant values a= 1 and b = 100, and 1000 uniformly distributed random samples are
generated for each of the two inputs. The Output generated is the rosenbrockRosenbrock (1960) function.
Here, we normalize the inputs and outputs with zero mean and standard deviation on 1 for ease of training.
We saw no difference in results.

(a) ReLU Activations Input 1 vs Output (b) ReLU Activations Input 2 vs Output

Figure 15: Rosenbrock Approximation with Fixed ReLU Activations

Relu Activations Figure 15 shows the Rosenbrock approximation using ReLU activations, and Figure ??
shows the Rosenbrock approximation using adaptive ReLU activations. Here, Subfigure 15a shows a scatter
plot of predicted versus the actual Output for the trained model using fixed ReLU activations. Subfigure ??
shows results for the adaptive model trained using ReLU as initial activations using 11 samples. Comparing
both the scatter plots, we can observe that the approximation results of the adaptive ReLU model are better
than the model trained using fixed ReLU activation. Similarly, Subfigure 15b shows a scatter plot of predicted
versus the actual Output for the trained model using fixed ReLU activations for the second input. Subfigure
?? shows results for the adaptive model trained using ReLU as initial activations using 11 samples. Again we
can observe by comparing both scatter plots that the approximation results of the adaptive ReLU model is
better than the model trained using fixed ReLU activation.

Leaky Relu Activations Figure 17 shows the Rosenbrock approximation using Leaky ReLU activations,
and Figure 18 shows the Rosenbrock approximation using adaptive Leaky ReLU activations. Here, Subfigure
17a, shows a scatter plot of predicted versus the actual Output for the trained model using fixed Leaky
ReLU activations. Subfigure 18a shows results for the adaptive model trained using Leaky ReLU as initial
activations using 11 samples. Comparing both the scatter plots, we can observe that the approximation
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(a) Adaptive ReLU Activations Input 1 vs Out-
put

(b) Adaptive ReLU Activations Input 2 vs Out-
put

Figure 16: Rosenbrock Approximation with Adaptive ReLU Activations with 11 samples

(a) Leaky ReLU Activations Input 1 vs Output (b) Leaky ReLU Activations Input 2 vs Output

Figure 17: Rosenbrock Approximation with Fixed Leaky ReLU Activations

results of the adaptive Leaky ReLU model is better than the model trained using fixed Leaky ReLU activation.
Similarly, Subfigure 17b , shows a scatter plot of predicted versus the actual Output for the trained model
using fixed Leaky ReLU activations for the second input. Subfigure 18b shows results for the adaptive model
trained using Leaky ReLU as initial activations using 11 samples. Again, we can observe by comparing both
scatter plots that the approximation results of the adaptive Leaky ReLU model are better than the model
trained using fixed Leaky ReLU activation.

Sigmoid Activations Figure 19 shows the Rosenbrock approximation using Sigmoid activations, and
Figure 20 shows the Rosenbrock approximation using adaptive Sigmoid activations. Here, Subfigure 19a,
shows a scatter plot of predicted versus the actual Output for trained model using fixed Sigmoid activations.
Subfigure 20a shows results for the adaptive model trained using Sigmoid as initial activations using 11
samples. Comparing both the scatter plots, we can observe that the approximation results of the adaptive
Sigmoid model is better than the model trained using fixed Sigmoid activation. Similarly, Subfigure 19b
, shows a scatter plot of predicted versus the actual Output for the trained model using fixed Sigmoid
activations for the second input. Subfigure 20b shows results for the adaptive model trained using Sigmoid
as initial activations using 11 samples. Again, we can observe by comparing both scatter plots that the
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(a) Adaptive Leaky ReLU Activations Input 1
vs Output

(b) Adaptive Leaky ReLU Activations Input 2
vs Output

Figure 18: Rosenbrock Approximation with Adaptive Leaky ReLU Activations with 11 samples

(a) Sigmoid Activations Input 1 vs Output (b) Sigmoid Activations Input 2 vs Output

Figure 19: Rosenbrock Approximation with Fixed Sigmoid Activations

approximation results of the adaptive Sigmoid model is better than the model trained using fixed Sigmoid
activation.

Tanh Activations Figure 21 shows the Rosenbrock approximation using Tanh activations and Figure 22
shows the Rosenbrock approximation using adaptive Tanh activations. Here, Subfigure 21a, shows a scatter
plot of predicted versus the actual Output for the trained model using fixed Tanh activations. Subfigure 22a
shows results for the adaptive model trained using Tanh as initial activations using 11 samples. Comparing
both the scatter plots, we can observe that the approximation results of the adaptive Tanh model is better
than the model trained using fixed Tanh activation. Similarly, Subfigure 21b , shows a scatter plot of predicted
versus the actual Output for the trained model using fixed Tanh activations for the second input. Subfigure
22b shows results for the adaptive model trained using Tanh as initial activations using 11 samples. Again,
we can observe by comparing both scatter plots that the approximation results of the adaptive Tanh model
are better than the model trained using fixed Tanh activation.
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(a) Adaptive Sigmoid Activations Input 1 vs
Output

(b) Adaptive Sigmoid Activations Input 2 vs
Output

Figure 20: Rosenbrock Approximation with Adaptive Sigmoid Activations with 11 samples

(a) Tanh Activations Input 1 vs Output (b) Tanh Activations Input 2 vs Output

Figure 21: Rosenbrock Approximation with Fixed Tanh Activations

5 Experimental Methods and Results

In this section, we discuss experiment results for the proposed algorithm in which we demonstrate relative
testing results for widely available approximation and classification data. Finally, we show results for a
shallow convolutional neural network architecture. The computational cost is measured on a Windows 10,
Intel i-7, 3 Mhz CPU platform with 32 GB RAM. In this section, we demonstrate network performance
comparison between Adapt-ACT-OLF, Adapt-ACT-OLF,CG-MLPRane et al. (2023) Tyagi et al. (2014)Tyagi
et al. (2022) and LM Battiti (1992)Hagan & Menhaj (1994) for approximation and classification data. We
also show results for shallow convolution neural networks with custom networks and deep CNNs using transfer
learning.

5.1 Approximation Datasets Results

From Table 2, we can observe that Adapt-OLF is the top performer in 5 out of the 7 data sets in terms
of testing MSE. The following best-performing algorithm is MOLF-Adapt for weather data with a smaller
margin and is also tied in comparison to testing MSE for twod datasets. Adapt-OLF has slightly more
parameters depending on the number of samples, but the testing MSE is substantially reduced. The next
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(a) Adaptive Tanh Activations Input 1 vs Out-
put

(b) Adaptive Tanh Activations Input 2 vs Out-
put

Figure 22: Rosenbrock Approximation with Adaptive Tanh Activations with 11 samples

Dataset SCG/Nh CG-
MLP/Nh

LM/Nh MOLF-
Adapt
LReLU/Nh

Adapt-
OLF 3sam-
ples/Nh

Adapt-
OLF
5 sam-
ples/Nh

Adapt-
OLF 9sam-
ples/Nh

Oh7 1.971/30 1.52/100 1.41/30 1.51/15 1.49/20 1.46/20 1.44/15
White Wine 0.6/20 0.56/100 0.57/30 0.55/30 0.54/100 0.56/20 0.54/100
twod 0.5/30 0.23/100 0.17/15 0.149/15 0.149/15 0.18/15 0.15/15
Superconductor230.91/15 180.21/100 170.2/100 144.46/100 142.53/100 139.62/100 142.53/100
F24 1.14/20 0.31/100 0.30/30 0.281/100 0.282/100 0.283/100 0.279/100
Concrete 61.11/5 34.64/30 32.12/20 32.29/100 30.70/100 34.34/10 35.56/100
Weather 316.68/15 283.23/30 286.27/30 283.20/10 284.39/15 284.34/15 284.73/15

Table 2: 10-fold cross validation mean square error (MSE) testing results for approximation dataset, (best
testing MSE is in bold)

best performer is LM for the oh7 dataset. However, LM being a second-order method, its performance comes
at a significant cost of computation – almost two orders of magnitude greater than the rest of the models
proposed

5.2 Classifier Datasets Results

From Table 3, we can observe that Adapt-OLF is the top performer in 5 out of the 6 data sets in terms of
testing MSE. The following best-performing algorithm is MOLF-Adapt for weather data, which has a smaller
margin. As LM requires a significant cost of computation, it cannot be used for pixel-based inputs hence lose
out on a majority of the image classification-based use cases.

5.3 CNN Results

5.3.1 Shallow CNN results

This section demonstrates shallow CNN results with ReLU, leaky ReLU, and adaptive activations. We will
be using one, two, and three VGG blocks Simonyan & Zisserman (2014). We will also be using the CIFAR-10
dataset for benchmarking our results. Figure 23 is the One VGG block.
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Dataset SCG/Nh CG-
MLP/Nh

LM/Nh MOLF-
Adapt
LReLU/Nh

Adapt-
OLF 3sam-
ples/Nh

Adapt-
OLF
5 sam-
ples/Nh

Adapt-
OLF 9sam-
ples/Nh

GongTrn 10.28/100 10.46/100 8.94/30 8.62/30 8.65/30 8.64/30 8.72/30
Comf18 15.69/100 14.50/100 12.63/5 11.83/20 11.93/30 11.87/30 11.79/30
f17c 3.22/100 3.69/100 3.96/100 2.45/100 2.38/100 2.41/100 2.34/100
Speechless 44.26/100 43.07/100 39.72/100 36.65/100 35.96/100 38.94/100 37.6/100
Cover 27.39/100 29.87/100 NA 20.1/30 19.43/30 19.47/30 19.42/30
Scrap 25.58/100 20.77/100 NA 19.9/100 19.57/100 18.8/100 19.2/100

Table 3: 10-fold cross validation Percentage of Error (PE) testing results for classification dataset, (best
testing MSE is in bold)

Figure 23: 1 VGG layer with classifier

From Figure 23 we can see that there is one VGG layer and a classification layer. The one VGG layer consists
of 2 convolution layers with 3x3 kernel and 32 filters in the first and and 3rd layers, and activations are in
the 2nd and 4th layers. The final layer is a 2 x 2 maxpool layer. Similarly, 2 VGG layer network has 2 VGG
layers and one classification layer where the first VGG layer has the same configuration as in the figure with
32 filters, and the 2nd VGG layer consists of convolution layers with 3 x 3 kernels and a depth as 64 for each
convolution layer as shown in Figure 24

21



Under review as submission to TMLR

Figure 24: Two VGG layer with classifier

Similarly, in the 3 VGG layer, we have 2 VGG layers as mentioned above, and a 3rd VGG layer has the same
configuration as the 2nd VGG layer with 3 x 3 kernels, but the depth is 64 filters for each convolution layer,
as shown in Figure 25

Figure 25: Three VGG layer with classifier

One thing to note here is that when the model is used with ReLU activations, all the activations used are
ReLU, similarly with leaky ReLU, but in adaptive activations, the last VGG layer activations are trained
and the remaining are not trained and are either kept as ReLU or leaky ReLU. For example, In 2 - VGG
layer, the 2nd VGG layer’s adaptive activation functions are trained, and the first VGG layer’s adaptive
activations are not used as trainable parameters. The number of samples(n) used in the activations for the
below experiment is kept as 3 as follows [minimum value, 0, maximum value], where the first is the minimum
value of the output of the convolution layer before the adaptive activation, the second value is 0. The final
value is the maximum value of the output of the convolution layer before the adaptive activation layer. For
example, if we train a 2 VGG layer model, as described above, activations in the VGG1 layer are not trained.
The output of the VGG1 layer, the 2 x 2 maxpool output, is used as input to the 2nd VGG layer, where
th output of the first convolution layer’s maximum and minimum value in the 2nd VGG layer is used. The
activation function used in the adaptive activations where the activations are not trainable is leaky ReLU,
and also, the initialization of the adaptive activaions is done using leaky ReLU. As suggested earlier, any
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activations can be used in the initialization. The decision here was taken based on the results seen in the
Table 4 for the model with leaky ReLU activations.

Table 4 shows results for 1-vgg layers, 2-vgg layers, 3-vgg layers model on CIFAR-10Krizhevsky (2009) dataset
with Glorot normal initialization From the table we can observe that as the number of vgg layer increase,
adaptive activation gives better accuracy. One thing to note is that in 3-VGG layer model, only the 3rd vgg
layer activations are trained, and we can observe a significant difference in the accuracy.

Dataset Models Weight Ini-
tialization

Adaptive
Activa-
tions

ReLU Acti-
vations

LeakyReLU
Activa-
tions

CIFAR-10 1 - VGG
layers

Glorot Nor-
mal

67.8 66.56 66.45

CIFAR-10 2 - VGG
layers

Glorot Nor-
mal

74.2 71.82 73.09

CIFAR-10 3 - VGG
layers

Glorot Nor-
mal

75.53 72.58 73.3

Table 4: 10-fold cross validation mean square error (MSE) testing results for classification dataset, (best
testing MSE is in bold)

5.3.2 Transfer Learning using Deep CNN results

In this section, we use 2 of the widely use Pretrained deep learning models, VGG11 and ResNet18. These
models are pretrained using Image net data. We use a transfer learning approach where we modify the final
classification layer with a new linear layer with a number of classes equal to 10, which is the total number
of classes in CIFAR-10 and train the model for at least 100 iterations. The importance of transfer learning
is that the model already has learnt the important features, which helps generate good results with fewer
data and iterations. Similarly, in the model with adaptive activations, we change the final linear layer and
also change some of the final layers, such as in ResNet18 architecture, we replace the layer 4 basic blocks
ReLU activation function with adaptive activations and in VGG11, the ReLU activation after the 7th and
8th convolution layer, which also are the last 2 activations in the feature layer with adaptive activations. Two
main reasons for using adaptive activations in the final feature layer. 1st - less number of parameters and
2nd - more complex and abstract are in the deeper layerZeiler & Fergus (2013) . From the results shown in
5, we can observe that adaptive activations give better results but with a slight increase in parameters and
hence training time.

Models Adaptive
Activa-
tions

ReLU Acti-
vations

VGG11 91.78 91.44
ResNet18 95.30 95.1

Table 5: 10-fold cross validation mean square error (MSE) testing results for classification dataset (best
testing MSE is in bold)

6 Conclusion and Future Work

The proliferation of progressively deeper architectures, exemplified by structures like ResNet boasting up
to 152 layers, attests to the remarkable success of neural network models. While deep architectures garner
considerable attention, exploring shallow CNN remains an open research topic to understand how neural
network learning plays out. Amidst these developments, the role of activation functions within neural networks
emerges as a paramount consideration, as they imbue networks with essential nonlinearity. Although Rectified
Linear Units (ReLUs) have surfaced as a ubiquitous choice, this study introduces a novel and intricate
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approach to complex piece-wise linear (PWL) activations within hidden layers. Through experimentation,
we have successfully demonstrated the superior efficacy of PWL activations over ReLUs in CNN and dense
networks like multilayer perceptrons. A new adaptive piecewise linear activation has been introduced. We
demonstrate our results on simple and complex functions and show that fixed activation functions cannot
approximate any function. We also show results for various MLP structures compared to PLA activations
and different sets of samples with traditional fixed activations for approximation and classification data.
Finally, we show shallow CNN results with fixed and PLA activations. From all the experiments, we observed
that adaptive activations give better results. The drawback of PLA activations is that they require more
computations, but the achieved results are comparatively higher than those with fixed activations. We also
observed that applications with curved outputs involve using more PWL samples to approximate. The
current study indicates the potency of PWL activations. It contributes a valuable perspective to the ongoing
discourse surrounding activation functions, encouraging researchers and practitioners alike to consider the
nuanced intricacies of neural network design for optimal performance across many applications.
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A Appendix: Training weights by orthogonal least squares

OLS is used to solve for the output weights, pruning of hidden units Tyagi et al. (2020), input units Tyagi
& Manry (2019) and deciding on the number of hidden units in a deep learner Tyagi (2018). OLS is a
transformation of the set of basis vectors into a set of orthogonal basis vectors thereby measuring the
individual contribution to the desired output energy from each basis vector.

In an autoencoder, we are mapping from an (N+1) dimensional augmented input vector to it’s reconstruction
in the output layer. The output weight matrix Woh ∈ ℜN×Nh and yp in elements wise will be given as

yp(i) =
N+1∑
n=1

woh(i, n) · xp(n) (47)

To solve for the output weights by regression , we minimize the MSE as in equation 10. In order to achieve a
superior numerical computation, we define the elements of auto correlation R ∈ ℜNh×Nh and cross correlation
matrix C ∈ ℜNh×M as follows :

r(n, l) = 1
Nv

Nv∑
p=1

Op(n) ·Op(l) c(n, i) = 1
Nv

Nv∑
p=1

Op(n) · tp(i) (48)

Substituting the value of yp(i) in equation 10 we get,

E = 1
Nv

Nv∑
p=1

M∑
m=1

[tp(m)−
Nh∑
k=1

woh(i, k) ·Op(k)]2 (49)

Differentiating with respect to Woh and using equation 48 we get

∂E

woh(m, l) = −2[c(l, m)−
Nh+1∑
k=1

woh(m, k)r(k, l)] (50)

Equating equation 50 to zero we obtain a M set of Nh + 1 linear equations in Nh + 1 variables. In a compact
form it can be written as

R ·WT = C (51)

By using orthogonal least square, the solution for computation of weights in equation 51 will speed up. For
convineance, let Nu = Nh + 1 and the basis functions be the hidden units output O ∈ ℜ(Nh+1)×1 augmented
with a bias of 1. For an unordered basis function O of dimension Nu , the mth orthonormal basis function
O′ is defines as « add reference »

O
′

m =
m∑

k=1
amk ·Ok (52)

Here amk are the elements of triangular matrix A ∈ ℜNu×Nu

For m = 1
O

′

1 = a11 ·O1 a11 = 1
∥O∥

= 1
r(1, 1) (53)
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for 2 ≤ m ≤ Nu, we first obtain

ci =
i∑

q=1
aiq · r(q, m) (54)

for 1 ≤ i ≤ m− 1. Second, we set bm = 1 and get

bjk = −
m=1∑
i=k

ci · aik (55)

for 1 ≤ k ≤ m− 1. Lastly we get the coeffeicent Amk for the triangular matrix A as

amk = bk

[r(m, m)−
∑m−1

i=1 c2
i ]2

(56)

Once we have the orthonormal basis functions, the linear mapping weights in the orthonormal system can be
found as

w
′
(i, m) =

m∑
k=1

amkc(i, k) (57)

The orthonormal system’s weights W′ can be mapped back to the original system’s weights W as

w(i, k) =
Nu∑

m=k

amk · w
′

o(i, m) (58)

In an orthonormal system, the total training error can be written from equation 10 as

E =
M∑

i=1

Nv∑
p=1

[⟨tp(i), tp(i)⟩ −
Nu∑
k=1

(w
′
(i, k))2] (59)

Orthogonal least square is equivalent of using the QR decomposition Golub & Van Loan (2012) and is useful
when equation equation 51 is ill-conditioned meaning that the determinant of R is 0.
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