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ABSTRACT

To mitigate the impact of hallucination nature of LLMs, many studies propose
detecting hallucinated generation through uncertainty estimation. However, these
approaches predominantly operate at the sentence or paragraph level, failing to
pinpoint specific spans or entities responsible for hallucinated content. This lack
of granularity is especially problematic for long-form outputs that mix accurate
and fabricated information. To address this limitation, we explore entity-level
hallucination detection. We propose a new data set that annotates hallucination
at the entity level. Based on the dataset, we comprehensively evaluate uncertainty-
based hallucination detection approaches across 17 modern LLMs. Our experi-
mental results show that uncertainty estimation approaches focusing on individual
token probabilities tend to over-predict hallucinations, while context-aware meth-
ods show better but still suboptimal performance. Through an in-depth qualitative
study, we identify relationships between hallucination tendencies and linguistic
properties and highlight important directions for future research.

1 INTRODUCTION

How can we trust the facts generated by large language models (LLMs) when even a single hal-
lucinated entity can distort an entire narrative? While LLMs have revolutionized text generation in
various domains, from summarization to scientific writing (Liang et al., 2024), their tendency to pro-
duce hallucinations—factually incorrect or unsupported content—remains a critical challenge (Xu
et al., 2024). This issue is particularly concerning in high-stakes applications, such as medical
diagnostics (Chen et al., 2024b), legal document drafting (Lin & Cheng, 2024), and news gener-
ation (Odabaşı & Biricik, 2025), where inaccurate information can cause harm to individuals and
erosion of public trust. Detecting hallucinations is therefore a critical step toward ensuring the re-
sponsible deployment of LLMs.

Various approaches have been proposed to detect hallucinations (Luo et al., 2024), with uncertainty-
based methods emerging as a promising direction (Zhang et al., 2023a). However, current
uncertainty-based hallucination detection approaches mainly operate at the sentence or paragraph
level, classifying the entire generation as either hallucinated or correct. While this provides a coarse-
grained assessment of factuality, it lacks the granularity needed to pinpoint which specific spans or
entities contribute to hallucination. This limitation is particularly problematic for long-form text,
where both accurate and hallucinated information frequently coexist. For example, a generated
response about a historical event might correctly state the date but fabricate details about the indi-
viduals involved, necessitating finer-grained detection.

To address these limitations, we present a first systematic exploration of entity-level hallucination
detection, introducing a benchmark dataset, evaluating uncertainty-based detection methods, and
analyzing their strengths and limitations in identifying hallucinated entities. Specifically, we begin
by constructing a benchmark for entity-level hallucination detection, which is lacking for the field.
Constructing such a dataset is particularly challenging due to the labor-intensive nature of entity-
level annotation, which requires annotators to segment meaningful entities and verify their factuality
against reliable sources one by one. To overcome this, we develop a systematic pipeline that maps
atomic facts from model-generated text to entity-level annotations, enabling structured hallucination
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detection at a finer granularity. Our dataset encompasses 18,785 annotated entities, and provides a
foundation for evaluating hallucination detection methods with greater interpretability and precision.

Building on this dataset, we comprehensively evaluate the reliability of token-level uncertainty mea-
surements in detecting hallucinated entities and their potential for localizing hallucinations within
the generated text. Our evaluation broadly includes standard uncertainty estimators, such as token-
level likelihood (Guerreiro et al., 2023) and entropy scores (Malinin & Gales, 2021), as well as more
advanced context-aware approaches that refine uncertainty estimation (Fadeeva et al., 2024; Duan
et al., 2024; Zhang et al., 2023b). By aggregating token-level uncertainty to the entity level, we
assess whether these methods can accurately distinguish hallucinated entities from factual ones. We
experiment with 17 modern LLMs across different model families and capacities. The results reveal
that methods solely relying on individual token probabilities (e.g., likelihood and entropy) tend to
over-predict hallucinations, making them less reliable. In contrast, context-aware approaches (Duan
et al., 2024; Zhang et al., 2023b) demonstrate better overall performance in entity-level hallucination
detection. Additionally, model family and size have a limited impact on performance, compared to
the choice of uncertainty estimation method, emphasizing the need for improved uncertainty mod-
eling.

Through in-depth qualitative analysis, we further identify relationships between hallucination ten-
dencies and linguistic properties, such as sentence positions and entity types. We found that cal-
ibrating uncertainty score with contextual information in the best-performing method Zhang et al.
(2023b) helps reduce over-confidence tendencies in later sentence positions but can unintentionally
penalize non-hallucinated content. We also found that some uncertainty scores can frequently assign
high uncertainty to informative content like named entities. These observations highlight critical ar-
eas for future research, including better modeling of contextual dependencies to maintain balanced
precision-recall trade-offs. Our key contributions are summarized as follows:

1. We propose an entity-level hallucination detection dataset, which contains 18,785 anno-
tated entities for ChatGPT-generated biographies.

2. We comprehensively evaluate uncertainty-based hallucination detection approaches across
17 LLMs on our proposed dataset.

3. We conduct an in-depth analysis to identify the strengths and weaknesses of current
uncertainty-based approaches, and provide insight to design better uncertainty scores.

2 RELATED WORK

Uncertainty-based hallucination detection methods. Various approaches have been proposed to
detect hallucinated content in LLMs generation. Unlike other methods that require external knowl-
edge sources for fact-checking (Gou et al., 2024; Chen et al., 2024a; Min et al., 2023; Huo et al.,
2023), uncertainty-based approaches are reference-free and rely only on LLM internal states or be-
haviors to determine hallucination (Huang et al., 2024). For instance, sampling-based approaches
generate multiple responses and measure the diversity in meaning among them (Fomicheva et al.,
2020; Kuhn et al., 2023; Lin et al., 2024), while density-based approaches approximate the training
data distribution and provide probabilities or unnormalized scores to assess how likely a generated
response belongs to the distribution (Yoo et al., 2022; Ren et al., 2023; Vazhentsev et al., 2023).

In this paper, we focus on uncertainty quantification methods that rely on token-level likelihood
or entropy (Guerreiro et al., 2023; Malinin & Gales, 2021). Recent works have explored refining
likelihood estimation by incorporating semantic relationships or reweighting token importance. For
instance, Claim-Conditioned Probability (CCP) (Fadeeva et al., 2024) was introduced to recalculate
likelihood according to semantical equivalence; while Zhang et al. (2023b) and Duan et al. (2024)
proposed to weight or filter tokens according to their importance in conveying meaning when aggre-
gating token-level uncertainty estimation. These approaches utilize token-level information to esti-
mate uncertainty, yet are usually evaluated at sentence level, leaving open the question of whether
token-level scores are truly reliable. To address this gap, we perform a comprehensive analysis of
entity-level hallucination detection to enable finer-grained performance understanding.

Fine-grained hallucination detection benchmark. Most hallucination detection benchmarks are
in sentence or paragraph level. For example, CoQA (Reddy et al., 2019), TriviaQA (Joshi et al.,
2017), TruthfulQA (Lin et al., 2022), and HaluEval (Li et al., 2023). These benchmarks classify
each generated response as either hallucinated or correct. However, instance-level detection can-
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not pinpoint specific hallucinated content, which is crucial for correcting misinformation (Cattan
et al., 2024). This limitation becomes particularly problematic in long-form text, where a single
response often combines supported and unsupported information, making binary quality judgments
inadequate (Min et al., 2023).

To address these challenges, recent works have advanced benchmarks for more granular hallucina-
tion detection. For example, Min et al. (2023) introduced FACTSCORE, which decomposes LLM-
generated text into atomic facts—short sentences conveying a single piece of information—for more
precise evaluation. In parallel, Cattan et al. (2024) introduced QASEMCONSISTENCY, decompos-
ing LLM generated text with QA-SRL, a semantic formalism, to form simple QA pairs, where each
QA pair represent one verifiable fact. However, these methods do not enable entity-level halluci-
nation detection, as they lack explicit entity-level labeling (hallucinated or not) in the original gen-
erated text. Beyond decomposition-based approaches, datasets like HADES (Liu et al., 2022) and
CLIFF (Cao & Wang, 2021) create token-level hallucinated content by perturbing human-written
text, allowing token-level annotation on the same text. These perturbed hallucinated content, how-
ever, could be unrealistic, biased, and overly synthetic due to the limitations of models they used to
perturb words. Additionally, the coherence of perturbed text may fall short compared to text fully
generated by LLMs, reducing its utility for certain tasks. To bridge this gap, we create a new dataset
with entity-level hallucination labels on the same LLMs generated text. This allows us to evalu-
ate uncertainty-based hallucination detection approaches on a finer-grained level and analyze their
reliability.

3 AN ENTITY-LEVEL HALLUCINATION DATASET

3.1 DATASET CONSTRUCTION

Curating an entity-level hallucination detection dataset is challenging, requiring annotators to seg-
ment sentences into meaningful entities and verify the factual consistency of each entity against
reliable sources. This process is time-intensive, requires domain expertise, and is prone to subjec-
tivity (Cao & Wang, 2021). To address these challenges, we first develop a data generation pipeline
that maps atomic facts from FACTSCORE (Min et al., 2023) back to the original generated text.

Lanny Flaherty is an American actor born on 
December 18, 1949, in Pensacola, Florida. He has 
appeared in numerous films, television shows, and 
theater productions…

Tell me a bio of Lanny Flaherty

Atomic Facts
• Lanny Flaherty is an American.  
• Lanny Flaherty is an actor.
• Lanny Flaherty was born on December 18, 1949.
• Lanny Flaherty was born in Pensacola, Florida. 
• He has appeared in numerous films.
• He has appeared in numerous television shows. 
• He has appeared in numerous theater productions.
• …

Lanny Flaherty
is
an
American
actor 
born
on
December 18, 1949,
in
Pensacola, Florida.
He
has appeared
in
numerous
films,
television shows,
and
Theater productions.

LLM Generation
Entity Label

Figure 1: Illustration of our entity-level
dataset construction. We form entity-level
hallucination labels according to the atomic
facts extracted by FACTSCORE.

Entity segmentation and labeling. To construct
our dataset, we leverage biographies generated by
ChatGPT (OpenAI, 2023). Each data point consists
of a name, a ChatGPT-generated biography, and a
list of atomic facts labeled as either True or False.
As illustrated in Figure 1, each atomic fact is a short
sentence that conveys a single piece of information.
Since atomic facts decompose a sentence into veri-
fiable units, they provide a structured reference for
identifying hallucinated entities.

To derive entity-level labels, we first segment the
original text into meaningful units rather than in-
dividual words. For instance, “strategic thinking”
is treated as a single entity rather than two sepa-
rate words. We call such meaningful units entities.
Given that FACTSCORE decomposes multiple-fact
sentences into independent atomic facts, we use these fact-level annotations to label entities. For
example, in the sentence “He was born on March 9, 1941, in Ramos Mejia,” FACTSCORE produces
two atomic facts:

• “He was born on March 9, 1941.” (True)
• “He was born in Ramos Mejia.”(False)

By aligning these atomic facts with the original text, we label “March 9, 1941” as non-hallucinated
and “Ramos Mejia” as hallucinated. Neutral words like “he” and “on” are excluded from hallucina-
tion labeling. To scale this process efficiently, we automatically identify and label these entities by
instructing GPT-4o (OpenAI, 2024) with a few-shot prompt. Specifically, we manually annotate two
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Figure 2: Distribution of POS (left), NER (middle), and breakdown of NER tags (right). Bars in
dark blue (right axis) indicate the ratio of hallucination for each tag.

examples, each containing an LLM-generated biography, a list of atomic facts, and a corresponding
entity-level annotation list. The prompt provides a detailed description of our segmentation method,
along with annotated examples. GPT-4o then generates entity labels, which we manually verify
and refine to ensure correctness. Further details on the prompt design and annotation process are
provided in Appendix A.

3.2 DATA ANALYSIS

Data statistics. Our dataset comprises 157 instances containing a total of 18,785 entities, with
5,452 unique entities. Each entity averages 1.63 words in length. On average, each instance contains
120 entities, with 15% labeled as hallucinated, and 85% as non-hallucinated across the corpus.

Linguistic feature analysis. We analyze the relationship between the entity-level hallucination
labels and linguistic features, e.g., part-of-speech (POS) and named entities recognition (NER) tags.
Specifically, we identify these tags for each word with Spacy (Honnibal & Montani, 2017) and count
their occurrence in hallucinated and non-hallucinated entities. The results for each of the part-of-
speech (POS) and named entities recognition (NER) tags are shown in Figure 2.

Analysis of POS tags reveals significant patterns in the distribution between hallucinated and non-
hallucinated content. Proper nouns (PROPN) constitute the most frequent category with 18.3%
occurrences, followed by nouns (NOUN, 17.5%) and adpositions (ADP, 15.1%). Among them,
proper nouns and nouns exhibit high hallucination rates of 30.9% and 33.6%, respectively, while
adpositions have a lower rate of 11.7%. Moreover, although adjectives (ADJ, 7.1%) and numbers
(NUM, 4.4%) are less common, they suffer from a high hallucination rate of 28.9% and 36.2%.

Non-named entities, which comprise 73.8% of total tokens, show a low hallucination rate of 18.2%.
In contrast, named entities—despite accounting for only one-third of the tokens—exhibit nearly
double the hallucination rate, often exceeding 30%. Among these named entities, person names
(PERSON) show the lowest hallucination rate of 13.4%, likely because ChatGPT was prompted to
generate biographies for specific individuals.

Beyond POS and NER tagging, hallucination rates vary by position in sentences. The first six words
of sentences have a low hallucination rate (9%), but this significantly increases in the middle in the
middle (25%) and peaks at the last six words (36%). This comprehensive analysis reveals systematic
patterns in hallucination across linguistic features and entity types, providing crucial insights into
the reliability of different categories of generated content. In Section 5.3, we see the connections
between these linguistic features and the performance of uncertainty-based hallucination detection
approaches.

4 UNCERTAINTY SCORES FOR DETECTING HALLUCINATED ENTITIES

Given the entity-level hallucination dataset we constructed, a key question arises: Can uncertainty
scores effectively detect these hallucinated entities? In this section, we comprehensively explore
uncertainty-based methods, all of which measure uncertainty at the token level. These token-level
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Approach AUROC ↑ AUPRC ↑ F1Opt ↑ PrecisionOpt↑ RecallOpt ↑
Likelihood (Guerreiro et al., 2023) 0.57 0.17 0.29 0.18 0.74
Entropy (Malinin & Gales, 2021) 0.57 0.18 0.28 0.17 0.86
CCP (Fadeeva et al., 2024) 0.57 0.25 0.26 0.15 1.0
SAR Duan et al. (2024) 0.67 0.27 0.34 0.26 0.51
Focus (Zhang et al., 2023b) 0.78 0.40 0.48 0.38 0.66

Table 1: Performance comparison among five uncertainty scores using Llama3-8B.

scores can be conveniently aggregated to the entity level, allowing for a systematic evaluation of
their effectiveness in identifying hallucinated entities.

Notations and definitions. Let V be a vocabulary space, x = (v1, v2, . . . , vT ) be a sentence of
length T consisting of tokens vi ∈ V . The token-level hallucination scores are denoted as yt =
(yt1, y

t
2, . . . , y

t
T ), where yti ∈ R. An entity in x is represented as ek = (vi, vi+1, .., vj), where i

and j are the start and end indices of the entity’s tokens, satisfying i < j ≤ T . The sentence
x can then be rewritten as x = (e1, e2, . . . , eK), where K is the number of entities. The entity-
level hallucination labels for x are defined as l = (l1, l2, . . . , lK), where lk ∈ {0, 1} indicates
whether ek is hallucinated. The entity-level scores are computed as ye = (ye1, y

e
2, . . . , y

e
K), where

yek := 1
ek,1−ek,0+1

∑ek,1

i=ek,0
yti , which aggregates token-level scores to the entity level and ek,0 and

ek,1 are the start and end indices of entity ek. We introduce five methods below to calculate the
token-level uncertainty scores.

Likelihood (Guerreiro et al., 2023): The score is based on the negative log-likelihood of the i-th
generated token: yti := − log p(xi|x<i).

Entropy (Malinin & Gales, 2021): The score is the entropy of the token probability distribution
at position i:yti := −

∑
v∈V p(v|x<i) log p(v|x<i).

Claim-Conditioned Probability (CCP) (Fadeeva et al., 2024): This method adjusts likeli-
hood based on semantic equivalence using a natural language inference (NLI) model: yti :=

− log

∑
k:NLI(xk

i
,xi)=‘e’ p(x

k
i |x<i)∑

k:NLI(xk
i
,xi)∈{‘e’,‘c’} p(xk

i |x<i)
, where xk

i is the k-th alternative of the i-th generated token, and

NLI determines whether concatenating xk
i with the preceding context entails (‘e’) or contradicts

(‘c’) the original token. In our experiment, we use top 10 alternatives and use DeBERTa-base (He
et al., 2021) as the NLI model.

Shifting Attention to Relevance (SAR) (Duan et al., 2024): This method weights negative log-
likelihood by semantic importance: yti := − log p(xi|x<i)R̃T (xi, x), where R̃T is 1− cosine sim-
ilarity between the sentence embedding of x and x\{xi}. Following Duan et al. (2024), we use
SentenceBERT (Reimers & Gurevych, 2019) with RoBERTa-large (Liu et al., 2019) for embedding
extraction.

Focus (Zhang et al., 2023b): This method refines log-likelihood and entropy using keyword se-
lection, hallucination propagation, and probability correction: yti := I(xi ∈ K) · (hi + γpi),
where K is keyword set identified by Spacy (Honnibal & Montani, 2017). hi is the sum of
negative log-likelihood and entropy of xi, hi := − log p̂(xi|x<i) + 2−

∑
v∈V p̂(v|x<i) log2 p̂(v|x<i).

Here, p̂(xi|x<i) = p(xi|x<i)idf(xi)∑
v∈V p(v|x<i)idf(v)

is the token probability adjusted by inverse document
frequency (IDF), and pi is the hallucination score propagated from previous tokens, pi :=∑i−1

j=0
atti,j∑i−1

k=0 atti,k
ytj , where atti,j is the attention weight between xi and xj after max-pooling

for all the layers and attention heads. Following Zhang et al. (2023b), the token IDF is calculated
based on 1M documents sampled from RedPajama dataset (Weber et al., 2024), and the hyperpa-
rameter γ for pi is set to be 0.9.

Besides these five approaches, we acknowledge that other uncertainty-based hallucination detection
approaches exist, such as Semantic Entropy (Kuhn et al., 2023), Verbalized Uncertainty (Kadavath
et al., 2022), Lexical Similarity (Fomicheva et al., 2020), EigValLaplacian (Lin et al., 2024), and
HaloScope (Du et al., 2024). However, since these approaches do not produce token-level scores,
they are not applicable to our study on detecting hallucinated entites.
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Figure 3: For each method, we show performance variation across 17 LLMs (3a). We also show
AUPRC scores across LLMs with different capacities (3b), as well as performance on data with
different hallucination rates (3c). Note that the model used in Figure 3c is Llama3-8B.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Models. To understand the impact of model family and capacity on entity-level hallucination de-
tection, we experiment with 17 diverse LLMs, including Llama3-{8B, 70B} (Llama Team, 2024),
Llama3.1-8B, Llama3.2-3B, Aquila2-{7B, 34B} (Zhang et al., 2024), InternLM2-{7B, 20B} (Cai
et al., 2024), Qwen2.5-{7B, 32B} (Qwen, 2025), Yi-{9B, 34B} (01.AI, 2024), phi-2 (Gunasekar
et al., 2023), Mistral-7B (Jiang et al., 2023), Mixtral-8x22B (Jiang et al., 2024), and Gemma2-{9B,
27B} (Gemma Team, 2024).

Evaluation Metrics. Entity-level hallucination detection can be formulated as a binary classifica-
tion task. To evaluate performance, we use (1) AUPRC and (2) AUROC, which assess the rela-
tionship between entity-level hallucination labels l and scores ye. AUPRC captures precision-recall
trade-offs, while AUROC evaluates true and false positive rates. Unlike AUROC, AUPRC disregards
true negatives, emphasizing false positive reduction—a key advantage for hallucination detection,
where true negatives often involve less informative entities like prepositions and conjunctions. We
complement these metrics by also reporting (3) F1Opt, (4) PrecisionOpt, and (5) RecallOpt,
where F1Opt is the optimal F1 score among all possible threshold and PrecisionOpt, and RecallOpt

are corresponding Precision and Recall values.

5.2 EXPERIMENTAL RESULTS

How do different uncertainty scores perform on entity-level hallucination detection? Table 1
presents the evaluation results for five uncertainty-based hallucination detection approaches using
Llama3-8B. Likelihood, Entropy, and CCP exhibit low PrecisionOpt (≈ overall hallucination rate)
but achieve high RecallOpt. This pattern suggests these methods over-predict hallucinations, mak-
ing them less suitable for reliable detection. Their focus on individual token probabilities rather than
contextual roles likely contributes to this limitation, indicating that hallucination detection is inher-
ently context-dependent and requires uncertainty scores calibrated with contextual information.

SAR and Focus, which incorporate context information, show better overall performance. However,
their lower RecallOpt indicates that the current methods for modeling context remain suboptimal,
failing to capture some hallucinated content. These findings highlight the challenges in entity-level
hallucination detection and the need for more advanced approaches that better integrate contextual
information while achieving a balanced trade-off between precision and recall.
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Case 1: Under-prediction of SAR

Label [...] Diaz started his political career as a member of the Sangguniang Bayan (municipal council)
of Santa Cruz in 1978. He later became the Vice Mayor of Santa Cruz in 1980 and was elected as the
town’s Mayor in 1988. [...]

Likelihood [...] Diaz started his political career as a member of the Sangguniang Bayan (municipal council)
of Santa Cruz in 1978 . He later became the Vice Mayor of Santa Cruz in 1980 and was elected as
the town’s Mayor in 1988 . [...]

SAR [...] Diaz started his political career as a member of the Sangguniang Bayan (municipal council)
of Santa Cruz in 1978 . He later became the Vice Mayor of Santa Cruz in 1980 and was elected as
the town’s Mayor in 1988 . [...]

Case 2: The type-filter of Focus and the limitations of uncertainty scores

Label Taral Hicks is an American actress and singer, born on September 21, 1974, in The Bronx, New York.
[...] She later transitioned to acting, appearing in films such as "A Bronx Tale" (1993), "Just
Cause" (1995), and "Belly" (1998). [...]

Likelihood Taral Hicks is an American actress and singer , born on September 21, 1974 , in The Bronx, New York
. [...] She later transitioned to acting , appearing in films such as "A Bronx Tale" (1993),
"Just Cause" (1995), and "Belly" (1998). [...]

Focus Taral Hicks is an American actress and singer , born on September 21, 1974 , in The Bronx, New York
. [...] She later transitioned to acting , appearing in films such as "A Bronx Tale" (1993),
"Just Cause" (1995), and "Belly" (1998). [...]

Case 3: Uncertainty propagation of Focus

Label [...] Fernandinho began his professional career with Atletico Paranaense in Brazil before moving to
Ukrainian club Shakhtar Donetsk in 2005. [...] He is known for his physicality, tackling ability,
and passing range, and is widely regarded as one of the best defensive midfielders in the world.

Likelihood [...] Fernandinho began his professional career with Atletico Paranaense in Brazil before moving to
Ukrainian club Shakhtar Donetsk in 2005 . [...] He is known for his physicality , tackling ability ,
and passing range , and is widely regarded as one of the best defensive midfielders in the world .

Focus [...] Fernandinho began his professional career with Atletico Paranaense in Brazil before moving to
Ukrainian club Shakhtar Donetsk in 2005 . [...] He is known for his physicality , tackling ability ,
and passing range , and is widely regarded as one of the best defensive midfielders in the world .

Table 2: We sampled 3 instances from our dataset to demonstrate the differences across uncertainty
scores. For label, entities colored in red indicate hallucination. For uncertainty scores, entities
boxed in red with different tints represent the degree of uncertainty. A lighter (darker) box indicates
a lower (higher) uncertainty.

How do different LLM families and capacity impact performance? Figure 3a summarizes
the performance variation across all 17 different LLMs. The results indicate that while AUROC,
AUPRC, and F1Opt scores vary across model families, the method used to compute uncertainty
scores has a more significant impact on performance. Notably, Focus consistently achieves the high-
est performance across all model families. Further evaluation details can be found in Appendix B.

Figure 3b presents the performance changes across different model sizes within six families:
Llama3, Aquila2, InternLM2, Qwen2.5, Yi, and Gemma2, each comprising two size variants. The
results reveal that, in most cases, using a larger model does not significantly enhance performance.
The only exception is using Gemma on Focus, where the AUROC score improves by 0.12 between
the 27B and 9B versions. Performance improvements for other model families and approaches re-
main marginal, typically below 0.01. These findings suggest that a larger LLM may not reflect its
better capability of determining hallucination on its token probabilities.

How does performance vary across different hallucination levels? We categorize the dataset
into three groups based on the proportion of hallucinated entities in each generation (See Table 3
in Appendix B for details). Figure 3c shows the PrecisionOpt, RecallOpt, and F1Opt scores across
three groups. The results reveal that all methods struggle to detect hallucinated content when the
hallucination rate is low, with F1Opt scores around 0.2. Entropy and CCP exhibit a steep increase in
RecallOpt compared toPrecisionOpt as the hallucination rate increases, suggesting their tendency to
over-predict hallucinations, particularly in a high-hallucination scenario. In contrast, Focus achieves
a small difference between the RecallOpt and PrecisionOpt when the hallucination rate is high,
demonstrating its ability to balance precision-recall trade-offs while also highlighting the challenge
of detecting sparse hallucination.

5.3 IN-DEPTH ANALYSIS

To better understand the strengths and limitations of uncertainty scores for detecting hallucinated
entities, we analyze cases where (1) all scores failed or misidentified hallucinations, and (2) scores
varied in performance. We classify entities using thresholds for F1Opt and categorize false posi-
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tives/negatives by POS, NER tags, and sentence positions (first, middle, or last six words). We then
identify tags and positions where approaches excel or falter, visualizing samples with color-coded
uncertainty scores to uncover patterns behind detection discrepancies (See Table 2). Figure 4 shows
the FPR and FNR across NER tags and sentence positions (The result across POS tags is in Ap-
pendix B). Our analysis focuses on Likelihood, SAR, and Focus, as SAR and Focus demonstrated
the most effective performance in Section 5.2, and Likelihood serves as a straightforward baseline
for comparison.
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Figure 4: FPR/FNR of uncertainty scores
across NER tags (left and middle) and sen-
tence positions (right).

SAR under-predicts hallucinations due to unre-
liable token importance weighting. The left and
middle plots of Figure 4 show that SAR has the low-
est FPR but the highest FNR across most tags, par-
ticularly for named entities, indicating a tendency to
under-predict hallucinations. This occurs because
SAR weights token importance based on sentence
similarity without the token, which often remains
unchanged even if the token is informative. The first
case in Table 2 illustrates this: SAR assigns lighter
shades to entities like the second “Santa Cruz” since
removing either “Santa” or “Cruz” barely affects
sentence similarity, despite the term’s informative-
ness.

The type-filter of Focus reduces FNR on name
entities but sheds light on a bigger limitation of
uncertainty-based hallucination score. The left
and middle plots of Figure 4 reveal that Focus per-
forms differently for named and non-named entities.
It achieves a low FNR but high FPR for named entities, and the opposite for non-named ones. This
is because Focus filters for named entities based on POS and NER tags. While promising—since
named entities often hallucinate (as shown in Figure 2)—its high FPR suggests that its base score
(the sum of Likelihood and Entropy) poorly distinguishes hallucinations, frequently assigning high
uncertainty to named entities. The 2nd case in Table 2 illustrates this: Focus ignores function words
like “is” and “to,” reducing FPR, but indiscriminately highlights named entities like “American” and
“A Bronx Tale,” even when accurate.

Uncertainty propagation of Focus alleviates the over-confidence nature of LLMs. The right
plots in Figure 4 show that LLMs are less confident when generating the first few words of a sentence
and become over-confident as generation progresses, as indicated by a decrease in FPR and an
increase in FNR for Likelihood. This contrasts with the typical distribution of hallucinations, which
occur mostly in the middle and end of sentences (Section 3.2). Focus addresses this by propagating
uncertainty scores based on attention, leading to a decrease of FNR over positions. However, its FPR
increase over positions suggest that using attention scores to propagate uncertainty may wrongly
penalize entities that are not over-confident. The 3rd case in Table 2 illustrates this: Likelihood
assigns higher uncertainty to early words (e.g., “Fernandinho began”) and lower scores to later
words (e.g., “Shakhtar Donetsk in 2005”), while Focus detects hallucinations at sentence ends by
linking them to prior hallucinated content (e.g., “Ukrainian club”).

6 CONCLUSION

In this work, we comprehensively explore the promise of entity-level hallucination detection by cu-
rating a dataset tailored for fine-grained understanding and introducing evaluation metrics for the
task. We benchmark five uncertainty-based approaches, finding that they struggle to localize hal-
lucinated content, raising concerns about their reliability. Our qualitative analysis highlights their
strengths and weaknesses. According to these finding, future work should explore more sophisti-
cated techniques for incorporating context-aware uncertainty estimation and develop methods that
adaptively propagate uncertainty across sentence positions to enhance hallucination localization.
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LIMITATIONS

In this paper, we focus on evaluating uncertainty-based hallucination detection approaches, where
the uncertainty scores are estimated by token probabilities. For other types of uncertainty estimation
that measure the diversity across samples, such as Semantic Entropy, since they estimate uncertainty
at the sample level and do not output scores for each token or entity, they can not be evaluated on
our proposed dataset. Although this incompatibility limits the usage of our dataset, it also shows the
limitation of sample-based approaches—they are hard to be used to pinpoint hallucinated content.
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A DETAILS OF DATASET CONSTRUCTION

Selection of data. From the FACTSCORE dataset, we select the set of biographies generated by
ChatGPT to construct our entity-level hallucination detection dataset. The set of ChatGPT-generated
biographies contains 183 samples. We filter out those ChatGPT refuses to answer and end up with
157 instances.

Data labeling process. For each sample, FACTSCORE provides a list of atomic facts—short sen-
tences conveying single pieces of information. These facts are labeled as Supported, Not-
supported, or Irrelevant, where Irrelevant means the fact is unrelated to the prompt
(i.e. a person’s name), and Supported and Not-supported indicate whether the fact is sup-
ported by the person’s Wikipedia page. Since only 8.3% of facts are labeled as Irrelevant,
and most are related to Not-supported facts, we simplify the entity-level labeling process by
merging both as False, treating only Supported facts as True.

To assign entity-level labels, we first tokenize the biography into individual words. We then use the
list of atomic facts to group words into meaningful units (entities) and assign labels based on fact
types. Specifically, for atomic facts that share a similar sentence structure (e.g., “He was born on
Mach 9, 1941.” (True) and “He was born in Ramos Mejia.” (False)), we label differing entities
first—assigning True to “Mach 9, 1941” and False to “Ramos Mejia.”. For those entities that are
the same across atomic facts (e.g., “was born”) or are neutral (e.g., “he,” “in,” and “on”), we label
them as True. In cases where no similar atomic fact exists, we identify the most informative entities
in the sentence, label them based on the atomic fact, and treat the remaining entities as True.

GPT-4o prompt for data labeling. To scale the labeling process, we use GPT-4o to automatically
identify and label entities with a few-shot prompt, as shown in Table 4. The system prompt includes
detailed instructions on the labeling process, along with two manually created examples. In the user
prompt, we maintain the same structured format used in the examples, inputting the biography and
the corresponding list of atomic facts.

B DETAILS OF EXPERIMENTAL RESULT
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Figure 5: Distribution of entity-level hallu-
cination rate. Most instances in our dataset
have a hallucination rate < 25%.

Performance across LLM families. Table 5, 6,
7, 8, and 9 present the performance of five
uncertainty scores across 17 LLMs. The re-
sults indicate that microsoft/phi-2 consis-
tently achieves the highest performance across
most scores and evaluation metrics, being the only
model that avoids over-predicting hallucinations
when using CCP. Additionally, models from Mis-
tral AI (mistralai/Mistral-7B-v0.3 and
mistralai/Mixtral-8x22B-v0.1) perform
best when using Focus. Notably, phi-2 (2.7B param-
eters) and Mistral-7B are relatively small models,
suggesting that a model’s size does not strongly cor-
relate with its ability to detect hallucinations based
on token probabilities. The findings also reveal that
while some models outperform others, the perfor-
mance variations within the same uncertainty score
are smaller than those across different scores, emphasizing the need for improved uncertainty esti-
mation methods for hallucination detection.

Statistics of hallucination rate. Figure 5 shows the distribution of entity-level hallucination
rate—the proportion of hallucinated entities in each generation. The results indicate that most bi-
ographies generated by ChatGPT have a hallucination rate below 25%. Additionally, generations
with hallucination rates below 10% and those between 10% to 20% occur at similar frequencies.
Based on this observation, we categorize the data into three groups (< 10%, 10-20%, > 20%)
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Low Medium High

Hallucination Rate < 10% 10− 20% > 20%
# of Instance 54 59 44

Table 3: Statistics of data grouped according to the hallucination rate. Each group has a similar
amount of data.

to examine how hallucination rates impact detection performance. Table 3 summarizes the group
statistics, showing that each group contains a similar amount of data.

FPR/FNR analysis on POS tags. Figure 6 shows the FPR/FNR of Likelihood, SAR, and Focus
across POS tags. Consistent with Figure 4, Likelihood exhibits higher FPR and lower FNR across all
tags, while SAR demonstrates lower FPR but higher FNR. In contrast, Focus shows varying patterns
depending on the tag type. For proper nouns, nouns, and numbers—tags often associated with
named entities—Focus has a higher FPR and lower FNR, similar to the trend observed in Figure 4.
However, for verbs, auxiliaries, and adverbs, Focus exhibits a lower FPR but a higher FNR. This
highlights a limitation of Focus: by concentrating primarily on named entities, it tends to overlook
hallucinations in other types of tokens.
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Figure 6: FPR/FNR of each uncertainty
score across POS tags.
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System prompt

You are a helpful and precise assistant for segmenting and labeling sentences. We would like to request your help on
curating a dataset for entity-level hallucination detection.

We will give you a machine generated biography and a list of checked facts about the biography. Each fact consists of
a sentence and a label (True/False). Please do the following process. First, breaking down the biography into words.
Second, by referring to the provided list of facts, merging some broken down words in the previous step to form
meaningful entities. For example, “strategic thinking” should be one entity instead of two. Third, according to the
labels in the list of facts, labeling each entity as True or False. Specifically, for facts that share a similar sentence
structure (e.g., “He was born on Mach 9, 1941.” (True) and “He was born in Ramos Mejia.” (False)), please first
assign labels to entities that differ across atomic facts. For example, first labeling “Mach 9, 1941” (True) and “Ramos
Mejia” (False) in the above case. For those entities that are the same across atomic facts (e.g., “was born”) or are
neutral (e.g., “he,” “in,” and “on”), please label them as True. For the cases that there is no atomic fact that shares the
same sentence structure, please identify the most informative entities in the sentence and label them with the same
label as the atomic fact while treating the rest of the entities as True. In the end, output the entities and labels in the
following format:

• Entity 1 (Label 1)
• Entity 2 (Label 2)
• ...
• Entity N (Label N)

Here are two examples:

[Example 1]
[The start of the biography]
Marianne McAndrew is an American actress and singer, born on November 21, 1942, in Cleveland, Ohio. She began
her acting career in the late 1960s, appearing in various television shows and films.
[The end of the biography]

[The start of the list of checked facts]
[Marianne McAndrew is an American. (False); Marianne McAndrew is an actress. (True); Marianne McAndrew is a
singer. (False); Marianne McAndrew was born on November 21, 1942. (False); Marianne McAndrew was born in
Cleveland, Ohio. (False); She began her acting career in the late 1960s. (True); She has appeared in various
television shows. (True); She has appeared in various films. (True)]
[The end of the list of checked facts]

[The start of the ideal output]
[Marianne McAndrew (True); is (True); an (True); American (False); actress (True); and (True); singer (False); , (True);
born (True); on (True); November 21, 1942 (False); , (True); in (True); Cleveland, Ohio (False); . (True); She (True);
began (True); her (True); acting career (True); in (True); the late 1960s (True); , (True); appearing (True); in (True);
various (True); television shows (True); and (True); films (True); . (True)]
[The end of the ideal output]

[Example 2]
[The start of the biography]
Doug Sheehan is an American actor who was born on April 27, 1949, in Santa Monica, California. He is best known
for his roles in soap operas, including his portrayal of Joe Kelly on “General Hospital” and Ben Gibson on “Knots
Landing.”
[The end of the biography]

[The start of the list of checked facts]
[Doug Sheehan is an American. (True); Doug Sheehan is an actor. (True); Doug Sheehan was born on April 27,
1949. (True); Doug Sheehan was born in Santa Monica, California. (False); He is best known for his roles in soap
operas. (True); He portrayed Joe Kelly. (True); Joe Kelly was in General Hospital. (True); General Hospital is a soap
opera. (True); He portrayed Ben Gibson. (True); Ben Gibson was in Knots Landing. (True); Knots Landing is a soap
opera. (True)]
[The end of the list of checked facts]

[The start of the ideal output]
[Doug Sheehan (True); is (True); an (True); American (True); actor (True); who (True); was born (True); on (True);
April 27, 1949 (True); in (True); Santa Monica, California (False); . (True); He (True); is (True); best known (True); for
(True); his roles in soap operas (True); , (True); including (True); in (True); his portrayal (True); of (True); Joe Kelly
(True); on (True); “General Hospital” (True); and (True); Ben Gibson (True); on (True); “Knots Landing.” (True)]
[The end of the ideal output]

User prompt

[The start of the biography]
{BIOGRAPHY}
[The ebd of the biography]

[The start of the list of checked facts]
{LIST OF CHECKED FACTS}
[The end of the list of checked facts]

System prompt

You are a helpful and precise assistant for segmenting and labeling sentences. We would like to request your help on
curating a dataset for entity-level hallucination detection.

We will give you a machine generated biography and a list of checked facts about the biography. Each fact consists of
a sentence and a label (True/False). Please do the following process. First, breaking down the biography into words.
Second, by referring to the provided list of facts, merging some broken down words in the previous step to form
meaningful entities. For example, “strategic thinking” should be one entity instead of two. Third, according to the
labels in the list of facts, labeling each entity as True or False. Specifically, for facts that share a similar sentence
structure (e.g., “He was born on Mach 9, 1941.” (True) and “He was born in Ramos Mejia.” (False)), please first
assign labels to entities that differ across atomic facts. For example, first labeling “Mach 9, 1941” (True) and “Ramos
Mejia” (False) in the above case. For those entities that are the same across atomic facts (e.g., “was born”) or are
neutral (e.g., “he,” “in,” and “on”), please label them as True. For the cases that there is no atomic fact that shares the
same sentence structure, please identify the most informative entities in the sentence and label them with the same
label as the atomic fact while treating the rest of the entities as True. In the end, output the entities and labels in the
following format:

• Entity 1 (Label 1)
• Entity 2 (Label 2)
• ...
• Entity N (Label N)

Here are two examples:

[Example 1]
[The start of the biography]
Marianne McAndrew is an American actress and singer, born on November 21, 1942, in Cleveland, Ohio. She began
her acting career in the late 1960s, appearing in various television shows and films.
[The end of the biography]

[The start of the list of checked facts]
[Marianne McAndrew is an American. (False); Marianne McAndrew is an actress. (True); Marianne McAndrew is a
singer. (False); Marianne McAndrew was born on November 21, 1942. (False); Marianne McAndrew was born in
Cleveland, Ohio. (False); She began her acting career in the late 1960s. (True); She has appeared in various
television shows. (True); She has appeared in various films. (True)]
[The end of the list of checked facts]

[The start of the ideal output]
[Marianne McAndrew (True); is (True); an (True); American (False); actress (True); and (True); singer (False); , (True);
born (True); on (True); November 21, 1942 (False); , (True); in (True); Cleveland, Ohio (False); . (True); She (True);
began (True); her (True); acting career (True); in (True); the late 1960s (True); , (True); appearing (True); in (True);
various (True); television shows (True); and (True); films (True); . (True)]
[The end of the ideal output]

[Example 2]
[The start of the biography]
Doug Sheehan is an American actor who was born on April 27, 1949, in Santa Monica, California. He is best known
for his roles in soap operas, including his portrayal of Joe Kelly on “General Hospital” and Ben Gibson on “Knots
Landing.”
[The end of the biography]

[The start of the list of checked facts]
[Doug Sheehan is an American. (True); Doug Sheehan is an actor. (True); Doug Sheehan was born on April 27,
1949. (True); Doug Sheehan was born in Santa Monica, California. (False); He is best known for his roles in soap
operas. (True); He portrayed Joe Kelly. (True); Joe Kelly was in General Hospital. (True); General Hospital is a soap
opera. (True); He portrayed Ben Gibson. (True); Ben Gibson was in Knots Landing. (True); Knots Landing is a soap
opera. (True)]
[The end of the list of checked facts]

[The start of the ideal output]
[Doug Sheehan (True); is (True); an (True); American (True); actor (True); who (True); was born (True); on (True);
April 27, 1949 (True); in (True); Santa Monica, California (False); . (True); He (True); is (True); best known (True); for
(True); his roles in soap operas (True); , (True); including (True); in (True); his portrayal (True); of (True); Joe Kelly
(True); on (True); “General Hospital” (True); and (True); Ben Gibson (True); on (True); “Knots Landing.” (True)]
[The end of the ideal output]

User prompt

[The start of the biography]
{BIOGRAPHY}
[The ebd of the biography]

[The start of the list of checked facts]
{LIST OF CHECKED FACTS}
[The end of the list of checked facts]

Table 4: GPT-4o prompt for labeling hallucinated entities.
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Model Likelihood Entropy CCP SAR Focus

meta-llama/Meta-Llama-3-8B 0.568 0.571 0.565 0.672 0.784
meta-llama/Meta-Llama-3-70B 0.574 0.567 0.565 0.667 0.779
meta-llama/Llama-3.1-8B 0.584 0.592 0.564 0.684 0.783
meta-llama/Llama-3.2-3B 0.577 0.591 0.564 0.685 0.772
BAAI/Aquila2-7B 0.544 0.553 0.565 0.679 0.78
BAAI/Aquila2-34B 0.541 0.566 0.565 0.665 0.779
internlm/internlm2-7b 0.586 0.584 0.562 0.678 0.777
internlm/internlm2-20b 0.579 0.573 0.561 0.674 0.77
Qwen/Qwen2.5-7B 0.557 0.571 0.558 0.675 0.767
Qwen/Qwen2.5-32B 0.561 0.569 0.559 0.674 0.768
01-ai/Yi-9B 0.541 0.549 0.56 0.663 0.776
01-ai/Yi-34B 0.543 0.543 0.557 0.653 0.769
microsoft/phi-2 0.619 0.656 0.571 0.705 0.775
mistralai/Mistral-7B-v0.3 0.549 0.545 0.555 0.666 0.784
mistralai/Mixtral-8x22B-v0.1 0.56 0.545 0.555 0.665 0.785
google/gemma-2-9b 0.574 0.575 0.561 0.68 0.744
google/gemma-2-27b 0.576 0.566 0.557 0.673 0.78

Table 5: AUROC of five uncertainty scores across 17 LLMs.

Model Likelihood Entropy CCP SAR Focus

meta-llama/Meta-Llama-3-8B 0.168 0.18 0.247 0.269 0.404
meta-llama/Meta-Llama-3-70B 0.168 0.175 0.254 0.268 0.408
meta-llama/Llama-3.1-8B 0.173 0.193 0.246 0.274 0.412
meta-llama/Llama-3.2-3B 0.17 0.191 0.235 0.269 0.368
BAAI/Aquila2-7B 0.162 0.178 0.228 0.254 0.388
BAAI/Aquila2-34B 0.157 0.185 0.236 0.249 0.385
internlm/internlm2-7b 0.173 0.185 0.232 0.264 0.38
internlm/internlm2-20b 0.171 0.179 0.233 0.267 0.349
Qwen/Qwen2.5-7B 0.164 0.185 0.22 0.255 0.346
Qwen/Qwen2.5-32B 0.166 0.183 0.226 0.258 0.347
01-ai/Yi-9B 0.159 0.173 0.231 0.237 0.375
01-ai/Yi-34B 0.156 0.165 0.229 0.233 0.349
microsoft/phi-2 0.19 0.236 0.238 0.279 0.371
mistralai/Mistral-7B-v0.3 0.159 0.167 0.236 0.25 0.391
mistralai/Mixtral-8x22B-v0.1 0.163 0.165 0.249 0.263 0.418
google/gemma-2-9b 0.172 0.187 0.234 0.264 0.281
google/gemma-2-27b 0.174 0.177 0.232 0.263 0.397

Table 6: AUPRC of five uncertainty scores across 17 LLMs.
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Model Likelihood Entropy CCP SAR Focus

meta-llama/Meta-Llama-3-8B 0.29 0.278 0.261 0.344 0.484
meta-llama/Meta-Llama-3-70B 0.291 0.282 0.261 0.335 0.469
meta-llama/Llama-3.1-8B 0.296 0.286 0.261 0.351 0.483
meta-llama/Llama-3.2-3B 0.294 0.285 0.261 0.349 0.477
BAAI/Aquila2-7B 0.283 0.275 0.261 0.346 0.484
BAAI/Aquila2-34B 0.283 0.277 0.261 0.329 0.484
internlm/internlm2-7b 0.304 0.286 0.261 0.348 0.475
internlm/internlm2-20b 0.293 0.281 0.261 0.348 0.467
Qwen/Qwen2.5-7B 0.291 0.277 0.261 0.342 0.475
Qwen/Qwen2.5-32B 0.293 0.28 0.261 0.341 0.482
01-ai/Yi-9B 0.285 0.276 0.261 0.332 0.482
01-ai/Yi-34B 0.289 0.279 0.261 0.323 0.478
microsoft/phi-2 0.315 0.323 0.266 0.361 0.477
mistralai/Mistral-7B-v0.3 0.289 0.276 0.261 0.333 0.489
mistralai/Mixtral-8x22B-v0.1 0.293 0.28 0.261 0.334 0.471
google/gemma-2-9b 0.294 0.282 0.261 0.346 0.476
google/gemma-2-27b 0.296 0.282 0.261 0.345 0.473

Table 7: F1Opt of five uncertainty scores across 17 LLMs.

Model Likelihood Entropy CCP SAR Focus

meta-llama/Meta-Llama-3-8B 0.18 0.166 0.15 0.261 0.384
meta-llama/Meta-Llama-3-70B 0.182 0.168 0.15 0.274 0.339
meta-llama/Llama-3.1-8B 0.188 0.18 0.15 0.268 0.362
meta-llama/Llama-3.2-3B 0.177 0.182 0.15 0.256 0.348
BAAI/Aquila2-7B 0.169 0.162 0.15 0.248 0.365
BAAI/Aquila2-34B 0.171 0.168 0.15 0.222 0.361
internlm/internlm2-7b 0.192 0.174 0.15 0.26 0.385
internlm/internlm2-20b 0.181 0.169 0.15 0.272 0.332
Qwen/Qwen2.5-7B 0.175 0.166 0.15 0.237 0.347
Qwen/Qwen2.5-32B 0.179 0.166 0.15 0.251 0.356
01-ai/Yi-9B 0.172 0.162 0.15 0.233 0.362
01-ai/Yi-34B 0.175 0.166 0.15 0.227 0.353
microsoft/phi-2 0.195 0.215 0.261 0.254 0.348
mistralai/Mistral-7B-v0.3 0.176 0.162 0.15 0.237 0.386
mistralai/Mixtral-8x22B-v0.1 0.177 0.167 0.15 0.256 0.345
google/gemma-2-9b 0.18 0.168 0.15 0.258 0.344
google/gemma-2-27b 0.182 0.166 0.15 0.25 0.349

Table 8: PrecisionOpt of five uncertainty scores across 17 LLMs.
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Model Likelihood Entropy CCP SAR Focus

meta-llama/Meta-Llama-3-8B 0.742 0.86 1.0 0.505 0.658
meta-llama/Meta-Llama-3-70B 0.736 0.87 1.0 0.432 0.757
meta-llama/Llama-3.1-8B 0.696 0.688 1.0 0.505 0.724
meta-llama/Llama-3.2-3B 0.855 0.662 1.0 0.548 0.758
BAAI/Aquila2-7B 0.875 0.916 1.0 0.57 0.719
BAAI/Aquila2-34B 0.838 0.786 1.0 0.632 0.732
internlm/internlm2-7b 0.736 0.797 1.0 0.525 0.62
internlm/internlm2-20b 0.771 0.82 1.0 0.481 0.783
Qwen/Qwen2.5-7B 0.857 0.833 1.0 0.613 0.753
Qwen/Qwen2.5-32B 0.817 0.883 1.0 0.535 0.749
01-ai/Yi-9B 0.843 0.936 1.0 0.58 0.721
01-ai/Yi-34B 0.831 0.88 1.0 0.559 0.739
microsoft/phi-2 0.81 0.65 0.27 0.622 0.76
mistralai/Mistral-7B-v0.3 0.811 0.933 1.0 0.561 0.666
mistralai/Mixtral-8x22B-v0.1 0.836 0.866 1.0 0.477 0.743
google/gemma-2-9b 0.809 0.856 1.0 0.526 0.77
google/gemma-2-27b 0.8 0.916 1.0 0.556 0.732

Table 9: RecallOpt of five uncertainty scores across 17 LLMs.

18


	Introduction
	Related Work
	An Entity-Level Hallucination Dataset
	Dataset Construction
	Data Analysis

	Uncertainty Scores for Detecting Hallucinated Entities
	Experiments
	Experimental Setup
	Experimental Results
	In-depth Analysis

	Conclusion
	Details of Dataset Construction
	Details of Experimental Result

