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ABSTRACT

Self-supervised learning has the potential of lifting several of the key challenges
in reinforcement learning today, such as exploration, representation learning, and
reward design. Recent work (METRA (Park et al., 2024)) has effectively argued
that moving away from mutual information and instead optimizing a certain Wasser-
stein distance is important for good performance. In this paper, we argue that the
benefits seen in that paper can largely be explained within the existing framework
of mutual information skill learning (MISL). Our analysis suggests a new MISL
method (contrastive successor features) that retains the excellent performance of
METRA with fewer moving parts, and highlights connections between skill learn-
ing, contrastive representation learning, and successor features. Finally, through
careful ablation studies, we provide further insight into some of the key ingredients
for both our method and METRA.

1 INTRODUCTION

Self-supervised learning has had a large impact on areas of machine learning ranging from audio
processing (Oord et al., 2016; 2018) or computer vision (Radford et al., 2021; Chen et al., 2020) to
natural language processing (Devlin et al., 2019; Radford & Narasimhan, 2018; Radford et al., 2019;
Brown, 2020). In the reinforcement learning (RL) domain, the “right” recipe to apply self-supervised
learning is not yet clear. Several self-supervised methods for RL directly apply off-the-shelf methods
from other domains such as masked autoencoding (Liu et al., 2022), but have achieved limited
success so far. Other methods design self-supervised routines more specifically built for the RL
setting (Burda et al., 2019; Pathak et al., 2017; Eysenbach et al., 2019; Sharma et al., 2020; Pong
et al., 2020). We will focus on the skill learning methods, which aim to learn a set of diverse and
distinguishable behaviors (skills) without an external reward function. This objective is typically
formulated as maximizing the mutual information between skills and states (Gregor et al., 2016;
Eysenbach et al., 2019), namely mutual information skill learning (MISL). However, some promising
recent advances in skill learning methods build on other intuitions such as Lipschitz constraints (Park
et al., 2022) or transition distances (Park et al., 2023). This paper focuses on determining whether the
good performance of those recent methods can still be explained within the well-studied framework
of mutual information maximization.

METRA (Park et al., 2024), one of the strongest prior skill learning methods, proposes maximizing
the Wasserstein dependency measure between states and skills as an alternative to the idea of mutual
information maximization. The success of this method calls into question the viability of the MISL
framework. However, mutual information has a long history dating back to Shannon (1948) and
gracefully handles stochasticity and continuous states (Myers et al., 2024). These appealing properties
of mutual information raises the question: Can we build effective skill learning algorithms within the
MISL framework, or is MISL fundamentally flawed?

We start by carefully studying the components of METRA both theoretically and empirically. For
representation learning, METRA maximizes a lower bound on the mutual information, resembling
contrastive learning. For policy learning, METRA optimizes a mutual information term plus an
extra exploration term. These findings provide an interpretation of METRA that does not appeal to
Wassertein distances and motivate a simpler algorithm (Fig. 1).

Building upon our new interpretations of METRA, we propose a simpler and competitive MISL algo-
rithm called Contrastive Successor Features (CSF). First, CSF learns state representations by directly
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optimizing a contrastive lower bound on mutual information, preventing the dual gradient descent
procedure adopted by METRA. Second, while any off-the-shelf RL algorithm (e.g. SAC (Haarnoja
et al., 2018)) is applicable, CSF instead learns a policy by leveraging successor features of linear
rewards defined by the learned representations. Experiments on six continuous control tasks show
that CSF is comparable with METRA, as evaluated on exploration performance and on downstream
tasks. Furthermore, ablation studies suggest that rewards derived from the information bottleneck as
well as a specific parameterization of representations are key for good performance.

Key Takeaways
1. METRA can be explained within the MISL framework: learning representations

through maximizing MI (Sec. 4.1), and learning policies through maximizing MI
plus an exploration bonus (Sec. 4.2).

2. Based on our understanding of METRA, we propose CSF (Sec. 5), a simple MISL
algorithm that retains SOTA performance (Sec. 6.4).

3. We find several ingredients that are key to boost MISL performance (Sec. 6.3).

2 RELATED WORK

METRA

max
ϕ

IW(ST; Z)

max
π

IW(ST; Z)

max
ϕ

I(S, S′ ; Z)

max
π

I(S, S′ ; Z) − I(S, S′ ; ϕ(S′ ) − ϕ(S))

Contrastive Successor 
Features (CSF)

1

2

1

2

Contrastive learning 
connects  and (S, S′ ) Z
Successor Features optimize  
r = (ϕ(S′ ) − ϕ(S))TZ

Optimize 
Wasserstein 
distance with a 
temporal 
distance metric

(Information Bottleneck)

(Mutual Information)

Figure 1: From METRA to MISL. (Left) METRA
argues optimizing a Wasserstein distance is superior to
using mutual information. (Right) Through careful anal-
ysis, we show METRA still bears striking similarities
to MISL algorithms, which allows us to develop a new
MISL algorithm (CSF) that matches the performance
of METRA while retaining the theoretical properties
associated with MI maximization.

Through careful theoretical and experimental
analysis, we develop a new mutual informa-
tion skill learning method that builds upon con-
trastive learning and successor features.

Unsupervised skill discovery. Our work builds
upon prior methods that perform unsupervised
skill discovery. Prior work has achieved this
aim by maximizing lower bounds (Tschannen
et al., 2020; Poole et al., 2019) of different mu-
tual information formulations, including diverse
and distinguishable skill-conditioned trajecto-
ries (Li et al., 2023; Eysenbach et al., 2019;
Hansen et al., 2020; Laskin et al., 2022; Strouse
et al., 2022), intrinsic empowerment (Mohamed
& Jimenez Rezende, 2015; Choi et al., 2021),
distinguishable termination states (Gregor et al.,
2016; Warde-Farley et al., 2019; Baumli et al.,
2021), entropy bonus (Florensa et al., 2016; Lee
et al., 2019; Shafiullah & Pinto, 2022), predictable transitions (Sharma et al., 2020; Campos et al.,
2020), etc. Among those prior methods, perhaps the most related works are CIC (Laskin et al., 2022)
and VISR (Hansen et al., 2020). We will discuss the difference between them and our method in
Sec. 5. Another line of unsupervised skill learning methods utilize ideas other than mutual informa-
tion maximization, such as Lipschitz constraints (Park et al., 2022), MDP abstraction (Park & Levine,
2023), model learning (Park et al., 2023), and Wasserstein distance (Park et al., 2024; He et al., 2022).
Our work will analyze the state-of-the-art method named METRA (Park et al., 2024) that builds on
the Wasserstein dependency measure (Ozair et al., 2019), provide an alternative explanation under
the well-studied MISL framework, and ultimately develop a simpler method.

Contrastive learning. Contrastive learning has achieved great success for representation learning in
natural language processing and computer vision (Radford et al., 2021; Chen et al., 2020; Gao et al.,
2021; Sohn, 2016; Chopra et al., 2005; Oord et al., 2018; Gutmann & Hyvärinen, 2010; Ma & Collins,
2018; Tschannen et al., 2020). These methods aim to push together the representations of positive
pairs drawn from the joint distribution, while pushing away the representations of negative pairs
drawn from the marginals (Ma & Collins, 2018; Oord et al., 2018). In the domain of RL, contrastive
learning has been used to define auxiliary representation learning objective for control (Laskin et al.,
2020; Yarats et al., 2021), solve goal-conditioned RL problems (Zheng et al., 2024; Eysenbach et al.,
2022; 2020; Ma et al., 2023), and derive representations for skill discovery (Laskin et al., 2022).
Prior work has also provided theoretical analysis for these methods from the perspective of mutual
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information maximization (Poole et al., 2019; Tschannen et al., 2020) and the geometry of learned
representations (Wang & Isola, 2020). Our work will combine insights from both angles to analyze
METRA and show its relationship to contrastive learning, resulting in a new skill learning method.

Successor features. Our work builds on successor representations (Dayan, 1993), which encode the
discounted state occupancy measure of policies. Prior work has shown these representations can be
learned on high-dimensional tasks (Kulkarni et al., 2016; Zhang et al., 2017) and help with transfer
learning (Barreto et al., 2017). When combined with universal value function approximators (Schaul
et al., 2015), these representations generalize to universal successor features, which estimates a value
function for any reward under any policy (Borsa et al., 2019). While prior methods have combined
successor feature learning with mutual information skill discovery for fast task inference (Hansen
et al., 2020; Liu & Abbeel, 2021), we instead use successor features to replace Q estimation after
learning state representations (Sec. 5).

3 PRELIMINARIES

Mutual information skill learning. The MISL problem typically involves two steps: (1) unsupervised
pretraining and (2) downstream control. For the first step, we consider a Markov decision process
(MDP) without reward function defined by states s ∈ S, actions a ∈ A, initial state distribution
p0 ∈ ∆(S), discount factor γ ∈ (0, 1], and dynamics p : S × A 7→ ∆(S), where ∆(·) denotes
the probability simplex. The goal of unsupervised pretraining is to learn a skill-conditioned policy
π : S × Z 7→ ∆(A) that conducts diverse and discriminable behaviors, where Z is a latent skill
space. We use β : S × Z 7→ ∆(A) to denote the behavioral policy. We select the prior distribution
of skills as a uniform distribution over the d-dimensional unit hypersphere p(z) = UNIF(Sd−1) (a
uniform von Mises–Fisher distribution (Wikipedia, 2024)) and will use this prior throughout our
discussions to unify the theoretical analysis.

Given a latent skill space Z , prior methods (Eysenbach et al., 2019; Sharma et al., 2020; Laskin
et al., 2022; Gregor et al., 2016; Hansen et al., 2020) maximizes the MI between skills and states
Iπ(S;Z) or the MI between skills and transitions Iπ(S, S′;Z) under the target policy. We will focus
on Iπ(S, S′;Z) but our discussion generalizes to Iπ(S;Z). Specifically, maximizing the MI between
skills and transitions can be written as

max
π

Iπ(S, S′;Z)
const.
= max

π
Ez∼p(z),s∼pπ(s+=s|z)

s′∼pπ(s′|s,z)
[log pπ(z | s, s′)], (1)

where pπ(s+ = s | z) is the discounted state occupancy measure (Ho & Ermon, 2016; Nachum et al.,
2019; Eysenbach et al., 2022; Zheng et al., 2024) of policy π conditioned on skill z, and pπ(s′ | s, z)
is the state transition probability given policy π and skill z. This optimization problem can be casted
into an iterative min-max optimization problem by first choosing a variational distribution q(z | s, s′)
to fit the historical posterior pβ(z | s, s′), which is an approximation of pπ(z | s, s′), and then
choosing policy π to maximize discounted return defined by the intrinsic reward log q(z | s, s′):

qk+1 ← argmax
q

Epβ(s,s′,z)[log q(z | s, s′)]. (2)

πk+1 ← argmax
π

Epπ(s,s′,z)[log qk(z | s, s′)], (3)

where k indicates the number of updates. See Appendix A.1 for detailed discussion.

For the second step, given a regular MDP (with reward function), we reuse the skill-conditioned
policy π to solve a downstream task. Prior methods achieved this aim by (1) reaching goals in a
zero-shot manner (Park et al., 2022; 2023; 2024), (2) learning a hierarchical policy πh : S 7→ ∆(Z)
that outputs skills instead of actions (Eysenbach et al., 2019; Laskin et al., 2022; Gregor et al., 2016),
or (3) planning in the latent space with a learned dynamics model (Sharma et al., 2020).

METRA. Maximizing the mutual information between states and latent skills I(S;Z) only encour-
ages an agent to find discriminable skills, while the algorithm might fail to prioritize state space
coverage (Park et al., 2024; 2022). A prior state-of-the-art method METRA (Park et al., 2024)
proposes to solve this problem by learning representations of states ϕ : S 7→ Rd via maximizing the
Wasserstein dependency measure (WDM) (Ozair et al., 2019) between states and skills IW(S;Z).
Specifically, METRA chooses to enforce the 1-Lipschitz continuity of ϕ under the temporal distance
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metric, resulting in a constrained optimization problem for ϕ:

max
ϕ

Ep(z)pβ(s,s′|z)[(ϕ(s′)− ϕ(s))⊤z] s.t. ∥ϕ(s′)− ϕ(s)∥22 ≤ 1 ∀(s, s′) ∈ Sβadj, (4)

where pβ(s, s′ | z) denotes the probability of first sampling s from the discounted state occupancy
measure pβ(s+ = s | z) and then transiting to s′ by following the behavioral policy β, and Sβadj
denotes the set of all the adjacent state pairs visited by β. In practice, METRA uses dual gradient
descent to solve Eq. 4, resulting in an iterative optimization problem1

min
λ≥0

max
ϕ

L(ϕ, λ)

L(ϕ, λ) ≜ Ep(z)pβ(s,s′|z)[(ϕ(s′)− ϕ(s))⊤z] + λ
(
1− Epβ(s,s′)

[
∥ϕ(s′)− ϕ(s)∥22

])
, (5)

Importantly, L(ϕ, λ) is not the Lagrangian of Eq. 4 because L(ϕ, λ) does not contain a dual variable
for every (s, s′) ∈ Sβadj. We will discuss the actual METRA representation objective and the behavior
of convergent representations in Sec. 4.1.

After learning the state representation ϕ, METRA finds its skill-conditioned policy π via maximizing
the RL objective with intrinsic reward (ϕ(s′)− ϕ(s))⊤z:

max
π

J(π), J(π) ≜ Ez∼p(z),s∼pπ(s+=s|z)
s′∼pπ(s′|s,z)

[
(ϕ(s′)− ϕ(s))⊤z

]
. (6)

In the following sections, we will provide another way to understand this SOTA method, draw
connections with contrastive learning (Oord et al., 2018) and the information bottleneck (Alemi et al.,
2017), and then derive a simpler MISL algorithm.

4 UNDERSTANDING THE PRIOR METHOD

In this section we reinterpret METRA through the lens of MISL, showing that:

1. The METRA representation objective is nearly identical to a contrastive loss (which maxi-
mizes a lower bound on mutual information). See Sec. 4.1.

2. The METRA actor objective is equivalent to a mutual information lower bound plus an extra
term. This extra term is related to an information bottleneck (Tishby et al., 2000; Alemi
et al., 2017) and our experiments will show it is important for exploration. See Sec. 4.2.

Sec. 5 will then introduce a new mutual information algorithm that combines these insights to match
the performance of METRA while (1) retaining the theoretical grounding of mutual information and
(2) being simpler to implement.

4.1 CONNECTING METRA’S REPRESENTATION OBJECTIVE AND CONTRASTIVE LEARNING

Our understanding of METRA starts by interpreting the representation objective of METRA as a
contrastive loss. This interpretation proceeds by two steps. First, we focus on understanding the
actual representation objective of METRA, aiming to predict the convergent behavior of the learned
representations. Second, based on the actual representation objective, we draw a connection between
METRA and contrastive learning. In Sec. 6, we conduct experiments to verify that METRA learns
optimal representations in practice and that they bear resemblance to contrastive representations.

Sec. 3 mentioned that the Lagrangian L(ϕ, λ) used as the METRA representation objective does not
correspond to the constrained optimization problem in Eq. 4, raising the following question: What is
the actual METRA representation objective? To answer this question, we note that, rather than using
distinct dual variables for each pair of (s, s′) ∈ Sβadj, L(ϕ, λ) employs a single dual variable, imposing
an expected temporal distance constraint over all pairs of (s, s′) under the historical transition
distribution pβ(s, s′). This observation suggests that METRA’s representations are optimized with
the following objective

max
ϕ

Ep(z)pβ(s,s′|z)[(ϕ(s′)− ϕ(s))⊤z] s.t. Epβ(s,s′)
[
∥ϕ(s′)− ϕ(s)∥22

]
≤ 1. (7)

Applying KKT conditions to L(ϕ, λ), we claim that
1We ignore the slack variable ϵ in Park et al. (2024) because it takes a fairly small value ϵ = 10−3 ≪ 1.
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Proposition 1. The optimal state representation ϕ⋆ of the actual METRA representation objective
(Eq. 7) satisfies

Epβ(s,s′)
[
∥ϕ⋆(s′)− ϕ⋆(s)∥22

]
= 1.

The proof is in Appendix A.2. Constraining the representation of consecutive states in expectation
not only clarifies the actual METRA representation objective, but also means that we can predict
the value of this expectation for optimal ϕ. Sec. 6.1 includes experiments studying whether the
optimal representation satisfies this proposition in practice. Importantly, identifying the actual
METRA representation objective allows us to draw a connection with the rank-based contrastive loss
(InfoNCE (Oord et al., 2018; Ma & Collins, 2018)), which we discuss next.

We relate the actual METRA representation objective to a contrastive loss, which we will specify first
and then provide some intuitions for what it is optimizing. This loss is a lower bound on the mutual
information Iβ(S, S′;Z) and a variant of the InfoNCE objective (Henaff, 2020; Ma & Collins, 2018;
Zheng et al., 2024). Starting from the standard variational lower bound (Barber & Agakov, 2004;
Poole et al., 2019), prior work derived an unnormalized variational lower bound on Iβ(S, S′;Z)
(IUBA in (Poole et al., 2019)),

Iβ(S, S′;Z) ≥ Epβ(s,s′,z)[f(s, s′, z)]− Epβ(s,s′)
[
logEp(z′)

[
ef(s,s

′,z′)
]]
,

where f : S × S × Z 7→ R is the critic function (Ma & Collins, 2018; Poole et al., 2019; Eysenbach
et al., 2022; Zheng et al., 2024). Since the critic function f takes arbitrary functional form, one can
choose to parameterize f as the inner product between the difference of transition representations
and the latent skill, i.e. f(s, s′, z) = (ϕ(s′)− ϕ(s))⊤z. This yields a specific lower bound:

Iβ(S, S′;Z) ≥ Epβ(s,s′,z)[(ϕ(s
′)− ϕ(s))⊤z]︸ ︷︷ ︸

LBβ
+(ϕ)

−Epβ(s,s′)

[
logEp(z′)

[
e(ϕ(s

′)−ϕ(s))⊤z′
]]

︸ ︷︷ ︸
LBβ

−(ϕ)

≜ LBβ(ϕ). (8)

Intuitively, LBβ+(ϕ) pushes together the difference of transition representations ϕ(s′) − ϕ(s) and
the latent skill z sampled from the same trajectory (positive pairs), while LBβ−(ϕ) pushes away
ϕ(s′)− ϕ(s) and z sampled from different trajectories (negative pairs). This intuition is similar to
the effects of the contrastive loss, and we note that Eq. 8 only differs from the standard InfoNCE loss
in excluding the positive pair in LBβ−(ϕ). We will call this lower bound on the mutual information
the contrastive lower bound.

We now connect the contrastive lower bound LBβ(ϕ) (Eq. 8) to the actual METRA representation loss
L(ϕ, λ) (Eq. 5). While both of these optimization problems share the positive pair term (LBβ+(ϕ)),
they vary in the way they handle randomly sampled (s, s′, z) pairs (negatives): METRA constrains
the expected L2 representation distances λ

(
1− Epβ(s,s′)

[
∥ϕ(s′)− ϕ(s)∥22

])
, while the contrastive

lower bound minimizes the log-expected-exp score (LBβ−(ϕ)). However, we bridge this difference by
viewing the expected L2 distance as a quadratic approximation of the log-expected-exp score:
Proposition 2. There exists a λ0(d) depending on the dimension d of the state representation ϕ such
that the following second-order Taylor approximation holds

λ0(d)(1− Epβ
[
∥ϕ(s′)− ϕ(s)∥22

]
) ≈ LBβ−(ϕ).

See Appendix A.3 for a proof. This approximation shows that the constraint in the actual METRA
representation loss has effects similar to LBβ−(ϕ), namely pushing ϕ(s′)− ϕ(s) away from randomly
sampled skills. Furthermore, this proposition allows us to spell out the (approximate) equivalence
between representation learning in METRA and the contrastive lower bound on Iβ(S, S′;Z):
Corollary 1. The METRA representation objective is equivalent to a second-order Taylor approxi-
mation of Iβ(S, S′;Z), i.e., L(ϕ, λ0(d)) ≈ LBβ(ϕ).

The METRA representation objective can be interpreted as a contrastive loss, allowing us to predict
that the optimal state representations ϕ⋆ (Prop. 1) have properties similar to those learned via
contrastive learning. In Appendix C.1, we include experiments studying whether the approximation
in Prop. 2 is reasonable in practice. In Sec. 6.2, we empirically compare METRA’s representations to
those learned by the contrastive loss. Sec. 6.3 will study whether replacing the METRA representation
objective with a contrastive objective retains similar performance.
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4.2 CONNECTING METRA’S ACTOR OBJECTIVE WITH AN INFORMATION BOTTLENECK

This section discusses the actor objective used in METRA. We first clarify the distinction between
the actor objective of METRA and those used in prior methods, helping to identify a term that
discourages exploration. Removing this anti-exploration term results in covering a larger proposition
of the state space while learning distinguishable skills. We then relate this anti-exploration term
to estimating another mutual information, drawing a connection between the entire METRA actor
objective and a variant of the information bottleneck (Tishby et al., 2000; Alemi et al., 2017).

While prior work (Eysenbach et al., 2019; Gregor et al., 2016; Sharma et al., 2020; Hansen et al.,
2020; Campos et al., 2020) usually uses the same functional form of the lower bound on (Eq. 2
& 3) different variants of the mutual information to learn both representations and skill-conditioned
policies (see Appendix A.5 for details), METRA uses different objectives for the representation and
the actor. Specifically, the actor objective of METRA J(π) (Eq. 6) only encourages the similarity
between the difference of transition representations ϕ(s′) − ϕ(s) and their skill z (positive pairs),
while ignoring the dissimilarity between ϕ(s′)− ϕ(s) and a random skill z (negative pairs):

J(π) = LBπ+(ϕ) = LBπ(ϕ)− LBπ−(ϕ),

where LBπ(ϕ), LBπ+(ϕ), and LBπ−(ϕ) are under the target policy π instead of the behavioral policy
β. The SOTA performance of METRA and the divergence between the functional form of the actor
objective (positive term) and the representation objective (positive and negative terms) suggests that
LBπ−(ϕ) may be a term discouraging exploration. Intuitively, removing this anti-exploration term
boosts the learning of diverse skills. We will empirically study the effect of the anti-exploration term
in Sec. 6.3 and provide theoretical interpretations next.

Our understanding of the anti-exploration term LBπ−(ϕ) relates it to a resubstituion estimation of the
differential entropy hπ(ϕ(S′)− ϕ(S)) in the representation space (see Appendix A.4 for details), i.e.,
LBπ−(ϕ) = ĥπ(ϕ(S′)− ϕ(S)). Note that this entropy is different from the entropy of states hπ(S),
indicating that we want to minimize the entropy of difference of representations ϕ(s′) − ϕ(s) to
encourage exploration. There are two underlying reasons for this (seemly counterintuitive) purpose:
METRA aims to (1) constrain the expected L2 distance of difference of representations ϕ(s′)− ϕ(s)
(Eq. 5) and (2) push difference of representations ϕ(s′) − ϕ(s) towards skills z sampled from
UNIF(Sd−1). Nonetheless, this relationship allows us to further rewrite the anti-exploration term
LBπ−(ϕ) as an estimation of the mutual information Iπ(ϕ(S′)−ϕ(S′);S, S′), connecting the METRA
actor objective to an information bottleneck:
Proposition 3. The METRA actor objective is a lower bound on the information bottleneck
Iπ(S, S′;Z)− Iπ(S, S′;ϕ(S′)− ϕ(S)), i.e., J(π) ≤ Iπ(S, S′;Z)− Iπ(S, S′;ϕ(S′) = ϕ(S)).

See Appendix A.4 for a proof and further discussions. Maximizing the information bottleneck
Iπ(S, S′;Z)− Iπ(S, S′;ϕ(S′)− ϕ(S)) compresses the information in transitions (s, s′) into differ-
ence in representations ϕ(s′)− ϕ(s) while relating these representations to the latent skills z (Alemi
et al., 2017; Tishby et al., 2000). This result implies that simply maximizing the mutual information
Iπ(S, S′;Z) may be insufficient for deriving a diverse skill-conditioned policy π, and removing
the anti-exploration LBπ2 (ϕ) may be a key ingredient for the actor objective. In Appendix A.7, we
propose a general MISL framework based on Prop. 3.

5 A SIMPLIFIED ALGORITHM FOR MISL VIA CONTRASTIVE LEARNING

In this section, we derive a simpler unsupervised skill learning method building upon our understand-
ings of METRA (Sec. 4). This method maximizes MI (unlike METRA), while retaining the good
performance of METRA (see discussion in Sec. 3). We will first use the contrastive lower bound to
optimize the state representation ϕ and estimate intrinsic rewards, and then we will learn the policy π
using successor features. We use contrastive successor features (CSF) to refer to our method.

5.1 LEARNING REPRESENTATIONS THROUGH CONTRASTIVE LEARNING

Based on our analysis in Sec. 4.1, we use the contrastive lower bound on Iβ(S, S′;Z) to optimize the
state representation directly. Unlike METRA, we obtain this contrastive lower bound within the MISL
framework (Eq. 2 & 3) by employing a parameterization of the variational distribution q(z | s, s′)
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Algorithm 1 Contrastive Successor Features
1: Input state representations ϕθ , successor features ψω , skill-conditioned policy πη , and target successor

feature ψω̄ .
2: for each iteration do
3: Collect trajectory τ with z ∼ p(z) and a ∼ πη(a | s, z), and then add τ to the replay buffer.
4: Sample {(s, a, s′, z)} ∼ replay buffer, {a′} ∼ πη(a

′ | s′, z), and {z′} ∼ p(z′).
5: L(θ)← −E(s,s′,z)

[
(ϕθ(s

′)− ϕθ(s))
⊤z

]
+ E(s,s′)

[
log

∑
z′ e

(ϕθ(s
′)−ϕθ(s))

⊤z′
]
.

6: L(ω)← E(s,a,s′,a′,z)

[
(ψω(s, a, z)− (ϕθ(s

′)− ϕθ(s) + γψω̄(s
′, a′, z)))

2
]
.

7: L(η)← −E(s,z),a∼πη(a|s,z)
[
ψω(s, a, z)

⊤z
]
.

8: Update θ, ω, and η by taking gradients of L(θ), L(ω), and L(η).
9: Update ω̄ using exponential moving averages.

10: Return ϕθ , ψω , and πη .

mentioned in prior work (Poole et al., 2019; Song & Kingma, 2021). Specifically, using a scaled
energy-based model conditioned representations of transition pairs (s, s′), we define the variational
distribution as

q(z | s, s′) ≜ p(z)e(ϕ(s
′)−ϕ(s))⊤z

Ep(z′)[e(ϕ(s′)−ϕ(s))⊤z′ ]
. (9)

Plugging this parameterization into Eq. 2 produces

ϕk+1 ← argmax
ϕ

Epβ(s,s′,z)
[
(ϕ(s′)− ϕ(s))⊤z

]
− Epβ(s,s′)

[
logEp(z′)

[
e(ϕ(s

′)−ϕ(s))⊤z′
]]
, (10)

which is exactly the contrastive lower bound on Iβ(S, S′;Z). This contrastive lower bound allows us
to learn the state representation ϕ while getting rid of the dual gradient descent procedure (Eq. 5)
adopted by METRA. In practice, we find that adding a fixed coefficient ξ = 5 to the second term of
Eq. 10 helps boost performance. We include further discussions of ξ in Appendix A.6 and ablation
studies in Appendix C.3.

In the same way that the METRA actor objective excluded the anti-exploration term (Sec. 4.2), we
propose to construct the intrinsic reward by removing the negative term from our representation
objective (Eq. 10), resulting in the same RL objective as J(π) (Eq. 6):

πk+1 ← argmax
π

Epπ(s,s′,z) [rk(s, s′, z)] , rk(s, s′, z) ≜ (ϕk(s
′)− ϕk(s))⊤z (11)

We use this RL objective as the update rule for the skill-conditioned policy π in our algorithm.

5.2 LEARNING A POLICY WITH SUCCESSOR FEATURES

To optimize the policy (Eq. 11), we will use an actor-critic method. Most skill learning methods use
an off-the-shelf RL algorithm (e.g., TD3 (Fujimoto et al., 2018), SAC (Haarnoja et al., 2018)) to fit
the critic. However, by noting that the intrinsic reward function r(s, s′, z) 2 is a linear combination
between basis ϕ(s′) − ϕ(s) ∈ Rd and weights z ∈ Z ⊂ Rd, we can borrow ideas from successor
representations to learn a vector-valued critic. We learn the successor features ψπ : S×A×Z 7→ Rd:

ψπ(s, a, z) ≜ Es∼pπ(s+=s|z),s′∼p(s′|s,a) [ϕ(s
′)− ϕ(s)] ,

with the corresponding skill-conditioned policy π in an actor-critic style:

ψk+1(s, a, z)← argmin
ψ

E(s,a,z)∼pβ(s,a,s′,z),a′∼π(a′|s′,z)

[(
ψ(s, a, z)− ψ̂k(s, s′, a′, z)

)2]
,

where ψ̂k(s, s
′, a′, z) ≜ ϕk(s

′)− ϕk(s) + γψ̄k(s
′, a′, z),

πk+1 ← argmax
π

E(s,z)∼pβ(s,z),a∼π(a|s,z)
[
ψk(s, a, z)

⊤z
]
,

where ψ is an estimation of ψπ . In practice, we optimize ψ and π for one gradient step iteratively.

Algorithm Summary. In Alg. 1, we summarize CSF, our new algorithm.3 Starting from an
existing MISL algorithm (e.g., DIAYN (Eysenbach et al., 2019) and METRA (Park et al., 2024)),

2We ignore the iteration k for notation simplicity.
3Code & videos: https://anonymous.4open.science/r/csf-3BF4/README.md
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Figure 2: Histograms of METRA representations. (a) The expected distance of representations converges
to 1.0, helping to explain what objective METRA’s representations are optimizing. (b) Given a latent skill, the
conditional difference in representations (ϕ(s′)− ϕ(s) | z) converges to an isotropic Gaussian distribution. (c)

Taking the marginal over latent skills, the normalized difference in representations
(

(ϕ(s′)−ϕ(s))
∥ϕ(s′)−ϕ(s)∥2

)
converges to

a UNIF(Sd−1). These observations are consistent with our theoretical analysis (Cor. 1) suggesting that METRA
is performing a form of contrastive learning.

implementing our algorithm requires making three simple changes: (1) learning state representations
ϕθ by minimizing an InfoNCE loss (excluding positive pairs in the denominator) between pairs of
(s, s′) and z, (2) using a critic ψω with d-dimensional outputs and replacing the scalar reward with the
vector ϕθ(s′)− ϕθ(s), (3) sampling the action a from the policy ϕη to maximize the inner product
ψω(s, a, z)

⊤z.

Unlike CIC (Laskin et al., 2022), our method does not use the standard InfoNCE loss and instead
employs a variant of it. Unlike VISR (Hansen et al., 2020), our method does not train the state
representation ϕ using a skill discriminator. Unlike METRA, our method learns representations
using the contrastive lower bound directly, avoids the Wasserstein distance and dual gradient descent
optimization, and results in a simpler algorithm (see Appendix B.1 for further discussions).

6 EXPERIMENTS

The aims of our experiments are (1) verifying the theoretical analysis in Sec. 4 experimentally, (2)
identifying several ingredients that are key to making MISL algorithms work well more broadly,
and (3) comparing our simplified algorithm CSF to prior work. Our experiments will use standard
benchmarks introduced by prior work on skill learning. All experiments show means and standard
deviations across ten random seeds.

6.1 METRA CONSTRAINS REPRESENTATIONS IN EXPECTATION

Sec. 4.1 predicts that the optimal METRA representation satisfies its constraint
Eβp (s, s′)

[
∥ϕ(s′)− ϕ(s)∥22

]
= 1 strictly (Prop. 1). We study whether this condition holds

after training the algorithm for a long time. To answer this question, we conduct didactic experiments
with the state-based Ant from METRA (Park et al., 2024) navigating in an open space. We set the
dimension of ϕ to d = 2 such that visualizing the learned representations becomes easier. After
training the METRA algorithm for 20M environment steps (50K gradient steps), we analyze the
norm of the difference in representations ∥ϕ(s′)− ϕ(s)∥22.

We plot the histogram of ∥ϕ(s′)− ϕ(s)∥22 over 10K transitions randomly sampled from the replay
buffer (Fig. 2a). The observation that the empirical average of ∥ϕ(s′)− ϕ(s)∥22 converges to 0.9884
suggests that the learned representations are feasible. Stochastic gradient descent methods typically
find globally optimal solutions on over-parameterized neural networks (Du et al., 2019), making us
conjecture that the learned representations are nearly optimal (Prop. 1). Furthermore, the spreading of
the value of ∥ϕ(s′)− ϕ(s)∥22 implies that maximizing the METRA representation objective will not
learn state representations ϕ that satisfy ∥ϕ(s′)− ϕ(s)∥22 ≤ 1 for every (s, s′) ∈ Sβadj. These results
help to explain what objective METRA’s representations are optimizing.

6.2 METRA LEARNS CONTRASTIVE REPRESENTATIONS

We next study connections between representations learned by METRA and those learned by con-
trastive learning empirically. Our analysis in Sec. 4.1 reveals that the representation objective of
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Figure 3: Ablation studies. (Left) Replacing the METRA representation loss with a contrastive loss retains
performance. (Center) Using an information bottleneck to define the intrinsic reward is important for MISL.
(Right) Choosing the right parameterization is crucial for good performance. Shaded areas indicate 1 std. dev.

METRA corresponds to the contrastive lower bound on Iβ(S, S′;Z). This analysis raises the question
whether representations learned by METRA share similar structures to representations learned by
contrastive losses (Gutmann & Hyvärinen, 2010; Ma & Collins, 2018; Wang & Isola, 2020).

To answer this question, we reuse the trained algorithm in Sec. 6.1 and visualize two important
statistics: (1) the conditional differences in representations ϕ(s′)− ϕ(s)− z and (2) the normalized
marginal differences in representations (ϕ(s′)− ϕ(s))/∥ϕ(s′)− ϕ(s)∥2. The resulting histograms
(Fig. 2b & 2c) indicate that the conditional differences in representations ϕ(s′)−ϕ(s)− z converges
to an isotropic Gaussian in distribution while the normalized marginal differences in representations
(ϕ(s′)− ϕ(s))/∥ϕ(s′)− ϕ(s)∥2 converges to a uniform distribution on the d-dimensional unit hyper-
sphere Sd−1 in distribution. Prior work (Wang & Isola, 2020) has shown that representations derived
from contrastive learning preserves properties similar to these observations. We conjecture that
maximizing the contrastive lower bound on Iβ(S, S′;Z) directly has the same effect as maximizing
the METRA representation objective. See Appendix A.8 for formal claims and connections.

6.3 ABLATION STUDIES

We now study various design decisions of both METRA and our simplified method, aiming to identify
some key factors that boost these MISL algorithms. We will conduct ablation studies on Ant again,
comparing coverage of (x, y) coordinates of different variants.

(1) Contrastive learning recovers METRA’s representation objective. Our analysis (Sec. 4.1)
and experiments (Sec. 6.2) have shown that METRA learns contrastive representations. We now test
whether we can retain the performance of METRA by simply replacing its representation objective
with the contrastive lower bound (Eq. 8). Results in Fig. 3 (Left) suggest that using the contrastive
loss (METRA-C) fully recovers the original performance, circumventing explanations building upon
the Wasserstein dependency measure.

(2) Maximizing the information bottleneck is important. In Sec. 4.2, we interpret the intrinsic
reward in METRA as a lower bound on an information bottleneck. We conduct ablation experiments
to study the effect of maximizing this information bottleneck over maximizing the mutual information
directly, a strategy typically used by prior methods (Eysenbach et al., 2019; Mendonca et al., 2021;
Hansen et al., 2020). Results in Fig. 3 (Center) show that CSF failed to discover skills when only
maximizing the mutual information (i.e. including the anti-exploration term). These results indicate
that using the information bottleneck as the intrinsic reward may be important for MISL algorithms.

(3) Parameterization is key for CSF. When optimizing a lower bound on the mutual information
Iπ(S, S′;Z) using a variational distribution, there are many ways to parametrize the critic f(s, s′, z).
In Eq. 9, we chose the parameterization (ϕ(s′)− ϕ(s))⊤z, but there are many other choices. Testing
the sensitivity of this choice of parameterization allows us to determine whether a specific form of
the lower bound is important. In Fig. 3, we study several variants of CSF that use (1) a monolithic
network MLP(s, s′)⊤z , (2) a Gaussian kernel (− 1

2 ||ϕ(s
′) − ϕ(s)||22), or (3) a Laplacian kernel

(−||ϕ(s′) − ϕ(s)||1) as the critic parameterization. We find the alternative parameterizations are
catastrophic for performance, suggesting that the inner product parameterization is key to CSF. We
provide some insights for this parameterization in Appendix A.9.

6.4 CSF MATCHES SOTA FOR BOTH EXPLORATION AND DOWNSTREAM PERFORMANCE

Our final set of experiments compare CSF to prior MISL algorithms, measuring performance on both
unsupervised exploration and solving downstream tasks.

Experimental Setup. We evaluate on the same five tasks as those used in Park et al. (2024)
plus Robobin from LEXA (Mendonca et al., 2021), though we will only focus HalfCheetah
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Figure 4: CSF performs on par with METRA. We compare CSF with baselines on state coverage (left),
zero-shot goal reaching (middle), and hierarchical control (right). We generally find CSF to perform roughly
on par with METRA and outperform all other baselines in most settings. Shaded areas indicate one standard
deviation. Appendix Fig. 5, 6& 7 show the learning curves for all tasks.

and Humanoid in the main text. For baselines, we also use a subset from Park et al. (2024)
(METRA (Park et al., 2024), CIC (Laskin et al., 2022), DIAYN (Eysenbach et al., 2019), and
DADS (Sharma et al., 2020)) along with VISR (Hansen et al., 2020). See Appendix B.2 for details.

Exploration performance. To measure the inherent exploration capabilities of each method without
considering any particular downstream task, we compute the state coverage by counting the unique
number of (x, y) coordinates visited by the agent. Fig. 4 (left) shows CSF matches METRA on both
HalfCheetah and Humanoid. For the full set of exploration results, please see Appendix B.3.

Zero-shot goal reaching. In this setting the agent infers the right skill given a goal without further
training on the environment. We evaluate on the same set of six tasks and defer both the goal sampling
and skill inference strategies to Appendix B.4. We report the staying time fraction, which is the
number of time steps that the agent stays at the goal divided by the horizon length. In Fig. 4 (middle),
we find all methods to perform similarly on HalfCheetah, while METRA and CSF perform best
on Humanoid, with METRA performing slightly better on the latter. For the full set of zero-shot
goal reaching results, please see Appendix B.4.

Hierarchical control. We train a hierarchical controller πh(z | s) that outputs latent skills z as
actions for every fixed number of time steps to maximize the discounted return in two downstream
tasks from Park et al. (2024), one of which requires to reach a specified goal (HumanoidGoal)
and one requires jumping over hurdles (HalfCheetahHurdle). The results in Fig. 4 (right) show
CSF and METRA are the best performing methods, showing mostly similar performance. For further
details as well as the full set of results on all tasks, please see Appendix B.5.

Taken together, CSF is a competitive MISL algorithm that matches the current SOTA. On the full set
of results (Appendices B.3, B.4, and B.5) we find that CSF continues to perform roughly on par with
METRA on most tasks, though there are some tasks where CSF performs better and vice versa.

7 CONCLUSION

In this paper, we show how one of the current strongest unsupervised skill discovery algorithms
can be understood through the lens of mutual information skill learning. Our analysis allowed the
development of our new method CSF, which we showed to perform on par with METRA in most
settings. More broadly, our work provides evidence that mutual information maximization can still
be effective to build high performing skill discovery algorithms.

Limitations. While we find CSF to perform relatively well on the standard benchmarks (Park et al.,
2024), it is unclear how far its performance can scale to increasingly complex environments such as
Craftax (Matthews et al., 2024) or VIMA (Jiang et al., 2022), which present an increased number
of interactive objects, partial observability, environment stochasticity, and discrete action spaces.
Another open question is how to perform scalable pre-training on large datasets, e.g., BridgeData
V2 (Walke et al., 2023) or YouCook2 (Zhou et al., 2018), using MISL algorithms such as CSF to get
both transferable state representations and diverse skill-conditioned policies. We leave investigating
these empirical scaling limits to future work.
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REPRODUCIBILITY STATEMENT

We have included an anonymized version of the code to reproduce all experiments in the paper as
part of the supplementary material. We have also made an anonymous online version available here:
https://anonymous.4open.science/r/csf-3BF4/README.md. In addition, we have dedicated several
sections in the appendix to further ensure reproducibility of our results. Appendix B provides a
detailed account of all experimental details, including GPU types, training times, hyperparameters
and architectural details (Tables 1, 2, and 3), and detailed descriptions of the parameters of the
various settings we use to compare with prior work (Appendices B.3, B.4, B.5). Finally, we have also
included full proofs for the theoretical results stated in Proposition 1, 2, and 3 which can be found in
Appendices A.2, A.3, and A.4, respectively.
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A THEORETICAL ANALYSIS

A.1 MUTUAL INFORMATION MAXIMIZATION AS A MIN-MAX OPTIMIZATION PROBLEM

Maximizing the mutual information Iπ(S, S′;Z) (Eq. 1) is more challenging than standard RL
because the reward function log pπ(z | s, s′) depends on the policy itself. To break this cyclic
dependency, we introduce a variational distribution q(z | s, s′) ∈ Q ≜ {q(z | s, s′)} to approximate
the posterior pπ(z | s, s′), where we assume that the variational family Q is expressive enough to
cover the ground true distribution under any π:

Assumption 1. For any skill-conditioned policy π : S × Z 7→ ∆(A), there exists q⋆(z | s, s′) ∈ Q
such that q⋆(z | s, s′) = pπ(z | s, s′).

This assumption allows us to rewrite Eq. 1 as

max
π

Epπ(s,s′,z)[log pπ(z | s, s′)]−min
q∈Q

Epπ(s,s′) [DKL (p
π(· | s, s′) ∥ q(· | s, s′))] ,

where DKL (p
π(· | s, s′) ∥ q(· | s, s′)) is the KL divergence between distributions pπ and q and it

satisfies DKL(p
π(· | s, s′) ∥ q(· | s, s′)) = 0 ⇐⇒ pπ(z | s, s′) = q(z | s, s′). The new max-min

optimization problem can be solved iteratively by first choosing variational distribution q(z | s, s′) to
fit the ground truth pπ(z | s, s′) and then choosing policy π to maximize discounted return defined
by the intrinsic reward q(z | s, s′):

qk+1 ← argmax
q∈Q

Epπk (s,s′,z) [log q(z | s, s′)] ,

πk+1 ← argmax
π

Epπ(s,s′,z)[log qk(z | s, s′)],

where k indicates the number of updates. In practice, the data used to update q are uniformly sampled
from a replay buffer typically containing trajectories from historical policies. Thus, the behavioral
policy is exactly the average of historical policies β = 1

k

∑k
i=1 πi(a | s, z) and the update rule for q

becomes

qk+1 ← argmax
q∈Q

Epβ(s,s′,z)[log q(z | s, s′)].

A.2 PROOF OF PROPOSITION 1

Proposition 1. The optimal state representation ϕ⋆ of the actual METRA representation objective
(Eq. 7) satisfies

Epβ(s,s′)
[
∥ϕ⋆(s′)− ϕ⋆(s)∥22

]
= 1.

Proof. Suppose that the optimal ϕ⋆ satisfies

0 ≤ Epβ(s,s′)
[
∥ϕ⋆(s′)− ϕ⋆(s)∥22

]
= α2 < 1, (12)

where 0 ≤ α < 1. Then, there exists a 1/α > 1 that scales the expectation in Eq. 12 to exactly 1:

1

α2
Epβ(s,s′)

[
∥ϕ⋆(s′)− ϕ⋆(s)∥22

]
= 1.

Note that, when Ep(z)pβ(s,s′|z)
[
(ϕ⋆(s′)− ϕ⋆(s))⊤z

]
≥ 0, the ϕ⋆/α will also scale the objective to

a larger number

1

α
Ep(z)pβ(s,s′|z)

[
(ϕ⋆(s′)− ϕ⋆(s))⊤z

]
≥ Ep(z)pβ(s,s′|z)

[
(ϕ⋆(s′)− ϕ⋆(s))⊤z

]
,

which contradicts the assumption that ϕ⋆ is optimal. When Ep(z)pβ(s,s′|z)
[
(ϕ⋆(s′)− ϕ⋆(s))⊤z

]
< 0,

taking −ϕ⋆/α gives us the same result. Therefore, we conclude that the optimal ϕ⋆ must satisfy
Epβ(s,s′)

[
∥ϕ⋆(s′)− ϕ⋆(s)∥22

]
= 1.
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A.3 PROOF OF PROPOSITION 2

Proposition 2. There exists a λ0(d) depending on the dimension d of the state representation ϕ such
that the following second-order Taylor approximation holds

λ0(d)(1− Epβ
[
∥ϕ(s′)− ϕ(s)∥22

]
) ≈ LBβ−(ϕ).

Proof. We first compute logEp(z)
[
e(ϕ(s

′)−ϕ(s))⊤z
]

analytically,

logEp(z)
[
e(ϕ(s

′)−ϕ(s))⊤z
]
= logCd(0)

∫
e(ϕ(s

′)−ϕ(s))⊤zdz

= log
Cd(0)

Cd(∥ϕ(s′)− ϕ(s)∥2)

+ log

∫
Cd(∥ϕ(s′)− ϕ(s)∥2)e

∥ϕ(s′)−ϕ(s)∥2
(ϕ(s′)−ϕ(s))⊤z

∥ϕ(s′)−ϕ(s)∥2 dz

(a)
= log

Cd(0)

Cd(∥ϕ(s′)− ϕ(s)∥2)

= log
Γ (d/2) (2π)d/2Id/2−1(∥ϕ(s′)− ϕ(s)∥2)

2πd/2∥ϕ(s′)− ϕ(s)∥d/2−1
2

= log
Γ(d/2)2d/2−1Id/2−1(∥ϕ(s′)− ϕ(s)∥2)

∥ϕ(s′)− ϕ(s)∥d/2−1
2

, (13)

where Γ(·) is the Gamma function, Iv(·) denotes the modified Bessel function of the first kind at
order v, and in (a) we use the definition of the density of von Mises-Fisher distributions. Applying
Taylor expansion (Abramowitz & Stegun, 1968) to Eq. 13 around ∥ϕ(s′) − ϕ(s)∥2 = 0 by using
Mathematica (Inc., 2024) gives us a polynomial approximation

log
Γ(d/2)2d/2−1Id/2−1(∥ϕ(s′)− ϕ(s)∥2)

∥ϕ(s′)− ϕ(s)∥d/2−1
2

=
1

2d
∥ϕ(s′)− ϕ(s)∥22 +O(∥ϕ(s′)− ϕ(s)∥32)

Now we can simply set λ0(d) = 1
2d to get

λ0(d)(1− ∥ϕ(s′)− ϕ(s)∥22) ≈ − logEp(z)
[
e(ϕ(s

′)−ϕ(s))⊤z
]
+ const..

Hence, we conclude that λ0(d)(1− Epβ(s,s′)
[
∥ϕ(s′)− ϕ(s)∥22

]
) is a second-order Taylor approxi-

mation of LBβ−(ϕ) = −Epβ(s,s′)
[
logEp(z)

[
e(ϕ(s

′)−ϕ(s))⊤z
]]

around ∥ϕ(s′)− ϕ(s)∥22 = 0 up to a
constant factor of λ0(d).

A.4 PROOF OF PROPOSITION 3

Proposition 3. The METRA actor objective is a lower bound on the information bottleneck
Iπ(S, S′;Z)− Iπ(S, S′;ϕ(S′)− ϕ(S)), i.e., J(π) ≤ Iπ(S, S′;Z)− Iπ(S, S′;ϕ(S′) = ϕ(S)).

Proof. We consider the mutual information between transition pairs and skills under the target policy
Iπ(S, S′;Z). The standard variational lower bound (Barber & Agakov, 2004; Poole et al., 2019) of
Iπ(S, S′;Z) can we written as:

Iπ(S, S′;Z) ≥ h(Z) + Epπ(s,s′,z)[log qπ(z | s, s′)],

where qπ(z | s, s′) is an arbitrary variational approximation of pπ(z | s, s′). We can set log qπ(z |
s, s′) to be

log qπ(z | s, s′) = f(s, s′, z) + log p(z)− logEp(z)
[
ef(s,s

′,z)
]
,
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resulting in a lower bound:

Iπ(S, S′;Z) ≥ Epπ(s,s′,z)[(ϕ(s′)− ϕ(s))⊤z]︸ ︷︷ ︸
LBπ

+(ϕ)

−Epπ(s,s′)
[
logEp(z)

[
e(ϕ(s

′)−ϕ(s))⊤z
]]

︸ ︷︷ ︸
LBπ

−(ϕ)

,

where LBπ+(ϕ) is exactly the same as the RL objective J(π) (Eq. 6). This lower bound is similar to
Eq. 8 but it is under the target policy π instead.

Equivalently, we can write the RL objective as

J(π) = Ep(z)pπ(s+=s|z)pπ(s′|s,z)

[
(ϕ(s′)− ϕ(s))⊤z− logEp(z′)

[
e(ϕ(s

′)−ϕ(s))⊤z′
]

+ logEp(z′)
[
e(ϕ(s

′)−ϕ(s))⊤z′
]]

= LBπ(ϕ)− LBπ−(ϕ)

where the two log-expected-exps cancel with each other. We next focus on the additional
LBπ−(ϕ) = −Ep(z)pπ(s+=s|z)pπ(s′|s,z)

[
logEp(z′)

[
e(ϕ(s

′)−ϕ(s))⊤z′
]]

, which can be interpreted as a
resubstitution entropy estimator of ϕ(s′)− ϕ(s) (Wang & Isola, 2020; Ahmad & Lin, 1976):

LBπ−(ϕ) = −Epπ(s,s′)
[
logEp(z)

[
e(ϕ(s

′)−ϕ(s))⊤z
]]

(a)
= − 1

N

N∑
i=1

log
 1

N

N∑
j=1

Cd(∥ϕ(s′i)− ϕ(si)∥2)e
∥ϕ(s′i)−ϕ(si)∥2

(ϕ(s′i)−ϕ(si))
⊤zj

∥ϕ(s′
i
)−ϕ(si)∥2


+ log

1

Cd(∥ϕ(s′i)− ϕ(si)∥2)

]
= − 1

N

N∑
i=1

(
log p̂vMF-KDE(ϕ(s

′
i)− ϕ(si)) + log

1

Cd(∥ϕ(s′i)− ϕ(si)∥2)

)
= ĥπ(ϕ(S′)− ϕ(S))− Epπ(s,s′)

[
log

1

Cd(∥ϕ(s′i)− ϕ(si)∥2)

]
(b)
= Îπ(S, S′;ϕ(S′)− ϕ(S))− Epπ(s,s′)

[
log

1

Cd(∥ϕ(s′i)− ϕ(si)∥2)

]
(c)
≈ Îπ(S, S′;ϕ(S′)− ϕ(S))− λ0(d)Epπ(s,s′)

[
∥ϕ(s′)− ϕ(s)∥22

]
+ const.

(d)
≈ Îπ(S, S′;ϕ(S′)− ϕ(S)) + const.,

where in (a) we use Monte Carlo estimator with N transitions and skills {(si, s′i, zi)}Ni=1 to rewrite
the expectation, in (b) we replace the entropy estimator ĥπ with the mutual information estimator
Îπ since ϕ(s′)− ϕ(s) is a deterministic function of (s, s′), in (c) we apply the same approximation
in Prop. 2, and in (d) the expected squared norm is replaced by 1.0, assuming that Prop. 1 holds.
Taken together, we conclude that maximizing the RL objective J(π) is approximately equivalent to
maximizing a lower bound on the information bottleneck Iπ(S, S′;Z)−Iπ(S, S′;ϕ(S′)−ϕ(S)).

A.5 MUTUAL INFORMATION OBJECTIVES USED IN PRIOR METHODS

Prior MISL methods (Eysenbach et al., 2019; Gregor et al., 2016; Sharma et al., 2020; Hansen et al.,
2020; Campos et al., 2020) adopt the min-max optimization procedure (Eq. 2 & 3) and use the same
functional form of the lower bound on different variants of the mutual information as their objectives.
We elaborate which mutual information each prior method optimizes next.

For DIAYN (Eysenbach et al., 2019) and VISR (Hansen et al., 2020), both representation learn-
ing and policy learning objectives are (up to some constants) lower bounds on I(S;Z) ≳
−Ep(z)[log p(z)] + Ep(s,z)[log q(z | s)], where ≳ denotes > up to constant scaling or shifting.
See Eq. 2 & 3 of (Eysenbach et al., 2019) and Eq. 9 of (Hansen et al., 2020) for details.

For VIC (Gregor et al., 2016), both representation learning and policy learning objectives are lower
bounds on I(ST ;Z | S0) ≥ −Ep(z|s0)[log p(z | s0)] + Ep(sT ,z|s0)[log q(z | s0, sT )], where S0
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Algorithm 2 A General Mutual Information Skill Learning Framework

1: Input state representations ϕ : S 7→ Rd, latent skill distribution p(z), and skill-conditioned
policy π : S × Z 7→ ∆(A).

2: for each iteration do
3: Collect trajectory τ with z ∼ p(z) and a ∼ π(a | s, z), and then add τ to the replay buffer.
4: Sample B = {(s, s′, z)} from the replay buffer.
5: Update ϕ by maximizing a lower bound on Iβ(S, S′;Z) constructed using B.
6: Relabel the intrinsic reward as a lower bound on Iπ(S, S′;Z)− Iπ(S, S′;ϕ(S′)− ϕ(S)).
7: Update π using an off-policy RL algorithm with B ∪ {r(s, s′, z)}.
8: Return ϕ⋆ and π⋆.

denotes the random variable for initial states and ST denotes the random variable for terminal states.
See Eq. 3 of (Gregor et al., 2016) for details.

For DADS (Sharma et al., 2020), both representation learning and policy learning objectives are
(approximate) lower bounds on I(S′;Z | S) ≥ −Ep(s′|s)[log p(s′ | s)] + Ep(s′,z|s)[log q(s′ | s, z)].
See Eq. 5 & 6 of (Sharma et al., 2020) for details.

A.6 THE EFFECT OF THE SCALING COEFFICIENT ξ

In Sec. 5.1, we introduce a coefficient ξ to scale the negative term LBβ−(ϕ) in the contrastive
lower bound and find that a proper choice of ξ improves the performance of CSF empirically
(Appendix C.3). This coefficient has an effect similar to the tradeoff coefficient used in information
bottleneck optimization (β in (Alemi et al., 2017)). We also note that when setting ξ ≥ 1, the new
representation objective LBβ+(ϕ) + ξLBβ−(ϕ) is still a (scaled) contrastive lower bound on the mutual
information Iβ(S, S′;Z). The reason is that LBβ−(ϕ) is always non-positive:

LBβ−(ϕ) = −Epβ(s,s′)
[
logEp(z′)

[
e(ϕ(s

′)−ϕ(s))⊤z′
]]

(a)
≤ −Epβ(s,s′)

[
log e(ϕ(s

′)−ϕ(s))⊤Ep(z′)[z
′]
]

(b)
= −Epβ(s,s′)

[
log e0

]
= 0,

where in (a) we apply Jensen’s inequality and in (b) we use the symmetry of UNIF(Sd−1). Therefore,
for any ξ ≥ 1, we have LBβ+(ϕ) + ξLBβ−(ϕ) ≤ LBβ+(ϕ) + LBβ−(ϕ).

A.7 A GENERAL MUTUAL INFORMATION SKILL LEARNING FRAMEWORK

The general mutual information skill learning algorithm alternates between (1) collecting data, (2)
learning state representation ϕ by maximizing a lower bound on the mutual information Iβ(S, S′;Z)
under the behavioral policy β, (3) relabeling the intrinsic reward as a lower bound on the information
bottleneck Iπ(S, S′;Z)− Iπ(S, S′;ϕ(S′)− ϕ(S)), and finally (4) using an off-the-shelf off policy
RL algorithm to learning the skill-conditioned policy π. We show the pseudo-code of this algorithm
in Alg. 2.

A.8 CONNECTION BETWEEN REPRESENTATIONS LEARNED BY METRA AND CONTRASTIVE
REPRESENTATIONS

In our experiments (Sec. 6.2), we sample 10K pairs of (s, s′, z) from the replay buffer and use them to
visualize the histograms of conditional differences in representations ϕ(s′)−ϕ(s)−z and normalized
marginal differences in representations (ϕ(s′)− ϕ(s))/∥ϕ(s′)− ϕ(s)∥2. The resulting histograms
(Fig. 2 (Center) & (Right)) indicate two intriguing properties of representations learned by METRA.
First, given a set of skills {z}, the differences in representations subtracting the corresponding skills
ϕ(s′)− ϕ(s)− z converges to an isotropic Gaussian distribution:
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Claim 1. The state representations ϕ learned by METRA satisfies that ϕ(s′)−ϕ(s)−z d−→ N (0, σ2
ϕI),

or, equivalently, ϕ(s′)− ϕ(s) | z d−→ N (z, σ2
ϕI), where d−→ denotes convergence in distribution and

σϕ is the standard deviation of the isotropic Gaussian.

Second, taking the marginal over all possible skills, the normalized difference in representations
(ϕ(s′) − ϕ(s))/∥ϕ(s′) − ϕ(s)∥2 converges to a uniform distribution on the d-dimensional unit
hypersphere Sd−1:

Claim 2. The state representations ϕ learned by METRA also satisfy ϕ(s′)−ϕ(s)
∥ϕ(s′)−ϕ(s)∥2

d−→ UNIF(Sd−1).

We next propose a Lemma that relates a isotropic Gaussian distribution to a von Mises–Fisher
distribution (Wikipedia, 2024) and then draw the connection between Claim 1 and Claim 2.

Lemma 1. Given an n-dimensional isotropic Gaussian distribution N (µ, σ2I) with ∥µ∥2 = rµ, a
von Mises–Fisher distribution VMF

(
µ/rµ, rµ/σ

2
)

can be obtained by restricting the support to be
a hypersphere with radius rµ, i.e., {x : ∥x∥2 = rµ}.

Proof. The probability density function of N (µ, σ2I) be written as

p(x) =
1

(2πσ)
n
2
exp

(
− 1

2σ2
(x− µ)⊤(x− µ)

)
=

1

(2πσ)
n
2
exp

(
− 1

2σ2

(
∥x∥22 − 2x⊤µ+ ∥µ∥22

))
When conditioning on ∥x∥2 = rµ, we have

1

(2πσ)
n
2
exp

(
− 1

2σ2

(
∥x∥22 − 2x⊤µ+ ∥µ∥22

))
=

1

(2πσ)
n
2
exp

(
− 1

2σ2

(
2r2µ − 2x⊤µ

))
=

1

(2πσ)
n
2
exp

(
rµ
σ2
· µ

⊤x

rµ
−
r2µ
σ2

)

∝ exp

(
rµ
σ2
· µ

⊤x

rµ

)
.

After recomputing the normalizing constant, we recover the probability density function of the von
Mises-Fisher distribution VMF

(
µ/rµ, rµ/σ

2
)
.

Since the didactic experiments in Sec. 6.2 have shown that ϕ(s′)− ϕ(s) | z converges to a Gaussian
distribution N (z, σ2

ϕI) (Claim 1) and note that ∥z∥2 = 1, by applying Lemma A.8, we conjecture
that restricting ϕ(s′) − ϕ(s) within {∥ϕ(s′) − ϕ(s)∥2 = 1} produces a von Mises-Fisher distribu-
tion, i.e., ϕ(s′)−ϕ(s)

∥ϕ(s′)−ϕ(s)∥2

∣∣∣ z d−→ VMF(z, 1/σ2
ϕ). Furthermore, we can derive the marginal density of

ϕ(s′)−ϕ(s)
∥ϕ(s′)−ϕ(s)∥2

,

p

(
ϕ(s′)− ϕ(s)
∥ϕ(s′)− ϕ(s)∥2

)
=

∫
p(z)p

(
ϕ(s′)− ϕ(s)
∥ϕ(s′)− ϕ(s)∥2

∣∣∣∣ z) dz
(a)
= Cd(0)

∫
Cd

(
1

σ2
ϕ

)
exp

(
1

σ2
ϕ

· (ϕ(s
′)− ϕ(s))⊤z

∥ϕ(s′)− ϕ(s)∥2

)
dz

= Cd(0),

where in (a) we use the symmetric property of the density function of von Mises-Fisher distribu-
tions. Crucially, the marginal density indicates that ϕ(s′)−ϕ(s)

∥ϕ(s′)−ϕ(s)∥2
follows a uniform distribution

UNIF(Sd−1), which is exactly the observation in our experiments (Claim 2).
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A.9 INSIGHTS FOR THE INNER PRODUCTION CRITIC PARAMETERIZATION

Our ablation studies in Sec. 6.3 shows that the inner product parameterization of the critic
f(s, s′, z) = (ϕ(s′)− ϕ(s))⊤ is important for CSF (Fig. 3 (Right)). There are two explanations for
these observations. First, the inner product parameterization tries to push together the difference
of the representation of transitions ϕ(s′)− ϕ(s) and the corresponding skill z, instead of focusing
on representations of individual states ϕ(s) or ϕ(s′). This intuition is inline with the observation
from prior work that mutual information I(S;Z) is invariant to bijective mappings on S (See Fig. 2
of (Park et al., 2024)), e.g., translation and scaling, indicating that maximizing the mutual information
between change of states and skills (I(S, S′;Z)) encourages better state space coverage. Second, the
inner product parameterization allows us to analytically compute the second-order Taylor approxi-
mation in Proposition 2, drawing the connection between the METRA representation objective and
contrastive learning.

A.10 INTUITION FOR ZERO-SHOT GOAL INFERENCE

In zero-shot goal reaching setting, we want to figure out the corresponding latent skill z when given
a goal state or image g; a problem which can be cast as inferring the z ∈ Z that maximizes the
posterior pπ(z | s, g). Since the ground truth posterior pπ(z | s, g) is unknown, a typical workaround
is first estimating a variational approximation of pπ(z | s, g) and then maximizing the variational
posterior q(z | s, g). We provide an intuition for zero-shot goal inference by specifying the variational
posterior as

q(z | s, g) ≜ p(z)e(ϕ(g)−ϕ(s))
⊤z

Ep(z)
[
e(ϕ(g)−ϕ(s))⊤z′

]
and solving the optimization problem in the latent skill space Z

argmax
z∈Z

log q(z | s, g),

or equivalently,

argmax
z

(ϕ(g)− ϕ(s))⊤z s.t. ∥z∥22 = 1.

Taking derivative of the Lagrangian and setting it to zero, the analytical solution is exactly z⋆ =
ϕ(g)−ϕ(s)

∥ϕ(g)−ϕ(s)∥2
, suggesting that the heuristic used by prior methods and our algorithm can be understood

as a maximum a posteriori (MAP) estimation.

B EXPERIMENTAL DETAILS

All experiments were run on a combination of GPUs consisting of NVIDIA GeForce RTX 2080 Ti,
NVIDIA RTX A5000, NVIDIA RTX A6000, and NVIDIA A100. All experiments took at most 1
day to run to completion.

B.1 SIMPLICITY OF CSF COMPARED TO METRA

The main differences between our method and METRA are (1) directly using the contrastive lower
bound on the mutual information Iβ(S, S′;Z) as the representation objective, and (2) learning a
policy by estimating the successor features, which is a vector-valued critic, instead of a scalar Q in an
actor-critic style. Our method can be implemented based on METRA by making three changes (see
algorithm summary in Sec. 5.2). Since the policy learning step only requires changing the output
dimension of neural networks, CSF reduces the number of hyperparameters in the representation
learning step compared to METRA. Next, we provide a hyperparameter comparison between CSF
and METRA.

On the one hand, since our algorithm prevents the dual gradient descent optimization in the METRA
representation objective, we do not have the slack variable ϵ, do not have to specify the initial value
of the dual variable λ, and remove the dual variable optimizer with its learning rate, resulting in three
less hyperparameters. On the other hand, we introduce one coefficient ξ to scale the negative term
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Table 1: CSF hyperparameters for unsupervised pretraining.

Hyperparameter Value
Learning rate 0.0001
Horizon 200, except for 50 in Kitchen
Parallel workers 8, except for 10 in Robobin
State normalizer used in state-based environments only
Replay buffer batch size 256
Gradient updates per trajectory collection round 50 (Ant, Cheetah), 200 (Humanoid,

Quadruped), 100 (Kitchen, Robobin)
Frame stack 3 for image-based, n/a for state-based
Trajectories per data collection round 8, except for 10 in Robobin
Automatic entropy tuning yes
ξ (scales second term in Eq. 10) 5
Number of negative zs to compute LB−(ϕ) 256 (in-batch negatives)
EMA τ (target network) 5e−3

ϕ, π, ψ network hidden dimension 1024
ϕ, π, ψ network number of layers 1 input, 1 hidden, 1 output
ϕ, π, ψ network nonlinearity relu (ϕ), tanh (π), relu (ψ)

LBβ−(ϕ) in the contrastive lower bound, which has an effect similar to the tradeoff coefficient used
in information bottleneck optimization (β in (Alemi et al., 2017)). Taken together, CSF uses three
less hyperparameters than METRA and introduces one hyperparameter to balance the positive term
(LBβ+(ϕ)) and the negative term (LBβ−(ϕ)) in the representation objective.

B.2 EXPERIMENTAL SETUP

Environments. We choose to evaluate on the following six tasks: Ant and HalfCheetah from
Gym (Todorov et al., 2012; Brockman et al., 2016), Quadruped and Humanoid from DeepMind
Control (DMC) Suite (Tassa et al., 2018), and Kitchen and Robobin from LEXA (Mendonca
et al., 2021). We choose these six tasks to be consistent with the original METRA work (Park
et al., 2024). In addition, we added Robobin as another manipulation task since the original five
tasks are all navigation tasks except for Kitchen. The observations are state-based in Ant and
HalfCheetah and 64× 64 RGB images of the scene in all other tasks.

Baselines. We consider five baselines. (1) METRA (Park et al., 2024) is the state-of-the-art
approach which provides the motivation for deriving CSF. (2) CIC (Laskin et al., 2022) uses a
rank-based contrastive loss (InfoNCE) to learn representations of transitions and then maximizes
a state entropy estimate constructed using these representations. (3) DIAYN (Eysenbach et al.,
2019) represents a broad category of methods that first learn a parametric discriminator q(z | s, s′)
(or q(z | s)) to predict latent skills from transitions and then construct the reverse variational lower
bound on mutual information (Campos et al., 2020) as an intrinsic reward. (4) DADS (Sharma et al.,
2020) builds upon the forward variational lower bound on mutual information (Campos et al., 2020)
which requires maximizing the state entropy h(S) to encourage state coverage while minimizing
the conditional state entropy h(S | Z) to distinguish different skills. There is a family of methods
studying variational approximations of h(S) and h(S | Z) (Campos et al., 2020; Liu & Abbeel,
2021; Laskin et al., 2022; Lee et al., 2019; Sharma et al., 2020) of which DADS is a representative.
(5) VISR (Hansen et al., 2020) is similar to DIAYN in that it also trains the representations ϕ by
learning a discriminator to maximize the likelihood of a skill given a state, though the discriminator
is parametrized as a vMF distribution. In addition, VISR learns successor features that allow it to
perform GPI as well as fast task adaptation after unsupervised pretraining. Note that our version of
VISR does not include GPI since we evaluate on continuous control environments.
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Table 2: Skill dimensions per method and environment. We list the skill dimension for all methods
and environments reported in the paper.

Ant HalfCheetah Quadruped Humanoid Kitchen Robobin
CSF 2 2 4 8 4 9

METRA 2 16 4 2 24 9

DIAYN 50 50 50 50 50 50

DADS 3 3 - - - -

CIC 64 64 64 64 64 64

VISR 5 5 5 5 5 5
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Figure 5: State space coverage. We plot the unique number of coordinates visited by the agent,
except for Kitchen where we plot the task coverage. We find CSF matches the prior state-of-the-art
MISL algorithms on 4/6 tasks, and strongly outperforms METRA in Robobin. Shaded areas
indicate one standard deviation.

B.3 EXPLORATION PERFORMANCE

Please see Fig. 5 for the full set of exploration results. We can see that CSF continues to perform on par
with METRA, while sometimes outperforming METRA (Robobin) and sometimes underperforming
METRA (Quadruped).

For CSF, all tasks were trained with continuous z sampled from a uniform vMF distribution and λ = 5.
METRA also uses a continuous z sampled from a uniform vMF distribution for all environments
except for HalfCheetah and Kitchen, where we used a one-hot discrete z, consistent with the
original work (Park et al., 2024). CIC uses a continuous z sampled from a standard Gaussian for all
environments. DIAYN uses a one-hot discrete z for all environments. DADS uses a continuous z
sampled from a uniform distribution on [−1, 1] for all environments. Finally, VISR uses a continuous
z sampled from a uniform vMF distribution for all environments. Please refer to Table 2 for a full
overview of skill dimensions per method and environment. A table with all relevant hyperparameters
for the unsupervised training phase can be found in Table 1.

B.4 ZERO-SHOT GOAL REACHING

Please see Fig. 6 for the full set of goal reaching results. We find CSF to generally perform closely
to METRA, though slightly underperforming in Quadruped, Humanoid, and Kitchen. In Ant
however, CSF outperforms METRA.

Goal sampling. We closely follow the setup in Park et al. (2024). For all baselines, 50 goals are
randomly sampled from [−50, 50] in Ant, [100, 100] in HalfCheetah, [−15, 15] in Quadruped,
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Figure 6: Goal reaching. We compare CSF with baselines on goal-reaching tasks. We find that
CSF achieves strong performance on Ant and mostly outperforms DIAYN and VISR. However, CSF
lags a bit behind METRA on Quadruped, Kitchen, and Humanoid. All means and standard
deviations are computed across ten random seeds. Shaded areas indicate one standard deviation.

and [−10, 10] in Humanoid. In Kitchen, we sample 50 times at random from the following
built-in tasks: BottomBurner, LightSwitch, SlideCabinet, HingeCabinet, Microwave, and Kettle. In
Robobin, we sample 50 times at random from the following built-in tasks: ReachLeft, ReachRight,
PushFront, and PushBack.

Evaluation Unlike prior methods (Park et al., 2022; 2024; Sharma et al., 2020; Mendonca et al.,
2021), we choose the staying time fraction instead of the success rate as our evaluation metric. The
staying time indicates the number of time steps that the agent stays at the goal divided by the horizon
length, while the success rate simply indicates whether the agent reaches the goal at any time step.
Importantly, a high success rate does not necessarily imply a high staying time fraction (e.g., the
agent might overshoot the goal after success).

Skill inference. Prior work (Park et al., 2022; 2024; 2023) has proposed a simple inference method
by setting the skill to the difference in representations z = ϕ(g)−ϕ(s)

∥ϕ(g)−ϕ(s)∥2
, where g indicates the goal.

We choose to use the same approach for CSF and METRA and provide some theoretical intuition
for this strategy in Appendix A.10. For DIAYN, we follow prior work (Park et al., 2024) and set
z = one hot[argmaxi q(z|g)i].

B.5 HIERARCHICAL CONTROL

Please see Fig. 7 for the full set of hierarchical control results. We find CSF to perform closely to ME-
TRA in most environments, though it outperforms METRA on AntMultiGoal and underperforms
METRA on QuadrupedGoal. CSF outperforms all other baselines on all environments.

We use SAC (Haarnoja et al., 2018) for AntMultiGoal, HumanoidGoal, and
QuadrupedGoal. We use PPO (Schulman et al., 2017) for CheetahGoal and
CheetahHurdle. For all state-based environments, we initialize (and freeze) the child policy
with a checkpoint trained with 64M environment steps. For image-based environments, we use
checkpoints trained with 4.8M environments. A table with all relevant hyperparameters for training
the hierarchical control policy can be found in Table 3.
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Table 3: CSF hyperparameters for hierarchical control.

Hyperparameter Value
Learning rate 0.0001
Option timesteps length 25
Total horizon length 200
Parallel workers 8
Trajectories per data collection round 8, except for Cheetah where we use 64
Algorithm SAC, except for Cheetah where we use PPO
State normalizer used in state-based environments only
Replay buffer batch size 256
Gradient updates per trajectory collection round 50, except for Cheetah where we use 10
Frame stack 3 for image-based, n/a for state-based
π (parent, child) networks hidden dimension 1024
π (parent, child) networks number of layers 1 input, 1 hidden, 1 output
π (parent, child) networks nonlinearity tanh
Child policy frozen? yes
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Figure 7: Hierarchical control. We compare CSF with baselines on hierarchical control tasks
using returns averaged over the 10 past evaluations. We find CSF to perform mostly competi-
tively compared to METRA, outperforming METRA in AntMultiGoal, but underperforming
in QuadrupedGoal (and to a small extent in HalfCheetahGoal and HumanoidGoal). All
means and standard deviations are computed across ten random seeds. Shaded areas indicate one
standard deviation.

C ADDITIONAL EXPERIMENTS

C.1 QUADRATIC APPROXIMATION OF LBβ2 (ϕ)

We conduct experiments to study the accuracy of the quadratic approximation in Prop. 2 in prac-
tice. To answer this question, we reuse the METRA algorithm trained on the didactic Ant

environment and compare logEp(z)[e(ϕ(s
′)−ϕ(s))⊤z] against ∥ϕ(s′) − ϕ(s)∥22. We can compute

logEp(z)[e(ϕ(s
′)−ϕ(s))⊤z] analytically because d = 2 in our experiments. Results in Fig. 8

shows a clear linear relationship between logEp(z)[e(ϕ(s
′)−ϕ(s))⊤z] and ∥ϕ(s′) − ϕ(s)∥22, sug-

gesting that the slope of the least squares linear regression is near the theoretical prediction, i.e.,
λ0(d) = 1

2d = 0.25 ≈ 0.2309. We conjecture that this linear relationship still exists for higher
dimensional d and, therefore, the second-order Taylor approximation proposed by Prop. 2 is practical.

C.2 METRA AND CSF ARE SENSITIVE TO THE SKILL DIMENSION

METRA leverages different skill dimensions for different environments. This caused us to investigate
what the impact of the skill dimension on exploration performance is. In Fig. 9, we find that both
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Figure 8: λ0(d)∥ϕ(s′) − ϕ(s)∥22 is a
second order Taylor approximation of
logEp(z)[e(ϕ(s

′)−ϕ(s))⊤z], where λ0(d) = 1
2d .
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Figure 9: Skill dimension. CSF and METRA (to
a lesser extent) are sensitive to the skill dimension
(indicated in parentheses).

METRA (to a lesser extent) and CSF are quite sensitive to the skill dimension. We conclude that skill
dimension is a key parameter to tune for practitioners when training their MISL algorithm.

C.3 SENSITIVITY OF CSF TO THE SCALING COEFFICIENT ξ
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Figure 10: CSF ξ sensitivity. Increasing ξ to
slightly higher values (2, 5, 10) boosts performance
of CSF, while a ξ < 1 hurts performance substan-
tially.

We conduct ablation experiments to study the
effect of the scaling coefficient ξ on the negative
term of the contrastive lower bound (LBβ−(ϕ)
as well as investigating our theoretical predic-
tion for selecting ξ ≥ 1 in Appendix A.6. We
compare the state coverage of different variants
of CSF with ξ choosing from {0.5, 1, 2, 5, 10},
plotting the mean and standard deviation over
5 random seeds. Results in Fig. 10 suggest that
increasing ξ to a higher values (2, 5, 10) boosts
the state coverage of CSF, while a ξ ≤ 1 hurts
the performance. We choose to use ξ = 5 in our
benchmark experiments.

C.4 SKILL VISUALIZATIONS

In Fig. 11, we visualize (x, y) trajectories of different skills learned by CSF with different colors. We
find that CSF learns diverse locomotion behaviors. Videos of learned skills on different tasks can be
found in https://anonymous.4open.science/r/csf-3BF4/README.md.
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(a) Ant (b) Cheetah

(c) Humanoid (d) Quadruped

Figure 11: Trajectory visualization. We visualize (x, y) trajectories of different skills (colors) learned by CSF
on (a) Ant, (b) Cheetah, (c) Humanoid, and (d) Quadruped, showing that CSF learns diverse locomotion
behaviors.
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