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Abstract
A suitable state representation is a fundamental
part of the learning process in Reinforcement
Learning. In various tasks, the state can either
be described by natural language or be natural
language itself. This survey outlines the strategies
used in the literature to build natural language
state representations. We appeal for more linguis-
tically interpretable and grounded representations,
careful justification of design decisions and evalu-
ation of the effectiveness of different approaches.

1. Introduction
In any typical Reinforcement Learning (RL) scenario, there
is an agent in an environment following a policy to take ac-
tions which make it transition through states and receive re-
wards (Sutton & Barto, 1998). Each of these elements must
be modeled according to the purpose of the task and their
representation can influence the outcome of RL algorithms.
Natural Language Understanding can be integrated into
these components, both in language-conditional RL (when
natural language is inherent to the task) and in language-
assisted RL (when natural language is an additional tool),
as discussed in Luketina et al. (2019).

The reward function is usually under the spotlight because
the agent’s goal is maximizing the expected long-term re-
ward. But the state representation is no less vital. Based on
it, the agent perceives the environment and comes to deci-
sions on how to act. While in robotics the agent observes a
spatial environment and in arcade games the state may be
composed of a sequence of images, natural language is as
well a common part of RL states, as illustrated in Figure 1.

The choice of state representation is a problem on its own. It
directly affects the learning process (Jones & Canas, 2010),
so if applications neglect this, the agent may be prevented
from accessing key information for decision-making.
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Figure 1. Natural language can describe the agent’s state (e.g. text-
based games) or be part of it (e.g. dialogue or text summarization).

There is ongoing research on the use of natural language
to model the reward and the actions (He et al., 2016; Feng
et al., 2018; Goyal et al., 2019b), but we are not aware of
any recent systematic survey about the various possibilities
of using natural language to model the state representation
and how to do that effectively. We aim at filling this gap by
providing an overview of previous work in which the state
is based on text, delineating the main approaches.

We dive into a wide range of NLP papers that apply RL
methods and whose state representations have to capture
linguistic features that influence decision-making. Findings
about state representations in this area may potentially be
extrapolated to other language-informed RL tasks. We thus
hope this overview aids those seeking the objective of hav-
ing RL agents capable of understanding natural language.
Since we notice there is no consensus on how to design
natural language state representations, we conclude with
some concrete recommendations for future research.

2. State Representation in RL
The construction of suitable state representations for RL has
been assessed by several works, for example in the field of
robotics and autonomous cars, where modeling the state is
particularly hard due to very high dimensional data com-
ing from multiple sensors (Jonschkowski & Brock, 2013;
De Bruin et al., 2018). Lesort et al. (2018), for instance,
presented a review on State Representation Learning algo-
rithms and evaluation methods for control scenarios.

By definition, the state in a Markov Decision Process, which
underlies the formalization of RL, needs to be Markovian;
i.e. all that needs to be known about the past must be con-
tained in the current state. Jonschkowski & Brock (2013)
summarized other desirable properties of state representa-
tions proposed by many authors: It should provide good
features for learning the value function; be compact but
still allowing the original observations to be reconstructed;
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change slowly over time; be useful for predicting future
observations and rewards given future actions; and ideally
be shared by various similar tasks. Although their focus was
robotics, these properties can be extended to textual states.

Many other aspects of state representation have been in-
vestigated.1 In early works, states were handcrafted by
the system designer using features. Although it remains
a common practice, feature engineering has evident draw-
backs: it needs an experienced designer, is tedious and
time-consuming and does not generalize (Böhmer et al.,
2015). The popularization of deep learning can to some
extent spare us part of these shortcomings, as raw data can
potentially be used as input to end-to-end models that build
state representations implicitly. De Bruin et al. (2018), for in-
stance, analyzed methods for integrating state representation
learning into deep RL. Still, choosing which information,
data structure and model to use can be regarded as a mod-
ern form of feature engineering. Several options have been
applied to textual data, as we describe in the next section.

3. State Representation in NLP tasks
When RL methods are adopted to solve NLP tasks, one
common characteristic is that the state S is represented as
a function of texts T , i.e. S = f(T ). As we will see, f
may take a variety of forms and additional inputs. We begin
by reviewing the development of natural language state
representation in dialogue, instruction following, text-based
games and text summarization, NLP areas in which RL
methods have been used more often. With the consolidation
of deep RL methods, more studies tried to solve several
other tasks, which we aggregate in the last part.2

Dialogue is likely the NLP area with the most substantial
number of papers that adopt RL, with research going on for
more than two decades, e.g. Levin et al. (1998). In dialogue,
the state representation is usually a mapping from text to
an abstract or compact format, such as a template, a belief
state or an embedding vector, used by the agent to generate
the next utterance. A Natural Language Understanding
component between the text and the state representation is
common, as illustrated, for example, in Lipton et al. (2018).

Delineating the state space was at first mostly a manual task,
because considering the entire dialogue used to be impracti-
cal (Singh et al., 2000a). Keeping the state space small was
a common concern in order to avoid the curse of dimension-
ality (Levin et al., 2000; Singh et al., 2000a). Therefore, sys-

1See e.g. McCallum (1996); Kaelbling et al. (1998); Finney
et al. (2002); Van Otterlo (2002); Morales (2004); Roy et al. (2005);
Frommberger (2008); Mahmud (2010); Maillard et al. (2011);
Ortiz et al. (2018); François-Lavet et al. (2019).

2LSTM (Hochreiter & Schmidhuber, 1997) and GRU (Cho
et al., 2014) are references to models mentioned throughout.

tem designers picked a set of variables or features based on
their experience, usually resulting in application-dependent
representations that did not generalize (Walker, 2000; Levin
et al., 2000; Frampton & Lemon, 2005; English & Heeman,
2005; Mitchell et al., 2013; Khouzaimi et al., 2015). The
slots and values of the dialogue state were used to represent
the environment state (Papangelis, 2012) or the Information
States approach was incorporated (Georgila et al., 2005;
Henderson et al., 2005; Heeman et al., 2012). It was soon
clear that modeling the state space is a fundamental aspect
of RL for dialogue, as it has direct impact on the dynamics
of the system, and attention was drawn to the fact that the
research community had neither established best practices
for modeling the state nor agreed upon domain-independent
variables (Paek, 2006).

Some studies tried to examine which state representation
was more effective for the main task (Scheffler & Young,
2002), constructing them with different feature combina-
tions. There was also discussion on ensuring the Marko-
vian property (Singh et al., 2000b), which means that the
“representation must encode everything that the system ob-
served about everything that has happened in the dialogue
so far” (Walker, 2000). Ablation studies and metrics to eval-
uate the effect of each feature were proposed (Frampton &
Lemon, 2005; Tetreault & Litman, 2008; Heeman, 2009;
Mitchell et al., 2013).

Once neural network models started to be employed, new
ways to represent states and to integrate representation learn-
ing into the agent’s learning were enabled. States could be
more easily represented by a vector and fed directly into a
parametrized value or policy function. A common approach
was building a belief state (a distribution over possible dia-
logue states, usually represented by a fixed set of slot-value
pairs) when dialogue tasks are modeled as POMDPs (Su
et al., 2016; Fatemi et al., 2016; Wen et al., 2017b; Weisz
et al., 2018). In Wen et al. (2017b), a sequence of free form
text was mapped into a fixed set of slot-value pairs by an
RNN. Dhingra et al. (2017) compared a handcrafted and
a neural belief tracker that uses a GRU over turns. The
belief state was sometimes combined with other representa-
tions. Wen et al. (2017a) modeled the dialogue state vector
as a concatenation of user input (encoded by a BiLSTM), a
belief vector (probability distributions over domain specific
slot-value pairs, extracted by RNN-CNN belief trackers)
and the degree of matching in a knowledge base.

Note that, even when the designer does not have to build
the representation manually, the selection of slots and value
ranges, the choice of input features and the NLU representa-
tions still require human intervention. Features can still be
used as input to deep learning models. Williams & Zweig
(2016) represented the dialogue history with features (such
as input and output entities) as input to an LSTM, which in-
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ferred the state representation and mapped the input directly
to actions. The NLU component played a key role in the
state representation e.g. in Manuvinakurike et al. (2017).

Cuayáhuitl et al. (2016) pointed out that it is typically un-
clear what features to incorporate in a multi-domain dia-
logue and proposed applying deep RL directly to texts, so
that the agent learns feature representation and the policy
together, bypassing NLU components. Similarly, Li et al.
(2016) used the two previous dialogue turns, transformed
into a continuous vector representation by an LSTM en-
coder, to build representations directly from raw text.

A common strategy has been to use the hidden vector of
RNNs to represent and update the environment state (Zhao
& Eskenazi, 2016; Williams et al., 2017; Liu & Lane, 2017).
Multimodal state representation has also become frequent,
combining encoded text with images (Das et al., 2017),
knowledge base queries (Li et al., 2017; Liu & Lane, 2017)
or an embedding of a knowledge graph (Yang et al., 2020).

In Instruction Following, deciding the next action means
directly interpreting a textual instruction. In this task, states
were first designed as tuples of world and linguistic features:
words and documents (Branavan et al., 2009; 2010) or car-
dinal directions and utterances (Vogel & Jurafsky, 2010).
We then observed the use of sentence embeddings (usually
by an LSTM or GRU) combined with other sources such
as image embeddings (Misra et al., 2017; Hermann et al.,
2017; Kaplan et al., 2017; Fu et al., 2019) or instruction
memory (Oh et al., 2017). A state processing module was
introduced in Chaplot et al. (2018) to create a joint represen-
tation of the image and the instruction. Janner et al. (2018)
converted the instruction text into a real-valued vector and
used it both to build a global map-level representation and
as a kernel in a convolution operation to obtain a local rep-
resentation of the state.

In the related vision-language navigation task, the state was
modeled by combining visually grounded textual context
and textually grounded visual context (Wang et al., 2019;
Wang et al., 2020) or by using an attention mechanism over
the representations of the instruction (Anderson et al., 2018).

Text-Based Games pose a related, but more general chal-
lenge, as here the text describing the current game state must
be integrated into the agent state and the best action must
be inferred. The work of Narasimhan et al. (2015) was a
reference for modeling the state representation in text-based
games, which is jointly learned together with action policies
in their setting. They used an LSTM over textual data with
a mean pooling layer on top, in an attempt to capture the
semantics of the game states. Subsequent works followed
the same approach (Ansari et al., 2018; Yuan et al., 2018;
Jain et al., 2020) or used variants of continuous vectors built
by neural networks (He et al., 2016; Foerster et al., 2016).

Other elaborate ideas appeared subsequently. Narasimhan
et al. (2018) used a factorized state representation, concate-
nating an object embedding with its textual specification
embedding (LSTM or bag-of-words). Ammanabrolu &
Riedl (2019) combined the embedded text (by a sliding BiL-
STM) with an embedded knowledge graph built by the agent
throughout the game. Their concatenation served as input
to an MLP that outputted state representations. Murugesan
et al. (2020) used embeddings of a local belief graph and a
global common sense graph of entities. Zhong et al. (2020)
proposed building representations that capture interactions
between the goal, a document describing environment dy-
namics, and environment observations.

Text Summarization is another flourishing area for RL.
In this task, an agent processes a text and either pick key
sentences to compose a summary or use Natural Language
Generation to output its own words. Initial works applying
RL used tuples of features to represent the state, composed
of the summary at each time step, a history of actions and
a binary variable indicating the terminal state (Ryang &
Abekawa, 2012; Rioux et al., 2014; Henß et al., 2015).

RL was really consolidated for text summarization after
deep learning methods became available. In most cases, the
state representation was, as in other tasks, the hidden state
of an RNN generating the summary (Ling & Rush, 2017;
Pasunuru & Bansal, 2018), also together with an encoding
of a candidate sentence (Lee & Lee, 2017). Paulus et al.
(2018), a reference for subsequent works (Kryściński et al.,
2018), used context vectors with intra-temporal attention
over the hidden states of the encoder (which process the
original text) concatenated to the hidden state of the decoder
(which generates the summary).

Hierarchical approaches are common. Wu & Hu (2018)
built a document encoding with a CNN operating at word
level and a BiGRU at sentence level, whereas Narayan et al.
(2018) and Chen & Bansal (2018) used a CNN at sentence
level and an LSTM or BiLSTM at document level to capture
global information. Likewise, Yao et al. (2018) employed
an RNN or CNN sentence encoder, together with a repre-
sentation of the current summary and the document content.

Other NLP Tasks comprise each a currently smaller num-
ber of studies using RL, so we group them here into main
general choices of state design. Some tasks used ordered
words (Li et al., 2018, paraphrase generation), predicted
words (Grissom II et al., 2014, simultaneous machine trans-
lation), a vocabulary set and a taxonomy (Mao et al., 2018,
taxonomy induction) or a bag of sentences (Zeng et al.,
2018, relation extraction). Coreference resolution adopted
partially formed coreference chains (Stoyanov & Eisner,
2012) or word embeddings and features (Clark & Manning,
2016). For syntactic or semantic parsing, the parser con-
figuration was used as set of discrete variables describing
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the state of a parse structure (Zhang & Chan, 2009; Jiang
et al., 2012; Lê & Fokkens, 2017), a concatenation of their
representation built by an LSTM (Naseem et al., 2019) or a
query for a knowledge base (Liang et al., 2017).

A usual strategy to represent the state was handcrafting
vectors composed of selected variables or metrics, for ex-
ample, similarity scores and number of words (Ling et al.,
2017, text-based clinical diagnosis), confidence scores, td-
idf and one-hot encoding of matches (Narasimhan et al.,
2016; Taniguchi et al., 2018, information extraction), situ-
ational and linguistic information (Dethlefs & Cuayáhuitl,
2011, NLG), entitites and relations (Godin et al., 2019, ques-
tion answering), probability distribution over a set of ob-
jects (Hu et al., 2018, question selection) or values generated
by a parser (Wang et al., 2018, math word problem).

There has been a myriad of creative efforts to build represen-
tations using neural networks, especially RNNs, as one can
seamlessly regard the RNN as an agent and its hidden state
as the environment state. The internal state (hidden vector
and/or cell vector in LSTMs) was set as the environment
state in language modeling (Ranzato et al., 2015), image
captioning (Rennie et al., 2017), math word problem (Huang
et al., 2018) and NLG (Yasui et al., 2019), sometimes with
attention over hidden states of a sequence in grammatical
error correction (Sakaguchi et al., 2017) or a concatenation
of hidden states further encoded by another neural network
in sentence representation (Yogatama et al., 2017). A Trans-
former’s hidden states (Vaswani et al., 2017) were also used
in machine translation (Wu et al., 2018). The encoding
provided by the output layer was used for semantic pars-
ing (Guu et al., 2017) and also with location-based attention
for text anonymization (Mosallanezhad et al., 2019). Hier-
archical network representations combining word level and
sentence level encodings were proposed, as in text classi-
fication (Zhang et al., 2018). Both the hidden state of the
encoder and the decoder comprised the state in sentence
simplification (Zhang & Lapata, 2017). CNNs represen-
tations combined with predictive marginals were used in
active learning for NER (Fang et al., 2017).

4. Concluding Discussion
The prolific literature combining NLP and RL reveals a
noticeable synergy between them. While RL methods have
extended frontiers of NLP research, natural language can be
a valuable source of information for RL agents, in particular
to model the state signal. An abundance of tailored natural
language state representations has been explored and there
is a current trend to opt for end-to-end models, encoding or
decoding text with the aid of RNNs and for multimodal or
hierarchical representations, as shown in Figure 2.

More insight is needed on how natural language state rep-

Dialogue

Instruction Following Text-Based Games

features         tuples        slot-value 
information state      belief state             

NN hidden state          multimodal   
utterance embeddings   end-to-end

NN hidden states 
multimodal

tuples 
sentence embeddings 

multimodal

discrete variables                  words 
sentences     handcrafted vectors 

NN hidden states        embeddings 
hierarchical

Text Summarization

Other NLP Tasks

tuples 
NN hidden states 

hierarchical

Figure 2. Key concepts of state representation in each area.

resentations should be put together. Unfortunately, it is not
uncommon to find papers with unclear or missing defini-
tions of their state signal or without much justification of
their choices, which hinders comparison and reproducibility.
We thus encourage researchers to carefully describe the state
representation, provide justification for state design model-
ing and to also report attempts that had negative impact on
the agent’s learning process.

Studies to validate the effectiveness of NL state representa-
tion used to be common when engineering features was a
trend. Deep learning methods may give us the illusion that
almost no human intervention or manual feature selection
takes place, but they still play a relevant role in state signal
design in terms of choice of architecture, model and input
data. Adjusting evaluation and ablation methods to new ap-
proaches is thus necessary. Goyal et al. (2019a), for instance,
experiment with three different natural language instruc-
tions representations, to test the effect of language-based
reward. Similar analyses can also be done with language-
based states, as in Narasimhan et al. (2018).

There is cutting-edge research being conducted about the
interpretability of neural NLP models and their linguistic
representational power (Belinkov & Glass, 2019). Natu-
ral language state representation would thus profit from
studies about interpretability and also from diagnostic re-
search (Hupkes et al., 2018) on their abilities of distilling,
composing and retaining semantic information throughout
the agent’s steps, usually expressed by recurrence in the
neural networks.

In addition, grounding the meaning of texts to the dynamics
of the environment, as discussed in Narasimhan et al. (2018),
is a promising area of future research. The authors delineate
two needs that must be met in state design with language
grounding: the representation should fuse different modal-
ities and capture the compositional nature of language in
order to map semantics to the agent’s world.

Finally, Narasimhan et al. (2015; 2018) discuss the benefits
of representations that are effective across different games
and that enable policy transfer. Therefore, another desirable
property of natural language state representation is cross-
domain validity, so that their encoding of world knowledge
can be exploited in various RL scenarios.
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