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Abstract

We study the use of Process Reward Models (PRMs) for guiding Long Chain-of-
Thought (CoT) reasoning in large language models. Although PRMs deliver fine-
grained feedback in standard tasks, PRM-guided beam search does not consistently
outperform PRM-free approaches in long CoT reasoning. We trace this shortfall to
a “step quality degradation”—the expected step quality shows concave behavior,
yielding unimodal or monotonically declining trends. To counteract this, we
propose Z-Score Guided Early Stopping (ZGES), which halts search at the detected
quality peak using local PRM-reward z-scores. Across multiple math benchmarks
and model scales, ZGES outperforms both standard PRM-guided beam search
and the PRM-free methods. Ablation studies further highlight the advantages and
robustness of ZGES’s adaptive stopping mechanism.

1 Introduction

Process Reward Models (PRMs) play a crucial role in test-time search of reasoning tasks [1] for large
language models (LLMs). Compared to the Outcome Reward Models (ORMs) [2] that focus solely
on the correctness of the final answer, PRMs offer finer-grained supervision by providing stepwise
rewards throughout the reasoning process. By offering feedback at each step, PRMs help guide the
model’s reasoning path toward the correct solution path. Recent works have trained PRMs through
automatically annotated labels to guide LLMs in beam search or to re-rank multiple candidate outputs
from the LLMs [3–6], resulting in improved performance compared to naive sampling.

Chain-of-Thought (CoT) [7] prompting has emerged as a powerful method to enhance the reasoning
ability of LLMs by decomposing complex problems into intermediate steps. Building on this
technique, the emergence of Long CoT LLMs capable of sustaining long-horizon reasoning chains,
such as OpenAI o1 [8] and DeepSeek R1 [9], has sparked growing interest in long-CoT reasoning.
These models demonstrate significant advances in mathematical reasoning, code synthesis, and
cross-domain inference [10–12]. Compared to short CoT, Long CoT entails more comprehensive
reasoning processes, greater depth in analyzing intermediate steps, and a wider exploration of logical
relationships [12]. However, how to effectively apply PRMs to Long CoT reasoning tasks remains
unclear. Specifically, we ask:

Q1: How well does PRM guide Long CoT models during test-time search?

Q2: How to enhance PRMs’ effectiveness in test-time search under Long CoT settings?

In this work, to answer Q1, we evaluate the performance of Long CoT models with varying parameter
sizes on math benchmarks including AMC2023, AIME2024, and AIME2025, using two prevalent
classes of Process Reward Models: Hard PRM and Soft PRM (see Section 2). The hard PRM treats a
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(a) Beam Search (b) Dynamic

Figure 1: Illustration of our proposed method: Z-Score Guided Early Stopping for Beam Search
(ZGES). The locally normalized z-score—which is calculated cumulatively based on the scores of
all preceding and the current step—at the stopping point falls below λ (due to step degradation),
triggering early termination. The LLM policy then directly generates the remaining trajectory and
final answer from the preceding step (i.e., the peak).

step as good if it can lead to the correct answer, while the soft PRM learns to predict the step’s value
under the LLM policy [3].

Our findings reveal that PRM-guided beam search does not consistently outperform PRM-free
methods such as Majority@N in Long CoT reasoning. This outcome is counterintuitive, as beam
search, guided by PRMs, is expected to explore and select intermediate reasoning steps more
effectively than methods relying solely on ranking the full responses. These results suggest that the
current implementation of PRM-guided beam search may not fully leverage its potential advantages
in the context of Long CoT reasoning.

To investigate this phenomenon, we first perform in-depth analysis on the step quality V during
Beam Search—defined as the probability of reaching the correct final answer from any intermediate
state—and observe that its trajectory is either unimodal or monotonically decreasing, a behavior
we term “step quality degradation.” We theoretically show that, due to PRM’s degrading re-ranking
ability over the course of Beam Search, the expected step quality typically exhibits concavity(see
Proposition 3.8), providing a theoretical explanation for step quality degradation. These findings
suggest that deeper reasoning steps in Beam Search are often suboptimal; we therefore propose early
termination at the peak of expected step quality to preserve high-quality reasoning. Specifically,
we introduce Z-Score Guided Early Stopping (ZGES, our answer to Q2), which terminates Beam
Search based on the trend of step quality, identified by the local z-score of average PRM reward at
the current step (see Figure 1). ZGES leverages the strong consistency between PRM rewards and
true step quality in their z-normalized forms, thereby adaptively preventing overly deep reasoning
and enabling efficient early stopping.

We evaluate ZGES on Long CoT models of varying scales, including DeepSeek-R1-Distill-Qwen-
1.5B and 7B [9]. It consistently delivers strong performance across all Beam Search configurations
and achieves the best results on all evaluated benchmarks.

Compared to standard beam search methods, ZGES achieves better performance with significantly
lower computation requirement. For example, on the challenging AIME2024 benchmark, under the
same expansion setting, ZGES with 16 beams outperforms standard Beam Search with 16 beams
(60.0% → 66.7%) when using R1-Distill-Qwen-1.5B. We also conduct an ablation study in Section 5,
which includes a comparison between ZGES and fixed-step stopping to highlight the benefits of
adaptive stopping, as well as a sensitivity analysis on the hyperparameter λ to demonstrate the
robustness of ZGES.

2 Preliminary

Formalizing LLM reasoning as an MDP We model the reasoning process of LLMs as a Markov
Decision Process (MDP) to enable formal analysis. A standard MDP is defined as a tuple M =
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Table 1: Performance of different methods.We consider settings with the same total budget
N = B × E as equivalent, although Beam Search introduce additional computation overhead
due to the use of a reward model. Bold black numbers indicate the best performance under
equivalent settings. Red superscripts denote the performance difference of Beam Search compared
to Majority@N under the same setting.

Model AMC23 AIME24 AIME25

(Majority@N) @8 @16 @32 @64 @128 @8 @16 @32 @64 @128 @8 @16 @32 @64 @128

R1-Distill-Qwen-1.5B 83.4 89.5 90.3 90.3 90.0 42.1 52.7 55.0 58.3 58.3 32.2 37.3 37.9 37.9 38.3

R1-Distill-Qwen-7B 94.0 95.0 96.0 96.0 97.0 68.0 77.0 78.0 78.0 76.7 50.0 56.0 56.0 56.0 56.0

(B × E) 4× 2 8× 2 16× 2 32× 2 64× 2 4× 2 8× 2 16× 2 32× 2 64× 2 4× 2 8× 2 16× 2 32× 2 64× 2

R1-Distill-Qwen-1.5B-Soft 87.5 85.0↓4.5% 87.5↓2.8% 92.5 92.5 43.3 53.3 56.7 53.3↓5.0% 60.0 26.7↓5.5% 36.7↓0.6% 33.3↓4.6% 40.0 40.0

R1-Distill-Qwen-1.5B-Hard 92.5 87.5↓2.0% 92.5 92.5 90.0 36.7↓5.4% 40.0↓12.7% 53.3↓1.7% 56.7↓1.6% 63.3% 33.3% 30.0↓7.3% 36.7↓1.2% 36.7↓1.2% 36.7↓4.1%

R1-Distill-Qwen-7B-Soft 95.0 95.0 95.0↓1.0% 95.0↓1.0% 97.5 66.7↓1.3% 73.3↓3.7% 76.7↓1.3% 76.7↓1.3% 80.0 50.0 46.7↓9.3% 56.7 56.7 60.0

R1-Distill-Qwen-7B-Hard 95.0 92.5↓2.5% 97.5 95.0↓1.0% 95.0↓2.0% 63.3↓4.7% 70.0↓7.0% 73.3↓4.7% 76.7↓1.3% 80.0 53.3 43.3↓12.7% 56.7 60.0 60.0

(S,A, T, r, ρ,H), where S is the state space, A is the action space, T : S × A → ∆(S) is the
transition function, r is the reward function, ρ is the initial state distribution, and H is the time
horizon. A policy π : S → ∆(A) maps each state to a distribution over actions.

In the context of LLM reasoning, the input problem x and the intermediate steps {a1, a2, . . . , at}
define the state at step t as st = {x, a1, . . . , at}. The action at+1 ∼ π(· | st) represents the next
reasoning step. Since the next state is deterministically constructed by appending the chosen action to
the current state, the transition function is deterministic: st+1 = T (st, at+1) = {x, a1, . . . , at, at+1}.
A trajectory τ = {s0, a1, s1, a2, . . . , sT } leads to a final answer, which is considered correct if it
matches the ground truth y.

Hard PRM and Soft PRM While [1] obtains PRM annotations from human raters, this approach
lacks scalability. More recent works [3, 5, 13] address this by training PRMs to predict automatically-
generated annotations that estimate the future likelihood of solving the problem successfully. During
training, PRMs can be categorized based on how they define step correctness, leading to two types:
hard PRMs and soft PRMs [3]. Specifically, a hard PRM assumes that a reasoning step is good if it
can eventually lead to the correct final answer, whereas a soft PRM evaluates the quality of a step
based on the frequency with which it results in a correct solution. We denote a general process reward
model as r, which maps a reasoning state s to a real value in the range [0, 1], i.e., r : s 7→ [0, 1]. In
particular, we define a hard PRM as rh : S → {0, 1} and a soft PRM as rs : S → [0, 1].

PRM-guided Beam Search Beam Search can unlock the potential of PRMs to assign credit to
intermediate reasoning steps [4, 14, 15]. In this work, we denote the number of reasoning steps
retained after pruning as the beam size (Abbreviated as Beam), and the number of expansions per
Beam at each decoding step as the expansion factor(Abbreviated as Expansion). Specifically, we
consider a Beam Search configuration with a fixed Beam size B and expansion factor E, and follow
the procedure below:

• From the initial state s0 = {x}, sample B ×E first-step candidates using the policy π, i.e.,
{a(i)1 ∼ π(· | s0)}B×E

i=1 .
• score all B × E candidates using the PRM r(·), and select the top B candidates based on

their scores.
• From each of the selected B candidates, generate E next-step candidates using the policy π,

resulting in B × E new candidates. Repeat this process iteratively.

Complete output trajectories from Beam Search are collected, and the final answer is chosen by
Weighted Best of N (WBoN) [3], which selects the best result by weighting answer candidates based
on the PRM rewards of the trajectories leading to these answers.

3 PRM Based Methods For Long COT Model

In this section, we answer Q1. We first compare PRM-guided Beam Search with Majority@N
(Section 3.1), finding that PRM guidance does not improve performance. Then, in Section 3.2, we
experimentally observe that during the Beam Search process, the step quality exhibits a unimodal
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or monotonically decreasing pattern—referred to as step quality degradation—which underlies the
suboptimal performance of Beam Search. Our theoretical analysis in Section 3.3 further confirms
and explains this phenomenon, attributing it to the significant decline of PRM effectiveness as the
search progresses.

3.1 Evaluate the Performance of PRM

Evaluation Strategies and Baselines We primarily focus on evaluating the reasoning capability of
PRM-guided Beam Search (introduced in Section 2). For comparison, we include PRM-free baseline
Majority@N (i.e. self-consistency or majority voting).

Experiment Setup Evaluations are performed on three challenging math benchmarks: AMC2023,
AIME2024, and AIME2025. For PRM training, we follow the settings proposed by [3], including
both the hard and soft configurations (details are provided in Appendix B.1). We instantiate our LLM
policy with two Long CoT models of different parameter scales: DeepSeek-R1-Distill-Qwen-1.5B
and DeepSeek-R1-Distill-Qwen-7B [9]. The base models used for PRM training are also aligned
with these two variants, ensuring consistency between policy and reward modeling.

Result As shown in Table 1, although the Beam Search achieves state-of-the-art accuracy under
some equivalent settings, it performs worse than the Majority@N—which is PRM-free—in most
cases when evaluated on the Long CoT models. This finding stands in contrast to previous work
using non-Long CoT-based models [3, 4], where PRM-guided approaches generally achieved better
performance than PRM-free baselines. This raises a key question: what happens during the search
process with Long CoT models?

3.2 Degradation of Step Quality and Empirical Evidence

We define the step quality V π(s) as the probability that the LLM policy π reaches the correct answer
from the current state.

V π(s) = pπ(τ | s) (1)

The step quality is equivalent to the state-value function in sparse-reward reinforcement learning,
where R(s, a) = 1 upon task success and 0 otherwise [16]. The dynamics of V (s) during Beam
Search reflect the changing quality of explored reasoning paths. We thus empirically study step
quality evolution in this process.

(a) AMC2023 (b) AIME2024 (c) AIME2025

Figure 2: Empirical validation of Step Quality Degradation

We used PRM to guide beam search under different configurations for the Long CoT model. We
estimated the step quality of candidates using a Monte Carlo rollout method (details provided in
Appendix B.2). The curves in Figure 2 are obtained by averaging the step quality of candidates at
each search step over different configurations. The step quality consistently exhibits a monotonically
decreasing or unimodal pattern as the number of steps increases (i.e., as t grows).

We collectively refer to the two typical forms of the step quality—unimodal and monotonically
decreasing—as Step Quality Degradation. Specifically, when the step index t is sufficiently large
(i.e., the reasoning involves many steps, which is more common in long CoT models due to their
extended output length), the step quality tends to decrease to relatively low values. This degradation
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indicates that Beam Search struggles to maintain high-quality candidates as t increases during the
reasoning process.

Furthermore, on two benchmarks (AMC2023 and AIME2025), beam search step quality under
Hard PRM with the 1.5B model exceeds that under Soft PRM, while on all other settings they are
comparable. Thus, Hard PRM appears more promising for guiding beam search. Consequently, all
ZGES analyses and experiments in Section 4 use only the Hard PRM configuration.

3.3 Theoretical Analysis: Concavity of the Step Quality

In this section, we show in Proposition 3.8 that the expected step quality is concave in t due to PRM’s
degrading re-ranking ability in Beam Search, and provide a theoretical explanation for step quality
degradation. The proof is derived under the extreme cases of two mild and empirically justifiable
assumptions, Assumption 3.1 and Assumption 3.2.
Assumption 3.1. For a reasoning-capable policy π, transitions from a correct state st are more
likely to yield a correct next state and final answer than those from an incorrect one, i.e., pπ(st+1 |
st) ≫ pπ(s̄t+1 | st) and pπ(τ | st) > pπ(τ | s̄t).

In Assumption 3.1, we use the original letter to denote correctness, and a bar over the letter to indicate
incorrectness. For instance, st represents the correct state at step t, while s̄t represents the incorrect
state at step t. This assumption is similar to the one in [6], which has been empirically validated, so
we will not elaborate further.
Assumption 3.2. For a reasoning-capable policy and a well-aligned PRM, the PRM’s re-ranking
capacity gradually declines during Beam Search. Specifically, it becomes less effective in identifying
the optimal candidate from the set

{
a
(i)
t ∼ π(· | st)

}
B×E

.

Assumption 3.2 is based on our empirical observations, which will be validated in Appendix C.2.
It indicates the failure of the PRM as Beam Search progresses. Let Pπ

BS(s̄t+1 | st) = ϵt, which
represents the probability of transitioning from the correct state st to the incorrect state s̄t+1 during
Beam Search (assuming Beam is 1 for simplicity; using other Beam sizes yields similar conclusions).
Then we can obtain Corollary 3.3:
Corollary 3.3. From Assumption 3.2, we can conclude that ϵt < ϵt+1, i.e., as the search progresses,
it becomes increasingly likely to transition from a correct state to an incorrect one.

A smaller ϵt implies that the PRM is more effective in selecting the optimal next step from the
candidate set, so it reflects the re-ranking capability of the PRM. To capture the dynamic changes in
step quality during the Beam Search process. Assuming the expectation of step quality:

Et = Pπ
BS(st|s0)V π(st) + Pπ

BS(s̄t|s0)V π(s̄t) (2)

It denotes the expectation of step quality at time step t during the Beam Search process. We need to
establish the variation pattern of Et throughout the Beam Search process. To facilitate the derivation,
we consider an extreme case of Assumption 3.1, namely, for a reasoning-capable policy, we have
pπ(st+1 | st) → 1 and pπ(s̄t+1 | s̄t) → 1. We can then state the following lemma (Proof in
Appendix A.1):
Lemma 3.4. Formally, when pπ(st+1 | st) → 1 and pπ(s̄t+1 | s̄t) → 1 for any t, we have
V π(st) → 1 and V π(s̄t) ≪ 1.

In this scenario, let ∆Vt denote the step quality difference between two consecutive correct states,
where ∆Vt = V π(st+1)− V π(st). We have the following lemma showing that it is a small quantity:
Lemma 3.5. Formally, when pπ(st+1 | st) → 1 and pπ(τ | st) → 1, it holds that ∆Vt ≪ 1.

Proof. By applying Bayes decomposition, we can expand V π(st) as follows:

V π(st) = pπ(st+1 | st) · V π(st+1) + pπ(s̄t+1 | st) · V π(s̄t+1)︸ ︷︷ ︸
o(δ2)

Therefore, ∆Vt = V π(st+1)− V π(st) ≈ (1− pπ(st+1 | st)) · V π(st+1) = o(δ) ≪ 1.

Similarly, we can prove that ϵt is also a small quantity (Appendix B.1). From this, we can obtain the
second-order difference expression of the expectation of step quality Et in the following theorem:
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Theorem 3.6 (Second-order difference of Et ). Let Et = Pπ
BS(st | s0)V π(st)+Pπ

BS(s̄t | s0)V π(s̄t)
denote the expectation of step quality. The second-order difference is given by ∆2Et = Et+2 +Et −
2Et+1. We conclude that the second-order difference of Et is:

∆2Et = pπBS(st | s0)

∆Vt+1 −∆Vt︸ ︷︷ ︸
(A)

+V (st)(ϵt − ϵt+1)︸ ︷︷ ︸
(B)


The proof of Theorem 3.6 is provided in Appendix A.3. We know from Corollary 3.3 that term
(B) is strictly negative, while the sign of term (A) remains undetermined. Recall that ϵt is defined
to characterize the re-ranking capability of the PRM at step t. So the absolute value of the term
V (st)(ϵt − ϵt+1) (term B) serves as an indicator of how much the PRM’s re-ranking accuracy
deteriorates over time.

Claim 3.7. Under Assumption 3.2, which states that PRM re-ranking accuracy significantly degrades
during beam search (see the Appendix C.2), we expect |ϵt − ϵt+1| to dominate |∆Vt+1 − ∆Vt|.
Therefore, the second-order difference ∆2Et = pπBS(st | s0)

(
∆Vt+1 −∆Vt + V (st)(ϵt − ϵt+1)

)
is

likely negative.

Therefore, we state the following proposition:

Proposition 3.8 (Concavity of expectation of step quality). Since the second-order difference
∆2Et of the expectation of step quality Et = Pπ

BS(st | s0)V π(st) + Pπ
BS(s̄t | s0)V π(s̄t) is typically

negative, Et is concave in the discrete sense.

Proposition 3.8 shows that the expectation of step quality during the Beam Search process is generally
concave, which results from the significant decline in PRM’s re-ranking capability as the search
progresses, as established in Claim 3.7.

We formalize a general property of concave sequences as follows:

Lemma 3.9 (Degradation of Concave Sequences). If a discrete sequence ft satisfies ∆2ft < 0,
then ∆ft is non-increasing. In particular, when ft increases its growth slows down, and when ft
decreases its decay accelerates.

This concavity lemma directly accounts for the two observed patterns of step quality degradation:3

• Unimodal curves, where initial gains decelerate and eventually level off or reverse as growth
slows;

• Monotonic degradation, where ∆Et starts negative and keeps decreasing, leading to wors-
ening quality over successive steps.

Table 2: Pearson correlation coefficients between PRM reward and step quality.

Model AMC2023 AIME2024 AIME2025

R1-Distill-Qwen-1.5B-Hard 0.991 0.977 0.935
R1-Distill-Qwen-7B-Hard 0.914 0.949 0.965

4 Z-Score Guided Early Stopping For Beam Search

We address Q 2 as follows. Section 4.1 establishes the consistency of z-scores between PRM Reward
and Step Quality, forming the basis of our method. Section 4.2 introduces our heuristic method
ZGES, and Section 4.3 reports experimental results demonstrating its effectiveness.

3These two scenarios are theoretical conjectures characterizing common suboptimal behaviors of Et. Con-
cavity alone does not guarantee the function is strictly unimodal or monotonically decreasing.
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Figure 3: Residual Analysis: Linear fitting of mean PRM reward and step quality for candidates at
each step under the same beam search settings, with MAE mean calculation.

4.1 Consistency of Z-Scores between PRM Reward and Step Quality

As established in Section 3, step quality degradation is a primary factor limiting the effectiveness of
beam search in Long CoT reasoning tasks. This observation suggests a simple yet effective strategy:
terminate the beam search at the point where the average step quality of candidates peaks, and let
the LLM policy complete the remainder of the trajectory. Theoretically, this approach can maximize
the expected likelihood that the final output includes a correct solution.

However, a key challenge is that PRM estimates—the only available signal during search—are
evidently biased [17]. This calls for reinterpreting PRM scores and identifying a variable that better
approximates true step quality. Notably, the average PRM reward of candidates exhibits a strong
linear correlation with their average step quality (see Table 2 for Pearson correlation coefficients
across beam search configurations on the same benchmark).

As observed, the Pearson correlation coefficients between them are consistently greater than 0.91,
indicating a strong linear correlation. To further enhance our judgment, we performed residual
analysis on the mean PRM reward and mean step quality under different beam search settings.
Additionally, we calculated the mean MAE for each beam search configuration. The results are
presented in Figure 3. The residual plots and low MAE confirm a good linear fit between the two
variables.4

Having established the linear relationship, we further show that the z-scores of the two variables
remain consistent throughout the search process.
Lemma 4.1 (Z-score Consistency). Let xt and yt denote the mean PRM reward and mean step-quality
of all beam-search candidates at step t under a fixed beam setting B × E:

xt =
1

B×E

B×E∑
i=1

r(st−1, a
(i)
t ), yt =

1
B×E

B×E∑
i=1

V (st−1, a
(i)
t ),

where {a(i)t ∼ π(· | st−1)}B×E
i=1 are the beam candidates. If there exist constants k > 0 and b such

that xt = k yt + b for all t, then their z-normalized forms

x′
t =

xt − µx

σx
, y′t =

yt − µy

σy

satisfy x′
t = y′t for all t. Hence, the z-scores of the mean PRM reward and the mean step-quality

coincide throughout the search trajectory.

Proof. Since x = ky + b, we have

x′ =
x− µx

σx
=

k y + b− µx

σx
=

k (y − µy)

k σy
=

y − µy

σy
= y′,

which proves the claim.

4.2 Method: ZGES

Section 4.1 shows that, for the Long CoT model, the average PRM reward and the average step quality
of candidates at each beam search step exhibit strong alignment after applying z-normalization. Since

4Residuals are randomly scattered around zero without any clear pattern, indicating a good linear fit.
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z-scores reflect relative deviations from the local mean, they provide a principled way to monitor
the dynamics of search: a negative z-score at the final step, for instance, indicates a local decline in
quality relative to previous steps. This motivates the use of locally computed z-scores as a signal for
identifying potential performance drops during search. Our method can be formally described as
follows.

1. Set the threshold λ and Beam Search configuration B × E.
2. Run Beam Search. At each step t, record the mean PRM reward of all candidates, xt.
3. Compute the local z-score of xt using the sequence {xi}ti=1.
4. If x′

t < λ, stop Beam Search early and directly decode from the candidates at step t − 1;
otherwise, continue from Step 2.

Figure 1 illustrates the proposed ZGES method. The hyperparameter λ governs the sensitivity of our
dynamic early-stopping criterion—intuitively, a smaller λ leads to later termination steps, while a
larger λ results in earlier stopping. In Section 5.1, we conduct a sweep over different λ values and
observe that ZGES performance remains stable across a wide range of settings. This insensitivity to
λ highlights the robustness of our method.

4.3 Experiment

Experiment Setup The experimental setup is consistent with Section 3.1. We compare our method
with Majority@N and the standard PRM-guided beam search methods, including Hard PRM and
Soft PRM. Our method requires only simple modifications to the beam search algorithm. As noted
in Section 3.3, we only report results for our method using the Hard PRM setting in this section.
In all Beam Search settings, the expansion factor is fixed to 2. For the hyperparameter λ, we set
λ = −0.6 for the 1.5B model and λ = 0 for the 7B model. As shown in Section 5.1, the performance
is generally insensitive to the choice of λ.

(a) AMC2023 (b) AIME2024 (c) AIME2025

(d) AMC2023 (e) AIME2024 (f) AIME2025

Figure 4: Model Performance Results.The term B×E or N denotes the product of beam size and
expansion in Beam Search, or the value of N in Majority@N, respectively.

Main Result The comparison results are presented in Figure 4. ZGES demonstrates highly
competitive performance compared to the baselines, with the following notable advantages:
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• Best Performance Across Settings. Under all model scales and benchmark configurations,
ZGES consistently achieves best results.

• Robustness to Beam Size Scaling. As the beam size increases (from 4 to 64), ZGES
outperforms all other baselines in most scenarios, indicating strong robustness.

• Improved Performance with Reduced Computational Cost. Compared to standard beam
search methods, ZGES achieves best performance even with relatively small beam sizes (as
indicated by the intersection of the ZGES curve and the best performance line in the figures).
Moreover, by incorporating an early stopping mechanism, ZGES reduces the number of
PRM calls required during beam search (Table 3), effectively lowering computational
overhead while maintaining—or even enhancing—generation quality.

5 Ablation Study

In this section, we conduct further analysis and discussion on the proposed ZGES method. In
Section 5.1, we conducted hyperparameter sensitivity experiments of λ to investigate its impact.
Section 5.2 compares the behavioral and performance differences between ZGES and the fixed-step
stopping beam search.

5.1 The performance of ZGES exhibits robustness to changes in hyperparameter.

The hyperparameter λ is the sole tunable parameter in our method, ZGES. We analyze how variations
in λ affect the performance of ZGES. Specifically, we consider four values: −0.4, −0.6, −0.8, and
−1.0. For each λ, ZGES is evaluated using multiple B × E Beam Search configurations, consistent
with those in Sections 3.1 and 4.3.
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Figure 6: Comparison with Fixed-Step Stopping

The overall performance is assessed across three benchmark tasks. As shown in Figure 5, the results
are visualized using box plots to illustrate the impact of different λ values on the performance of
ZGES. We observe that the performance of ZGES remains consistent across different choices of λ,
indicating that the method is robust to the selection of this hyperparameter.

5.2 Dynamic Stopping is Better than Fixed-Step Stopping

To further highlight the advantage of ZGES with dynamic stopping, we compare it against a fixed-step
stopping baseline that terminates Beam Search at a predetermined step.

As shown in Figure 6, both methods are evaluated under the Hard PRM setting. The reported results
correspond to the average performance across three benchmark tasks, using the same Beam Search
configurations as described in Section 5.1. In the figure, “Soft” and “Hard” denote Beam Search
guided by the standard Soft PRM and Hard PRM settings, respectively. The results show that ZGES
outperforms the fixed-step stopping baseline configured within a selected step range that is expected
to contain high-quality steps (as suggested by Figure 2), which we used to reduce computational cost.
Moreover, both methods consistently outperform standard Beam Search, which is expected since the
degradation of step quality over time has been demonstrated in Section 3.
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Table 3: Comparison of PRM calls and token ratios across models and tasks. 1.5B and 7B are the
R1-Distill-Qwen models; ZGES(x) denotes ZGES with λ = x. PRM Call shows the average number
of PRM calls; Tokens Ratio indicates the average number of tokens relative to Beam Search.

Model Method AMC23
PRM Call

AMC23
Tokens Ratio

AIME24
PRM Call

AIME24
Tokens Ratio

AIME25
PRM Call

AIME25
Tokens Ratio

1.5B ZGES (-0.4) 3.08 ↓61% 0.753 3.27 ↓66% 0.929 3.33 ↓65% 0.926
1.5B ZGES (-0.8) 3.18 ↓60% 0.763 3.42 ↓64% 0.956 3.48 ↓63% 0.942
1.5B Beam Search 7.91 — 9.55 — 9.53 —
7B ZGES (-0.4) 2.97 ↓56% 0.675 3.31 ↓63% 0.839 3.33 ↓62% 0.905
7B ZGES (-0.8) 3.17 ↓53% 0.692 3.54 ↓61% 0.856 3.58 ↓59% 0.911
7B Beam Search 6.69 — 9.00 — 8.73 —

5.3 Token Usage and PRM Calls

We further analyze the efficiency of ZGES in terms of PRM calls and token usage across different
models and tasks (Intuitively, these two metrics will decrease compared to the standard method).
Table 3 summarizes the results for the 1.5B and 7B models, comparing ZGES with standard PRM-
guided Beam Search under different λ settings.

From the table, we make three key observations. First, ZGES significantly reduces the number
of PRM calls compared to the standard Beam Search (by more than 50% in most cases) while
maintaining or even improving performance. Second, for both model sizes, smaller λ result in
more PRM calls, consistent with the analysis in C.1: smaller λ delays the stopping point, leading to
increased PRM usage. Third, the token ratio demonstrates that ZGES also reduces the overall token
generation compared to standard Beam Search, indicating improved efficiency in computation and
resource usage. Overall, these ablation results further validate the practical advantages of ZGES in
both effectiveness and efficiency.

6 Conclusion

In this paper, we uncover a “step quality degradation” in long-horizon Beam Search—its step quality
follows unimodal or monotonic degradation trends. To address this, we propose Z-Score Guided
Early Stopping (ZGES), which monitors the local z-score of PRM rewards to detect the quality peak
and terminate search before degradation sets in. Empirical evaluation on diverse math benchmarks
and Long CoT models shows that ZGES consistently surpasses both standard Beam Search and
PRM-free approaches, cutting computational cost while delivering stronger performance. Our work
thus bridges theoretical insights into PRM limitations with a practical, efficient search strategy.

Limitations Due to limited computational resources, we could not explore a broader range of λ
values (e.g., more aggressive early stopping with λ ∈ [0, 1]). However, this does not hinder the
demonstration of ZGES’s effectiveness. In future work, we plan to investigate more flexible early
stopping strategies beyond local Z-normalization.
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A Theory Proof

A.1 Proof of Lemma 3.4

Lemma 3.4. Formally, when pπ(st+1 | st) → 1 and pπ(s̄t+1 | s̄t) → 1 for any t, we have
V π(st) → 1 and V π(s̄t) ≪ 1.

proof. Assume the reasoning horizon is T .

Then we have

pπ(τ | st) ≥
T−1∏
i=t

pπ(si+1 | si) → 1.

therefore
V π(st) = pπ(τ | st) → 1.

Similarly, for the error states, we have

pπ(τ̄ | s̄t) ≥
T−1∏
i=t

pπ(s̄i+1 | s̄i) → 1,

which implies
V π(s̄t) = 1− pπ(τ̄ | s̄t) → 0.

A.2 Probability consistency between Pπ
BS and pπ

Under an extreme case of Assumption 3.1, where pπ(st+1 | st) → 1 and pπ(s̄t+1 | s̄t) → 1. We
show that the Beam Search transition probabilities satisfy

Pπ
BS(st+1 | st) → 1 and Pπ

BS(s̄t+1 | s̄t) → 1.

Consider the special case in Section 3.3 where the beam is set to 1 to simplify the probability
formulation of Beam Search. When starting from a correct state st, the candidate set {a(i)1 ∼ π(· |
st)}B×E

i=1 is sampled from the output distribution of π. If the next step is randomly sampled from
the candidate set {a(i)1 ∼ π(· | st)}B×E

i=1 , then according to resampling theory, the selected action
still follows the probability distribution induced by π. Furthermore, since PRM is generally more
efficient than naive random sampling, we have

Pπ
BS(st+1 | st) → 1.

Following the same reasoning, we also obtain

Pπ
BS(s̄t+1 | s̄t) → 1.

Therefore, we have ϵt = Pπ
BS(s̄t+1 | st) ≪ 1.
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A.3 Proof of Theorem 3.6

Theorem 3.6 (Second-order difference of Et ). Let Et = Pπ
BS(st | s0)V π(st)+Pπ

BS(s̄t | s0)V π(s̄t)
denote the expectation of step quality. The second-order difference is given by ∆2Et = Et+2 +Et −
2Et+1. We conclude that the second-order difference of Et is:

∆2Et = pπBS(st | s0)

∆Vt+1 −∆Vt︸ ︷︷ ︸
(A)

+V (st)(ϵt − ϵt+1)︸ ︷︷ ︸
(B)


proof. As mentioned in Section 3.3, we consider a special case based on Assumption 3.1, where
the policy has strong reasoning ability. In this case, pπ(st+1 | st) → 1 and pπ(s̄t+1 | s̄t) → 1.
We first identify several small terms: ∆Vt ≪ 1, ϵt ≪ 1, V π(s̄t) ≪ 1, Pπ

BS(s̄t+1 | st) ≪ 1 and
Pπ
BS(st+1 | s̄t) ≪ 1 .(Appendix A.2, Lemma 3.4, Lemma 3.5)

In the derivation, we ignore the products of small terms, e.g., ∆Vt · ϵt.
According to the definition of the expectation of step quality, we have:

Et = Pπ
BS(st | s0)V π(st) + Pπ

BS(s̄t | s0)V π(s̄t)

Et+1 = Pπ
BS(st+1 | s0)V π(st+1) + Pπ

BS(s̄t+1 | s0)V π(s̄t+1)
Therefore, the first-order difference of Et, denoted as ∆Et, is given by:
∆Et = Et+1 − Et

= [Pπ
BS(st+1 | s0)V π(st+1)− Pπ

BS(st | s0)V π(st)] +Pπ
BS(s̄t+1 | s0)V π(s̄t+1)− Pπ

BS(s̄t | s0)V π(s̄t)︸ ︷︷ ︸
o(δ2)


=

Pπ
BS(st+1 | st)Pπ

BS(st | s0) + Pπ
BS(st+1 | s̄t)Pπ

BS(s̄t | s0)︸ ︷︷ ︸
o(δ2)

V π(st+1)− Pπ
BS(st | s0)V π(st)

= Pπ
BS(st | s0) [Pπ

BS(st+1 | st)V π(st+1)− V π(st)]

= Pπ
BS(st | s0) [(1− ϵt)(V

π(st) + ∆Vt)− V π(st)]

= Pπ
BS(st | s0)

∆Vt − ϵtV
π(st)− ϵt∆Vt︸ ︷︷ ︸

o(δ2)


= Pπ

BS(st | s0) [∆Vt − ϵtV
π(st)]

Based on this, we derive the second-order difference ∆2Et as follows:
∆2Et

= (Et+2 − Et+1)− (Et+1 − Et)

= ∆Et+1 −∆Et

= Pπ
BS(st+1 | s0) [∆Vt+1 − ϵt+1V

π(st+1)]− Pπ
BS(st | s0) [∆Vt − ϵtV

π(st)]

= [Pπ
BS(st | s0)Pπ

BS(st+1 | st) + Pπ
BS(s̄t | s0)Pπ

BS(st+1 | s̄t)] [∆Vt+1 − ϵt+1V
π(st+1)]

− Pπ
BS(st | s0) [∆Vt − ϵtV

π(st)]

= Pπ
BS(st | s0) {Pπ

BS(st+1 | st) [∆Vt+1 − ϵt+1V
π(st+1)]− [∆Vt+1 − ϵt+1V

π(st+1)]}
− Pπ

BS(s̄t | s0)Pπ
BS(st+1 | s̄t) [∆Vt+1 − ϵt+1V

π(st+1)]︸ ︷︷ ︸
o(δ2)

= Pπ
BS(st | s0) {(1− ϵt) [∆Vt+1 − ϵt+1(V

π(st) + ∆Vt)]− [∆Vt+1 − ϵt+1(V
π(st) + ∆Vt)]}

= pπBS(st | s0)

∆Vt+1 −∆Vt︸ ︷︷ ︸
(A)

+V (st)(ϵt − ϵt+1)︸ ︷︷ ︸
(B)


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B Details of Experimental Setup

B.1 PRM Training

To train hard PRM and soft PRM, we gather 9K challenging questions from the training data of
the DeepScaleR project [18] by keeping problems that have non-trivial accuracy for DeepSeek-R1-
Distill-Qwen-7B. For each problem, we generate 16 responses, and generate 8 completions for each
step in the generated responses to construct the PRM training dataset. We follow [3] to construct the
datasets for Hard PRM and Soft PRM training.

B.2 Estimation of Expected Step Quality

To estimate the expectation of step quality, we average the step quality of all B × E candidates
at each time step. For each candidate, we adopt the Monte Carlo estimation method from [17].
Specifically, starting from each candidate, we generate N subsequent trajectories (we set N = 4 in
our experiments) and approximate the step quality by the proportion of trajectories that reach the
correct answer. The experiments in [17] also demonstrate that using a small N (5 in their experiments)
does not introduce significant bias.

B.3 Step Segmentation

In general, step segmentation can be based on symbolic cues (e.g., explicit “Step” annotations or line
breaks), model confidence[19], or token-based heuristics. Given that DeepSeek-R1-Distill-Qwen
models do not yield outputs with clearly demarcated step boundaries, we adopt a hybrid segmentation
strategy that integrates symbolic markers and token-length priors.

Specifically, we treat certain tokens—such as line breaks (\n) or step-indicative phrases—as potential
split points, and further apply this rule approximately every 2000 tokens to prevent overly fragmented
segmentation in long outputs. This approach yields around 10–20 steps per output in practice and
works well empirically.

C Additional Experiments and anlysis

C.1 Hyperparameter affects the aggressiveness of early stopping.

0.0
0
1.9

9
0.8

1
0.7

8
1.8

1
-0.

25
-2.

21
-2.

88
-3.

05
-2.

54
-2.

51
-2.

42
-2.

34
-2.

32
-2.

27
-2.

22
-2.

18
-2.

18
-2.

14
-2.

06
Local z-score

= 0.0
= 1.0
= 1.5

Figure 7: Smaller values of λ result in earlier termination points.

We illustrate the influence of the parameter λ on the stopping position using the concave function
in Figure 7 as an example. Specifically, we compute the local Z-score at each discrete point (i.e.,
by performing Z-normalization on the values from the starting point up to the current point). We
then apply three different values of λ. As λ decreases, the stopping point moves later (or is delayed);
conversely, a larger λ value leads to an earlier stopping position (or advances).
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C.2 Empirical Evidence for Assumption 3.2

Assumption 3.2 states that for a reasoning-capable policy, the re-ranking ability of the PRM gradually
declines as Beam Search progresses—it becomes increasingly difficult to select the optimal next step
from the candidate set.

To empirically validate this, we consider DeepSeek-R1-Distill-7B as a reasoning-capable policy, as
evidenced by its performance on the AMC2023 benchmark, where it achieves 90% accuracy without
relying on any test-time methods (see Table 1). We apply the Hard PRM to guide Beam Search and
evaluate PRM’s re-ranking ability at each step by checking whether it can successfully identify the
optimal next step from the B × E candidate actions.

The optimal next step is determined using the Monte Carlo estimation of step quality described in
Appendix B.2.

Figure 8: Re-ranking accuracy of Hard PRM on
AMC2023

Figure 9: Re-ranking accuracy of Hard PRM on
three benchmarks

We follow the above methodology to measure the re-ranking accuracy of PRM under different Beam
Search configurations (Beam ranging from 4 to 64 with Expansion fixed to 2, same as in Section 3.1).
The results are shown in Figure 8 and Figure 9.

Figure 8 shows the accuracy measured exclusively on the AMC2023 benchmark, where the pol-
icy exhibits stronger reasoning capabilities, thereby more closely aligning with the assumptions
underlying our hypothesis. Figure 9 shows the average re-ranking accuracy across three benchmarks:
AMC2023, AIME2024, and AIME2025.

From the results, it is evident that the PRM’s re-ranking ability declines as Beam Search progresses,
and this decline is quite pronounced. On the AMC2023 benchmark, the decrease is even more
striking—almost linear. This provides strong support for the conjecture in Claim 3.7, indicating
that PRM’s performance deteriorates progressively as Beam Search advances. Consequently, the
expectation of step quality exhibits concavity, which in turn gives rise to the step quality degradation
discussed in Section 3.3.

D Related Works (prior work on early stopping)

Previous studies have explored early stopping algorithms for beam search [20, 21]. These studies
focus on translation-style generation tasks, where hypotheses are ranked by likelihood and length
penalties, and have made important contributions to decoding strategies. In contrast, our work
focuses on PRM-guided inference under the Long CoT model setting. We introduce a novel z-score-
based termination criterion motivated by empirical observations of PRM dynamics, which improves
stopping reliability and reasoning performance.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our abstract and introduction effectively capture the core ideas and contribu-
tions of our work.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work at the end of the paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We provide detailed derivations for all presented theoretical results, either in
the main text or in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We include as many details as possible in the paper to facilitate reproduction
of our results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We do not release the code, but our method is straightforward to reproduce.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In the appendix, we provide as many details as possible about our experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We did not conduct relevant discussions.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: These details are provided in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We commit to adhering to the guidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We did not conduct related discussions.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not involve any high-risk activities.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We ensure that all referenced techniques are properly cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We did not conduct related discussions.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not involve this aspect.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not involve this aspect.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: Relevant clarifications have been made.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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