
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ANYTEXT2: VISUAL TEXT GENERATION AND EDIT-
ING WITH CUSTOMIZABLE ATTRIBUTES

Anonymous authors
Paper under double-blind review

ABSTRACT

With the ongoing development in the text-to-image(T2I) domain, accurately gen-
erating text within images seamlessly integrating with the visual content has gar-
nered increasing interest from the research community. In addition to controlling
glyphs and positions of text, there is a rising demand for more fine-grained control
over text attributes, such as font style and color, while maintaining the realism of
the generated images. However, this issue has not yet been sufficiently explored.
In this paper, we present AnyText2, the first known method to achieve precise
control over the attributes of every line of multilingual text when generating im-
ages of natural scenes. Our method comprises two main components. First, we
introduce an efficient WriteNet+AttnX architecture that encodes text features and
injects these intermediate features into the U-Net decoder via learnable attention
layers. This design is 19.8% faster than its predecessor, AnyText, and improves
the realism of the generated images. Second, we thoroughly explore methods for
extracting text fonts and colors from real images, and then develop a Text Em-
bedding Module that employs multiple encoders to separately encode the glyph,
position, font, and color of the text. This enables customizable font and color for
each text line, yielding a 3.3% and 9.3% increase in text accuracy for Chinese
and English, respectively, compared to AnyText. Furthermore, we validate the
use of long captions, which enhances prompt-following and image realism with-
out sacrificing text writing accuracy. Through comprehensive experiments, we
demonstrate the state-of-the-art performance of our method. The code and model
will be open-sourced in the future to promote the development of text generation
technology.

1 INTRODUCTION

Diffusion-based generative models Ho et al. (2020); Rombach et al. (2022); Ramesh et al. (2021;
2022); Podell et al. (2024) have gained prominence due to their ability to generate highly realis-
tic images with intricate details, and gradually replacing previous technologies like GANs Good-
fellow et al. (2014) and VAEs Kingma & Welling (2014). In recent research, models such as
DALL·E3 OpenAI (2023), Stable Diffusion 3 Esser et al. (2024), and FLUX.1 BlackForestLab
(2024) have enhanced their visual text rendering capabilities through the introduction of new tech-
nologies, such as encoding image captions using large language models like T5, or employing rec-
tified flow transformers. However, their performance of state-of-the-art models in text rendering
still falls short of expectations. Therefore, many researchers aim to inject or enhance text rendering
capabilities into pre-trained diffusion models using various technical methods, while maintaining
their diversity and realism in image synthesis. These methods, such as GlyphDraw Ma et al. (2023),
GlyphControl Yang et al. (2023), TextDiffuser Chen et al. (2023b), AnyText Tuo et al. (2023),
TextDiffuser-2 Chen et al. (2023a), Glyph-SDXL Liu et al. (2024a), Glyph-SDXL-v2 Liu et al.
(2024b), GlyphDraw2 Ma et al. (2024), not only significantly improves the accuracy of text render-
ing but also extends functionalities such as multilingual text generation, text editing, automatic or
specified layout, and even customizable text attributes.

There are generally two mechanisms for injecting text rendering capabilities into pre-trained models:
(1) conditional embeddings in the prompt and (2) auxiliary pixels in the latent space. The first
approach encodes the visual appearance of each character as embeddings and combines them with
the image caption to serve as conditions; notable methods include TextDiffuser-2, Glyph-SDXL, and

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Glyph-SDXL-v2. The second approach involves using character-level segmentation mask or pre-
rendered glyph images and injects into the latent space as catalysts for text rendering; representative
methods include TextDiffuser and GlyphControl. While conditional embeddings require a relatively
large amount of training data to encode the visual appearance of various styles for each character,
they struggle with generalization for unseen characters. In contrast, although auxiliary pixels can
leverage the visual appearance of pre-rendered characters off-the-shelf, the resulting text accuracy
and integration within the image are generally poor due to the absence of text-related information in
the image caption. To address these limitations, approaches like AnyText and GlyphDraw2 adopt a
combined strategy. Our proposed method, AnyText2, follows a similar approach but diverges by not
encoding auxiliary pixels and conditional embeddings in a ControlNet-like manner, as it not only
controls text rendering at each time step but also participates in generating image content, which is
inefficient and detrimental to image quality. Instead, we designed the WriteNet module, focusing
solely on text rendering. In this method, text-related features are encoded just once and then fused
with image content at each time step through learnable AttnX layers inserted into the U-Net decoder.
This streamlined approach significantly improves inference speed while enhancing image realism.

Most methods primarily inject only glyph information into the conditional embeddings. However,
the token embeddings cannot be directly associated with the corresponding areas in the image. Our
research indicates that further encoding the positional information of each line into the tokens can
significantly enhance text accuracy. Additionally, we integrate font style and color information
through dedicated encoders, incorporating them into the tokens. This not only improves accuracy
but also facilitates attribute customization. Previous methods, such as DiffSTE Ji et al. (2023) and
Glyph-SDXL Liu et al. (2024a), have also achieved text attribute customization, but they typically
rely on synthetic images for training. This reliance stems from the difficulty of extracting font and
color labels from natural scene images. However, it poses two significant drawbacks. First, since
fonts and colors are described textually in image captions, any font or color name not present in
the training dataset is ineffective. In contrast, our method encodes font styles directly from a text
line image, which can either be rendered using a user-specified font file or selected from another
image using a brush tool. Regarding color, our method enables users to specify RGB values directly
through a color picker or palette, eliminating reliance on vague color names. Second, training on
synthetic data primarily results in generating overlaid text that applicable in scenarios like posters
and cards. However, such text can often be produced using existing image editing software, which
not only ensures text accuracy but also allows for perfect specification of text font and color. To our
knowledge, our method is the first to enable customized text attribute generation in open-domain
scenarios (e.g., foods, products, signboards). By extracting font styles and colors from images and
utilizing specially designed encoders for feature encoding, we generate both overlaid and embedded
text applicable in any context. Selected examples are presented in Fig. 1.

A delicate traditional
Chinese mooncake on a
white plate with carved
words and flowers, "中
秋" "团圆”(reunion in
Mid-Autumn Festival)

A fancy square
birthday cake on the
table, texts written in
cream, close-up view,
top-down perspective,
texts are “Generated"
"by" "AnyText2"

Text Generation Text Editing

Figure 1: AnyText2 can accurately generate multilingual text within images and achieving a realistic
integration. Furthermore, it allows for customize attributes for each line, such as controlling the font
style through font files or mimic from an image using a brush tool, and specifying the text color.
Additionally, AnyText2 enables customizable attribute editing of text within images.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORKS

Controllable Text-To-Image Generation In T2I models, achieving precise control through pure
textual descriptions poses significant challenges, and a multitude of methods have emerged. Among
the pioneering works are ControlNet Zhang & Agrawala (2023), T2I Adapter Mou et al. (2023), and
Composer Huang et al. (2023), leverage control conditions such as depth maps, pose images, and
sketches to guide image generation. Another category is comprised of subject-driven methods, such
as Textual Inversion Gal et al. (2023), DreamBooth Ruiz et al. (2022), IP-Adapter Ye et al. (2023),
ReferenceNet Hu et al. (2023), InstantID Wang et al. (2024), and PhotoMaker Li et al. (2024). These
methods focus on learning representation of specific subject or concept from one or a few images,
primarily ensuring identity preservation in the generated images while allowing less stringent control
over other attributes such as position, size, and orientation. Visual text generation can be viewed as
a sub-task within this framework if we consider each character as an identity. Our goal is to control
the positions and strokes of characters, but without the rigid constraints characteristic of methods
like ControlNet. Instead, we seek to introduce some diversity in font style, size, and orientation,
while ensuring that the characters remain legible.

Visual Text Generation The text encoder plays a crucial role in generating accurate visual text, as
highlighted by Liu et al. (2023). Many subsequent methods adopted character-level text encoders
to incorporate word spelling or character visual appearance into conditional embeddings, such as
DiffSTE Ji et al. (2023), TextDiffuser-2 Chen et al. (2023a), UDiffText Zhao & Lian (2023), and
Glyph-SDXL Liu et al. (2024a). However, training a text encoder independently requires significant
resources and limits the range of writable characters. For instance, while Glyph-SDXL-v2 expanded
its text encoder Glyph-ByT5 to multilingual, each language is confined to a fixed set of common
characters. Conversely, methods like TextDiffuser Chen et al. (2023b) and GlyphControl Yang et al.
(2023) utilize character masks or pre-rendered glyph images to assist in text generation. However,
the quality of generated images is often subpar because the image caption lacks any text-related in-
formation. AnyText Tuo et al. (2023) addresses this by using pre-rendered glyph images as auxiliary
pixels and employing a pre-trained OCR model Li et al. (2022) to encode strokes, which are then
integrated into the conditional embeddings. The latest GlyphDraw2 Ma et al. (2024) adopts a simi-
lar approach. Our proposed method also follows this strategy but utilizes an innovative architecture,
WriteNet+AttnX, to achieve a more efficient and effective fusion of image and text. Additionally,
methods like UDiffText, Brush Your Text Zhang et al. (2023), and Glyph-SDXL impose restric-
tive interventions on attention maps in corresponding text areas to improve accuracy. In contrast,
our approach employs a position encoder to encode text position and injects it into the conditional
embeddings, allowing for spatial awareness.

Text Attributes Customization

Currently, there are numerous studies on font style transfer based on GANs or diffusion models,
including LF-Font Park et al. (2021a), MX-Font Park et al. (2021b), Diff-Font He et al. (2024), and
FontDiffuser Yang et al. (2024). These endeavors, categorized as Few-shot Font Generation (FFG),
focus on learning font style representation from one or a few reference images and transforming
the input source image into a target image that closely matches that style. While our task shares
similarities that involve decoupling content and style from reference characters, our objective is to
generate text in a specified style directly onto an image, contrasting with their goal of automatically
creating a font library made up of plain characters. As for color control, current T2I models typically
struggle to interpret the original RGB values provided in prompts. To address this issue, some works
focus on color prompt learning. For instance, ColorPeel Butt et al. (2024) constructs a synthetic
dataset and decouples color and shape during training, allowing for the learning of specific color
tokens and using them to achieve precise color control. In the realm of visual text generation,
leveraging synthetic data for text attribute customization is also an intuitive approach. Notably,
DiffSTE Ji et al. (2023) and Glyph-SDXL Liu et al. (2024a) incorporate the relevant font type
names and color names directly into the prompts, enabling the diffusion model to learn the concepts
linked to these specific names. This facilitates precise control over text attributes during inference.

3 METHODOLOGY

Most T2I models excel at generating diverse and realistic images but have limitations in text gen-
eration capabilities. AnyText2 is designed as a plugin for these models, processing text signals

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

separately and injecting them into the T2I models. The framework of the proposed AnyText2 is
depicted in Fig. 2.

𝒛𝒕

𝒛𝒂

❄ UNet
❄

Text Prompt：
Texts are "BEVERLY" and "HILLS"

Write
Net

🔥

Image Prompt:
Photo of a lush estate with a sign with words

Auxiliary Latent
Module

RGB(251,249,240)

Glyph
Render

Font
Extractor

Color
Picker

Glyph
Encoder 𝝃g

Posi1on
Encoder 𝝃p

Font
Encoder 𝝃𝐟

Color
Encoder 𝝃𝐜

Text Embedding Module

⊕ ⊕ ⊕

𝒄𝒕𝒆

𝒄𝒊𝒆

Glyph	𝒍𝒈

Position 𝒍𝒑

Mask 𝒍𝒎

+

S
E
L
F

🔥
C
R
O
S
S

🔥

R
E
S

❄

S
E
L
F

❄
C
R
O
S
S

❄

x

+

x··· ···

A2nX Layers

𝒛𝟎

diffusion

🔥 Learnable models
❄ Frozen models

Text Features
Image Features

Glyph 𝒆𝒈 Position 𝒆𝒑 Font 𝒆𝒇 Color 𝒆𝒄
🔥 🔥 🔥 🔥

🔥

(optional)

Figure 2: The framework of AnyText2, which is designed with a WriteNet+AttnX architecture to
integrate text generation capability into pre-train diffusion models, and there is a Text Embedding
Module to provide various conditional control for text generation.

In the standard Latent Diffusion Model (LDM) Rombach et al. (2022), the original latent pixels z0
are gradually adding noise ϵ through a forward diffusion process to obtain a noisy latent pixels zt.
The image prompt is then encoded into conditional embeddings cie using a pre-trained CLIP Radford
et al. (2021) text encoder. Both zt and cie are then fed into a conditional U-Net Ronneberger et al.
(2015) denoiser ϵθ to predict the noise. The final image is generated after t time steps of the reverse
denoising process. To enhance text generation capabilities, we introduce an Auxiliary Latent Module
that encodes the glyph, position, and optionally a masked image (to enable text editing), producing
auxiliary pixels za. The text prompt is processed through a Text Embedding Module to obtain the
conditional embeddings cte. This Module comprises multiple encoders designed to facilitate various
conditional controls. Both (zt, cie) and (za, cte) undergo cross-attention computations in U-Net and
WriteNet to better guide the image and text generation, respectively. The integration of image and
text is then performed through the U-Net decoder with inserted AttnX layers. More formally, the
optimization objective of our method is represented by the following equation:

L = Ez0,cie,za,cte,t,ϵ∼N (0,1)

[
∥ϵ− ϵθ(zt, za, cte, cie, t)∥22

]
(1)

Next, we will provide a detailed introduction to the WriteNet+AttnX architecture and the Text Em-
bedding Module.

3.1 WRITENET+ATTNX

We analyze the principle underlying AnyText in Appendix A. It utilizes a ControlNet-like module,
TextControlNet, which is responsible not only for encoding text information but also for generate
image content in collaboration with the U-Net. While this integration facilitates a seamless blending
of text and image, it presents two drawbacks: first, the training data for text generation often contains
a substantial amount of low-quality images with chaotic text, potentially reducing overall image
quality. Second, it necessitates computation at each time step, thereby lowering inference efficiency.
Thus, we decouple text and image generation, while the production-ready U-Net that trained with
billions of images is responsible solely for generating image content. As for WriteNet, drawing the
insights from ControlNet, we clone a trainable copy from the U-Net encoder and connect it to the
U-Net decoder via zero convolution. However, to concentrate exclusively on learning how to write
text, we remove the timestep layers and any image-related inputs, such as the noisy latent zt, and
descriptions of image content in the prompt.

We find that directly connecting the intermediate features output by WriteNet to the frozen U-Net
decoder does not yield seamless blending with image content. To address this, auxiliary pixels

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

must adequately interact with image latent pixels and conditional embeddings. This interaction can
be facilitated through the self-attention and cross-attention in each attention block. Therefore, we
insert a self-attention and a cross-attention layer, denoted as AttnX layers, in every attention blocks
in the middle and decoder part of the U-Net. The parameters of these layers are copied from the
corresponding layers of the current block and set to be trainable. Since the U-Net decoder is skip-
connected with the encoder, which directly receives the auxiliary pixels za, the trainable AttnX
near the output can inadvertently copy text glyphs from za, potentially degrading the fusion effect
(further details in Sec. 5.3.1). To mitigate this, we only insert these layers in the first two blocks
of the U-Net decoder, specifically at resolutions of 16x16 and 32x32. The output from each AttnX
layer is multiplied by a strength coefficient α and combined with the output from the previous layer
through a shortcut connection. By adjusting α, we can modulate the fusion strength between text
and image, as illustrated in Fig. 3. Notably, setting α = 0 and multiply the WriteNet output by 0
enables AnyText2 to generate images without text, solely utilizing the original diffusion model.

photo of caramel
macchiato coffee on
the table, top-down
perspective, with
words written on it,
"Any" "Text2"

An ancient Chinese
copper coin, The text
above is “图” “文”
“融” “合” (text-
image fusion)

α=0 α=0.5 α=0.8 α=1.0

Figure 3: By adjusting the strength coefficient α from 0 to 1, shows that the text-image fusion is
gradually improving.

3.2 TEXT EMBEDDING MODULE

In AnyText, each line of text is rendered onto an image denoted as eg by a glyph render. The glyph
information is then encoded using the glyph encoder ξg , which comprises an OCR model and a
linear layer. We build upon this approach by incorporating three additional encoders: ξp, ξf , and ξc.
These encoders serve to encode the position image ep, font image ef , and text color ec, respectively.
The output embeddings from these encoders are then summed to produce a representation ri, which
effectively captures the attributes of the i-th text line:

ri = ξg(eg) + ξp(ep) + ξf (ef) + ξc(ec) (2)

For the text prompt yt, each text line is replaced with a special placeholder S∗. After performing
tokenization and embedding lookup, denoted as ϕ(·), embeddings of all token are obtained. We then
substitute back the attribute representation of n text lines at S∗, and use CLIP text encoder τθ to
generate the final conditional embeddings cte:

cte = τθ(ϕ(yt), r0, r1, ..., rn−1) (3)

Next, we will provide a detailed introduction to the position, font, and color encoders.

3.2.1 POSITION ENCODER

In the Cross-Attention layers, the flattened auxiliary pixels φ(za) are projected into a query matrix
Q = WQ ·φ(za), the conditional embeddings are projected into a key matrix K = WK ·φ(cte) and
a value matrix V = WV · φ(cte), via learned linear projections WQ,WK ,WV . The attention map is
computed as:

M = Softmax(
QKT

√
d

) (4)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where d is the projection dimension. the cross-attention output M · V is used to update visual
features. Intuitively, M reflects the similarity between Q and K, and the element Mij defines
the weight of the j-th conditional embedding on the i-th auxiliary pixel. However, the embedding
of a particular text line is not explicitly associated with the pixels corresponding to its text area.
Therefore, we introduce a position encoder ξp that employs four stacked convolutional layers to
encode the position image ep, followed by an average pooling layer to adjust the shape and add it to
the original embedding. By utilizing ξp, we introduce spatial information for each text line, enabling
the embedding to achieve spatial awareness. In the ablation study in Sec. 5.3.1, we demonstrate that
this significantly improves the accuracy of text generation.

3.2.2 FONT ENCODER

Extracting text from natural scene images is quite challenging due to complex lighting variations and
background interference. Instead of striving for precise separation from the complex background, we
use a straightforward adaptive threshold on the text regions to construct a font extractor, resulting
in a rough binary image that serves as the font image ef . To prevent font style leakage in glyph
image lg and eg , each text line is rendered using a random font. Similarly, to mitigate glyph leakage
from ef , various transformations such as rotation, translation, scaling, and occlusion are applied in
the font extractor. Examples of the obtained font image ef can be found in Appendix B. Due to
noise in font images, many network architectures, such as stacked convolutional layers or the pre-
trained DINOv2 Oquab et al. (2023), struggle to effectively encode font features. Here, we employ
an OCR model combined with a linear layer to construct our font encoder ef , as the OCR model
inherently focuses on the text portions despite a noisy background. On the other hand, the OCR
model naturally perceives font types and is trained to be invariant to font variations, meaning that
it produces the same output for text lines with different font types. Therefore, to shift its attention
from glyphs to fonts, we allow the parameters to be trainable throughout the training process. We
also randomly nullify a certain proportion of ef during training, to ensure the model can generate
text when no font style is specified. During inference, we can either render the text using a user-
specified font onto the image or select a text region from an image and input to the font extractor to
construct ef . We then utilize the proposed font encoder ξf to encode the font style. More examples
are illustrated in Fig. 4. Notably, incorporating font style features into the conditional embeddings
enhances the similarity between Q and K in Equ. 4, which in turn improves the text accuracy, as
detailed in Sec. 5.3.1.

3.2.3 COLOR ENCODER

We employ a non-learning method to create a color picker for obtaining the RGB values of the text.
Initially, the colors of all pixels within the text region are clustered and ranked, from which we se-
lect the top dominant color blocks. We then analyze their shapes and positions using morphological
analysis techniques to identify the most likely text blocks, outputting the mean RGB value as the
text color ec. According to our statistics, approximately 65% text lines in the training data conform
to specific criteria, yielding reliable color labels with an accuracy exceeding 90%. Examples can be
found in Appendix B. If a text line does not receive a reliable color label, we assign it RGB(500,
500, 500) as a default, which tends to result in a random color assignment during inference. In con-
structing the color encoder ξc, we experimented with various techniques, including Fourier feature
encoding and convolutional layers. However, we experimented that a simple linear projection layer
was sufficient to encode the three RGB values. More examples are illustrated in Fig. 4.

4 DATASET AND BENCHMARK

We utilize AnyWord-3M, a large-scale multilingual dataset proposed by AnyText Tuo et al. (2023) as
our training dataset. The AnyWord-3M dataset contains 3.53 million images, representing a diverse
array of scenes containing text, such as street views, book covers, advertisements, posters, and movie
frames. However, the captions in AnyWord-3M were generated by BLIP-2 Li et al. (2023), which
lack detailed and accurate descriptions. To improve this, we regenerated the captions using QWen-
VL Bai et al. (2023). Statistics analysis reveals that the BLIP-2 captions contains only 8 words at
average, while those generated by QWen-VL is around 47 words, with roughly one-third exceeding
50 words. This substantial increase in caption length significantly enhances the description of image

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

A meticulously
designed sticker of a
robot, with words on it,
“人工智能”(artificial
intelligence)

A cozy scene
featuring a vibrant
ceramic mug on a
wooden table,
elegantly inscribed
with words, “Neural”,
"Network"

A raccoon stands
in front of the
blackboard with
words written on
it, “Deep Learning”

A raccoon stands in
front of the
blackboard with words
written on it, “深度学
习”(deep learning)

A beautiful baseball
cap on a wooden
table with knitted
text on it, "生成式模
型”(generative
model)

Figure 4: Examples of customizing text attributes. The first row demonstrates font style control
using a user-specified font file. The second row showcases selecting a text region from an image to
mimic its font style. The third row illustrates the control of text color.

details. In the ablation study detailed in Sec. 5.3.2, we found that while longer captions slightly
reduce text accuracy, they significantly improve the model’s prompt-following ability. Thus, we
opted to train with the longer captions. Examples of training images alongside corresponding long
and short captions can be found in Appendix E.

We use the AnyText-benchmark to evaluate the performance of the model, which includes 1,000
images extracted from Wukong Gu et al. (2022) and 1000 images from LAION-400M Schuhmann
et al. (2021). This benchmark quantitatively assesses the model’s performance in Chinese and En-
glish generation, respectively. The AnyText-benchmark employs three evaluation metrics: Sentence
Accuracy (Sen. ACC) and Normalized Edit Distance (NED) for measuring text accuracy using the
DuGangOCR ModelScope (2023) model, as well as the Frechet Inception Distance (FID) for as-
sessing image authenticity. In addition to these, we incorporate CLIPScore Hessel et al. (2021) to
evaluate the model’s prompt-following capability.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

Our training framework is implemented based on AnyText1, with model weights initialized from
SD1.52. Compared to AnyText, we have only increased the parameters by 4.5%(63.8M), while the
design of WriteNet+AttnX architecture has improved the inference speed by 19.8%, as detailed in
Appendix D. Unlike AnyText’s multi-stage training regimen, AnyText2 adopts end-to-end training.
The model was trained for 10 epochs on AnyWord-3M using 8 Tesla A100 GPUs, taking approx-
imately two weeks. We employed the AdamW optimizer with a learning rate of 2e-5 and a batch
size of 48. The designs of the Auxiliary Latent Module and glyph encoder are consistent with those
in AnyText. The resolutions of lg , lp, lm, and ep are 512x512, while the resolutions of eg and ef
are 80x512. The fusion strength coefficient α is configured to 1.0. A probability of 50% is applied

1https://github.com/tyxsspa/AnyText
2https://huggingface.co/runwayml/stable-diffusion-v1-5

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Quantitative comparison of AnyText2 and competing methods. †is trained on LAION-Glyph-10M,
and ‡is fine-tuned on TextCaps-5k. Numbers in brown color represent the results obtained using the long
caption version of the AnyText-benchmark.

Methods English Chinese
Sen.ACC↑ NED↑ FID↓ CLIPScore↑ Sen.ACC↑ NED↑ FID↓ CLIPScore↑

ControlNet 0.5837 0.8015 45.41 0.8448 0.3620 0.6227 41.86 0.7801
TextDiffuser 0.5921 0.7951 41.31 0.8685 0.0605 0.1262 53.37 0.7675
GlyphControl† 0.3710 0.6680 37.84 0.8847 0.0327 0.0845 34.36 0.8048
GlyphControl‡ 0.5262 0.7529 43.10 0.8548 0.0454 0.1017 49.51 0.7863

Anytext 0.7239 0.8760 33.54 0.8841 0.6923 0.8396 31.58 0.8015
0.7242 0.8780 35.27 0.9602 0.6917 0.8373 31.38 0.8870

GlyphDraw2 0.7369 0.8921 - - - - - -

Anytext2 0.8096 0.9184 33.32 0.8963 0.7130 0.8516 27.94 0.8139
0.8175 0.9193 27.87 0.9882 0.7250 0.8529 24.32 0.9137

to choose between inputting lm or an empty image, facilitating training for both text generation and
editing. A probability of 20% is used to input an empty ef , enabling the model to generate random
fonts when no font style is specified. Approximately 35% of ec are assigned a default value due to
the absence of accurate color labels, allowing for the generation of text in random colors when no
color is specified.

5.2 COMPARISON RESULTS

5.2.1 QUANTITATIVE RESULTS

AnyText2 excels not only in generating accurate text but also in text editing, attribute customization,
and effective prompt-following in images. Our subsequent ablation study confirmed that some of
these features may slightly reduce text accuracy. Nevertheless, AnyText2 significantly outperforms
all competing methods in terms of accuracy while maintaining superior image realism and prompt-
following capabilities. We evaluated ControlNet Zhang & Agrawala (2023), TextDiffuser Chen
et al. (2023b), GlyphControl Yang et al. (2023), AnyText Tuo et al. (2023), and GlyphDraw2 Ma
et al. (2024) using the benchmarks and metrics outlined in Sec. 4. To ensure a fair evaluation, all
publicly available methods employed the DDIM sampler with 20 sampling steps, a CFG scale of 9,
a fixed random seed of 100, a batch size of 4, and consistent positive and negative prompt words.
The quantitative comparison results are presented in Table 1. For GlyphDraw2, we referenced the
metrics reported in their paper, achieving a 7.27% improvement in English Sentence Accuracy (Sen.
ACC). A comparison for Chinese was not included, as they utilized the PWAcc metric and excluded
some English images during evaluation, and insufficient details were provided. Notably, AnyText2
outperformed AnyText across all evaluation metrics, particularly in the long caption scenario, where
it improved English and Chinese Sen. ACC by 9.3% and 3.3%, respectively. Furthermore, it demon-
strated significant enhancements in image realism (FID) and prompt-following (CLIPScore).

5.2.2 QUALITATIVE RESULTS

As Shown in Fig. 5, we conducted a qualitative comparison of AnyText2 with several recent meth-
ods, including TextDiffuser-2 Chen et al. (2023a), Glyph-SDXL-v2 Liu et al. (2024b), Stable Dif-
fusion 3 Esser et al. (2024), and Flux.1 BlackForestLab (2024). The image captions in the leftmost
column are input directly to TextDiffuser-2, SD3, and FLUX.1. For Glyph-SDXL-v2 and AnyText2,
the inputs were adjusted according to each method’s requirements, such as manually setting the lay-
out, selecting appropriate text fonts or colors according to the captions. Each method underwent
multiple trials and one of the best is presented. From the results, TextDiffuser-2 shows subpar per-
formance in text accuracy, especially when handling multiple lines. Glyph-SDXL-v2 achieves good
accuracy and enables precise customization of text fonts and colors, and it is the only competitive
method that supports multilingual generation, but it can only generate overlaid text on images, and
the generated text appears to have no correlation with the image content. SD3 provides visually ap-
pealing images but its English accuracy is moderate, with only rough control over colors and almost
no control over fonts. FLUX.1, as the leading text-to-image model currently available, produces
impressive visual results while maintaining decent English accuracy, albeit with occasional capital-
ization errors. It permits rough control over simple fonts and colors in the prompt but is limited to

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

English generation. In comparison, AnyText2 stands out with the best accuracy, the most precise
control over text attributes, seamless text-image integration, and multilingual support.

A burger patty, with the
bottom bun and lettuce and
tomatoes. words
“COFFEE”written on it in
mustard

a bear holds a board with
words written on it, "You Never
Fail Until You Stop" in blue and
handwriting font, "TRYING!"
in red and print font.

Resting on the kitchen table
is an embroidered cloth with a
cute baby tiger and words "晚
安" in yellow, "Goodnight" in
light blue. All words are in
Arial font. Next to the cloth
there is a lit candle.

a yellow badge on the wooden
table with a kangaroo on it,
and that reads "No
KANGAROOS IN AUSTRIA"
in Times New Roman font.

TextDiffuser-2 Glyph-SDXL-v2 Stable	Diffusion	3 FLUX.1 AnyText2

Figure 5: Qualitative comparison of AnyText2 and competing methods. From the perspectives of
text accuracy, text-image integration, attribute customization, and multilingual support, AnyText2
demonstrated significant advantages.

5.3 ABLATION STUDY

Following AnyText, we extracted 200k images from AnyWord-3M, which includes 100k images
each for Chinese and English. We conducted ablation experiments by training on this small-scale
dataset for 15 epochs to validate each module of our method. Next, we will analyze our method
from two perspectives: accuracy and realism, as well as prompt-following capability.

5.3.1 ACCURACY AND REALISM

In Table 2, we validated the effectiveness of each module in AnyText2. Specifically, in Exp.1, the
original AnyText serves as the baseline. By incrementally adding the position and font encoders in
the Text Embedding Module in Exp.2&3, there is a significant boost in text accuracy. This improve-
ment is attributed to the enhanced similarity between auxiliary pixels and conditional embeddings,
as analyzed in Sec. 3.2. In Exp.4, adding the color encoder caused a slight decline in text accuracy.
We speculate that this may be due to a considerable proportion of incorrect ground truths in the color
labels and the challenges of having the model learn the colors of text strokes against complex back-
grounds. In Exp.5, 6, and 7, we experimentally demonstrated that the AttnX layers further improve
text accuracy; however, their position significantly impacts the FID score. Specifically, the closer
the AttnX layer is to the output layer of the U-Net decoder, the more it tends to learn glyphs from
the encoder’s auxiliary pixels and overlays them on the image due to the skip connections in U-Net.
Considering both accuracy and realism, we chose to insert AttnX into the first two blocks of the
U-Net decoder, as done in Exp.6. Additionally, in Exp.8, we replaced the ControlNet-like module
with WriteNet. Although this led to a slight decrease in accuracy, it significantly improved the FID
score. This aligns with our expectations, as there can be a trade-off between image realism and
text accuracy; embedded text is often more challenging for OCR to recognize compared to over-
laid text, despite offering greater realism. Moreover, WriteNet effectively reduces computational
overhead. Considering aspects such as accuracy, realism, and inference efficiency, we opted for the
configuration used in Exp.8 for training on the full dataset.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: Ablation experiments of AnyText2 on a small-scale dataset from AnyWord-3M. The results validate
the effectiveness of each submodule in AnyText2.

Exp. Pos. Font Color AttnX WriteNet English Chinese
2 1 0 Sen.ACC↑ NED↑ FID↓ Sen.ACC↑ NED↑ FID↓

1 0.4873 0.7721 35.38 0.5404 0.7631 31.19
2 ✓ 0.5237 0.7876 35.86 0.5681 0.7725 29.45
3 ✓ ✓ 0.5926 0.8276 38.57 0.5688 0.7763 31.60
4 ✓ ✓ ✓ 0.5732 0.8169 37.24 0.5525 0.7620 32.69
5 ✓ ✓ ✓ ✓ ✓ ✓ 0.6372 0.8481 44.98 0.5632 0.7769 35.84
6 ✓ ✓ ✓ ✓ ✓ 0.6391 0.8490 39.14 0.5760 0.7858 32.92
7 ✓ ✓ ✓ ✓ 0.6343 0.8478 37.21 0.5527 0.7696 28.91
8 ✓ ✓ ✓ ✓ ✓ ✓ 0.6335 0.8443 35.19 0.5614 0.7731 29.40

Table 3: Ablation experiments of training AnyText2 in configuration of Exp.6 using both short(6S) and
long captions(6L), and evaluation using the AnyText-benchmark under both short and long caption (marked
in brown) scenarios.

Exp. Epochs English Chinese
Sen.ACC↑ NED↑ CLIPScore↑ Sen.ACC↑ NED↑ CLIPScore↑

6S 15 0.6391 0.8490 0.8797 0.5760 0.7858 0.7941
6L 0.6094 0.8296 0.8734 0.4995 0.7401 0.7952
6S 19 0.6313 0.8459 0.8828 0.5719 0.7830 0.7948
6L 0.6182 0.8360 0.8773 0.5541 0.7710 0.8036
6S 15 0.6479 0.8481 0.8577 0.5606 0.7738 0.7333
6L 0.6305 0.8412 0.8650 0.5055 0.7422 0.7511
6S 19 0.6453 0.8476 0.8596 0.5639 0.7784 0.7372
6L 0.6357 0.8431 0.8665 0.5618 0.7738 0.7542

5.3.2 PROMPT-FOLLOWING

We trained two models in the configuration of Exp.6 using short(6S) and long(6L) captions, respec-
tively, to examine the impact of caption length on accuracy and prompt-following. The results are
presented in Table 3. The first two rows reveal a noticeable decrease in accuracy when using long
captions, particularly in the Chinese Sen. ACC, which dropped by 7.6%. We determined that this
decline was partly due to the model using long captions not fully converging on the small-scale
training set. Consequently, we continued training for an additional 4 epochs and observed that the
metrics for Exp.6S had reached saturation, while those for Exp.6L continued to improve. Though
the performance gap between the two models narrowed, the CLIPScore of Exp.6L remained com-
parable. Next, we replaced the AnyText-benchmark with long captions to evaluate both models and
observed a similar trend. After training for 19 epochs, the accuracy gap between the two models fur-
ther diminished, but Exp.6L’s CLIPScore was significantly higher than that of Exp.6S. From these
findings, we conclude that training with long captions may cause a slight decrease in text accuracy
but enhances prompt-following capabilities, especially for complex captions. Therefore, we decided
to use long captions for training on the full dataset.

6 CONCLUSION

In this paper, we introduced AnyText2, a novel method that tackles the cutting-edge challenge of
precisely controlling text attributes in realistic image generation. We explored techniques for ex-
tracting font and color labels from natural scene images and developed dedicated encoders for fea-
ture representation, enabling the customization of text attributes for each line. Additionally, we
conducted an in-depth analysis of visual text generation mechanisms and creatively proposed the
WriteNet+AttnX architecture, which decouples text and image generation tasks while effectively
integrating them through attention layers. Our approach outperformed its predecessor, AnyText,
achieving higher accuracy, enhanced realism, and faster inference speed. Furthermore, the model’s
prompt-following capabilities were bolstered through the use of long captions. In future work, we
will continue to push the boundaries of visual text generation and aim to gradually port AnyText2 to
more innovative diffusion models.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

7 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we have made the following efforts: (1) We provide implementation de-
tails in Sec. 3, Sec. 5.1, Appendix B, and Appendix D, including network structures, intermedi-
ate results, training process and selection of hyper-parameters. (2) We provide details on dataset
preparation and evaluation metric in Sec 4. (3).We validate the effectiveness of each module on a
small-scall dataset in Sec. 5.3. (4) We will release our code and model.

REFERENCES

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, local-
ization, text reading, and beyond. arXiv preprint arXiv:2308.12966, 2023.

BlackForestLab. Flux.1. https://blackforestlabs.ai/
announcing-black-forest-labs/, 2024.

Muhammad Atif Butt, Kai Wang, Javier Vazquez-Corral, and Joost van de Weijer. Colorpeel: Color
prompt learning with diffusion models via color and shape disentanglement, 2024. URL https:
//arxiv.org/abs/2407.07197.

Jingye Chen, Yupan Huang, Tengchao Lv, Lei Cui, Qifeng Chen, and Furu Wei. Textdiffuser-2:
Unleashing the power of language models for text rendering. arXiv preprint arXiv:2311.16465,
2023a.

Jingye Chen, Yupan Huang, Tengchao Lv, Lei Cui, Qifeng Chen, and Furu Wei. Textdiffuser:
Diffusion models as text painters. arXiv preprint, abs/2305.10855, 2023b.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion English,
and Robin Rombach. Scaling rectified flow transformers for high-resolution image synthesis. In
ICML, 2024.

Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit Haim Bermano, Gal Chechik, and
Daniel Cohen-Or. An image is worth one word: Personalizing text-to-image generation using
textual inversion. In ICLR, 2023.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron C. Courville, and Yoshua Bengio. Generative adversarial nets. In NeurIPS, 2014.

Jiaxi Gu, Xiaojun Meng, Guansong Lu, Lu Hou, Minzhe Niu, Hang Xu, Xiaodan Liang, Wei Zhang,
Xin Jiang, and Chunjing Xu. Wukong: 100 million large-scale chinese cross-modal pre-training
dataset and A foundation framework. CoRR, abs/2202.06767, 2022.

Haibin He, Xinyuan Chen, Chaoyue Wang, Juhua Liu, Bo Du, Dacheng Tao, and Yu Qiao. Diff-font:
Diffusion model for robust one-shot font generation. IJCV, abs/2212.05895, 2024.

Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or.
Prompt-to-prompt image editing with cross-attention control. In ICLR, 2023.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A
reference-free evaluation metric for image captioning. In Marie-Francine Moens, Xuanjing
Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), EMNLP, 2021.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In NeurIPS,
2020.

Li Hu, Xin Gao, Peng Zhang, Ke Sun, Bang Zhang, and Liefeng Bo. Animate anyone: Consistent
and controllable image-to-video synthesis for character animation. CoRR, 2023.

Lianghua Huang, Di Chen, Yu Liu, Yujun Shen, Deli Zhao, and Jingren Zhou. Composer: Creative
and controllable image synthesis with composable conditions. arXiv preprint, abs/2302.09778,
2023.

11

https://blackforestlabs.ai/announcing-black-forest-labs/
https://blackforestlabs.ai/announcing-black-forest-labs/
https://arxiv.org/abs/2407.07197
https://arxiv.org/abs/2407.07197

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jiabao Ji, Guanhua Zhang, Zhaowen Wang, Bairu Hou, Zhifei Zhang, Brian Price, and Shiyu Chang.
Improving diffusion models for scene text editing with dual encoders, 2023.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In Yoshua Bengio and
Yann LeCun (eds.), ICLR, 2014.

Chenxia Li, Weiwei Liu, Ruoyu Guo, Xiaoting Yin, Kaitao Jiang, Yongkun Du, Yuning Du,
Lingfeng Zhu, Baohua Lai, Xiaoguang Hu, Dianhai Yu, and Yanjun Ma. Pp-ocrv3: More at-
tempts for the improvement of ultra lightweight OCR system. CoRR, abs/2206.03001, 2022.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven C. H. Hoi. BLIP-2: bootstrapping language-
image pre-training with frozen image encoders and large language models. arXiv preprint,
abs/2301.12597, 2023.

Zhen Li, Mingdeng Cao, Xintao Wang, Zhongang Qi, Ming-Ming Cheng, and Ying Shan. Pho-
tomaker: Customizing realistic human photos via stacked id embedding. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2024.

Rosanne Liu, Dan Garrette, Chitwan Saharia, William Chan, Adam Roberts, Sharan Narang, Irina
Blok, RJ Mical, Mohammad Norouzi, and Noah Constant. Character-aware models improve
visual text rendering. In ACL, pp. 16270–16297, 2023.

Zeyu Liu, Weicong Liang, Zhanhao Liang, Chong Luo, Ji Li, Gao Huang, and Yuhui Yuan.
Glyph-byt5: A customized text encoder for accurate visual text rendering. arXiv preprint
arXiv:2403.09622, 2024a.

Zeyu Liu, Weicong Liang, Yiming Zhao, Bohan Chen, Ji Li, and Yuhui Yuan. Glyph-byt5-
v2: A strong aesthetic baseline for accurate multilingual visual text rendering. arXiv preprint
arXiv:2406.10208, 2024b.

Jian Ma, Mingjun Zhao, Chen Chen, Ruichen Wang, Di Niu, Haonan Lu, and Xiaodong Lin. Glyph-
draw: Learning to draw chinese characters in image synthesis models coherently. arXiv preprint,
abs/2303.17870, 2023.

Jian Ma, Yonglin Deng, Chen Chen, Haonan Lu, and Zhenyu Yang. Glyphdraw2: Automatic gen-
eration of complex glyph posters with diffusion models and large language models. CoRR, 2024.

ModelScope. Duguangocr. https://modelscope.cn/models/damo/cv_
convnextTiny_ocr-recognition-general_damo/summary, 2023.

Chong Mou, Xintao Wang, Liangbin Xie, Jian Zhang, Zhongang Qi, Ying Shan, and Xiaohu Qie.
T2i-adapter: Learning adapters to dig out more controllable ability for text-to-image diffusion
models. arXiv preprint, abs/2302.08453, 2023.

OpenAI. Dall·e3. https://openai.com/index/dall-e-3/, 2023.

Maxime Oquab, Timothée Darcet, Theo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Russell Howes, Po-Yao
Huang, Hu Xu, Vasu Sharma, Shang-Wen Li, Wojciech Galuba, Mike Rabbat, Mido Assran,
Nicolas Ballas, Gabriel Synnaeve, Ishan Misra, Herve Jegou, Julien Mairal, Patrick Labatut, Ar-
mand Joulin, and Piotr Bojanowski. Dinov2: Learning robust visual features without supervision,
2023.

Song Park, Sanghyuk Chun, Junbum Cha, Bado Lee, and Hyunjung Shim. Few-shot font generation
with localized style representations and factorization. In AAAI, pp. 2393–2402, 2021a.

Song Park, Sanghyuk Chun, Junbum Cha, Bado Lee, and Hyunjung Shim. Multiple heads are better
than one: Few-shot font generation with multiple localized experts. In ICCV, pp. 13880–13889,
2021b.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. SDXL: improving latent diffusion models for high-resolution image
synthesis. In ICLR, 2024.

12

https://modelscope.cn/models/damo/cv_convnextTiny_ocr-recognition-general_damo/summary
https://modelscope.cn/models/damo/cv_convnextTiny_ocr-recognition-general_damo/summary
https://openai.com/index/dall-e-3/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision. In ICML,
2021.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In ICML, volume 139, pp. 8821–8831.
PMLR, 2021.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with CLIP latents. arXiv preprint, abs/2204.06125, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In CVPR, pp. 10684–10695, June 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. In MICCAI, 2015.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. arXiv
preprint, abs/2208.12242, 2022.

Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton Mullis,
Aarush Katta, Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki. LAION-400M: open dataset
of clip-filtered 400 million image-text pairs. CoRR, abs/2111.02114, 2021.

Yuxiang Tuo, Wangmeng Xiang, Jun-Yan He, Yifeng Geng, and Xuansong Xie. Anytext: Multilin-
gual visual text generation and editing. arXiv, 2023.

Qixun Wang, Xu Bai, Haofan Wang, Zekui Qin, and Anthony Chen. Instantid: Zero-shot identity-
preserving generation in seconds. arXiv preprint arXiv:2401.07519, 2024.

Yukang Yang, Dongnan Gui, Yuhui Yuan, Haisong Ding, Han Hu, and Kai Chen. Glyphcontrol:
Glyph conditional control for visual text generation. arXiv preprint, abs/2305.18259, 2023.

Zhenhua Yang, Dezhi Peng, Yuxin Kong, Yuyi Zhang, Cong Yao, and Lianwen Jin. Fontdiffuser:
One-shot font generation via denoising diffusion with multi-scale content aggregation and style
contrastive learning. In Proceedings of the AAAI conference on artificial intelligence, 2024.

Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible image prompt
adapter for text-to-image diffusion models. arXiv preprint, 2023.

Lingjun Zhang, Xinyuan Chen, Yaohui Wang, Yue Lu, and Yu Qiao. Brush your text: Synthesize
any scene text on images via diffusion model, 2023.

Lvmin Zhang and Maneesh Agrawala. Adding conditional control to text-to-image diffusion models.
arXiv preprint, abs/2302.05543, 2023.

Yiming Zhao and Zhouhui Lian. Udifftext: A unified framework for high-quality text synthesis in
arbitrary images via character-aware diffusion models, 2023.

A ANALYSIS OF THE TEXT GENERATION PROCESS IN ANYTEXT

In this section, we examine the text generation process in AnyText Tuo et al. (2023) and visualize the
attention maps of its various cross attention layers using the method from Prompt-To-Prompt Hertz
et al. (2023), as shown in Fig. 6. AnyText introduces a Text Embedding Module that extracts
text glyph using an OCR model and then fused with other image tokens, and processed through
a ControlNet-like network for text generation. We visualized the attention maps of the text tokens
in both U-Net and TextControlNet at three resolutions: 64x64, 32x32, and 16x16.

In the UNet encoder (➀-➂), the process focuses on generating image content without text, then in
the TextControlNet (➃-➅), it concentrates on generating text glyphs. Finally, in the UNet decoder

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

(➆-➈), the integration of image and text is achieved. However, as shown in the lower part of Fig. 6,
we discovered that TextControlNet also responds significantly to non-text tokens. This indicates
that it not only facilitates text generation but also acts as part of the denoiser, working in conjunction
with U-Net to generate the overall image content. While this improves the integration of image and
text, it can also lead to drawbacks such as decreased overall image quality and decreased inference
efficiency. This paper proposes the WriteNet+AttnX architecture to address these issues.

⊕

UNet
❄

an	ancient	Chinese	copper	
coin	with	the	words	“康”
“熙” “通” “宝”

Text
Control
Net

🔥

𝝐𝒕

Auxiliary Latent
Module

Text Embedding
Module

+

Glyph Position

𝒛𝒂

𝒛𝒕

𝒄𝒕𝒆

Non-text	token’s	attention	map	in	TextControlNet：
① ② ③

④ ⑤ ⑥

⑦ ⑧ ⑨

Figure 6: Analysis of the text generation process in AnyText.

B EXAMPLES OF FONT EXTRACTOR AND COLOR PICKER

In Fig. 7, we present examples of the extracted font image ef and text color ec obtained using the
font extractor and color picker. Each set contains three images: the first is the training image, the
second is the glyph image lg used in the Auxiliary Latent Module, which renders each line of text
onto an image according to their positions using a glyph render. For display purposes, the color ec
extracted by the color picker is applied to render text. Note that during training, lg does not include
color information. Moreover, each text line is rendered using a randomly selected font to prevent
the leakage of font style. This also brings the advantage that AnyText2 can choose any font file to
generate text during inference, unlike AnyText which is limited to using the Arial Unicode font. The
font image ef in the third image is extracted by the font extractor. To prevent the leakage of glyph,
various transformations such as rotation, translation, scaling, and occlusion are applied.

C PREVENT WATERMARKS USING TRIGGER WORDS

Images containing text collected from the internet often come with numerous watermarks. Ac-
cording to AnyText Tuo et al. (2023), 25% of the Chinese data and 8% of the English data in the
AnyWord-3M dataset are watermarked. They adopted a strategy of removing these watermarked
images during the last two epochs of training, amounting to about 0.5 million images. We employed

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

training	image position & glyph	&	color font training	image position & glyph	&	color font

Figure 7: Examples of the extracted font image and text color using the font extractor and color
picker.

Table 4: Comparison with AnyText on watermark probabilities.
watermark Chinese English
AnyText 2.9% 0.4%
AnyText2 1.8% 0.7%

a different approach that, based on the watermark probability provided in AnyWord-3M, labeled as
wm score, we added “no watermarks” to the captions with wm score<0.5, and “with watermarks”
for those with higher scores. During the inference, by adding the trigger words “no watermarks”,
watermarks can be effectively prevented. The comparison with AnyText on watermark probabilities
is shown in Table 4.

D PARAMETER SIZE AND COMPUTATIONAL OVERHEAD OF ANYTEXT2

Our framework is implemented based on AnyText. Despite the addition of some modules, the total
parameter sizes has only increased by 63.8M, as refered to Table 5. Moreover, due to the design
of WriteNet that only performs inference once, the computational overhead is actually reduced. On
a Tesla V100, the time taken to generate 4 images in FP16 has been reduced from 5.85s to 4.69s,
resulting in a 19.8% improvement.

Table 5: The Comparison of the parameter sizes of modules between AnyText and AnyText2.
Modules AnyText AnyText2
UNet 859M 859M
AttnX - 57M
VAE 83.7M 83.7M
CLIP Text Encoder 123M 123M
TextControlNet/WriteNet 360M 360M
Auxiliary Latent Module 1.3M 1.3M
Glyph Encoder 4.6M 4.6M
Position Encoder - 2.2M
Font Encoder - 4.6M
Color Encoder - 5K
Total 1431.6M 1495.4M

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

E EXAMPLES OF LONG AND SHORT CAPTIONS

From the examples presented in Fig. 8, it is evident that the short captions produced by BLIP-2
are very simplistic and may contain errors. In contrast, the long captions generated by QWen-VL
not only provide a comprehensive description of the image details but also achieve a high level of
accuracy, even accurately identifying the text within the images. We remove the quotation marks
from these long captions and use them for training.

A wooden barrel-shaped piggy bank with Chinese characters and
illustrations of flowers is placed on a chair outside. The words "吵架⼀
次罰款100" (Fine for one fight) are prominently displayed in black
letters. The overall style is simple and rustic.

a wooden barrel with a Japanese writing on it

This image shows a close-up of a spring roll filled with meat and
vegetables, being held up by someone's hand. The spring roll has been
cut open to reveal its filling, which includes green onions and red meat.
In the background, there is a wooden tray holding chopsticks and a
bowl. The words "⻓假吃得好" (meaning "Long holiday eating well")
are visible in the bottom right corner of the photo.

a person holding a wrap with meat and vegetables

This image is a cartoon of Tom from "Tom and Jerry". He is holding a
book with both hands and has his eyes closed. The text on the picture
says, "The world's mess does not concern me. In my heart, there is only
reading and doing exercises."

This image is an illustration depicting how to perform the Heimlich
maneuver on a baby. It shows a cartoon woman holding a baby in her
arms and demonstrating the proper technique for clearing milk from
the baby's airway. The text accompanying the image emphasizes the
importance of not using forceful blows to the abdomen.

the cat is holding a bone in Chinese

a cartoon of a baby with a baby in its arms

The book cover features an illustration of five clowns standing on a
beach with their arms raised in the air. They are all dressed in
colorful costumes and hats, and there is a sheriff's badge visible in
the top left corner of the image. In the bottom right corner, there
is a ticket that reads "Admit One". The overall style of the artwork
is whimsical and playful.

This is a birthday decoration set with the theme of black and gold.
The main elements include a "Happy Birthday" banner, balloons in
the shape of stars and numbers, as well as tassel garlands. The
overall style is elegant and festive, suitable for celebrating
important birthdays such as turning 70 years old.

This is the cover of an album titled "Ultimate Classical Worship
Collection". It features a blue violin with a black bow resting
against it on a white background. The title of the album is
prominently displayed in bold letters across the top of the image.

This is the cover art for War of the Monsters, featuring two
creatures fighting in a cityscape. One creature appears to be a
robot while the other resembles a gorilla. The title "War of the
Monsters" is prominently displayed at the top of the image.

clowns on vacation

ultimate classical worship collection

happy birthday 70th gold and black balloons

war of the monsters

Figure 8: Exmaples of training images along with long and short captions by BLIP-2 and QWen-VL.

16

	Introduction
	Related Works
	Methodology
	WriteNet+AttnX
	Text Embedding Module
	Position Encoder
	Font Encoder
	Color Encoder

	Dataset and Benchmark
	Experiments
	Implementation Details
	Comparison results
	Quantitative Results
	Qualitative Results

	Ablation study
	Accuracy and Realism
	Prompt-Following

	Conclusion
	Reproducibility Statement
	Analysis of the Text Generation Process in AnyText
	Examples of Font Extractor and Color Picker
	Prevent Watermarks Using Trigger Words
	Parameter Size and Computational Overhead of AnyText2
	Examples of Long and Short Captions

