
Under review as a conference paper at ICLR 2022

LEAN: GRAPH-BASED PRUNING FOR CONVOLU-
TIONAL NEURAL NETWORKS BY EXTRACTING
LONGEST CHAINS

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural network pruning techniques can substantially reduce the computational
cost of applying convolutional neural networks (CNNs). Common pruning meth-
ods determine which convolutional filters to remove by ranking the filters indi-
vidually, i.e., without taking into account their interdependence. In this paper, we
advocate the viewpoint that pruning should consider the interdependence between
series of consecutive operators. We propose the LongEst-chAiN (LEAN) method
that prunes CNNs by using graph-based algorithms to select relevant chains of
convolutions. A CNN is interpreted as a graph, with the operator norm of each op-
erator as distance metric for the edges. LEAN pruning iteratively extracts the high-
est value path from the graph to keep. In our experiments, we test LEAN pruning
on several image-to-image tasks, including the well-known CamVid dataset, and
a real-world X-ray CT dataset. Results indicate that LEAN pruning can result in
networks with similar accuracy, while using 1.7–12x fewer convolutional filters
than existing approaches.

1 INTRODUCTION

In recent years, convolutional neural networks (CNNs) have become state-of-the-art for many image-
to-image translation tasks (LeCun et al., 2015), including image segmentation (Ronneberger et al.,
2015), and denoising (Tian et al., 2020). They are increasingly used as a subcomponent of a larger
system, e.g., visual odometry (Yang et al., 2020), as well as in energy-limited and real-time appli-
cations (Yang et al., 2017). In these situations, the applicability of high-accuracy CNNs may be
limited by large computational resource requirements. Small networks may be more applicable in
such settings, but may lack accuracy.

Neural network pruning (Mozer & Smolensky, 1989; Karnin, 1990) has recently gained popularity
as a technique to reduce the size of neural networks (Blalock et al., 2020). Neural networks consist
of learnable parameters, including the scalar components of the convolutional filters. When pruning,
the neural network is reduced in size by removing such scalar parameters while trying to maintain
high accuracy. We distinguish between individual parameter pruning (Han et al., 2016), where each
parameter of an operation is ranked and pruned separately, and structured pruning (Li et al., 2017;
Luo et al., 2017), where entire convolutional filters are ranked and pruned. As convolution operators
can only be removed once all scalar parameters of the filter kernel have been pruned, structured
pruning is favored over individual pruning when aiming to improve computational performance
(Park et al., 2017). In the remainder of this paper, we focus on structured pruning.

Although structured pruning methods take into account the division of a neural network into opera-
tions, they do not take into account the fact that the output of the network is formed by a sequence of
such operations. This has two drawbacks. First, since the relative scaling of individual convolutions
may vary without changing the output of the whole chain, pruning methods that prune individual
operators could potentially prune a suboptimal set of operators from the chain. Second, to signif-
icantly reduce evaluation time, a severe pruning regime must be considered, i.e., a pruning ratio
(percentage of remaining parameters after pruning) of 1–10%. In this regime, pruning can result
in network disjointness, i.e., the network contains sections that are not part of some path from the
input to the network output. Some existing pruning methods take into account network structure to

1

Under review as a conference paper at ICLR 2022

a limited degree (Salehinejad & Valaee, 2021). In practice, however, these methods do not contain
safeguards to avoid network disjointness.

In this paper, we present a novel pruning method called LongEst-chAiN (LEAN) pruning, which as
opposed to conventional pruning approaches uses graph-based algorithms to keep or prune chains of
operations collectively. In LEAN, a CNN is represented as a graph that contains all the CNN opera-
tors, with the operator norm of each operator as edge weights. We argue that strong subnetworks in a
CNN can be discovered by extracting the longest (multiplicative) paths, using computationally effi-
cient graph algorithms. The main focus of this work is to show how LEAN pruning can significantly
improve the computation speed of CNNs for real-world image-to-image applications, and obtain
high accuracy in the severe pruning regime that is difficult to achieve with existing approaches.

This paper is structured as follows. In Section 2, we explore existing pruning approaches. In Section
3, we outline the preliminaries on CNNs, pruning filters, and the operator norm. Next, in Section 4,
we introduce LEAN pruning and describe how to calculate the operator norm of various convolu-
tional operators. We discuss the setup of our experiments in Section 5. In Section 6, we demonstrate
the results of the proposed pruning approach on a series of image segmentation problems and report
practically realized wall time speedup. Our final conclusions are presented in Section 7.

2 RELATED WORK

Reducing the size of neural networks by removing parameters has been studied for decades (Mozer
& Smolensky, 1989; Karnin, 1990; Hassibi et al., 1993). Several works take into account the struc-
ture of the network to some degree. In Lin et al. (2017) filters are pruned at runtime based on the
feature maps (Lin et al., 2017). Alternatively, one can prune entire channels (He et al., 2017), or
decide which channels to keep so that the feature maps approximate the output of the unpruned
network over several training examples (Luo et al., 2017). In recent work, a graph is built for each
convolutional layer, and filters are pruned based on the properties of this graph (Wang et al., 2021).
In Salehinejad & Valaee (2021) a neural network is represented as a graph and interdependencies
are determined using the Ising model.

Many pruning approaches are aimed at reducing neural network size with little accuracy drop (Dong
& Yang, 2019; He et al., 2019; Molchanov et al., 2019; Zhao et al., 2019), as opposed to sacrificing
accuracy in favor of computation speed. These approaches rarely exceed a pruning ratio of 12–50%
(Blalock et al., 2020; Luo et al., 2017; Lin et al., 2019). When a high pruning ratio is used, e.g., a
range of 5–10% (Lin et al., 2017; Liu et al., 2019), a significant drop in accuracy is observed. Pruning
ratios of 2–10% can be achieved with an accuracy drop of 1-3% by learning-rate rewinding (Renda
et al., 2020). However, the reduction in FLOPs was less substantial (1.5–4.8 times). In Yeom et al.
(2021) severe pruning ratios of up to 1% have been considered, but the approach achieved limited
improvements in terms of FLOPs reduction compared with existing pruning methods.

Criteria for deciding which elements of a neural network to prune have been extensively studied. A
parameter’s importance is commonly scored using its absolute value. Whether this is a reasonable
metric has been questioned (LeCun et al., 1990). Singular values (which determine certain operator
norms) have been used to compress network layers (Denton et al., 2014) and to prune feed-forward
networks (Abid et al., 2002). Efficient methods for the computation of singular values have been
developed for convolutional layers (Sedghi et al., 2019). Furthermore, a definition of ReLU singular
values was proposed recently with an accompanying upper bound (Dittmer et al., 2019).

3 PRELIMINARIES

3.1 CNNS FOR SEGMENTATION

A common image to image translation task is semantic image segmentation. The goal of semantic
image segmentation is to assign a class label to each pixel in an image. A segmentation CNN
computes a function f : Rm×n → [0, 1]k×m×n, which specifies the probability of each pixel being
in one of the k classes for an m× n image.

CNNs are composed of layers of operations which pass images from one layer to the next. Every
operation, e.g., convolution, has an input x and output y. The input and output consist of one

2

Under review as a conference paper at ICLR 2022

or more images, called channels. For clarity, we distinguish throughout this paper between an
operation, which may have several input and output channels, and an operator, which computes the
relation between a single input channel and a single output channel. For instance, in a convolutional
operation with input channels x1, . . . ,xN , an output channel yj is computed by convolving input
images with learned filters

yj =

(
N∑
i=1

hij ∗ xi

)
+ bj . (1)

Here hij is the filter related to the convolution operator that acts between channel xi and yj, and
bj is an additive bias parameter. In a similar way, every CNN operation produces an output which
consists of a number of channels. The exact arrangement of operations, and connections between
them, depends on the architecture.

A common operator to downsample images is the strided convolution. The stride defines the step
size of the convolution kernel. A convolution with stride s defines a map h : Rm×n → Rm

s ×
n
s .

Upsampling images can be done by transposed convolutions. Transposed convolutions intersperse
the input image pixels with zeroes so that the output image has larger dimensions.

In addition to convolution operators, other common operators such as pooling and batch normaliza-
tion are often used. A batch normalization operator (Ioffe & Szegedy, 2015) normalizes the input
images for convolutional layers. A batch normalization operator scales and shifts an image xi by

yi = γ
xi − µB√
σ2
B + ε

+ β. (2)

Here, γ and β are scaling and bias parameters which are learned during training, and µB and σ2
B are

the running mean and variance of the mini-batch, i.e., the set of images used for the current training
step. For an overview of CNN components we refer to Goodfellow et al. (2016).

3.2 PRUNING CONVOLUTION FILTERS

Pruning techniques aim to remove extraneous parameters from a neural network. Several schemes
exist to prune parameters from a network, but retraining the network after pruning is critical to
avoid significantly impacting accuracy (Han et al., 2015). Pruning a network once after training is
called one-shot pruning. Alternatively, a network can be fine-tuned, where the network is repeatedly
pruned by a certain percentage and is retrained for a few epochs after every pruning step. Fine-tuning
typically gives better results than one-shot pruning (Renda et al., 2020).

Generic pruning algorithm: All pruning methods used in this work make use of the fine-tuning
pruning algorithm outlined in Algorithm 1. The selection criteria for determining which filters to
keep for each step define the different pruning methods. The pruning ratio pRatio is the fraction of
remaining convolutions we ultimately want to keep, and stepRatio is the fraction of convolutions
that is pruned at each step.

Algorithm 1 Fine-tuning pruning algorithm
1: procedure PRUNE(MODEL, PRATIO, NSTEPS, EPOCHS)
2: stepRatio← eln(pRatio)/nSteps

3: for step← 0 to nSteps do
4: pruneParams← selectPrunePars(model, stepRatio)
5: model← removePars(model, pruneParams)
6: for k← 0 to epochs do
7: model← trainOneEpoch(model, trainData)

return model

Here, we focus on structured pruning. In structured pruning, a common approach to decide which
filters to remove is structured magnitude pruning. When using structured magnitude pruning, a
convolution filter h ∈ Rk×k is scored by its L1 vector norm ||h||1. Filters with norms below
a threshold are pruned. The threshold is determined by sorting a group of filters, and removing a
percentage based on the pruning ratio. Thresholds can be set per layer or globally. Setting thresholds
globally can give higher accuracy than setting thresholds per layer (Blalock et al., 2020).

3

Under review as a conference paper at ICLR 2022

Conv 3x3, ReLU

Avg Pool 2x2

BatchNorm

Upconv 2x2

CNN

In
p
u
t

2

2

O
u
tp

u
t2 1

1

Pruning Graph(A) (B)

1

2
 i
n
p

u
t

ch
a
n
n
e
ls

ReLU ReLU

ReLU

2

Figure 1: (A) Example CNN architecture with the number of channels indicated above each layer.
(B) Associated pruning graph. Every channel is a node, and every operator is an edge connecting
input and output nodes. The edge weights are the corresponding operator norms.

3.3 OPERATOR NORM

As an alternative to the L1-norm, one can interpret a convolution h as a linear operator which acts
on the input image, and score it according to an operator norm. The (induced) operator norm ‖·‖p is
defined as

‖h‖p := sup
{
‖h ∗ x‖p

∣∣∣ x ∈ Rn, ‖x‖p = 1
}
. (3)

A common operator norm is the spectral norm, which is induced by the Euclidean norm (p = 2). The
spectral norm can be obtained by calculating the largest singular value of the matrix H associated
with h, ‖h‖2 = σmax(H) (Meyer, 2000). A property that we will use is that the spectral norm is
submultiplicative, i.e., we have

‖AB‖ ≤ ‖A‖ · ‖B‖ , for all A,B ∈ Rn×n. (4)

4 METHOD

The idea behind LEAN is to construct a weighted graph structure formed by the operators of the
CNN and having their respective norms as edge weights, such that the multiplicative longest paths
in this graph are selected as important subnetworks. The remaining unselected operators will then be
pruned. The motivation for LEAN is two-fold. The first consideration is that since convolutions are
linear operators, the scaling of an individual convolution within a chain of convolutions is somewhat
arbitrary. For a scalar λ and chain of linear operators A1 ◦ · · · ◦ Am, we have that any chain
(λ1A1) ◦ · · · ◦ (λmAm) is equivalent if

∏
λi = 1. Since ‖λiAi‖ = |λi| ‖Ai‖, this can lead to any

arbitrary ranking of operators. However, the chain as a whole gives the same output for each input.
We argue that this can lead to incorrect pruning when pruning individual operators based on norms,
rather than entire chains. We hypothesize that these scaling properties still approximately hold in
the presence of non-linear operators. Since LEAN ranks chains of operators, it is invariant under
these scaling properties. Second, by extracting chains LEAN combats network disjointness.

4.1 LEAN: CREATING THE PRUNING GRAPH

Graph structure: In this section, we define the pruning graph that is the basis of the LEAN algo-
rithm. As discussed in Section 3.1, we say that every CNN operation has an input x and an output
y, consisting of channels xi and yi. For each channel, we add a single node in the pruning graph.
An edge connects two nodes corresponding to input channel xi and output channel yi if channel xi
is used in the computation of channel yi. In the terminology of Section 3.1, each edge corresponds
to an operator. For instance, a convolution operation is converted by adding an edge from each input
channel xi to every output channel yj , each corresponding to exactly one filter hij . Certain CNN
operations may be performed in-place in practice, but we consider them as separate nodes in the
pruning graph. A combined convolution and ReLU operation, for instance, results in a node for the
output of the convolution and a separate node for the output of the ReLU, as shown in Figure 1.

Edge weights: To each edge, we assign as weight the operator norm of its corresponding operator.
That is, we calculate the maximal scaling that an input could undergo as a result of applying the
operator. In this calculation, we ignore any additive bias terms. For instance, applying a batch nor-
malization results in a scaling of |γ|/

√
σ2
B+ε (see Equation (2)). The scaling of non-linear operators

4

Under review as a conference paper at ICLR 2022

in neural networks is sometimes bounded, as in the case of the ReLU for instance, to which we as-
sign a weight of 1. We describe the calculation of operator norms for various convolution operators
in Section 4.3.

Path lengths: The length of a path in the graph is determined by multiplying the edge weights.
LEAN aims to model the norm of the composition of the operators corresponding to the edges.
Equation (4) states that ‖A‖·‖B‖ is an upper bound for ‖AB‖. For LEAN, we assume that ‖AB‖ ≈
‖A‖ · ‖B‖ is a reasonable approximation, although it may not hold generally. By defining the path
length as the multiplication of the edge weights (operator norms), path lengths are invariant under
scaling linear operators in a chain if the scalars multiply to 1.

There are some edge cases to consider. First, some CNNs contain operations that are meant to dis-
tribute features throughout the network, but are not implemented with learnable parameters, e.g.,
residual connections in ResNet (He et al., 2016). We include residual connections in the pruning
graph with an edge weight of 1, but label them as unprunable to prevent the residual connections
from being removed from the network. Second, we do not consider CNNs with recurrent connec-
tions. Therefore, the pruning graph is a Directed Acyclic Graph (DAG). Large pruning graphs can
be reduced in size, e.g., by merging nodes that are connected by a single edge (see Appendix B).

4.2 LEAN: EXTRACTING CHAINS FROM THE GRAPH

The LEAN method prunes chains of convolutions based on paths in the graph; we keep the longest
paths (with the highest multiplicative operator norm). We refer to this as LongEst-chAiN (LEAN)
pruning. When we perform LEAN pruning, we iteratively extract such paths from the graph until we
have reached the pruning ratio. This means that the edges that are not extracted are pruned. Finding
paths is done by iteratively running an all-pairs longest path algorithm Cormen et al. (2009).

Algorithm 2 LEAN
1: procedure LEAN(MODEL, PRUNERATIO)
2: graph← createPruningGraph(model)
3: retainedConvs← []
4: while fractionRemainingConvs < 1− pruneRatio do
5: bestChain← longestPath(graph)
6: retainedConvs← retainedConvs + bestChain
7: graph← removeFromGraph(graph, bestChain)

8: convsToPrune← convsInModel− retainedConvs
9: return convsToPrune

LEAN pruning is incorporated in the fine-tuning procedure. For each pruning step in the fine-tuning
procedure, Algorithm 2 is used to select the filters to prune (line 4 in Algorithm 1). For DAGs, the
longest path in a graph can be found in O(|V | + |E|) time, where V is the set of nodes, and E is
the set of edges (Sedgewick & Wayne, 2011). For a CNN with m channels (nodes), and k operators
(edges), we can extract a longest path in O(m + k) time. As we extract at least one operator with
every execution of line 5 in Algorithm 2, the longest path algorithm is run at most k(1−p) times. So
the worst-case complexity of Algorithm 2 isO(k(1− p)(m+ k)) for a pruning ratio p. Unprunable
edges can be part of a longest path to extract operators, but do not count towards the pruning ratio.

After every LEAN pruning step is concluded, some post-processing is performed. In some cases
there are channels which receive no input data at all, or which are equal to a homogeneous constant
image for all input data. We therefore remove nodes without incoming edges as well as nodes where
the succeeding batch normalization has running variance below some threshold (10−40 by default).
A low running variance can occur when the output of a convolution is always zero after applying
the ReLU activation function, for instance. Second, bias terms are removed from the CNN when all
associated convolution or batch normalization operations are pruned.

4.3 OPERATOR NORM CALCULATION

Operator norm of convolutions: For a convolution filter h and an n × n image, h+ is the filter
padded with zeros to size n× n. The singular values of h are the magnitudes of the complex entries

5

Under review as a conference paper at ICLR 2022

Figure 2: The output of a stride-2 convolution can be obtained by adding the result of 4 convolutions.
Split the image and filter into the coloured sections, with white entries representing zeroes, and sum
the outputs pixel-wise. The dots in the image represent the positions of the center of the filter as it
moves over the image.

of the 2D Fourier transform F2D(h
+) (Section 5 of Jain (1989))

σmax(H) = max
{∣∣F2D(h

+)
∣∣} (5)

Downsampling: operator norm for strided convolutions: A strided convolution is equal to the
sum of regular convolutions on smaller input images (see Figure 2). A single parameter of a stride-2
convolution filter is multiplied only with every other pixel (horizontally and vertically). Similarly,
filter parameters which are 2 apart are multiplied with the same pixels. Here, we calculate the
operator norm for a stride-2 convolution operator h. Let h[i] and X [i] be the partitioned convolution
kernels and input images, both zero-padded to the correct size. For a stride-2 convolution we have

h ∗2 X =

4∑
i=1

h[i] ∗X [i]. (6)

We can apply Equation 5 to obtain the singular values of h[i]. Equation 6 is analogous to the equa-
tion of a convolutional layer with 4 input channels, and 1 output channel. The operator norm of a
convolutional layer can be computed by means of a tensor P ∈ R4×1×n×n (Sedghi et al., 2019)

Pcin,cout,i,j = F2D(h
[cin]+)i,j .

According to Theorem 6 of Sedghi et al. (2019), the spectral norm of the convolutional layer equals
the maximum of the singular values of the 4 × 1 matrices P:,:,i,j . Since the matrices are single-
column, their singular value equals their L2-norm. Therefore, the spectral norm of h equals

‖h‖ = max
i,j

{∑
cin

P 2
cin,:,i,j

}
. (7)

Upsampling: operator norm for transposed convolutions: The matrix of a stride-s transposed
convolution is the transposed matrix of a stride-s convolution (Long et al., 2015). Since we have
‖A‖ =

∥∥AT∥∥, for a transposed convolution h, the operator norm can be computed by Equation 7.

5 EXPERIMENTAL SETUP

In our experiments, we compare LEAN pruning to several structured pruning methods across three
image segmentation datasets and three CNN architectures: MS-D, U-Net4, and ResNet50. We assess
the performance of pruned neural networks across 5 independent runs of fine-tuning (Algorithm
1). For each dataset, we have trained a single model as a starting point for pruning. In every
experimental run, the same trained model was pruned.

For all pruning methods, we measure the pruning ratio as the fraction of convolutions remaining:∑
h∈H M(h)/|H| where H is the set of all convolutions in a network, and M(h) is 0 if a convolution

h ∈ H is pruned and 1 otherwise. This means that other parameters, such as batch normalization and
bias parameters, are pruned when the associated convolutions are pruned, but do not count towards
the pruning ratio.

The MS-D networks were pruned to a pruning ratio of 1% in 45 steps. The U-Net4, and ResNet50
networks were pruned to a ratio of 0.1% in 30 steps. All were retrained for 5 epochs after each step.
We chose relatively severe pruning ratios because we are interested in significant computational
speedup. U-Net4 and ResNet50 are pruned to a lower ratio as they have orders of magnitude more
convolutions than the MS-D network.

6

Under review as a conference paper at ICLR 2022

5.1 STRUCTURED PRUNING METHODS

We compare LEAN to two layer-wise pruning methods, and two global pruning methods. The layer-
wise pruning methods are geometric median pruning (GM) (He et al., 2019), and soft filter pruning
(SFP) (He et al., 2018). The first global pruning method we compare to is structured magnitude
pruning, i.e., pruning entire filters by their L1-norm (see Section 3.2), and the second global method
we compare to is operator norm pruning, i.e., pruning entire filters using the operator norm. Here,
we choose to use the spectral norm. The difference between LEAN and structured magnitude prun-
ing is 1) the operator norm; 2) the consideration of network structure. The comparison of LEAN to
structured operator norm pruning measures the effect of incorporating the network structure.

We compare LEAN to structured magnitude pruning and operator norm pruning for all CNN archi-
tectures. Both GM and SFP contain implementations to prune ResNet50 but not MS-D or U-Net4,
and hence are used only in the ResNet50 experiments.

5.2 CNN ARCHITECTURES

In this section, we describe three fully-convolutional CNN architectures that are used in the ex-
periments: the Mixed-Scale Dense convolutional neural network (MS-D) network (Pelt & Sethian,
2018), U-Net (Ronneberger et al., 2015), and ResNet (He et al., 2016). Table 1 outlines which op-
erators are present in the networks. The networks were trained using ADAM (Kingma & Ba, 2014)
with lr = 0.001, minimizing the negative log likelihood function.

Convolution Batch # Edges in
CNN Strided Transposed Dilated Pooling normalization Parameters pruning graph
MS-D No No Yes No No 4.57 · 104 5.05 · 103
ResNet50 Yes No Yes Yes Yes 3.29 · 107 1.44 · 107
U-Net4 No Yes No Yes Yes 1.48 · 107 1.84 · 106

Table 1: Operators present in MS-D, ResNet50, U-Net4 architectures.

In our experiments we use MS-D networks as described in Pelt & Sethian (2018) and implemented
in Hendriksen (2020). Every layer has 1 channel and all convolutions have a dilated 3 × 3 filter,
except the final 1× 1-layer. The dilations for layer i were set to 1 + (i mod 10). The final layer is
excluded from pruning as it contributes less than 0.5% of FLOPs.

As U-Net architecture we use a fully-convolutional (FCN) U-Net4 network, i.e., a U-Net with 4
scaling operations. We used a U-Net4 architecture from the PyTorch-UNet repository Milesi (2020).
As ResNet architecture, we use an FCN-ResNet50 network (He et al., 2016). The ResNet50 model
is adapted from PyTorch’s model zoo code. We replace the max pooling layers of ResNet and U-
Net with average pooling layers as average pooling is a linear operator which can be modeled as a
strided convolution for which we can compute the operator norm. In some cases U-Net with average
pooling can perform better than with max pooling (Astono et al., 2020).

5.3 DATASETS

In our experiments, we consider three datasets: a high-noise, but relatively simple, segmentation
dataset (Pelt & Sethian, 2018) (CS dataset); the well-known CamVid dataset (Brostow et al., 2008;
2009); and a real-world X-ray CT dataset (Coban & Lucka, 2019; Coban et al., 2020) to test the
methods in practice. The CS dataset is a 5-class segmentation dataset of 1000 training, 250 valida-
tion, and 100 test images. As a starting point for pruning, we trained a 100-layer MS-D network
with an accuracy of 97.5%, ResNet50 with 95.8% accuracy, and U-Net4 with 97.6% accuracy.

The X-ray CT dataset consists of 9216 training, 2048 validation, and 1536 test images. As in
Schoonhoven et al. (2020), we use the F1-score to quantify results. As a starting point for pruning,
we trained a 100-layer MS-D network with a 0.88 F1-score, ResNet50 with a 0.85 F1-score, and U-
Net4 with a 0.88 F1-score. As in Paszke et al. (2017), experimental results on the CamVid dataset are
quantified using mean Intersection-over-Union (mIoU). As a starting point for pruning, we trained
a 150-layer MS-D with 0.52 mIoU, ResNet50 with 0.71 mIoU, and U-Net4 with 0.65 mIoU. More
details on the datasets can be found in Appendix A.

7

Under review as a conference paper at ICLR 2022

U-Net4
1.5 x 107 parameters

ResNet50
3.3 x 107 parameters

MS-D
4.5 x 104 parameters

C
ir

c
le

S
q

u
a
re

(S
im

u
la

te
d

)
D

y
n

a
m

ic
 X

-r
a
y
 C

T
(R

e
a
l-

ti
m

e
 a

p
p

lic
a
ti

o
n
)

C
a
m

V
id

(C
h
a
lle

n
g

in
g

)

Figure 3: Comparison of structured pruning methods and LEAN pruning on three datasets (rows).
Pruning methods are applied to MS-D, U-Net4, ResNet50 network architectures. The base model is
pruned to a ratio of 1% (MS-D) or 0.1% (ResNet50, U-Net4) for all datasets. This is repeated five
times (translucent lines) and the average is taken (solid lines).

6 RESULTS

6.1 EXPERIMENTAL RESULTS FOR SEVERE PRUNING

The results of the pruning experiments are displayed in Figure 3, showing that LEAN pruning at
similar accuracy obtains networks with a lower pruning ratio than the four compared methods. The
pruning ratio that can be achieved without significant loss of accuracy depends on the network
architecture and the complexity of the dataset.

In the CS dataset results, we notice a drop-off point where performance decreased significantly
for all networks. On average over 5 runs of pruning, LEAN achieved a 3.4%, 0.79%, and 0.79%
pruning ratio for MS-D, U-Net4, and ResNet50, with an average accuracy reduction of 1.4%, 2.5%,
and 2.1% respectively. On ResNet50, at an accuracy reduction of 3% compared to the unpruned
network, LEAN achieves a 43% reduction in the number of convolutions compared to GM and SFP.
Below 15% accuracy reduction SFP and GM perform better, but the network no longer reliably
segments the data at these accuracies.

On the dynamic X-ray CT dataset, we notice large fluctuations in F1 for MS-D and U-Net4. This
may be due to the F1-score which is defined as a reciprocal. In addition, on U-Net4, LEAN performs
better than the structured pruning methods right from the start. On average over 5 runs, LEAN
achieved a 5.1% and 6.3% pruning ratio for MS-D and U-Net4, with an average F1 drop of 5.7%, and
3.3% respectively. For ResNet50, a drop-off point is again observed, which occurs at a significantly
lower pruning ratio for LEAN than for both global pruning methods. GM and SFP exhibit a more
gradual reduction in F1-score.At an F1-score reduction of 3% compared to the unpruned network,
LEAN achieves a 92% reduction in the number of convolutions compared to GM and SFP.

8

Under review as a conference paper at ICLR 2022

10.9x

Figure 4: Practically realized speedup of pruned MS-D networks evaluated on the test dataset.

On the CamVid dataset, we observe a declining mIoU for MS-D and U-Net4 as pruning progresses
on this challenging dataset. On ResNet50 we notice an initial drop in mIoU, but subsequent pruning
steps increase the performance initially. These observations could indicate that 5 epochs of retraining
are not sufficient for the CamVid dataset to recover performance. Interestingly for U-Net4, we notice
that for two pruning ratios, structured magnitude pruning appears to perform slightly better than
LEAN. Given the variance between different runs, possibly due to the limited number of retraining
epochs, we suspect that this difference is not statistically significant. After the initial drop in mIoU,
we notice a later drop-off pruning ratio on ResNet50. LEAN achieves a 6.3% pruning ratio with an
average mIoU reduction of 14.3% on ResNet50, whereas the best performing other method dropped-
off at a 20.0% pruning ratio. Interestingly, both layer-wise pruning methods GM and SFP exhibit a
sustained reduction in test mIoU rather than the drop-off we observe for the global pruning methods.

6.2 SPEEDUP REAL-WORLD DYNAMIC X-RAY CT SEGMENTATION

In addition to measuring the achievable pruning ratios, we measure the practically realized wall-
time speedup. We tested this on the dynamic X-ray CT dataset for which a speedup has immediate
benefits in practice. Existing pruning support in PyTorch only masks pruned filters, thereby not
creating a faster network. Therefore, we implemented a custom MS-D model which loads only
the unpruned filters. During the experiments, an MS-D network pruned to a ratio of 2.5% (40-fold
reduction) with LEAN achieved an F1-score of 0.83 (drop of 5.4%). This network was 10.9 times
faster than the unpruned network in practice. The speed of evaluating the entire test set is impacted
by the batch size, which we take into account as shown in Figure 4. For comparison, we included the
best performing pruned MS-D network by an other pruning method (operator norm pruning) which
achieved a pruning ratio of 15.8% with an F1-score of 0.83. We show differences between MS-D
networks pruned with different pruning methods in Appendix C.

7 CONCLUSION

In this paper, we have introduced a novel pruning method (LEAN) for CNN pruning by extracting
the highest value paths of operators. We incorporate existing graph algorithms and computationally
efficient methods for determining the operator norm. We show that LEAN pruning permits removing
significantly more operators while retaining better network accuracy than several existing pruning
methods. Our results show that LEAN pruning can increase the speed of the network, both in theo-
retical speedup (FLOPs reduction) and in practice. In conclusion, LEAN enables severe pruning of
CNNs while maintaining a high accuracy, by effectively exploiting the interdependency of network
operations.

Future work could be split along several lines. First, there are more CNN operators for which
methods to compute their operator norms could be developed. Notably, we have mostly disregarded
non-linear operators in this work. Next, LEAN approximates the norm of a chain of operators using
the submultiplicative property upper bound ‖AB‖ ≤ ‖A‖·‖B‖. New methods for approximating the
norm of a chain of composed operators could strengthen LEAN as it more accurately extracts chains
with strong operator norms. In addition, new graph theoretic approaches for extracting meaningful
paths from the graph could be explored. Such algorithms are already abundant in the field of graph
theory, and could quite readily be carried over to neural network pruning research. Lastly, LEAN
currently works by greedily extracting high-value paths. Approaches such as Guo et al. (2016) could
be considered to avoid greedy selection of operators.

9

Under review as a conference paper at ICLR 2022

8 REPRODUCIBILITY STATEMENT

In order to aid reproducibility the authors have published (Python) code for LEAN pruning. There
are installation instructions that aim to help users install and run the code on their machines, as
well as explanations and documentation for the code and scripts. The scripts are intended to be
usable on relatively simple machines (with GPU and CUDA), and to be limited to several minutes
run time. First, the code contains a script to generate the CircleSquare (CS) dataset. Second, the
code contains a script to train an MS-D network (a pre-trained network is also supplied) on the CS
dataset. The script uses the MS-D network as it is the least computationally expensive to run, but
the U-Net4 and ResNet50 models and pruning methods are also supplied. Third, the code contains
a script to run LEAN pruning, and the two global pruning methods, on the trained MS-D network
for the CS dataset (example results are also supplied). This way, users can check the experimental
results, and experiment themselves with the LEAN method. In addition, the code contains several
testing procedures that aim to verify the correctness of the function in the code. For example, the
Fourier-based method of computing the operator norm is tested against the power method for random
convolutions and strides, and against explicitly computing the SVD of the matrix that is associated
with a convolution. Another example is that these tests check whether the pruning methods actually
prune the correct number of convolutions. The code is submitted as .zip file in the supplementary
materials section, with README instructions.

REFERENCES

S. Abid, F. Fnaiech, and M. Najim. A new neural network pruning method based on the singular
value decomposition and the weight initialisation. In 2002 11th European Signal Processing
Conference, pp. 1–4, 2002. 2

Indriani P. Astono, James S. Welsh, Stephan Chalup, and Peter Greer. Optimisation of 2D U-
Net Model Components for Automatic Prostate Segmentation on MRI. Applied Sciences, 10
(7), 2020. ISSN 2076-3417. doi: 10.3390/app10072601. URL https://www.mdpi.com/
2076-3417/10/7/2601. 7

Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. SegNet: A deep convolutional encoder-
decoder architecture for image segmentation. IEEE transactions on pattern analysis and machine
intelligence, 39(12):2481–2495, 2017. 13

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What is the state of
neural network pruning? Proceedings of Machine Learning and Systems, 2020. 1, 2, 3

Gabriel J Brostow, Jamie Shotton, Julien Fauqueur, and Roberto Cipolla. Segmentation and recog-
nition using structure from motion point clouds. In European conference on computer vision
(ECCV), pp. 44–57. Springer, 2008. 7, 13

Gabriel J Brostow, Julien Fauqueur, and Roberto Cipolla. Semantic object classes in video: A
high-definition ground truth database. Pattern Recognition Letters, 30(2):88–97, 2009. 7, 13

Sophia Bethany Coban and Felix Lucka. Dynamic 3D X-ray micro-CT data of a tablet dissolution
in a water-based gel, 2019. URL https://doi.org/10.5281/zenodo.3610187. 7, 13

Sophia Bethany Coban, Felix Lucka, Willem Jan Palenstijn, Denis Van Loo, and Kees Joost Baten-
burg. Explorative Imaging and Its Implementation at the FleX-ray Laboratory. Journal of Imag-
ing, 6(4):18, 2020. URL "https://doi.org/10.3390/jimaging6040018". 7, 13

Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
algorithms. MIT press, 2009. 5

Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Exploiting linear
structure within convolutional networks for efficient evaluation. In Advances in neural informa-
tion processing systems, pp. 1269–1277, 2014. 2

S. Dittmer, E. J., and P. Maass. Singular values for relu layers. IEEE Transactions on Neural
Networks and Learning Systems, pp. 1–12, 2019. 2

10

https://www.mdpi.com/2076-3417/10/7/2601
https://www.mdpi.com/2076-3417/10/7/2601
https://doi.org/10.5281/zenodo.3610187
"https://doi.org/10.3390/jimaging6040018"

Under review as a conference paper at ICLR 2022

Xuanyi Dong and Yi Yang. Network pruning via transformable architecture search. In Advances in
Neural Information Processing Systems, pp. 760–771, 2019. 2

David Eigen and Rob Fergus. Predicting depth, surface normals and semantic labels with a common
multi-scale convolutional architecture. In Proceedings of the IEEE international conference on
computer vision, pp. 2650–2658, 2015. 13

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT Press, 2016. 3

Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for efficient dnns. In
Proceedings of the 30th International Conference on Neural Information Processing Systems, pp.
1387–1395, 2016. 9

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In Advances in neural information processing systems, pp. 1135–1143,
2015. 3

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. International Conference on Learning
Representations (ICLR), 2016. 1

Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal brain surgeon and general network
pruning. In IEEE international conference on neural networks, pp. 293–299. IEEE, 1993. 2

K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2016. 5, 7

Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. Soft filter pruning for accelerating
deep convolutional neural networks. In Proceedings of the 27th International Joint Conference
on Artificial Intelligence, 2018. 7

Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning via geometric median for
deep convolutional neural networks acceleration. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2019. 2, 7

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural net-
works. In Proceedings of the IEEE international conference on computer vision, pp. 1389–1397,
2017. 2

Allard A. Hendriksen. Mixed-scale dense networks for pytorch. https://github.com/
ahendriksen/msd_pytorch, 2020. 7

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. International Conference on Machine Learning (ICML), 2015.
3

Anil K. Jain. Fundamentals of Digital Image Processing. Prentice-Hall, Inc., USA, 1989. ISBN
0133361659. 6

E. D. Karnin. A simple procedure for pruning back-propagation trained neural networks. IEEE
Transactions on Neural Networks, 1(2):239–242, 1990. 1, 2

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations (ICLR), 2014. 7

Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in neural
information processing systems, pp. 598–605, 1990. 2

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015. 1

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient ConvNets. In 5th International Conference on Learning Representations, ICLR 2017,
2017. 1

11

https://github.com/ahendriksen/msd_pytorch
https://github.com/ahendriksen/msd_pytorch

Under review as a conference paper at ICLR 2022

Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. Runtime neural pruning. In Advances in neural
information processing systems, pp. 2181–2191, 2017. 2

Shaohui Lin, Rongrong Ji, Chenqian Yan, Baochang Zhang, Liujuan Cao, Qixiang Ye, Feiyue
Huang, and David Doermann. Towards optimal structured CNN pruning via generative adver-
sarial learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2019. 2

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value of
network pruning. International Conference on Learning Representations (ICLR), 2019. 2

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 3431–3440, 2015. 6

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural
network compression. In Proceedings of the IEEE international conference on computer vision,
pp. 5058–5066, 2017. 1, 2

Carl D Meyer. Matrix analysis and applied linear algebra, volume 71. Siam, 2000. 4

Alexandre Milesi. Unet: semantic segmentation with pytorch. https://github.com/
milesial/Pytorch-UNet, 2020. 7

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation
for neural network pruning. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2019. 2

Michael C Mozer and Paul Smolensky. Skeletonization: A technique for trimming the fat from
a network via relevance assessment. In D. S. Touretzky (ed.), Advances in Neural Information
Processing Systems 1, pp. 107–115. Morgan-Kaufmann, 1989. 1, 2

Jongsoo Park, Sheng Li, Wei Wen, Ping Tak Peter Tang, Hai Li, Yiran Chen, and Pradeep Dubey.
Faster CNNs with direct sparse convolutions and guided pruning. International Conference on
Learning Representations (ICLR), 2017. 1

Adam Paszke, Abhishek Chaurasia, Sangpil Kim, and Eugenio Culurciello. ENet: A deep neural
network architecture for real-time semantic segmentation. International Conference on Learning
Representations (ICLR), 2017. 7, 13

Daniël M. Pelt and James A. Sethian. A mixed-scale dense convolutional neural network for image
analysis. Proceedings of the National Academy of Sciences, 115(2):254–259, 2018. ISSN 0027-
8424. doi: 10.1073/pnas.1715832114. URL http://www.pnas.org/content/115/2/
254. 7, 13

Alex Renda, Jonathan Frankle, and Michael Carbin. Comparing rewinding and fine-tuning in neural
network pruning. International Conference on Learning Representations (ICLR), 2020. 2, 3

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional networks for biomedi-
cal image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pp. 234–241, 2015. 1, 7

Hojjat Salehinejad and Shahrokh Valaee. Pruning of convolutional neural networks using ising
energy model. In ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 3935–3939, 2021. 2

R. Schoonhoven, J. W. Buurlage, D. M. Pelt, and K. J. Batenburg. Real-time segmentation for
tomographic imaging. In 2020 IEEE 30th International Workshop on Machine Learning for
Signal Processing (MLSP), pp. 1–6, 2020. doi: 10.1109/MLSP49062.2020.9231642. 7, 13

Robert Sedgewick and Kevin Wayne. Algorithms. Addison-wesley professional, 4 edition, 2011. 5

Hanie Sedghi, Vineet Gupta, and Philip M Long. The singular values of convolutional layers. Inter-
national Conference on Learning Representations (ICLR), 2019. 2, 6

12

https://github.com/milesial/Pytorch-UNet
https://github.com/milesial/Pytorch-UNet
http://www.pnas.org/content/115/2/254
http://www.pnas.org/content/115/2/254

Under review as a conference paper at ICLR 2022

Chunwei Tian, Yong Xu, and Wangmeng Zuo. Image denoising using deep CNN with batch renor-
malization. Neural Networks, 121:461–473, 2020. 1

Zi Wang, Chengcheng Li, and Xiangyang Wang. Convolutional neural network pruning with struc-
tural redundancy reduction. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 14913–14922, 2021. 2

Nan Yang, Lukas von Stumberg, Rui Wang, and Daniel Cremers. D3vo: Deep depth, deep pose and
deep uncertainty for monocular visual odometry. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 1281–1292, 2020. 1

T. Yang, Y. Chen, and V. Sze. Designing energy-efficient convolutional neural networks using
energy-aware pruning. In 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 6071–6079, 2017. 1

Seul-Ki Yeom, Philipp Seegerer, Sebastian Lapuschkin, Alexander Binder, Simon Wiedemann,
Klaus-Robert Müller, and Wojciech Samek. Pruning by explaining: A novel criterion for deep
neural network pruning. Pattern Recognition, 115:107899, 2021. 2

Chenglong Zhao, Bingbing Ni, Jian Zhang, Qiwei Zhao, Wenjun Zhang, and Qi Tian. Variational
convolutional neural network pruning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2019. 2

A APPENDIX: DATASETS

In this appendix we discuss some more details on the datasets used for experimentation.

Figure 5: Example input and target images of the (Left) Circle-Square (CS), (middle) CamVid,
(right) real-world dynamic CT datasets.

Simulated Circle-Square (CS) dataset: We used a simulated high-noise 5-class segmentation
dataset containing 256 × 256 images of randomly placed squares and circles (CS dataset) (Pelt
& Sethian, 2018) (see Figure 5). The objects were assigned a random grey value and Gaussian
noise was added to the images. In total, we generated 1000 training, 250 validation, and 100 test
images. Experimental results on the CS dataset are quantified using global accuracy, i.e., the ratio
of correctly classified pixels, regardless of class, to the total number of pixels.

CamVid: The Cambridge-driving Labeled Video Database (CamVid) (Brostow et al., 2008; 2009)
is a collection of videos with labels, captured from the perspective of a driving automobile. In total,
700 labeled frames are split into 367 training, 100 validation, and 233 test images. As there are
few training images, we combined the training and validation datasets and trained for a fixed 500
epochs. Similar to other papers that apply CNNs to CamVid (Badrinarayanan et al., 2017; Paszke
et al., 2017), we use 11 classes, and a single class representing unlabeled pixels (see Figure 5).

We used median frequency balancing (Eigen & Fergus, 2015) to balance classes for training, and set
the unlabeled class weights to zero. During training, we used data augmentation by cropping and
(horizontally) flipping input images.

Real-world dynamic CT dataset: The real-time dynamic X-ray CT dataset contains images of a
dissolving tablet suspended in gel (Coban & Lucka, 2019; Coban et al., 2020). The bubbles are to
be segmented within a glass container filled with gel (Schoonhoven et al., 2020) (see Figure 5). The
dataset consists of 512 × 512 images, split into 9216 training images, 2048 validation images, and
1536 test images. As in Schoonhoven et al. (2020), we use the F1-score because the large amount
of background pixels make global accuracy an unsuitable metric.

13

Under review as a conference paper at ICLR 2022

0 20 40 60 80 100

0

20

40

60

80

100

Unpruned

0 20 40 60 80 100

0

20

40

60

80

100

Random

0 20 40 60 80 100

0

20

40

60

80

100

Magnitude

0 20 40 60 80 100

0

20

40

60

80

100

Operator norm

0 20 40 60 80 100

0

20

40

60

80

100

LEAN

Figure 6: Adjacency matrices of active convolutions (in white) after pruning. All pruned network were pruned to a ratio of 10%. From
left to right, we have the unpruned matrix of a 100-layer MS-D network trained on the real-world dynamic CT dataset, randomly pruned
convolutions, structured magnitude pruning, structured operator norm pruning, and LEAN.

B APPENDIX: REDUCING THE SIZE OF THE PRUNING GRAPH

The procedure outlined in Section 4 can lead to large pruning graphs, but the size of the graph can be
reduced. First, according to Equation 3, the operator norm of ReLU is 1. Therefore, the combination
of a convolution followed by a ReLU can be combined into a single edge whose weight equals the
norm of the convolution.

Batch normalization often succeeds a convolution. Batch-normalization scaling is applied with dif-
ferent learned parameters per input channel, and output a single channel. Therefore, the input con-
volution edge and the following batch normalization edges can be combined. The edges can be
combined into a single edge whose weight is the product of the two edge weights, preserving the
path length.

C APPENDIX: STRUCTURE OF PRUNED MS-D NETWORKS

To investigate the structure of pruned networks we plotted the adjacency matrices of pruned net-
works where an entry is 0 if it is pruned (black) and 1 if it is still active (white). Here, we show the
adjacency matrices of MS-D networks pruned to a ratio of 10% in Figure 6. After pruning, LEAN
retains only connections linked to nearby layers in the densely connected MS-D network. Compared
to individual filter pruning, LEAN exposes a distinct structure which may suggest that LEAN could
be used for architecture discovery.

14

