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Abstract

The fundamental goal of deep multi-view clustering is to achieve preferable task
performance through inter-view cooperation. Although numerous DMVC ap-
proaches have been proposed, the collaboration role of individual views have not
been well investigated in existing literature. Moreover, how to further enhance
view cooperation for better fusion still needs to be explored. In this paper, we
firstly consider DMVC as an unsupervised cooperative game where each view can
be regarded as a participant. Then, we introduce the Shapley value and propose a
novel MVC framework termed Shapley-based Cooperation Enhancing Multi-view
Clustering (SCE-MVC), which evaluates view cooperation with game theory. Spe-
cially, we employ the optimal transport distance between fused cluster distributions
and single view component as the utility function for computing shapley values.
Afterwards, we apply shapley values to assess the contribution of each view and
utilize these contributions to promote view cooperation. Comprehensive experi-
mental results well support the effectiveness of our framework adopting to existing
DMVC frameworks, demonstrating the importance and necessity of enhancing the
cooperation among views.

1 Introduction

Recently, multi-view clustering has become one of the most prominent problems in unsupervised
learning[1, 2, 3, 4]. It leverages data from different views, combining them to provide richer
information for clustering tasks. Generally speaking, multi-view clustering can be broadly categorized
into traditional methods [5, 6, 7, 8] and deep multi-view clustering (DMVC) [5, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19] methods. Compared to the limited feature extraction capabilities of traditional
methods, deep multi-view clustering methods better preserve information from different views
through flexible deep neural networks. For most DMVC methods, the key challenge is how to
enhance cooperation among views to accomplish better clustering performance[20].

Numerous DMVC algorithms have already achieved significant results in downstream clustering
tasks. However, there has been little research on investigating the the contribution of each view in
the fusion stage. Once evaluating the view contribution, we may observe the phenomenon: One
view dominates the fusion process, suppressing the collaborative contribution of other views, leading
to suboptimal clustering results. We attribute this phenomenon to insufficient cooperation between
views, and thus propose a fundamental assumption: More balanced contributions and more extensive
cooperation among multiple views can lead to better clustering results, as shown in Fig. 1.
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Figure 1: Performance evaluation of view cooperation contribution and fusion ACC on (a) Caltech101-
7 (b) UCI-digit. As can be seen, our proposed SCE framework clearly promotes inter-view cooperation
and achieves more satisfactory performance.

To this end, we consider introducing the concept of game theory into multi-view clustering and
propose the Shapley-based Cooperation Enhancing (SCE) method. Shapley value[21, 22] is a concept
used to measure the contribution of participants in game theory[23, 24]. It utilizes a utility function
to evaluate the different marginal contributions that each participant brings when combined with
other participants, and calculates their contribution to the overall cooperation by taking the weighted
average over all possible combinations of participants[21]. Upon quantifying the contribution of
each view, the cooperation among views can be analyzed based on their respective contributions.
By employing a module that enhances view cooperation, we can dynamically adjust the parameter
convergence rate of views during training in accordance with their contributions. This enables the
underrepresented views to receive a more balanced training regimen, thereby enhancing post-fusion
performance[25].

The primary contributions of this work can be summarized as follows:

• Our work is the first framework to evaluate the view contributions within an unsupervised con-
text. Leveraging the proposed View Contribution Evaluation Module, we theoretically quantify the
individual contributions of views.

• We propose the View Cooperation Enhancing Module based on the view contributions obtained by
the View Contribution Evaluation Module, allowing suppressed views to effectively participate in the
fusion process, ultimately enhancing clustering performance.

• Comprehensive experiments have been conducted to showcase the versatility of our SCE framework,
which can effectively evaluate the contributions of views across various MVC frameworks.

2 Related Work

2.1 Deep Multi-view Clustering

In deep multi-view clustering[26, 27, 28, 29], deep neural networks[30, 31] with multiple nonlinear
transformations are more effective at acquiring feature representations than traditional shallow
models. Presently, deep multi-view clustering methods fall into three main categories[32, 33]: joint
methods[34, 35, 36], alignment-based methods[14, 37, 38, 39], and other methods[40, 41, 42]. Joint
methods consider differences and complementarities among views, optimizing sample representations
within each view’s space. For example, the DMJC[35] utilizes autoencoders to generate view
representations, refining them as pseudo-labels for self-supervised optimization. Alignment-based
methods focus on consistency between views, mapping representations into a shared subspace. These
methods often employ contrastive learning, such as ProImp[43], which integrates contrastive learning
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at both sample and prototype levels. Some approaches combine joint and alignment-based methods,
like the share-specific method[40], which separates sample representations into shared and specific
components, aligns shared representations into a common space, and refines specific representations
in separate spaces.

2.2 Rethinking of Cooperation in DMVC

The core concept of DMVC is to enhance clustering performance by fostering enhanced cooper-
ation and utilizing complementary information across views. Although existing DMVC research
emphasizes leveraging inter-view cooperation for improved clustering tasks, there is currently a lack
of research quantifying the contribution of views during the fusion stage to enhance cooperation.
Multi views[20] and multi modalities[44] are two closely intertwined domains. Within the realm
of multimodal fusion, studies have surfaced highlighting the issue of subpar collaboration among
modalities, prompting endeavors to alleviate the imbalance in modality cooperation. Wang et al. [45]
uncovered varying convergence rates among diverse modalities, leading to a scenario where jointly
trained multimodal models struggle to match or outperform their unimodal counterparts. Furthermore,
Peng et al. [25] demonstrated that in the context of audio-visual learning, superior performance in
the audio modality hampers the optimization of the video modality.

Drawing inspiration from prior studies, our research aims to evaluate the individual contributions of
each view in multi-view clustering fusion. Nevertheless, evaluating view contribution based solely
on labels in unsupervised environments is infeasible. Moreover, employing weights as a measure
for view contribution may not align with all DMVC structures, especially those based on contrastive
learning frameworks. Consequently, quantifying view contributions in fusion and fostering their
cooperation pose significant research challenges.

2.3 Shapley Value: a Method for Evaluating Contribution.

In order to reasonably and effectively evaluate the contributions of each view in the fusion process,
we refer to the theoretical framework of game theory. The Shapley value [46] within game theory
proves instrumental in quantifying participants’ contributions to cooperative coalitions. Denote
X = {xi}ni=1 as the alliances of n participants. For a participant xi, the Shapley value considers xi’s
contribution in every set that includes him. Let Si = {S ⊆ X|xi ∈ S} represent the set of all subsets
of X that include the participant xi, then, the overall contribution of member xi, i.e., the Shapley
value, can be expressed as

Shapleyi =
∑
s∈Si

(|s| − 1)!(n− |s|)!
n!

[v(s)− v(s\{i})], (1)

where |s| signifies the cardinality of set s; v(·) represents the utility function; [υ(s) − υ(s\{i})]
quantifies the marginal contribution of xi to set s; and (|s|−1)!(n−|s|)!

n! denotes the weight assigned to
this marginal contribution, determined by the probability of set s occurring.

Given the advantageous characteristics of Shapley values—efficiency, symmetry, dummy, and ad-
ditivity—researchers have increasingly employed them for explaining machine learning models.
For instance, Lundberg et al. [47] proposed a method to interpret predictions by computing feature
importance based on Shapley values. Hu et al. [48] applied Shapley values to evaluate modality
contributions in supervised tasks, while Wei et al. [49] explored modality assessment using Shapley
values. However, these studies focus mainly on supervised scenarios, making the definition of utility
functions for Shapley values in unsupervised settings a challenging task yet to be resolved.

3 Method

3.1 Problem Statement

Given a multi-view dataset X = {X(1),X(2), ...,X(V )} , where V is the number of views, and
X(v)(v = 1, 2, ..., V ) denotes the original feature space of the v-th view. Consider the clustering
problem on the dataset, each cluster is represented by a clustering center µ(v)

j , j = 1, ...,K, where
K is the number of clusters. To achieve better clustering performance, we map the original fea-
ture space X(v) to a latent embedded feature space Z(v) through a non-linear mapping function
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Figure 2: The framework of our proposed SCE model. SCE framework can be applied to most
mainstream DMVC methods. After obtaining the cluster distribution from the selected method,
SCE iteratively using the following two modules: View Contribution Evaluation Module and View
Cooperation Enhancing Module. View Contribution Evaluation Module computes the marginal
contribution of views in each combination(Shapley value), in which the optimal transport distance
between the view cluster distribution and the strengthened cluster distribution after fusion serves as the
utility function of Shapley formula. View Cooperation Enhancing Module controls the convergence
speed ratio of different views through the calculated view contribution.

f
(v)

θ(υ) : X(v) → Z(v), where θ(v) represents the learnable parameters of mapping function for the
v-th view.

3.2 View Contribution Evaluation Module

Modified Shapley Value for Multi Views

To assess the contributions of each view in MVC tasks, we treat each view as a player and introduce
the Shapley value referring to Eq. (1). Let X = {X(i)}Vi=1 be the set of all views, Sv = {S ⊆
X |X(v) ∈ S} represent the set of all subsets of X that include the v-th view X(v). Define an internal
metric of clustering E independently of labels to serve as a utility function, which will be elaborated
on in the next subsection. Then the Shapley value of the v-th view can be calculated as

Shapleyv =
∑
s∈Sv

(|s| − 1)!(V − |s|)!
V !

[
E(s)− E(s\{X(v)})

]
, (2)

where |s| denotes the number of views in the view-set s.

Utility Function in Shapley Value

In Shapley value, the utility function is used to evaluate the benefit created by a coalition. In
DMVC, where each view acts as a participant, the utility function needs to be designed to reflect the
contribution of any combination of views in fusion, without the need for label assistance. In this
scenario, we constructed a novel function E using the following method.

Inspired by the DEC model [50], we assume that the data from each view follows a Student’s t-
distribution. Following the approach outlined by [51], we utilize the t-distribution as a kernel function
to evaluate the distance between the sample embeddings zi and the cluster centers µj within a view:

qij =
(1 + ∥zi − µj∥2/α)−

α+1
2∑

j′(1 + ∥zi − µj′∥2/α)−
α+1
2

, (3)

where α represents the degrees of freedom in the t-distribution. qij denotes the probability of
assigning the feature zi to the cluster center µj .
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Fix the degrees of freedom α to 1, the cluster distribution of multi-view data q can be considered as a
combination of single-view cluster distribution based on a weight matrix π:

qij =

∑
v π

(v)
j (1 + ∥z(v)i − µ

(v)
j ∥2)−1∑

j′
∑

v′ π
(v′)
j′ (1 + ∥z(v

′)
i − µ

(v′)
j′ ∥2)−1

, (4)

where the weight matrix π ∈ RK×V represents the importance of the cluster centers µj in different
views. This weight matrix π can be obtained by performing row normalization on an unconstrained
trainable matrix W:

π
(v)
j =

eW
(v)
j∑V

i=1e
W

(i)
j

. (5)

For any given combination of an m-view union U = {X(u1),X(u2), ...,X(um)}, we can obtain the
weight matrix πU by selecting the corresponding columns in the matrix W. By applying Eq. (3), we
derive the data distribution for the fused view, which is denoted as qU .

In particular, if U = ∅, which means no view is involved in the clustering process, we consider q∅

to be a uniform distribution. This means that the probability of any embedding zi belonging to any
cluster µj is equal and given by 1/K, where K is the total cluster numbers. In this case, we denote
the resulting data distribution q∅ as

q∅ =
1

K
1N×K , (6)

where 1N×K ∈ RN×K is a matrix in which all elements are equal to 1.

According to the principle of self-distillation in DEC, we sharpen the fused distribution qX from all
views to obtain a more powerful target distribution p:

pij = (qX
ij)

2/
∑
j

(qX
ij)

2. (7)

Since we consider the distribution p as the trend of the fusion process, the closer the fusion distri-
bution qU (combined with U = {X(u1),X(u2), ...,X(um)}) is to the distribution p, the higher the
participation of view set U in the fusion process. Therefore, we can use the optimal transport distance
from distribution qU to distribution p as a measure of confidence for distribution qU . Additionally,
based on our desire for the metric to possess monotonicity and boundedness, we define the utility
function based on distribution transportation as:

E(U) = 1

1 +OT (p,qU )
, (8)

where OT (·, ·) is calculated as wasserstein distance and E(·) ∈ (0, 1]. The closer the data distribution
is to the pseudo-labels p, the larger the value of the metric E(·).
In the process of computing the optimal transport OT (·, ·), we consider the distribution q as a
probability set where K cluster centers are assigned by N samples. The probability of each cluster
center is 1/K. For example, when calculating OT (q{X(1)},q{X(2)}), the distribution of views can
be represented as [1/K, 1/K, ..., 1/K]T , and the distance matrix {Dij}K×K can be calculated as

Dij =∥ ξ
(1)
i − ξ

(2)
j ∥22, (9)

where the j-th cluster center for the v-th view can be represented as ξ(v)j = {q(v)
ij }N×1.

Shapley-based View Contribution: a Formal Representation

In the above subsections, we have already discussed the integration of cooperative game theory with
multi-view clustering tasks. We have also defined a utility function E that reflects the accuracy
of clustering. Now, combining the Eq. (2) and (8), we present the formal representation of view-
contribution through Shapley values:

Shapleyv =
∑
s∈Sv

|s− 1|!(V − |s|)!
V !

[
1

1 +OT (p,qs)
− 1

1 +OT (p,qs\{X(v)})

]
. (10)
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The sum of all view contributions is then calculated as:∑
v

Shapleyv =
1

1 +OT (p,qX )
− 1

1 +OT (p,q∅)
. (11)

As p and qX evolve throughout training, the sum of Shapley values for all views also fluctuate
accordingly. To obtain the contribution proportions of each view to the fused view, let

φv =
Shapleyv∑V
i=1 Shapleyi

, (12)

where φv is the normalized Shapley value, determining the respective contribution of different views.

3.3 Theoretical Analysis

To further demonstrate the generalization performance of the View Contribution Evaluation Module,
we apply it to the alignment-based method and the joint method, respectively. The relevant theoretical
derivations are given below.

Theorem 1: For alignment-based methods, considering the representation {z(1)i }Ni=1 and {z(2)i }Ni=1
on two views, with the infoNCE contrastive learning loss:

ℓ
(1)
i = − log

exp(z(1)i

⊤
z(2)i /τl)∑N

j=1

[
exp(z(1)i

⊤
z(1)j /τl) + exp(z(1)i

⊤
z(2)j /τl)

] , (13)

ℓcon(1, 2) =
1

2N

N∑
i=1

(
ℓ
(1)
i + ℓ

(2)
i

)
, (14)

where N is the sample number and τ > 0 is a scalar temperature hyperparameter. ℓcon(1, 2) brings the
representations between views closer, leads to the average of view contributions, i.e., |ϕ1 − ϕ2| → 0.

Theorem 2: For joint methods, considering the representation Z(1) = f
(1)

θ(1)(X(1); θ(1)) and Z(2) =

f
(2)

θ(2)(X(2); θ(2)) on two views, with a simple view-level weight fusion during the fusion process:
Z = w1Z(1) + w2Z(2). There are situations where view 2 is dominated by view 1 and cannot make
its contribution, i.e., w1 ≫ w2.

Remark: Theorem 1 indicates that alignment-based methods tend to align the contributions of
different views. Under our assumption, the cooperation between views is already sufficient, optimizing
the model based on contributions can only lead to limited improvements. Theorem 2 suggests that in
joint methods, one view may suppress another, highlighting insufficient cooperation between views.
In such cases, enhancing cooperation between views theoretically improves model performance.
We will elaborate on the View Cooperation Enhancing Module in Section 3.4 and validate these
conclusions through experiments. The proofs for Theorems 1 and 2 can be found in Appendix.

3.4 View Cooperation Enhancing Module

After acquiring contributions of different views, we seek to enhance their cooperation by dynamically
regulating views’ training speeds according to these contributions. This proportional control guaran-
tees active involvement of all views in the integration process. For this purpose, we introduce the
convergence speed ratio, labeled as k, derived from the contributions of each view.

To ensure the applicability of our Shapley-based Cooperation Enhancing(SCE) method to most
multi-view clustering tasks, we consider a typical multi-view clustering framework: firstly, obtain
embeddings for each view by utilizing autoencoders; then, fuse the embeddings from different views
using a global optimization goal. Let f (v)

θ(v)(X(v); θ(v)) represent the encoder model for the v-th view,
g denote the fusion method for multiple views, and l represent the loss function for computing the
fusion loss. The overall fusion loss L can be represented as

L(θt) = l(g(f
(1)

θ(1)(X(1); θ
(1)
t ), f

(2)

θ(2)(X(2); θ
(2)
t ), ..., f

(V )

θ(V )(X(V ); θ
(V )
t ))). (15)
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In practice, the parameters for the v-th view is updated as

θ
(v)
t+1 = θ

(v)
t − η∇θ(v)L(θ

(v)
t ). (16)

With the normalized Shapley values calculated by Eq. (12) to dynamically monitor the contribution
differences between different views, we are able to adaptively modulate the gradients via an empirical
formula:

kv = eτ(φmin/φv−1), (17)
where τ is a temperature hyperparameter to control the degree of modulation. Thus kv is not greater
than 1, and the larger the contribution of the view, the smaller the kv . We integrate the coefficient ki
into the Adam optimization method, and the update of θ(v)t+1 at iteration t is as follows:

θ
(v)
t+1 = θ

(v)
t − kv · η

∂l

∂g
· ∂g

∂fv
· ∂fv

∂θ
(v)
t

, (18)

where kv is used as a relative convergence speed ratio for the v-th view in gradient descent.

Theorem 3: For joint methods that use view-level weight fusion Z = w1Z(1) + w2Z(2), where
Z(1) = f

(1)

θ(1)(X(1); θ(1)) and Z(2) = f
(2)

θ(2)(X(2); θ(2)), gradient modulation in Eq. (18) allows the two
views to contribute more evenly, i.e., w1

w2
→ 1.

Remark: Theorem 3 indicates that through dynamic gradient adjustments, we can harmonize the
learning progress among different views, attain a more average distribution of contributions, and
enhance the cooperation among views. The proof for Theorem 3 can be found in Appendix.

Algorithm 1: Shapley-based Cooperation Enhancing Multi-view Clustering(SCE-MVC)

Input: Multi-view dataset {X(v)}Vv=1, temperature hyperparameter τ
Output: cluster labels ŷ

// Warm-up training
Obtain initial cluster assignments through a selected algorithm;
// Optimization with SCE module
while the fusion loss has not converge do

// View Contribution Evaluation
Obtain shapley value for each view with Eq. (4), (7) and (10);
Normalize the shapley value as view contribution with Eq. (12);
// View Cooperation Enhancing
Calculate the convergence speed ratio kv for each view with Eq. (17);
Update the parameters of each view relatively with Eq. (18);

return;

3.5 Implementation

This subsection outlines the implementation of our SCE module, detailed in Algorithm 1. After
obtaining initial cluster center assignments, we iteratively employ the following two modules:

View Contribution Evaluation. First, we calculate the cluster distribution for each individual view as
well as the combined view. Next, we compute an enhanced distribution p. After utilizing the optimal
transport distance between distributions as the utility function, we can calculate view contributions.

View Cooperation Enhancing. We utilize the calculated contribution values to influence the training
process of each view using a convergence ratio k. The larger the contribution value of a view, the less
the convergence ratio k will be. This will coordinate the training process of the views, enabling better
cooperation among views, and allowing them to collaborate more effectively.

4 Experiments

In this section, we implement experiments on alignment-based method and joint method to verify the
effectiveness of the proposed theorems and SCE module by addressing the following questions:
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RQ1: For alignment-based MVC methods, do the contributions of views calculated by the View
Contribution Evaluation Module exhibit relative uniformity, thereby validating Theorem 1?

RQ2: In the case of uniform view contributions, can model performance be further enhanced by the
View Cooperation Enhancing Module?

RQ3: For joint methods, are extreme view contributions present, thereby validating Theorem 2?

RQ4: Can model performance be enhanced by harmonizing view contributions through View
Cooperation Enhancing Module, thereby validating Theorem 3?

RQ5: How do the hyper-parameter τ impact the performance of SCE-MVC?

Table 1: Dataset summary.
Dataset Views Samples Clusters Dataset Views Samples Clusters

CUB 2 600 10 UCI-digit 3 2000 10
Caltech101-7 2 1474 7 STL10 4 13000 10
HandWritten 3 2000 10 Reuters 5 1200 6

Table 2: Analyzing view contribution under InfoNCE+Kmeans and ProImp frameworks on CUB and
Caltech101-7 datasets.

Dataset Method View Contribution Metrics
ϕ1 ϕ2 ACC NMI ARI

CUB

InfoNCE+Kmeans 0.491 0.509 0.715 0.748 0.626
InfoNCE+Kmeans+SCE 0.493 0.507 0.717 0.747 0.626
ProIMP[43] 0.556 0.443 0.825 0.756 0.671
ProIMP+SCE 0.484 0.516 0.832 0.762 0.678

Caltech101-7

InfoNCE+Kmeans 0.484 0.516 0.351 0.486 0.272
InfoNCE+Kmeans+SCE 0.496 0.504 0.364 0.485 0.281
ProIMP[43] 0.489 0.511 0.382 0.468 0.281
ProIMP+SCE 0.499 0.501 0.382 0.470 0.279

4.1 Datasets, Metrics and Experimental settings

Our experiments utilized six multi-view datasets, including CUB2, Caltech101-73, HandWritten4,
UCI-digit5, STL106 and Reuters7. The detailed information of these datasets is listed in the Table 1.
Meanwhile, three widely used metrics are adopted in our experiment, including clustering accuracy
(ACC), normalized mutual information (NMI) and adjusted rand index(ARI).

For fairness, We conduct all experiments on PyTorch platform using the NVIDIA 2060 GPU.
Besides, ten state-of-the-art MVC methods are introduced: DEMVC[13], CoMVC[14], SiMVC[14],
SDSNE[15], MFLVC[16], SDMVC[17], DSMVC[18], APADC[52], DMJC[35] and ProImp[43].

4.2 Evaluate on Alignment-based Methods(RQ1 & RQ2)

In this section, we apply the SCE methods to two alignment-based MVC methods:

- Utilizing infoNCE as a contrastive loss and employing Kmeans after concatenation.

- Incorporating contrastive learning at both the sample and prototype levels as ProIMP[43].

We applied these two approaches to the CUB and Caltech101-7 datasets, each comprising two views.
Detailed experimental results are presented in the Table 2. The results lead to following conclusions:

2http://www.vision.caltech.edu/visipedia/CUB-200.html
3https://data.caltech.edu/records/mzrjq-6wc02
4https://archive.ics.uci.edu/ml/datasets/Multiple+Features
5https://cs.nyu.edu/âĹĳroweis/data.html
6https://cs.stanford.edu/~acoates/stl10/
7http://archive.ics.uci.edu/ml/datasets/Reuters-21578+Text+Categorization+

Collection
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Table 3: Multi-view clustering performance on six benchmark datasets. The optimal results are
marked in bold, and the suboptimal values are underlined. O/M denotes out-of-memory error
encountered during the training process.

Methods Caltech101-7 CUB UCI-digit HandWritten STL10 Reuters
Metrics ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

DEMVC[13] 0.352 0.289 0.260 0.520 0.538 0.377 0.623 0.605 0.479 0.275 0.294 0.221 0.300 0.253 0.077 0.450 0.211 0.221
CoMVC[14] 0.530 0.375 0.152 0.358 0.503 0.278 0.464 0.494 0.455 0.369 0.355 0.387 0.236 0.163 0.056 0.307 0.073 0.189
SiMVC[14] 0.523 0.268 0.136 0.323 0.475 0.252 0.208 0.166 0.358 0.308 0.214 0.359 0.160 0.063 0.040 0.336 0.104 0.192
SDSNE[15] 0.568 0.508 0.361 0.773 0.787 0.670 0.846 0.891 0.816 0.876 0.878 0.819 O/M O/M O/M 0.233 0.203 0.017
MFLVC[16] 0.401 0.424 0.261 0.668 0.632 0.489 0.920 0.854 0.740 0.862 0.855 0.757 0.311 0.254 0.157 0.399 0.200 0.207
SDMVC[17] 0.366 0.335 0.237 0.692 0.654 0.517 0.630 0.643 0.601 0.495 0.519 0.390 0.283 0.262 0.136 0.177 0.047 0.113
DSMVC[18] 0.454 0.423 0.292 0.273 0.170 0.100 0.855 0.807 0.732 0.911 0.840 0.813 0.275 0.193 0.102 0.438 0.181 0.120
APADC[52] 0.562 0.422 0.303 0.672 0.692 0.552 0.629 0.686 0.549 0.711 0.703 0.563 0.283 0.196 0.078 0.245 0.027 0.037
DMJC[35] 0.469 0.411 0.309 0.758 0.749 0.617 0.871 0.825 0.767 0.893 0.846 0.805 0.305 0.241 0.155 0.485 0.293 0.241

DMJC+SCE 0.583 0.513 0.457 0.797 0.770 0.655 0.927 0.865 0.847 0.938 0.881 0.870 0.330 0.256 0.162 0.533 0.294 0.237
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Figure 3: (a) View contribution is more balanced with SCE. (b) Fusion performs better with SCE.

• Assessed with the View Contribution Evaluation Module, the contributions of the two views in
alignment-based methods are remarkably similar, validating the assertion of Theorem 1.

• As the contributions of the views tend to equalize, the utilization of the View Cooperation Enhancing
Module approach only yields subtle improvements to the alignment-based methods.

4.3 Evaluate then Cooperate on Joint Methods(RQ3 & RQ4)

In this subsection, we apply the SCE model to a joint MVC methods(DMJC[35]). We have carried
out comprehensive experiments on six datasets with varying numbers of views, as depicted in
Table 3 and Fig. 3. In Table 3, we showcase the performance of SCE-MVC in comparison to ten
benchmark methods. Fig. 3 illustrates the ablation study of DMJC with and without SCE. Based on
the aforementioned experimental results, we draw the following conclusions:

• Fig. 3(a) illustrates the changes in view contributions with and without the SCE module across
three datasets. Prior to the use of the SCE module, there is a scenario where certain views dominate
while others are suppressed, a pattern particularly evident in the Caltech101-7 dataset, aligning well
with the conclusions of Theorem 2.

• After introducing the View Contribution Enhancing Module, the contributions of the views become
more balanced, leading to a significant improvement in the model’s performance. Specifically, the
ACC, NMI, and ARI metrics on the Caltech101-7 dataset all witness an increase of over 10 percentage
points, thus validating the conclusion of Theorem 3. More detailed contribution comparison data can
be found in the Appendix.

Table 4: Sensitive analysis on UCI-digit and STL10 datasets. The optimal results are marked in bold.
τ 0.5 1.0 1.5

Datasets ACC NMI ARI ACC NMI ARI ACC NMI ARI
UCI-digit 0.871 0.825 0.767 0.882 0.830 0.777 0.886 0.834 0.788

STL10 0.303 0.257 0.152 0.330 0.256 0.162 0.320 0.259 0.159
τ 2.0 2.5 3.0

Datasets ACC NMI ARI ACC NMI ARI ACC NMI ARI
UCI-digit 0.903 0.842 0.805 0.927 0.865 0.847 0.930 0.860 0.842

STL10 0.317 0.263 0.160 0.319 0.260 0.160 0.317 0.259 0.160
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4.4 Sensitive Analysis(RQ5)

In SCE-MVC, the singular hyperparameter τ is essential for fine-tuning the convergence equilibrium
among distinct views according to their contributions. In sensitive analysis, we varied τ within
{0.5, 1, 1.5, 2, 2.5, 3}, as illustrated in Table 4. As τ increases, the changes in clustering results
metrics become less pronounced, which can be attributed to the characteristics of the exponential
functions in Eq. (17). Specifically, as τ increases, the convergence ratio kv tends to be closer to zero.

5 Conclusion

This paper explores the roles of views in multi-view clustering through the lens of game theory. We
introduce a novel contribution evaluation module founded on the Shapley value. Our experiments
showcase the adaptability of this module across mainstream MVC frameworks, accurately assessing
each view’s impact. By scrutinizing the functions of diverse views during fusion, we devise a
cooperation enhancing module to bolster cooperation among views. Extensive dataset validations
underscore the effectiveness and robust applicability of our approach and theorems.

Acknowledgments and Disclosure of Funding

This work is supported by National Natural Science Foundation of China under Grant No. 62276271,
62325604, 62406329, 62476280, 62476281 and National Science and Technology Innovation 2030
Major Project under Grant No. 2022ZD0209103.

References
[1] Hongchang Gao, Feiping Nie, Xuelong Li, and Heng Huang. Multi-view subspace clustering.

In Proceedings of the IEEE international conference on computer vision, pages 4238–4246,
2015.

[2] Xinwang Liu, Xinzhong Zhu, Miaomiao Li, Lei Wang, Chang Tang, Jianping Yin, Dinggang
Shen, Huaimin Wang, and Wen Gao. Late fusion incomplete multi-view clustering. IEEE
transactions on pattern analysis and machine intelligence, 41(10):2410–2423, 2018.

[3] Siwei Wang, Xinwang Liu, Xinzhong Zhu, Pei Zhang, Yi Zhang, Feng Gao, and En Zhu.
Fast parameter-free multi-view subspace clustering with consensus anchor guidance. IEEE
Transactions on Image Processing, 31:556–568, 2021.

[4] Xinwang Liu. Simplemkkm: Simple multiple kernel k-means. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45(4):5174–5186, 2022.

[5] Wei Xia, Quanxue Gao, Qianqian Wang, Xinbo Gao, Chris Ding, and Dacheng Tao. Tensorized
bipartite graph learning for multi-view clustering. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2022.

[6] Wenjue He, Zheng Zhang, Yongyong Chen, and Jie Wen. Structured anchor-inferred graph
learning for universal incomplete multi-view clustering. World Wide Web, 26(1):375–399, 2023.

[7] Shudong Huang, Ivor W Tsang, Zenglin Xu, and Jiancheng Lv. Measuring diversity in graph
learning: a unified framework for structured multi-view clustering. IEEE Transactions on
Knowledge and Data Engineering, 34(12):5869–5883, 2021.

[8] Qian Qu, Xinhang Wan, Weixuan Liang, Jiyuan Liu, Yu Feng, Huiying Xu, Xinwang Liu, and
En Zhu. An lightweight anchor-based incremental framework to multi-view clustering. In ACM
Multimedia 2024.

[9] Erlin Pan and Zhao Kang. Multi-view contrastive graph clustering. Advances in neural
information processing systems, 34:2148–2159, 2021.

[10] Xi Peng, Zhenyu Huang, Jiancheng Lv, Hongyuan Zhu, and Joey Tianyi Zhou. Comic: Multi-
view clustering without parameter selection. In International conference on machine learning,
pages 5092–5101. PMLR, 2019.

10



[11] Junpu Zhang, Liang Li, Siwei Wang, Jiyuan Liu, Yue Liu, Xinwang Liu, and En Zhu. Multiple
kernel clustering with dual noise minimization. In Proceedings of the 30th ACM International
Conference on Multimedia, MM ’22, page 3440–3450, New York, NY, USA, 2022. Association
for Computing Machinery.

[12] Daniel J Trosten, Sigurd Lokse, Robert Jenssen, and Michael Kampffmeyer. Reconsidering
representation alignment for multi-view clustering. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 1255–1265, 2021.

[13] Jie Xu, Yazhou Ren, Guofeng Li, Lili Pan, Ce Zhu, and Zenglin Xu. Deep embedded multi-view
clustering with collaborative training. Information Sciences, 573:279–290, 2021.

[14] Daniel J Trosten, Sigurd Lokse, Robert Jenssen, and Michael Kampffmeyer. Reconsidering
representation alignment for multi-view clustering. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 1255–1265, 2021.

[15] Chenghua Liu, Zhuolin Liao, Yixuan Ma, and Kun Zhan. Stationary diffusion state neural
estimation for multiview clustering. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pages 7542–7549, 2022.

[16] Jie Xu, Huayi Tang, Yazhou Ren, Liang Peng, Xiaofeng Zhu, and Lifang He. Multi-level feature
learning for contrastive multi-view clustering. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 16051–16060, 2022.

[17] Jie Xu, Yazhou Ren, Huayi Tang, Zhimeng Yang, Lili Pan, Yang Yang, Xiaorong Pu, S Yu
Philip, and Lifang He. Self-supervised discriminative feature learning for deep multi-view
clustering. IEEE Transactions on Knowledge and Data Engineering, 2022.

[18] Huayi Tang and Yong Liu. Deep safe multi-view clustering: Reducing the risk of clustering
performance degradation caused by view increase. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 202–211, 2022.

[19] Fangdi Wang, Siwei Wang, Jiaqi Jin, Zhibin Dong, Xihong Yang, Yu Feng, Xinzhong Zhu,
Tianrui Liu, Xinwang Liu, and En Zhu. View gap matters: Cross-view topology and information
decoupling for multi-view clustering. In ACM Multimedia 2024.

[20] Uno Fang, Man Li, Jianxin Li, Longxiang Gao, Tao Jia, and Yanchun Zhang. A comprehensive
survey on multi-view clustering. IEEE Transactions on Knowledge and Data Engineering,
2023.

[21] Eyal Winter. The shapley value. Handbook of game theory with economic applications,
3:2025–2054, 2002.

[22] Luke Merrick and Ankur Taly. The explanation game: Explaining machine learning models
using shapley values. In Machine Learning and Knowledge Extraction: 4th IFIP TC 5, TC 12,
WG 8.4, WG 8.9, WG 12.9 International Cross-Domain Conference, CD-MAKE 2020, Dublin,
Ireland, August 25–28, 2020, Proceedings 4, pages 17–38. Springer, 2020.

[23] John Von Neumann and Oskar Morgenstern. Theory of games and economic behavior, 2nd rev.
1947.

[24] Drew Fudenberg and Jean Tirole. Game theory. MIT press, 1991.

[25] Xiaokang Peng, Yake Wei, Andong Deng, Dong Wang, and Di Hu. Balanced multimodal
learning via on-the-fly gradient modulation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 8238–8247, 2022.

[26] Daniel J Trosten, Sigurd Lokse, Robert Jenssen, and Michael C Kampffmeyer. On the effects
of self-supervision and contrastive alignment in deep multi-view clustering. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 23976–23985,
2023.

[27] Shiye Wang, Changsheng Li, Yanming Li, Ye Yuan, and Guoren Wang. Self-supervised
information bottleneck for deep multi-view subspace clustering. IEEE Transactions on Image
Processing, 32:1555–1567, 2023.

11



[28] Huayi Tang and Yong Liu. Deep safe multi-view clustering: Reducing the risk of clustering
performance degradation caused by view increase. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 202–211, 2022.

[29] Zhenyu Huang, Peng Hu, Joey Tianyi Zhou, Jiancheng Lv, and Xi Peng. Partially view-aligned
clustering. Advances in Neural Information Processing Systems, 33:2892–2902, 2020.

[30] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems, 25, 2012.

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[32] Xiaodong Jia, Xiao-Yuan Jing, Qixing Sun, Songcan Chen, Bo Du, and David Zhang. Human
collective intelligence inspired multi-view representation learning—enabling view communica-
tion by simulating human communication mechanism. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2022.

[33] Yingming Li, Ming Yang, and Zhongfei Zhang. A survey of multi-view representation learning.
IEEE transactions on knowledge and data engineering, 31(10):1863–1883, 2018.

[34] Wei Xia, Sen Wang, Ming Yang, Quanxue Gao, Jungong Han, and Xinbo Gao. Multi-view
graph embedding clustering network: Joint self-supervision and block diagonal representation.
Neural Networks, 145:1–9, 2022.

[35] Yuan Xie, Bingqian Lin, Yanyun Qu, Cuihua Li, Wensheng Zhang, Lizhuang Ma, Yonggang
Wen, and Dacheng Tao. Joint deep multi-view learning for image clustering. IEEE Transactions
on Knowledge and Data Engineering, 33(11):3594–3606, 2020.

[36] Lusi Li, Zhiqiang Wan, and Haibo He. Incomplete multi-view clustering with joint partition
and graph learning. IEEE Transactions on Knowledge and Data Engineering, 2021.

[37] Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning
on graphs. In International Conference on Machine Learning, pages 4116–4126. PMLR, 2020.

[38] Junnan Li, Pan Zhou, Caiming Xiong, and Steven CH Hoi. Prototypical contrastive learning of
unsupervised representations. arXiv preprint arXiv:2005.04966, 2020.

[39] Huasong Zhong, Chong Chen, Zhongming Jin, and Xian-Sheng Hua. Deep robust clustering by
contrastive learning. arXiv preprint arXiv:2008.03030, 2020.

[40] Jie Xu, Yazhou Ren, Huayi Tang, Xiaorong Pu, Xiaofeng Zhu, Ming Zeng, and Lifang He.
Multi-vae: Learning disentangled view-common and view-peculiar visual representations for
multi-view clustering. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 9234–9243, 2021.

[41] Shirui Luo, Changqing Zhang, Wei Zhang, and Xiaochun Cao. Consistent and specific multi-
view subspace clustering. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

[42] Le Ou-Yang, Xiao-Fei Zhang, Dao-Qing Dai, Meng-Yun Wu, Yuan Zhu, Zhiyong Liu, and
Hong Yan. Protein complex detection based on partially shared multi-view clustering. BMC
bioinformatics, 17:1–15, 2016.

[43] Haobin Li, Yunfan Li, Mouxing Yang, Peng Hu, Dezhong Peng, and Xi Peng. Incomplete
multi-view clustering via prototype-based imputation. arXiv preprint arXiv:2301.11045, 2023.

[44] Tadas Baltruvsaitis, Chaitanya Ahuja, and Louis-Philippe Morency. Multimodal machine learn-
ing: A survey and taxonomy. IEEE transactions on pattern analysis and machine intelligence,
41(2):423–443, 2018.

[45] Weiyao Wang, Du Tran, and Matt Feiszli. What makes training multi-modal classification
networks hard? In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 12695–12705, 2020.

12



[46] Lloyd S Shapley et al. A value for n-person games. 1953.

[47] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions.
Advances in neural information processing systems, 30, 2017.

[48] Pengbo Hu, Xingyu Li, and Yi Zhou. Shape: An unified approach to evaluate the contribution
and cooperation of individual modalities. arXiv preprint arXiv:2205.00302, 2022.

[49] Yake Wei, Ruoxuan Feng, Zihe Wang, and Di Hu. Enhancing multi-modal cooperation via
fine-grained modality valuation. arXiv preprint arXiv:2309.06255, 2023.

[50] Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised deep embedding for clustering
analysis. In International conference on machine learning, pages 478–487. PMLR, 2016.

[51] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

[52] Jie Xu, Chao Li, Liang Peng, Yazhou Ren, Xiaoshuang Shi, Heng Tao Shen, and Xiaofeng
Zhu. Adaptive feature projection with distribution alignment for deep incomplete multi-view
clustering. IEEE Transactions on Image Processing, 32:1354–1366, 2023.

[53] Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through
alignment and uniformity on the hypersphere. In International conference on machine learning,
pages 9929–9939. PMLR, 2020.

[54] Nikhil Rasiwasia, Jose Costa Pereira, Emanuele Coviello, Gabriel Doyle, Gert RG Lanckriet,
Roger Levy, and Nuno Vasconcelos. A new approach to cross-modal multimedia retrieval. In
Proceedings of the 18th ACM international conference on Multimedia, pages 251–260, 2010.

[55] Changqing Zhang, Huazhu Fu, Qinghua Hu, Xiaochun Cao, Yuan Xie, Dacheng Tao, and Dong
Xu. Generalized latent multi-view subspace clustering. IEEE transactions on pattern analysis
and machine intelligence, 42(1):86–99, 2018.

13



A Proof of Theorems

A.1 Proof of Theorem 1

Theorem 1: For alignment-based methods, considering the representation {z(1)i }Ni=1 and {z(2)i }Ni=1
on two views, with the infoNCE contrastive learning loss:

ℓ
(1)
i = − log

exp(z(1)i

⊤
z(2)i /τl)∑N

j=1

[
exp(z(1)i

⊤
z(1)j /τl) + exp(z(1)i

⊤
z(2)j /τl)

] , (19)

ℓcon(1, 2) =
1

2N

N∑
i=1

(
ℓ
(1)
i + ℓ

(2)
i

)
, (20)

where N is the sample number and τ > 0 is a scalar temperature hyperparameter. ℓcon(1, 2) brings the
representations between views closer, leads to the average of view contributions, i.e., |ϕ1 − ϕ2| → 0.

Proof: Referring to Definition of Perfect Alignment in [53], we say the two views are perfectly
aligned if z(1)i = z(2)i , i = 1, 2, ..., N . Assuming that with the training of contrastive learning, the
representations of the two views tend to align perfectly. Then, there exists a limiting representation
Z∗ such that lim ∥Z1 − Z∗∥ = lim ∥Z2 − Z∗∥ = 0.

Due to the convergence of sample representations from both views, the centroids and sample dis-
tributions of the views also tend to converge, i.e. lim

∥∥µ(1) − µ∗
∥∥ = lim

∥∥µ(2) − µ∗
∥∥ = 0 and

lim
∥∥q{1} − q∗

∥∥ = lim
∥∥q{2} − q∗

∥∥ = 0, where µ∗ and q∗ represent the clustering centroids and
sample distributions respectively when the two views are perfectly aligned.

Therefore, the utility function based on distribution transportation tends to converge towards a same
value, namely

E({i}) = 1

1 +OT (p,q∗)
, i ∈ {1, 2}. (21)

According to the definition of Shapley values, the same utility function values yield the same Shapley
values. Therefore, the normalized Shapley value |ϕ1 − ϕ2| → 0.

A.2 Proof of Theorem 2

Theorem 2: For joint methods, considering the representation Z(1) = f
(1)

θ(1)(X(1); θ(1)) and Z(2) =

f
(2)

θ(2)(X(2); θ(2)) on two views, with a simple view-level weight fusion during the fusion process:
Z = w1Z(1) + w2Z(2). There are situations where view 2 is dominated by view 1 and cannot make
its contribution, i.e., w1 ≫ w2.

Proof: Suppose the representation of the two views:{
Z(1) = f

(1)

θ(1)(X(1); θ(1)),

Z(2) = f
(2)

θ(2)(X(2); θ(2)),
(22)

and view-level weight fusion is adopted in the fusion process:

Z = w1Z(1) + w2Z(2), (23)

where w1 and w2 represent the weights of View 1 and View 2 respectively, satisfying w1 + w2 = 1.

Conduct Kmeans on the fused representation Z, the overall optimization goal is

E =
1

2

K∑
i=1

∑
z∈Ci

∥ z − µi ∥22, (24)

where K is the number of clusters, Ci is the sample set of the i-th cluster, and µi is the centroid of Ci,
which can be represented as

µi =
1

|Ci|
∑
z∈Ci

z, (25)
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where |Ci| represent the number of samples in the sample set Ci.
For arbitrary sample zj ∈ Ckj

, the corresponding centroid is

µkj
= w1µ

(1)
kj

+ w2µ
(2)
kj

. (26)

The loss corresponding to the sample zj is

Ej =
1

2
∥ zj − µkj

∥22

=
1

2
∥
(
w1z(1)j + w2z(2)j

)
−
(
w1µ

(1)
kj

+ w2µ
(2)
kj

)
∥22

=
1

2
∥ w1

(
z(1)j − µ

(1)
kj

)
+ w2

(
z(2)j − µ

(2)
kj

)
∥22

=
1

2
∥w1

(
z(1)j − µ

(1)
kj

)
+ (1− w1)

(
z(2)j − µ

(2)
kj

)
∥22.

(27)

Derive with respect to w1 for Ej ,

∂Ej

∂w1
=

((
z(1) − µ

(1)
kj

)
−
(

z(2)j − µ
(2)
kj

))T (
w1

(
z(1)j − µ

(1)
kj

)
+ w2

(
z(2)j − µ

(2)
kj

))
= w1∥z(1)j − µ

(1)
kj

∥22 − w2∥z(2)j − µ
(2)
kj

∥22 − (w1 − w2)
(

z(1) − µ
(1)
kj

)T (
z(2)j − µ

(2)
kj

)
.

(28)

The above only considered the individual sample zj to the total loss. When considering all samples

E =

K∑
k=1

|Ck|∑
j=1

Ej , (29)

then derive with respect to w1 for E,

∂E

∂w1
=

K∑
k=1

|Ck|∑
j=1

∂Ej

∂w1
. (30)

If N represents the total number of samples, taking the expectation Avg(·) of both sides of the
equation yields

Avg

(
∂E

∂w1

)
=

K∑
k=1

|Ck|∑
j=1

Avg

(
∂Ej

∂w1

)

= N ·Avg

(
∂Ej

∂w1

)
= N

(
w1

(
Avg

(
∥z(1)j − µ

(1)
kj

∥22
)
−Avg

((
z(1) − µ

(1)
kj

)T (
z(2)j − µ

(2)
kj

)))
−w2

(
Avg

(
∥z(2)j − µ

(2)
kj

∥22
)
−Avg

((
z(1) − µ

(1)
kj

)T (
z(2)j − µ

(2)
kj

))))
.

(31)

When ∂E
∂w1

= 0, the analytical solution for w1 can be calculated, and at this point

w1

w2
=

∥z(2)j − µ
(2)
kj

∥22 −
(

z(1) − µ
(1)
kj

)T (
z(2)j − µ

(2)
kj

)
∥z(1)j − µ

(1)
kj

∥22 −
(

z(1) − µ
(1)
kj

)T (
z(2)j − µ

(2)
kj

) , (32)

where expression Avg(∥z(i)j − µ
(i)
kj
∥22) reflects the level of difficulty in clustering for view

i (i ∈ {1, 2}); the clearer the clustering structure, the smaller the Avg(∥z(i)j − µ
(i)
kj
∥22).
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And
(

z(1) − µ
(1)
kj

)T (
z(2)j − µ

(2)
kj

)
can be seen as a dot product similarity, reflecting the

correlation between the two views; the smaller the correlation between views, the closer(
z(1) − µ

(1)
kj

)T (
z(2)j − µ

(2)
kj

)
is to 0.

Assuming significant differences in clustering structures between two views, with view 1 be-
ing the dominant view over view 2, where Avg(∥z(1)j − µ

(1)
kj

∥22) ≪ Avg(∥z(2)j − µ
(2)
kj

∥22) and

Avg(
(

z(1) − µ
(1)
kj

)T (
z(2)j − µ

(2)
kj

)
) ≈ 0, then when the loss of multi-view clustering converges, the

weights of the two views

w1

w2
≈

Avg∥z(2)j − µ
(2)
kj

∥22
Avg∥z(1)j − µ

(1)
kj

∥22
≫ 1, (33)

which means in the fusion of views, view 1 takes the lead, while view 2 can only play a limited role.
However, in unsupervised tasks, the clarity of the clustering structure is unrelated to the quality of the
clustering results. Even though the clustering structure of view 2 may not be clear, the clustering
results of view 2 could still be accurate. In this scenario, w1 ≫ w2 can be considered that the
cooperation between the two views is suboptimal.

A.3 Proof of Theorem 3

Theorem 3: For joint methods that use view-level weight fusion Z = w1Z(1) + w2Z(2), where
Z(1) = f

(1)

θ(1)(X(1); θ(1)) and Z(2) = f
(2)

θ(2)(X(2); θ(2)), gradient modulation in Eq. (18) allows the two
views to contribute more evenly, i.e., w1

w2
→ 1.

Proof: Introducing the suppression factor k (where k < 1) suppresses the convergence speed of the
dominant view’s parameters. In this case, the parameter updates become:{

θ(1) = θ(1) − k · η ∂E
∂θ(1)

θ(2) = θ(2) − η ∂E
∂θ(2)

(34)

where the overall optimization objective for multi-view learning is given by

E =
1

2

K∑
i=1

∑
z∈Ci

∥z − µi∥22 . (35)

Due to the equivalence ∥z − µi∥22 =
∥∥∥w1

(
z(1)j − µ

(1)
kj

)
+ w2

(
z(2)j − µ

(2)
kj

)∥∥∥2
2
, in accordance with

the Cauchy-Schwarz inequality, we obtain:

∥z − µi∥22 ≤
(
w2

1 + w2
2

)(∥∥∥z(1)j − µ
(1)
kj

∥∥∥2
2
+
∥∥∥z(2)j − µ

(2)
kj

∥∥∥2
2

)
. (36)

Therefore, the upper bound on the overall loss E is jointly determined by the individual view losses
and the view weights. As both ∥z(1)j −µ

(1)
kj

∥22 and ∥z(2)j −µ
(2)
kj

∥22 can be seen as the Kmeans loss for
a single view, during one iteration, if we suppress the gradient descent for the dominant view (view
1), ∥z(1)j − µ

(1)
kj

∥22 would increase compared to not suppressing it, while ∥z(2)j − µ
(2)
kj

∥22 remains
unaffected. The upper bound on the overall optimization objective shifts, leading to differences in the
single-view parameters and weights at convergence.

As the loss converges, the ratio of weights between the two views, w1

w2
→ 1. This implies that the

weight of the non-dominant view increases, allowing it to more fully engage in the fusion process.
Consequently, there is improved cooperation between the views, enhancing the fusion process.
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B Further Experiments

B.1 View Contribution Comparison w/o SCE

In this subsection, we conducted additional ablation experiments on the SCE module based on the
DMJC method across six datasets. Table 5 illustrates the variations in view contributions before and
after using SCE. The experimental findings further corroborate our conclusions:

• There are cases where certain views in some datasets do not effectively contribute, such as the 2-nd
view of Caltech101-7, the 2-nd view of CUB, the 3-rd and 4-th views of STL10, and the 5-th view of
Reuters, all with contributions below 0.1.

• Through the SCE method, the contributions of suppressed views experienced significant growth,
with the contribution of the 2-nd view of Caltech101-7 increasing from 0.032 to 0.433, and the
contribution of the 5-th view of Reuters increasing from 0.107 to 0.232.

Table 5: View Contribution Comparison w/o SCE
Dataset Method ϕ1 ϕ2 ϕ3 ϕ4 ϕ5

Caltech101-7 DMJC 0.968 0.032 \ \ \
DMJC+SCE 0.567 0.433 \ \ \

CUB DMJC 0.974 0.026 \ \ \
DMJC+SCE 0.892 0.108 \ \ \

UCI-digit DMJC 0.671 0.191 0.138 \ \
DMJC+SCE 0.636 0.197 0.167 \ \

HandWritten DMJC 0.661 0.192 0.147 \ \
DMJC+SCE 0.645 0.178 0.177 \ \

STL10 DMJC 0.479 0.425 0.062 0.044 \
DMJC+SCE 0.432 0.409 0.083 0.076 \

Reuters DMJC 0.301 0.248 0.23 0.114 0.107
DMJC+SCE 0.177 0.235 0.138 0.218 0.232

Table 6: Three views training on the UCI-digit dataset and fuse the results of different views. The
optimal results are marked in bold, and the suboptimal values are underlined.

Fusion Views ACC
View1 View2 View3 without SCE with SCE
✓ ✓ ✓ 0.871 0.927
✓ 0.860 0.909

✓ 0.801 0.849
✓ 0.648 0.659

✓ ✓ 0.857 0.902
✓ ✓ 0.873 0.921

✓ ✓ 0.856 0.866

Table 7: Three views are used for training in the first row, and then selected two of them each time
for training, and compared the fusion results.

num-view Training Views (without SCE) ACCView1 View2 View3
3 ✓ ✓ ✓ 0.873

2
✓ ✓ × 0.861
✓ × ✓ 0.856
× ✓ ✓ 0.707

B.2 Detailed Discussions of View Roles

In this subsection, we conducted further exploration on the UCI-digit dataset to clarify the roles
played by different views in cooperation and the effectiveness of cooperation enhancing module. In
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Table 8: Three additional datasets summary.
Dataset Views Samples Clusters

WikipediaArticles 2 693 10
SCENE15 2 1474 7

NoisyMNIST 2 70000 10

Table 9: Multi-view clustering performance on three additional 2-view benchmark datasets. The
optimal results are marked in bold, and the suboptimal values are underlined. O/M denotes out-of-
memory error encountered during the training process.

Methods WikipediaArticles SCENE15 NoisyMNIST
Metrics ACC NMI ARI ACC NMI ARI ACC NMI ARI

DEMVC(2020 IS) 0.322 0.253 0.136 0.301 0.282 0.126 0.629 0.583 0.488
CoMVC(2021 CVPR) 0.261 0.176 0.158 0.239 0.287 0.118 0.278 0.265 0.095
SiMVC(2021 CVPR) 0.205 0.074 0.121 0.227 0.266 0.114 0.236 0.242 0.049
SDSNE(2022 AAAI) 0.586 0.525 0.363 0.412 0.440 0.238 O/M O/M O/M
MFLVC(2022 CVPR) 0.429 0.346 0.288 0.389 0.409 0.217 0.990 0.975 0.979
SDMVC(2022 TKDE) 0.274 0.183 0.164 0.316 0.312 0.141 O/M O/M O/M
DSMVC(2022 CVPR) 0.629 0.569 0.481 0.286 0.202 0.102 0.447 0.369 0.273

APADC(2023 TIP) 0.491 0.391 0.338 0.445 0.449 0.268 0.694 0.801 0.682
DMJC(2020 TKDE) 0.623 0.594 0.478 0.294 0.328 0.183 0.776 0.743 0.647

DMJC+SCE 0.648 0.607 0.508 0.344 0.392 0.223 0.824 0.800 0.703
ProIMP(2023 IJCAI) 0.570 0.505 0.416 0.442 0.460 0.279 0.992 0.976 0.983

ProIMP+SCE 0.576 0.508 0.420 0.444 0.462 0.280 0.993 0.978 0.985

Table 6, we illustrate the ACC of all views, single view, and paired views after training through three
views of UCI-digit. Before we used the view cooperation enhancing module, the fusion results of
View1 and View3 were superior to those of all views, although the ACC of View3 as a single view
was worst amongst all. Therefore, we consider that views have shortcomings in cooperation. View1
dominates the fusion process, resulting in View2 and View3 not playing a better role. To this end, we
used the view cooperation enhancing module to enhance the contributions of View2 and View3.

Furthermore, we compared the results in Table 7 when only two views participated in training.
Although the fusion of View1 and View3 showed superior performance when three views participated
in training, when training with only View1 and View3, the performance of fusion is significantly
lower than that of training with three views. Besides, the fusion performance of paired views is
not as good as that of three views, proving that each view in the dataset can play a positive role in
cooperation, and this effect can be further expanded by enhancing cooperation.

B.3 Experiments on Additional Datasets

In this subsection, we conducted experiments on three additional datasets with two views:
WikipediaArticles[54], SCENE15[55], and NoisyMNIST8. The detailed information about the
datasets is shown in Table 8. Considering the scale of the NoisyMNIST dataset, all experiments were
conducted on PyTorch platform using the NVIDIA 3090 GPU. The experimental results on these
three datasets are presented in Table 9. The experimental results confirm our proposed theory and
demonstrate the validity of our View Contribution Evaluation Module as well as the effectiveness of
our View Cooperation Enhancing Module.

C Limitations and Future Work

In this section, we discussed the limitations of the SCE model and potential future work:

• On some extreme datasets, certain view contributions obtained by the View Contribution Evaluation
Module may be negative, which contradicts the non-negativity definition of Shapley values. A

8http://yann.lecun.com/exdb/mnist/
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negative Shapley value indicates that the corresponding view has performed poorly in the fusion
process, raising the question of whether these views should be discarded, which could be a potential
area of future research.

• The View Cooperation Enhancing Module narrows the contributions between views through
gradient modulation, but it cannot extend the contributions between views. Whether there exists a
more flexible method to control the contribution relationship between views is an intriguing question.
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