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Abstract

Reading is a process that unfolds across space001
and time. Standard modeling approaches, how-002
ever, overlook much of the spatio-temporal dy-003
namics involved in reading by relying on aggre-004
gated reading measurements—typically only005
focusing on fixation durations—and employ-006
ing modeling techniques that impose strong007
assumptions. In this paper, we propose a model008
that captures not only how long fixations last,009
but also where they land in space and when010
they take place in time. This is achieved by011
considering reading as an alternating renewal012
process, in which the locations and durations013
of eye fixations are modeled separately yet co-014
hesively. The location (and timing) of fixation015
shifts, so-called saccades, are modeled using016
a spatio-temporal Hawkes process, which cap-017
tures how each fixation excites the probability018
of a new fixation occurring near it in time and019
space. Empirically, our Hawkes process model020
exhibits higher likelihood on held-out reading021
data than baselines. The duration time of fixa-022
tion events is modeled as a function of fixation-023
specific features convolved across time, thus024
capturing non-stationary delayed effects. We025
evaluate goodness-of-fit across various time-026
to-event distributions and find evidence that027
previous convolution-based approaches (Shain028
and Schuler, 2018, 2021) are insufficiently ex-029
pressive for modeling disaggregated durations.030
Finally, testing surprisal theory on disaggre-031
gated data, we find that it is weakly predictive032
of where fixations land but has virtually no pre-033
dictive power for individual fixation durations.034

1 Introduction035

Reading is a cognitively complex skill that unfolds036

across both space and time. As we read, our eyes037

move through an interdigitated sequence of fixa-038

tions, brief pauses that allow for the perception039

and processing of linguistic material, and saccades,040

rapid movements that shift focus to the next point041

of interest. A longstanding premise in psycholin-042

guistic research is that eye movements during read- 043

ing provide a direct window into the cognitive 044

processes underlying human language comprehen- 045

sion (McConkie, 1979; Just and Carpenter, 1980; 046

Rayner et al., 1989; Findlay and Walker, 1999). 047

Indeed, eye-tracking experiments have emerged as 048

one of the most effective paradigms for testing and 049

refining theories of language processing (Rayner, 050

1998; Frank et al., 2013). Data collected in eye- 051

tracking trials consist of sequences of fixations 052

across texts displayed within a two-dimensional 053

coordinate space (e.g., a screen), along with their 054

durations and onset time. 055

In modern computational psycholinguistic stud- 056

ies, the raw data is typically aggregated into sum- 057

mary measurements, e.g., total fixation duration, 058

the summed duration of all fixations on a chosen 059

linguistic unit, and gaze duration, the summed 060

duration of all fixations between landing on a word 061

and moving to another (see §2.1 for further details 062

on aggregations). These summary measurements 063

are then treated as dependent variables in a (gener- 064

alized) linear model (Smith and Levy, 2013; Good- 065

kind and Bicknell, 2018; Wilcox et al., 2020). Such 066

aggregation, however, is an inherently lossy pro- 067

cess. From a temporal perspective, combining mul- 068

tiple fixations in a single measurement may conflate 069

several factors that underlie the aggregated behav- 070

iors. For example, total fixation time includes first 071

fixations as well as regressions, which are fixations 072

where the reader moves backwards spatially and 073

correspond to a different cognitive process (Wilcox 074

et al., 2024). From a spatial perspective, aggre- 075

gations inherently rely on pre-defined regions of 076

interest (Giulianelli et al., 2024). Aggregating fixa- 077

tions, which is most commonly word level, discards 078

any information about where saccades land within 079

the boundaries of a word and hinders investigations 080

into smaller linguistic units, such as syllables or 081

morphemes. In sum, while aggregations help sim- 082

plify the challenge of modeling and interpreting 083
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Figure 1: Illustration of how the density of fixations evolve over time within a reading session, and how it compares to
held-out data. The intensity function is visualized at different timestamps and shows the predicted fixation intensity
of our extended Hawkes process and a baseline model. Red dots indicate observed fixations before time t, while
green dots represent the next fixation after t. Note how the following effects are captured by the Hawkes process:
forward fixations (t = 51.80), backward regressions (t = 49.89), and re-fixations on the same word (t = 7.25).

the complex spatio-temporal dynamics of fixations084

and saccades, they inevitably result in a loss of in-085

formation when compared to the raw reading data.086

Beyond the fact that how one aggregates the087

data can result in loss of information, it also has088

a significant impact on the empirical support for a089

given theory. For example, surprisal theory (Hale,090

2001; Levy, 2008) suggests that contextual word091

predictability should have a more pronounced ef-092

fect on gaze duration than total fixation time, as093

the latter can be influenced by material from the094

right context (e.g., through regressive saccades). In095

contrast, surprisal has been found empirically to be096

a stronger predictor of total fixation time than gaze097

duration (Wilcox et al., 2023). Since both gaze and098

total duration are aggregate measures, providing099

a precise explanation for such counterintuitive re-100

sults is challenging. Another theoretical concern101

with aggregations is that they tend to conflate cog-102

nitive and oculomotor control processes. For exam-103

ple, while cognitive processes contribute to reading104

slowdowns, the oculomotor system imposes an in-105

herent time delay between successive saccades. To106

incorporate such effects, these models must include107

additional features describing previous units, so-108

called spillover variables. However, the number of109

spillover variables to include is hard to motivate110

empirically, as the time lag between the onset of111

an event and its effect on a subsequent fixation will112

depend on context as well as which type of stimuli113

that are modeled, i.e., they are non-stationary.114

In this paper, we advocate a unified approach115

that jointly models when fixations occur, where 116

they land, and how long they last. For saccade tim- 117

ing and fixation locations (when and where), we 118

employ a Hawkes (1971) process, which captures 119

how the density of future fixations changes in re- 120

sponse to preceding ones in both time and space. 121

For fixation durations (how long), we adopt sur- 122

vival analysis with a log-normal distribution and a 123

convolution-based approach inspired by Shain and 124

Schuler (2021)—originally developed for aggre- 125

gated durations. We evaluate our framework on the 126

Multilingual Eye-movements Corpus (MECO), as- 127

sessing its ability to jointly model spatio-temporal 128

disaggregated fixation and duration patterns. Our 129

findings highlight the importance of explicitly mod- 130

eling the coordination of oculomotor control (e.g., 131

mechanical left-to-right shifts) and cognitive pro- 132

cesses (e.g., through surprisal predictors), as well 133

as inter-subject variability in reading strategies. 134

2 Reading Behavior 135

While reading, our eyes make progress through the 136

text via brief, rapid movements called saccades. 137

Very little visual information is extracted during a 138

saccade (Ishida and Ikeda, 1989). Instead, most in- 139

formation is extracted during the pauses that occur 140

between saccades, where the eyes remain station- 141

ary. These pauses, which are longer than saccades, 142

are called fixations. During a reading session, our 143

eyes alternate between fixations and saccades. 144

Examining reading behavior is key to under- 145

standing the cognitive mechanisms that underlie 146
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reading. For example, fixations are known to reflect147

lexical access (Lima and Inhoff, 1985), syntactic148

parsing (Frazier and Rayner, 1982), and semantic149

integration (Ehrlich and Rayner, 1983). A common150

way to measure reading behavior is through eye-151

tracking studies (Rayner, 1998), which record high152

frequency gaze samples that are segmented into153

discrete fixations. Each fixation ξ is characterized154

as a tuple (t, s, d) consisting of an onset time t, a155

spatial location s, and a duration d. The onset156

time t ∈ R+ is the starting time of the fixation157

relative to some reference point, typically the start158

of the reading session. The spatial position lives in159

a two-dimensional coordinate space Ω ⊂ R2, e.g.,160

a screen. Finally, the duration d ∈ R+ captures161

how long the eye remains still before initiating the162

next saccade. We consider a reading session T to163

be a set of N fixations, i.e.,164

T = { ξ1, ... , ξn }, (1)165

where ti < tj if i < j. For each ti, we define the166

history Hti as167

Hti = { (tj , sj , dj) | tj ≤ ti}. (2)168

Note that in addition to fixations’ onset times,169

locations, and durations, this sequence encodes the170

onset times and durations of saccades as well.1171

2.1 Modeling Aggregated Reading Data172

Rather than as a raw sequence of fixation events,173

reading data are typically preprocessed into reading174

time variables at the word level (see, e.g., Frank175

et al., 2013), though aggregations around other re-176

gions of interest are also used, especially when177

studying specific types of reading behavior like178

skip rates (Rayner et al., 2011). The most common179

word-level aggregations are first-fixation time, the180

duration of the first fixation that lands on a word;181

first-pass time, the summed duration of all fixations182

between landing on a word’s region and leaving183

it; and total fixation duration, the summed dura-184

tion of all the fixations on the word. For more185

details, see App. A. Disentangling the oculomotor186

and inferential processes that contribute to each187

aggregate measurement is a challenging task, par-188

ticularly given that they are hierarchically ordered,189

with each variable including the previous.190

1In particular, the onset of the i-th saccade can be inferred
by adding the i-th duration to the i-th fixation onset. The du-
ration of the saccades can be inferred by taking the difference
between the fixation onsets and the saccade onsets.

The standard approach to analyzing these vari- 191

ables is to use linear modeling or generalized ad- 192

ditive models (GAMs; Kliegl, 2007; Smith and 193

Levy, 2013; Goodkind and Bicknell, 2018; Wilcox 194

et al., 2020, 2023; Gruteke Klein et al., 2024, inter 195

alia). When multiple reading times per stimulus 196

are available, i.e., when multiple participants read 197

the same stimulus in their respective trials, this is 198

typically modeled with linear mixed-effects models 199

(Aurnhammer and Frank, 2019; Xu et al., 2023), 200

using individual reading time as a random effect to 201

account for variability across participants. 202

3 Modeling Spatio-temporal Reading 203

Data 204

We propose a model of the raw reading session T 205

rather than aggretations as discussed in §2.1. Thus, 206

we explicitly model when a new fixation begins, 207

where it lands, and how long it lasts. In particular, 208

we model the reading session as an alternating 209

renewal process (Cox, 1967) that cycles between 210

two phases, a saccade phase and a fixation phase: 211

1. Saccade phase (§3.2). This is the phase 212

where the reader’s eyes move from one fix- 213

ation location to the next. Saccades are mod- 214

eled using a spatio-temporal Hawkes process, 215

which predicts the density of the next fixation 216

onset and its location (i.e., the time of the cur- 217

rent saccade’s termination and its landing loca- 218

tion, respectively) conditioned on the fixation 219

history. The Hawkes process encodes how re- 220

cent fixations spark a short-term increase in 221

the probability of new fixation events nearby 222

in time and space, so-called self excitation. 223

2. Fixation phase (§5.4). This is the phase 224

where the reader’s eyes dwell on a fixed lo- 225

cation. Fixation durations are modeled as in- 226

fluenced by a history of fixation events using 227

some parametric model, which can be selected 228

by the modeler. 229

These two phases are combined into a unified gener- 230

ative procedure, described in §3.4, which produces 231

the entire sequence of fixations and saccades for a 232

reading session. 233

Why separate them? We argue that saccades 234

and fixation durations should be modeled sepa- 235

rately due to their differing characteristics. (1) Fix- 236

ations are typically longer and concern a single lo- 237

cation in the text, whereas saccades are short move- 238

ments connecting two locations. (2) Saccade times 239
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naturally exhibit a self-exciting property: more240

recent events have a greater influence on the likeli-241

hood of future events in time and space. This does242

not hold for fixation durations, as a longer fixation243

does not necessarily cause subsequent fixations to244

be longer or shorter. (3) We further observe that245

while the decision of where to land next is largely246

determined during a fixation (Aslin and Shea, 1987;247

Abrams and Jonides, 1988), the probability of ac-248

tually moving to a different location remains zero249

until the fixation ends. Because a saccade can only250

occur after a fixation terminates, modeling fixation251

durations, saccade times, and saccade landing spots252

jointly can be achieved without loss of generality253

via a two-step approach: first modeling fixation du-254

rations, and then modeling saccade times and land-255

ing spots conditioned on the outcome of the former.256

3.1 Transforming Time to Remove Fixation257

Durations258

We decouple saccade duration from fixation dura-259

tion in the following way. Consider the onset times260

t1, t2, ... , tn. We now remove fixation durations261

from the timeline via a mapping of onset times262

hT : R+ → R+, defined as263

hT (ti) = ti −
∑

(t,s,d)∈Hti

d . (3)264

In words, hT (ti) gives the onset time of the i-th265

saccade when the fixation durations are excluded266

from the timeline. In this transformed domain,267

each fixation onset ti is mapped to hT (ti). We will268

refer to hT (t) with t∗ for brevity. Collecting these269

gives a new sequence270

T ∗ =
{(

t∗1, s1, d1
)
, ... ,

(
t∗n, sn, dn

)}
,271

where the s and d values remain as in Eq. (1). Be-272

cause all fixation durations are subtracted out, con-273

secutive fixations in T ∗ appear as if they had zero274

duration; thus, the time elapsed between events in275

T ∗ correspond precisely to the saccade durations.276

3.2 Hawkes Process for Saccade Onsets277

We now define a spatio-temporal Hawkes278

process on the transformed times t∗ and locations279

s in two-dimensional space. Let Ht∗ be the280

history of events in the transformed domain up281

to t∗. The Hawkes process assumes that the282

probability of a new event occurring in the time283

interval [t∗, t∗ + dt) and in space [s, s + ds) is284

λ(t∗, s | Ht∗)dtds, where λ : R+ × Ω → R+ is285

called the intensity function. Conditioning on the 286

past events, it captures how past fixations
(
t∗′, s′

)
287

influence the probability of new fixations (i.e., 288

self-excite) in an additive manner: 289

λ(t∗, s |Ht∗) = (4) 290

ν +
∑

(t∗′, s′)∈Ht∗

ϕ
(
t∗ − t∗′

)
f(s | s′), 291

where ν ∈ R+ is the base intensity, ϕ : R+ → R+ 292

is an exponentially decaying temporal kernel 293

governing the influence of past events, and f(s | s′) 294

is a distribution over Ω. Note that omitting the sum 295

in Eq. (4) yields a Poisson process (Palm, 1943). 296

Temporal Kernel. We let each past fixation con- 297

tribute an exponentially decaying influence on the 298

intensity of future fixations. The exponential decay 299

kernel is defined as 300

ϕ(∆) = g
(
xT
t∗α
)
exp
(
− g(xT

t∗β)∆
)
, (5) 301

where ∆ = t∗ − t∗′ is the time elapsed between 302

transformed onset times, xt∗ ∈ Rp is a vector of 303

predictor values, α, β ∈ Rp are learnable param- 304

eters, and g : R → R+ is a linking function that 305

ensures the non-negativity of the parameters, e.g., 306

a ReLU. Note that the linking function is used 307

twice in Eq. (5); g
(
xT
t∗α
)

quantifies how much 308

a fixation increases the probability of subsequent 309

fixations (excitation strength), while g(xT
t∗β) de- 310

termines how quickly the influence of the fixation 311

diminishes over time (decay rate). Since they de- 312

pend on an event-specific vector of predictor values 313

xt∗ , the strength of excitation and decay rate may 314

vary across different spatio-temporal conditions. 315

Spatial Distribution. We model the spatial com- 316

ponent f(s | s′) with a normal distribution with 317

a mean µ(s′) which depends on s′. We assume 318

a scalar variance σ2 (i.e., a spherical Gaussian), 319

yielding the density function: 320

f(s | s′) =
1

2π σ2
exp

(
−∥s−µ(s′)∥2

2σ2

)
. (6) 321

Overall Hawkes Density. These design choices 322

result in the intensity function λ being a mixture of 323

Gaussian components, each corresponding to a past 324

fixation event. Thus, we obtain a multimodal spa- 325

tial distribution. This aligns well with reading be- 326

havior, since it captures that eye fixations may jump 327

either forward or backward in the text with varying 328

probabilities. The overall density is defined as 329

fhp(t
∗, s | Ht∗) =

λ(t∗, s | Ht∗)

Z
, (7) 330

4



where the normalizing constant Z is331

Z = exp

(∫ t∗

t−H

∫
Ω
λ(u, z | Hu) dz du

)
, (8)332

with t−H
def
= maxt∗{t∗ | (t∗, s, d) ∈ Ht∗}, i.e., the333

onset of the saccade in the history that occurred334

latest in time.335

3.3 Parametric Distribution for Fixation336

Durations337

We model fixation duration as a nonnegative ran-338

dom variable with density fd(t | Ht), where Ht339

denotes the history of the reading session up to time340

t (here referring to the original, non-transformed341

session). To capture time-to-event data such as fixa-342

tion durations, we employ a survival analysis frame-343

work. Within this framework, the density is factor-344

ized into a hazard function and a survival function:345

fd(t | Ht) = h(t | Ht)S(t | Ht), (9)346

where347

S(t | Ht) = exp

(
−
∫ t

0
h(s | Ht) ds

)
. (10)348

The hazard function h(t | Ht) represents the349

instantaneous rate at which a fixation terminates350

at time t, given that it has persisted until then. For351

example, the hazard is typically low at the onset352

of a fixation but increases as the reader proceeds353

through the stages of processing, eventually peak-354

ing at an optimal moment when the reader is most355

prepared to shift attention. The survival framework356

accommodates a variety of hazard functions. Fur-357

thermore, we parameterize fd via a linear model358

and a linking function which incorporates predic-359

tors from previous fixations through a temporal360

convolution, as in Shain and Schuler (2021).361

3.4 Unified Generative Model362

Putting it all together, the reading process unfolds363

as follows:364

(a) Draw a new fixation onset (ti, si) from the365

Hawkes process in the transformed timeline:366

(t∗i, si) ∼ fhp(· | Ht∗i), ti = h−1
T (t∗i),367

(b) Sample fixation duration di ∼ fd(· | Hti) us-368

ing Eq. (9).369

(c) Update the history by adding the new sample 370

ξi = (ti, si, di) to 371

Hti+1 = {Hti ∪ ξi}. 372

This process is then repeated for any new fixation 373

up to an ending time T ∈ R+. We implement 374

this framework in PyTorch to learn parameters 375

shared across different reading sessions through 376

automated differentiation. 377

4 Experimental Setup 378

4.1 Data 379

We use the MECO dataset (Siegelman et al., 2022) 380

as a source of reading data. It contains 12 short 381

text excerpts from Wikipedia. These texts were dis- 382

played on a 1920×1080 screen in monospaced Con- 383

solas 22pt font. As summarized in Tab. 1 (App. B), 384

the number of characters per text ranges from 831 385

to 1230 (average 1093), and the number of lines 386

from 8 to 12 (average 10.5). We use the Python 387

Tesseract OCR library2 to identify characters and 388

their bounding boxes. More details in App. B. 389

Fixation Data. The MECO dataset provides gaze 390

measurements for multiple readers and reading ses- 391

sions. For each session, we consolidated the mea- 392

surements into a sequence T for each reader. This 393

yielded a dataset where each fixation event ξ could 394

be aligned with a bounding box in space and a 395

specific time interval. We split the dataset into an 396

80% training, 10% validation, and 10% test. The 397

training set contains 78, 033 fixation samples. 398

Surprisal. We are interested in whether word- 399

and character-level surprisal influences the spatio- 400

temporal dynamics of reading. Let Σ be a finite, 401

non-empty set of lexical units (i.e., characters or 402

words), called an alphabet, and Σ∗ be the set of all 403

strings that can be formed by concatenating units 404

in Σ. We further assign a special symbol EOS /∈ 405

Σ to denote the end of an utterance, and define 406

Σ
def
= Σ ∪ {EOS}. Following Shannon’s (1948) 407

formulation of information content, the surprisal 408

of a unit wt ∈ Σ in a preceding context of units 409

w<t ∈ Σ∗ is defined as 410

st(wt)
def
= − log2 p(wt | w<t), 411

where p(· | w<t) is the true (albeit unknown) distri- 412

bution over Σ conditioned on the preceding context 413

2https://pypi.org/project/pytesseract/
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w<t. In practice, we estimate p(· | w<t) using an414

autoregressive language model. Since most mod-415

ern language models learn a distribution over to-416

ken sequences, which may or may not correspond417

to standard linguistic units (Bostrom and Durrett,418

2020; Gow-Smith et al., 2022; Beinborn and Pinter,419

2023), we need a way of transforming the proba-420

bility of a token sequence to one over words and421

characters. To obtain character-level surprisals, we422

use the algorithm proposed by Vieira et al. (2024);423

the surprisal values are taken from Giulianelli et al.424

(2024) and were computed using GPT-2 (Radford425

et al., 2019). Word-level surprisals are obtained426

simply by summing the surprisal values of the sub-427

word tokens that comprises the word; these values428

are taken from Opedal et al. (2024) and were com-429

puted using mGPT (Shliazhko et al., 2024).3 The430

surprisal value associated with a fixation is taken as431

the surprisal of the corresponding character or word432

of the bounding box in which the fixation landed.433

We do not assign a surprisal value to fixations that434

did not land within a bounding box.435

5 Modeling Saccade Onset and Fixation436

Location437

We employ the framework introduced in §3.2 to438

model saccade onsets and fixation locations. First,439

we define three baseline models. We then propose440

a series of extensions intended to investigate the441

spatio-temporal dynamics of reading.442

5.1 Baseline Models443

The baseline models capture spatial and temporal444

dependencies by modifying the intensity function445

in Eq. (4). The first is a Poisson Baseline that as-446

sumes every fixation in space and time is equally447

likely and independent of past events. The second448

is a Last-Fixation Baseline that posits each new449

fixation is normally distributed around the previous450

fixation with constant variance. Finally, we intro-451

duce a Standard Hawkes Baseline, extending the452

Last-Fixation Baseline by incorporating past fixa-453

tions with a temporally decaying influence on the454

next fixation. Further details on these models are455

3Alternative methods have been proposed to compute the
probability of words (Oh and Schuler, 2024; Pimentel and
Meister, 2024) or any character string (Vieira et al., 2024)
from language models over tokens. While their impact on
psycholinguistic predictive power is evident when considering
sub- or super-word strings (Giulianelli et al., 2024), it remains
less clear whether the additional runtime of these alternative
methods provides the same benefits when focusing on words
(Oh and Schuler, 2024; Pimentel and Meister, 2024).

Figure 2: Bootstrap distributions for the log-likelihood
ratio in the Hawkes Process. The left plot compares
the Last Fixation Baseline (LF Baseline), the Standard
Hawkes Process Baseline (SH Baseline), the Constant
Spatila Shift (CSS), and the Constant Shift (CSS) +
Reader Mixed Effects (RME) model with the Poisson
baseline. The right plot compares the three models with
added predictors (character-level surprisal, duration, and
word-level surprisal) against the CSS + RME model.

provided in App. C. 456

5.2 Modeling Extensions 457

We consider three modeling extensions that incor- 458

porate a notion of mechanical spatial shift, reader- 459

specific effects, and fixation attributes such as the 460

fixation region’s surprisal. 461

Constant Spatial Shift (CSS) Model. We 462

consider an extension that evaluates whether a 463

learned but constant spatial shift from previous 464

fixations—independent of textual content—can 465

account for eye movements. The underlying 466

assumption is that eye movements follow a 467

mechanical progression through text. From a 468

modeling perspective, we modify the standard 469

Hawkes process by allowing µ(s) to learn a 470

translation, represented by a matrix A ∈ R2×2 and 471

an offset b ∈ R2, from location s, i.e., 472

µ(s) = As + b. 473

The model parameters are Θc = 474

{ν, α, β, σ2,A,b}. 475

Reader Mixed-Effects (RME) + CSS Model. 476

The models introduced so far treat all reading ses- 477

sions as though they come from a single, average 478

reader. In practice, however, individuals often ex- 479

hibit distinct reading styles. To capture these dif- 480

ferences, we extend the model to include reader- 481

specific deviations in both the temporal and spatial 482

parameters. Specifically, for each reader r, we 483
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introduce subject-level offsets γrα and γrβ for the484

temporal kernel parameters :485

αr = α+ γrα and βr = β + γrβ,486

where α and β are the global (population-level)487

temporal parameters, and γrα, γ
r
β ∈ R capture how488

reader r’s temporal dynamics differ from the aver-489

age. To account for spatial biases, we let the mean490

of the spatial distribution shift by a reader-specific491

vector dr ∈ R2:492

µr(s) = As + b+ dr.493

Here, dr represents an x- and y-offset indicating494

reader r’s typical gaze shift relative to the global495

mean. Under this mixed-effects formulation, the496

overall parameter set is:497

Θr = Θc ∪ {γrα, γrβ, dr | r = 1, ... , R},498

where Θc collects the global parameters.499

Incorporating Fixation Attributes. Finally, we500

treat each fixation’s attributes—duration (d),501

character-level surprisal (sc), and word-level sur-502

prisal (sw)—as “marks” mi that modulate the tem-503

poral kernel and spatial mean. For example, for504

reader r and fixation i:505

αr
i = α+γrα+αmmi, βr

i = β+γrβ+βmmi,506

507
µr
i (s) = A s + b + dr + gmmi.508

where mi ∈ {d, sc, sw}. The new parameters509

{αm, βm,gm} capture how each attribute shifts510

temporal or spatial dynamics. We gather them in:511

Θmarks = {αm, βm, gm}m∈{d,sc,sw},512

so the full parameter set is Θm = Θc ∪ Θmarks.513

5.3 Results on Hawkes Process Model514

We train the models until convergence under differ-515

ent hyperparameter values; see App. G for details.516

The final model candidate is selected based on like-517

lihood on the validation set and subsequently tested518

on a held-out test set. The model performance on519

the test set is compared using log-likelihood ratios.520

Fit on held-out data. First, we investigate how521

well our family of models fits with held-out reading522

data. Fig. 2 (left) shows the log-likelihood ratio523

under bootstrapped uncertainty intervals relative524

to the Poisson-process baseline for four different525

models: (i) the Fixation Baseline (Last-Fixation526

Model), (ii) the Standard Hawkes Baseline, (iii) the 527

Constant Spatial Shift extension (CSS), and (iv) 528

the Constant Spatial Shift + Reader Mixed-Effect 529

extension (CSS + RME). First, we observe the last- 530

fixation and Hawkes process baselines yield sig- 531

nificant improvements over the Poisson process. 532

Moreover, while the self-excitation behavior on its 533

own is not sufficient to yield improvements over 534

a model only accounting for the last fixation, the 535

model incorporating a constant spatial shift does 536

show a marked improvement in log-likelihood ratio. 537

This supports the hypothesis that saccade genera- 538

tion involves memory of recent fixation locations 539

and that reading unfolds in space and time with a 540

strong mechanical component. Specifically, the es- 541

timated parameters indicate a global rightward shift 542

of approximately 1.25 units per fixation. Given that 543

the x-axis ranges from 0 to 20 on the screen, each 544

new fixation is thus predicted to move about 5% 545

further to the right. Further introducing reader- 546

specific mixed effects reveals substantial individual 547

variability (e.g., in skipping or regressing). Ana- 548

lyzing the temporal coefficients per reader yields 549

a mean α̂ of 5.63 (SD = 0.44) and a mean β̂ of 550

9.12 (SD = 1.21). The lower α̂ compared to β̂ sug- 551

gests that although recent fixations do influence the 552

likelihood of another fixation in short succession, 553

this influence decays relatively quickly over time. 554

Fig. 1, shows the CSS + RME intensity at differ- 555

ent times during a reading session. Qualitatively, 556

the figure demonstrates how this model success- 557

fully captures the intensity around the next fixation, 558

whether it is a forward fixation, a regressive fixa- 559

tion, or one that remains on the same word. 560

Influence of surprisal and past durations. Next, 561

we study whether incorporating surprisal and past 562

durations into the model helps predicting the lo- 563

cation of the fixation. In Fig. 2 (right), we illus- 564

trate the gains from further adding these fixation- 565

level attributes as compared to the RME + CSS 566

model. We see a modest but consistent improve- 567

ment beyond the mechanical and reader-dependent 568

factors, suggesting that local cognitive load also 569

helps shape eye-movement decisions. In all cases 570

we find that α̂m > β̂m, which suggests that past 571

fixations with larger durations, character-level and 572

word-level surprisals increase the temporal influ- 573

ence on the next fixation. We extend on this state- 574

ment in the appendix in relation to the branching 575

ratio of a Hawkes process (App. F). 576
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5.4 Modeling Fixation Durations577

We model fixation durations using a log-normal578

distribution, chosen for parameter interpretability579

through cross-validated comparison to alternatives580

like the gamma distribution (App. D). Let t > 0581

denote duration with:582

log t ∼ N
(
µd(Ht), σ

2
)

583

where µd(Ht) encodes history-dependent effects584

(e.g., prior fixation dynamics) and σ2 is a shared585

log-variance parameter. Our baseline estimates586

(µd
0, σ

2) ∈ R2, with extensions proposed below.587

We show a full survival analysis derivation in588

App. D.589

Mark-Dependent Past Influence. We let each590

fixation’s duration depend on the history of prior591

“marks” (e.g., durations or surprisals). Let mi de-592

note a mark at time ti. We define the discrete con-593

volution:594

(fΓ ∗ ηm)(t |αγ , βγ , δγ) = (11)595 ∑
(t′,m′)∈Ht

m′fΓ
(
t− t′ | αγ , βγ , δγ

)
.596

where ηm is a discrete measure for mark m, and fΓ597

is the density of a shifted-gamma distribution, as598

previously employed by Shain and Schuler (2018).599

We refer to App. E for details. For a fixation i, the600

mean log-duration µd
i is modeled via601

µd
i = β0 + βm

1

(
fΓ ∗ ηm

)(
ti
)
+ γdr .602

In the case of character or word-level surprisal, we603

also include an additional predictor for the current604

word’s (or character’s) surprisal value.605

5.5 Results606

We followed the experimental protocol described in607

§5.3 to evaluate the test-set likelihoods of our pro-608

posed models. Our primary objective is to assess609

the impact of three predictors—duration, character-610

level surprisal, and word-level surprisal—on in-611

dividual duration modeling, while controlling for612

mixed reader effects. The results (Fig. 3) demon-613

strate that established methods for modeling ag-614

gregated durations only detect very weakly effects615

when applied to individual-level predictions. While616

bootstrapping confirms statistically significant like-617

lihood ratios for each mark-dependent model, the618

small magnitude of these ratios (0.03–0.05) indi-619

cates limited predictive power in disaggregated set-620

tings. We note that these experiments were per-621

formed on unfiltered data, which could be noisy.622

Figure 3: Bootstrapped distributions of the Log-
Likelihood Ratio for the duration model, comparing
the three models with added predictors (character-level
surprisal, duration, and word-level surprisal) against the
Reader-Mixed Effect (MRE) Duration model.

6 Conclusion 623

We introduced a unified probabilistic framework 624

for modeling reading behavior, integrating fixation 625

duration, location, and saccade timing within a sin- 626

gle mathematical structure. Unlike models that fo- 627

cus solely on temporal patterns (Shain and Schuler, 628

2018, 2021), our alternating renewal process cap- 629

tures both spatial and temporal dynamics, enabling 630

a detailed examination of both oculomotor control 631

and cognitive processes underlying reading. Our 632

results highlight the significant role of mechanical 633

processes, such as systematic left-to-right shifts, 634

in shaping reading behavior. They also emphasize 635

the importance of explicitly modeling inter-subject 636

variability, particularly when analyzing disaggre- 637

gated data. Moreover, while predictors like sur- 638

prisal effectively model aggregate reading patterns, 639

we find they struggle to generalize to individual 640

fixation-level dynamics. Specifically, word and 641

character surprisal exhibit only moderate predictive 642

power for saccade timing and landing position and 643

very weak predictive power for individual fixation 644

durations, suggesting a potential oversimplifica- 645

tion of the link between cognitive mechanisms and 646

reading behavior. Overall, our work challenges the 647

direct applicability of aggregated cognitive models 648

to individual-level analysis and provides a flexible 649

foundation for more precise and scalable investiga- 650

tions of reading behavior. 651
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Limitations652

While our framework advances eye-movement653

modeling, four limitations merit discussion. First,654

our analysis uses English data from MECO, leav-655

ing the 10 other languages unexamined. Cross-656

linguistic validation is needed to assess whether our657

findings generalize to languages with distinct ortho-658

graphic or syntactic properties (e.g., languages that659

read from right to left). Second, we intentionally660

constrained linguistic predictors (e.g., surprisal fea-661

tures) to simple link-linear relationships (i.e., a lin-662

ear transformation combined with a link function)663

to maintain interpretability; however, this may over-664

simplify the cognitive-ocular relationships com-665

pared to high-capacity neural architectures. Our666

open-source PyTorch implementation enables fu-667

ture exploration of nonlinear or hierarchical fea-668

ture interactions. Third, for fixation durations, we669

compared previous work on aggregated data to the670

disaggregated setting but did not propose a method671

tailored specifically for the disaggregated setting.672

Finally, the Standard Hawkes process baseline and673

Last Fixation baseline showed comparable perfor-674

mance. While we augmented the Standard Hawkes675

model to capture spatial gaze patterns, we did not676

similarly extend the Last Fixation baseline. A more677

symmetrical evaluation—testing both models with678

spatial covariates—could clarify their relative ad-679

vantages.680
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A Common Aggregations of Reading Data and their Interpretation893

The most common word-level aggregation of reading data are first fixation time, first-pass time, and total894

fixation time. These are generally thought to reflect progressively later stages of language processing895

(Inhoff, 1984; Berzak and Levy, 2023). We describe them here, along with their standard interpretations.896

First-fixation time, the duration of only the first fixation that lands on a word, is associated with word897

identification and lexical processing (Clifton et al., 2007; Berzak and Levy, 2023) and tends to exhibit898

smaller surprisal effects (Wilcox et al., 2023; de Varda et al., 2024). First-pass time (or gaze duration),899

the summed duration of all fixations between landing on a word’s region and leaving it, is thought to be900

indicative of early syntactic and semantic processing, and typically considered the aggregate to be most901

strongly associated with processing difficulty (e.g., Smith and Levy, 2013; Goodkind and Bicknell, 2018;902

Wilcox et al., 2020). Total fixation time, the summed duration of all the fixations on the word, including903

refixations of the region after it was left, is thought to be indicative of integrative processes (e.g., Demberg904

and Keller, 2008; Roberts and Siyanova-Chanturia, 2013) and sometimes exhibits, somewhat unexpectedly,905

stronger surprisal effects than first-fixation and first-pass time (Wilcox et al., 2023; Giulianelli et al., 2024).906

B Optical Character Recognition (OCR)907

We applied the Python Tesseract OCR library4 to each image in the MECO dataset (Siegelman et al.,908

2022) to identify textual characters and their bounding boxes. The number of characters per text, the909

number of lines, and bounding box information are summarized in Tab. 1. Tesseract provides the position910

and dimensions of each recognized character. We set the heights to a constant value by adjusting them to911

match the tallest character in the image, and the widths to the 90th percentile of character widths. This912

ensures a consistent character grid for subsequent analysis. Because Tesseract does not detect whitespace913

as distinct regions, we identified whitespace ourselves by comparing gaps between adjacent character914

boxes. Whenever the horizontal gap was at least 80% of a typical single-character width, we considered915

the gap to be a whitespace and assigned it a bounding box of the same constant height.

Avg SD Min Max
Lines 10.5 1.2 8.0 12.0
Characters 1093.0 125.2 831.0 1231.0
BBox width 12.0 0.0 12.0 12.0
BBox height 22.3 2.2 18.0 24.0

Table 1: Summary statistics of raw MECO data, including the number of lines and characters per text and bounding
box (BBox) dimensions.

916

C Detailed Description of Baseline Models917

In this section, we provide a comprehensive description of the baseline models designed to capture918

progressively more sophisticated spatial and temporal dependencies in fixation behavior. Each model is919

defined via a modification of the intensity function introduced in Eq. (4).920

C.1 Poisson Process921

The Poisson process model assumes that every fixation is equally likely regardless of spatial location or922

temporal history, implying independent fixations in space and time. Its intensity function is923

λ(τ, s | Hτ ) = ν,924

where ν ∈ R+ is the only learnable parameter. This serves as the simplest baseline, ignoring any spatial925

or temporal dependencies.926

4https://pypi.org/project/pytesseract/
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C.2 Last-Fixation Model 927

The last-fixation model introduces a basic spatial dependency by assuming that each new fixation is 928

normally distributed around the most recent fixation. Let st−H denote the location of the last fixation. Then, 929

the intensity function is given by 930

λ(τ, s | Hτ ) = ν + f
(
s | st−H , σ

2
)
, 931

where f(· | st−H , σ
2) is the probability density function of a normal distribution centered at st−H with 932

variance σ2. This model introduces two learnable parameters: the baseline intensity ν and the variance 933

σ2, making the set Θb1 = {ν, σ2}. 934

C.3 Standard Hawkes Process 935

The standard Hawkes process builds upon the last-fixation model by incorporating the influence of all past 936

fixations with a temporally decaying impact. Specifically, each previous fixation contributes to the current 937

intensity with an exponential decay. The intensity function is defined as 938

λ(τ, s | Hτ ) = ν +
∑
ti<τ

α e−β(τ−ti) f
(
s | µ(si), σ2

)
, 939

where: 940

• α and β are the temporal kernel parameters governing the strength and decay rate of the influence 941

from past fixations. 942

• f(· | µ(si), σ2) is the spatial component, with µ(si) = si representing the location of the i-th fixation. 943

The complete parameter set for this model is given by Θb2 = Θb1 ∪ {α, β}, where Θb1 = {ν, σ2} are the 944

parameters inherited from the last-fixation model. 945

D Modeling Duration: A Survival Analysis Framework 946

Survival analysis provides an optimal framework for modeling fixation durations as it naturally handles 947

right-skewed, time-to-event distributions. We evaluated six candidate distributions through K-fold cross- 948

validation on training and validation data: Rayleigh, exponential, Weibull, normal, log-normal, and 949

gamma. 950

Figure 4: Goodness-of-fit comparison of candidate distributions for fixation durations. Both log-normal and gamma
distributions showed superior performance compared to simpler other forms (higher log-likelihood indicate better
fit). The log-normal was ultimately selected for its enhanced parameter interpretability.
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While the log-normal and gamma distributions demonstrated comparable predictive performance951

(Fig. 4), we selected the log-normal distribution for two key reasons: (1) its parameters directly corre-952

spond to moments of the log-transformed durations, enabling more intuitive interpretation, and (2) it953

provides closed-form expressions for survival and hazard functions through relationship with the normal954

distribution.955

D.1 Log-Normal Survival Model Specification956

Let t > 0 represent fixation duration with associated survival characteristics:957

• Log-transformed duration: ln t ∼ N (µd(Ht), σ
2)958

• Probability density function (PDF):959

fd(t | Ht) =
1

tσ
√
2π

exp

(
−(ln t− µd(Ht))

2

2σ2

)
960

• Survival function:961

S(t) = P (T ≥ t) = 1− Φ

(
ln t− µd(Ht)

σ

)
962

where Φ(·) denotes the standard normal CDF963

• Hazard function:964

h(t) =
fd(t | Ht)

S(t)
965

• Expected duration:966

E[t | Ht] = exp

(
µd(Ht) +

σ2

2

)
967

Here µd(Ht) represents the conditional mean of log-durations given the fixation history Ht, while σ2968

captures residual variance on the log-scale. This parameterization enables direct interpretation of covariate969

effects in terms of proportional changes in duration expectation through the exponential relationship.970

E Convolution-Based Duration Model Details971

We provide full details on the convolution-based predictor described in the main text.972

E.1 Measure Definition973

We define the discrete measure ηm for a general mark mi at time ti as974

dηm(τ) =
∑

(ti,mi)∈H

mi δ(τ − ti),975

where δ(·) is the Dirac delta function, and H is the set of all past events.976

E.2 Shifted Gamma Kernel977

We use a shifted Gamma kernel f
(
τ | λ, θ, δ

)
(Shain and Schuler, 2018), which takes the form

f(τ | λ, θ, δ) = (τ − δ)θ−1 λθ e−λ (τ−δ)

Γ(θ)

where λ > 0, θ > 0, and δ < 0.978
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E.3 Discrete Convolution 979

The discrete convolution of the kernel f with the measure ηm at time t is 980

(f ∗ ηm)
(
t | λ, θ, δ

)
=

∑
(t′,m′)∈Ht

m′ f
(
t− t′

∣∣ λ, θ, δ). 981

This sum effectively weighs each past mark m′ by the kernel evaluated at the lag t− t′. 982

F Branching Ratio with Reader-Specific Effects 983

In a hawkes process with exponential temporal decay, the branching ratio (Laub et al., 2015) is defined 984

as
α

β
and it quantifies the average number of events directly triggered by a single event. The higher the 985

branching ratio, the more subsequent events are generated by each past events; that is the influence that 986

past events have on future occurrences is greater. For reader r, our model specifies covariate-dependent 987

parameters: 988

αr = α+ γrα︸ ︷︷ ︸
Baseline

+αmmi, βr = β + γrβ︸ ︷︷ ︸
Baseline

+βmmi (12) 989

where mi is the mark (e.g., fixation duration), γrα, γ
r
β are reader-specific random effects, and αm, βm are 990

fixed coefficients. The reader-specific branching ratio for a fixation with mark mi is: 991

ηr(mi) =
αr

βr
=

(α+ γrα) + αmmi

(β + γrβ) + βmmi
(13) 992

F.1 Mark Modulation of Influence 993

The derivative with respect to mi reveals how marks modify temporal influence within readers: 994

∂ηr

∂mi
=

αm(β + γrβ)− βm(α+ γrα)[
(β + γrβ) + βmmi

]2 (14) 995

When αm > βm and the baseline ratio satisfies stationarity (α+γr
α

β+γr
β
< 1) - which all our estimates do - 996

the numerator simplifies to: 997

αm(β + γrβ)− βm(α+ γrα) > βm

[
α+ γrα
β + γrβ

(β + γrβ)− (α+ γrα)

]
= 0 (15) 998

where the inequality follows from αm/βm > (α + γrα)/(β + γrβ). Thus, ∂ηr/∂mi > 0 - larger marks 999

increase the branching ratio for fixations from the same reader. 1000

G More Details on Experimental Setup 1001

Our models are implemented in PyTorch and we estimated model parameters using gradient-based 1002

techniques. A systematic hyperparameter search was conducted over batch sizes {64, 128, 256, 512}, 1003

learning rates {0.0001, 0.001, 0.01, 0.1}, and weight decay values {0, 0.0001}. In our experiments, we 1004

compared different optimizers, including the Adam optimizer and SGD with Nesterov momentum. 1005

To reduce the risk of converging to different local optima across experiments, we employed a progressive 1006

training strategy. We trained models sequentially, moving from simpler to more complex architectures 1007

in terms of the number of parameters. When training a more complex model, we initialized its shared 1008

parameters with the best values from the corresponding nested simpler model, and set any additional 1009

parameters to 0 (when possible). This approach was designed to mitigate the possibility of converging to 1010

an optimum that had not been explored in the simpler model, by ensuring that each more complex model 1011

started from the same local minimum as its less complex predecessor. 1012
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