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Abstract

Reading is a process that unfolds across space
and time. Standard modeling approaches, how-
ever, overlook much of the spatio-temporal dy-
namics involved in reading by relying on aggre-
gated reading measurements—typically only
focusing on fixation durations—and employ-
ing modeling techniques that impose strong
assumptions. In this paper, we propose a model
that captures not only how long fixations last,
but also where they land in space and when
they take place in time. This is achieved by
considering reading as an alternating renewal
process, in which the locations and durations
of eye fixations are modeled separately yet co-
hesively. The location (and timing) of fixation
shifts, so-called saccades, are modeled using
a spatio-temporal Hawkes process, which cap-
tures how each fixation excites the probability
of a new fixation occurring near it in time and
space. Empirically, our Hawkes process model
exhibits higher likelihood on held-out reading
data than baselines. The duration time of fixa-
tion events is modeled as a function of fixation-
specific features convolved across time, thus
capturing non-stationary delayed effects. We
evaluate goodness-of-fit across various time-
to-event distributions and find evidence that
previous convolution-based approaches (Shain
and Schuler, 2018, 2021) are insufficiently ex-
pressive for modeling disaggregated durations.
Finally, testing surprisal theory on disaggre-
gated data, we find that it is weakly predictive
of where fixations land but has virtually no pre-
dictive power for individual fixation durations.

1 Introduction

Reading is a cognitively complex skill that unfolds
across both space and time. As we read, our eyes
move through an interdigitated sequence of fixa-
tions, brief pauses that allow for the perception
and processing of linguistic material, and saccades,
rapid movements that shift focus to the next point
of interest. A longstanding premise in psycholin-

guistic research is that eye movements during read-
ing provide a direct window into the cognitive
processes underlying human language comprehen-
sion (McConkie, 1979; Just and Carpenter, 1980;
Rayner et al., 1989; Findlay and Walker, 1999).
Indeed, eye-tracking experiments have emerged as
one of the most effective paradigms for testing and
refining theories of language processing (Rayner,
1998; Frank et al., 2013). Data collected in eye-
tracking trials consist of sequences of fixations
across texts displayed within a two-dimensional
coordinate space (e.g., a screen), along with their
durations and onset time.

In modern computational psycholinguistic stud-
ies, the raw data is typically aggregated into sum-
mary measurements, e.g., total fixation duration,
the summed duration of all fixations on a chosen
linguistic unit, and gaze duration, the summed
duration of all fixations between landing on a word
and moving to another (see §2.1 for further details
on aggregations). These summary measurements
are then treated as dependent variables in a (gener-
alized) linear model (Smith and Levy, 2013; Good-
kind and Bicknell, 2018; Wilcox et al., 2020). Such
aggregation, however, is an inherently lossy pro-
cess. From a temporal perspective, combining mul-
tiple fixations in a single measurement may conflate
several factors that underlie the aggregated behav-
iors. For example, total fixation time includes first
fixations as well as regressions, which are fixations
where the reader moves backwards spatially and
correspond to a different cognitive process (Wilcox
et al., 2024). From a spatial perspective, aggre-
gations inherently rely on pre-defined regions of
interest (Giulianelli et al., 2024). Aggregating fixa-
tions, which is most commonly word level, discards
any information about where saccades land within
the boundaries of a word and hinders investigations
into smaller linguistic units, such as syllables or
morphemes. In sum, while aggregations help sim-
plify the challenge of modeling and interpreting
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Figure 1: Illustration of how the density of fixations evolve over time within a reading session, and how it compares to
held-out data. The intensity function is visualized at different timestamps and shows the predicted fixation intensity
of our extended Hawkes process and a baseline model. Red dots indicate observed fixations before time ¢, while
green dots represent the next fixation after . Note how the following effects are captured by the Hawkes process:
forward fixations (f = 51.80), backward regressions (t = 49.89), and re-fixations on the same word (¢t = 7.25).

the complex spatio-temporal dynamics of fixations
and saccades, they inevitably result in a loss of in-
formation when compared to the raw reading data.

Beyond the fact that how one aggregates the
data can result in loss of information, it also has
a significant impact on the empirical support for a
given theory. For example, surprisal theory (Hale,
2001; Levy, 2008) suggests that contextual word
predictability should have a more pronounced ef-
fect on gaze duration than total fixation time, as
the latter can be influenced by material from the
right context (e.g., through regressive saccades). In
contrast, surprisal has been found empirically to be
a stronger predictor of total fixation time than gaze
duration (Wilcox et al., 2023). Since both gaze and
total duration are aggregate measures, providing
a precise explanation for such counterintuitive re-
sults is challenging. Another theoretical concern
with aggregations is that they tend to conflate cog-
nitive and oculomotor control processes. For exam-
ple, while cognitive processes contribute to reading
slowdowns, the oculomotor system imposes an in-
herent time delay between successive saccades. To
incorporate such effects, these models must include
additional features describing previous units, so-
called spillover variables. However, the number of
spillover variables to include is hard to motivate
empirically, as the time lag between the onset of
an event and its effect on a subsequent fixation will
depend on context as well as which type of stimuli
that are modeled, i.e., they are non-stationary.

In this paper, we advocate a unified approach

that jointly models when fixations occur, where
they land, and how long they last. For saccade tim-
ing and fixation locations (when and where), we
employ a Hawkes (1971) process, which captures
how the density of future fixations changes in re-
sponse to preceding ones in both time and space.
For fixation durations (how long), we adopt sur-
vival analysis with a log-normal distribution and a
convolution-based approach inspired by Shain and
Schuler (2021)—originally developed for aggre-
gated durations. We evaluate our framework on the
Multilingual Eye-movements Corpus (MECO), as-
sessing its ability to jointly model spatio-temporal
disaggregated fixation and duration patterns. Our
findings highlight the importance of explicitly mod-
eling the coordination of oculomotor control (e.g.,
mechanical left-to-right shifts) and cognitive pro-
cesses (e.g., through surprisal predictors), as well
as inter-subject variability in reading strategies.

2 Reading Behavior

While reading, our eyes make progress through the
text via brief, rapid movements called saccades.
Very little visual information is extracted during a
saccade (Ishida and Ikeda, 1989). Instead, most in-
formation is extracted during the pauses that occur
between saccades, where the eyes remain station-
ary. These pauses, which are longer than saccades,
are called fixations. During a reading session, our
eyes alternate between fixations and saccades.
Examining reading behavior is key to under-
standing the cognitive mechanisms that underlie



reading. For example, fixations are known to reflect
lexical access (Lima and Inhoff, 1985), syntactic
parsing (Frazier and Rayner, 1982), and semantic
integration (Ehrlich and Rayner, 1983). A common
way to measure reading behavior is through eye-
tracking studies (Rayner, 1998), which record high
frequency gaze samples that are segmented into
discrete fixations. Each fixation £ is characterized
as a tuple (¢, s, d) consisting of an onset time ¢, a
spatial location s, and a duration d. The onset
time ¢ € Ry is the starting time of the fixation
relative to some reference point, typically the start
of the reading session. The spatial position lives in
a two-dimensional coordinate space  C R?, e.g.,
a screen. Finally, the duration d € R captures
how long the eye remains still before initiating the
next saccade. We consider a reading session 7 to
be a set of IV fixations, i.e.,

T:{£17"'7£n}7 (1)

where t; < t; if i < j. For each ¢;, we define the
history H;, as

Hi, = {(t),85,d5) | t; < t:}. (2

Note that in addition to fixations’ onset times,
locations, and durations, this sequence encodes the
onset times and durations of saccades as well.!

2.1 Modeling Aggregated Reading Data

Rather than as a raw sequence of fixation events,
reading data are typically preprocessed into reading
time variables at the word level (see, e.g., Frank
et al., 2013), though aggregations around other re-
gions of interest are also used, especially when
studying specific types of reading behavior like
skip rates (Rayner et al., 2011). The most common
word-level aggregations are first-fixation time, the
duration of the first fixation that lands on a word;
first-pass time, the summed duration of all fixations
between landing on a word’s region and leaving
it; and total fixation duration, the summed dura-
tion of all the fixations on the word. For more
details, see App. A. Disentangling the oculomotor
and inferential processes that contribute to each
aggregate measurement is a challenging task, par-
ticularly given that they are hierarchically ordered,
with each variable including the previous.

'In particular, the onset of the ¢-th saccade can be inferred
by adding the i-th duration to the ¢-th fixation onset. The du-
ration of the saccades can be inferred by taking the difference
between the fixation onsets and the saccade onsets.

The standard approach to analyzing these vari-
ables is to use linear modeling or generalized ad-
ditive models (GAMs; Kliegl, 2007; Smith and
Levy, 2013; Goodkind and Bicknell, 2018; Wilcox
et al., 2020, 2023; Gruteke Klein et al., 2024, inter
alia). When multiple reading times per stimulus
are available, i.e., when multiple participants read
the same stimulus in their respective trials, this is
typically modeled with linear mixed-effects models
(Aurnhammer and Frank, 2019; Xu et al., 2023),
using individual reading time as a random effect to
account for variability across participants.

3 Modeling Spatio-temporal Reading
Data

We propose a model of the raw reading session 7
rather than aggretations as discussed in §2.1. Thus,
we explicitly model when a new fixation begins,
where it lands, and how long it lasts. In particular,
we model the reading session as an alternating
renewal process (Cox, 1967) that cycles between
two phases, a saccade phase and a fixation phase:

1. Saccade phase (§3.2). This is the phase
where the reader’s eyes move from one fix-
ation location to the next. Saccades are mod-
eled using a spatio-temporal Hawkes process,
which predicts the density of the next fixation
onset and its location (i.e., the time of the cur-
rent saccade’s termination and its landing loca-
tion, respectively) conditioned on the fixation
history. The Hawkes process encodes how re-
cent fixations spark a short-term increase in
the probability of new fixation events nearby
in time and space, so-called self excitation.

2. Fixation phase (§5.4). This is the phase
where the reader’s eyes dwell on a fixed lo-
cation. Fixation durations are modeled as in-
fluenced by a history of fixation events using
some parametric model, which can be selected
by the modeler.

These two phases are combined into a unified gener-
ative procedure, described in §3.4, which produces
the entire sequence of fixations and saccades for a
reading session.

Why separate them? We argue that saccades
and fixation durations should be modeled sepa-
rately due to their differing characteristics. (1) Fix-
ations are typically longer and concern a single lo-
cation in the text, whereas saccades are short move-
ments connecting two locations. (2) Saccade times



naturally exhibit a self-exciting property: more
recent events have a greater influence on the likeli-
hood of future events in time and space. This does
not hold for fixation durations, as a longer fixation
does not necessarily cause subsequent fixations to
be longer or shorter. (3) We further observe that
while the decision of where to land next is largely
determined during a fixation (Aslin and Shea, 1987;
Abrams and Jonides, 1988), the probability of ac-
tually moving to a different location remains zero
until the fixation ends. Because a saccade can only
occur after a fixation terminates, modeling fixation
durations, saccade times, and saccade landing spots
jointly can be achieved without loss of generality
via a two-step approach: first modeling fixation du-
rations, and then modeling saccade times and land-
ing spots conditioned on the outcome of the former.

3.1 Transforming Time to Remove Fixation
Durations

We decouple saccade duration from fixation dura-
tion in the following way. Consider the onset times
t1,t9,... ,t,. We now remove fixation durations
from the timeline via a mapping of onset times
hy: Ry — R4, defined as

hr(ti) = t; — Z d. )

(t,s,d) € Ht,

In words, hr(t;) gives the onset time of the i-th
saccade when the fixation durations are excluded
from the timeline. In this transformed domain,
each fixation onset ¢; is mapped to ~7(t;). We will
refer to hy(t) with t* for brevity. Collecting these
gives a new sequence

{(f{, s1, db), o (K, S, dn)},

where the s and d values remain as in Eq. (1). Be-
cause all fixation durations are subtracted out, con-
secutive fixations in 7* appear as if they had zero
duration; thus, the time elapsed between events in
T* correspond precisely to the saccade durations.

T =

3.2 Hawkes Process for Saccade Onsets

We now define a spatio-temporal Hawkes
process on the transformed times ¢* and locations
s in two-dimensional space. Let H;~ be the
history of events in the transformed domain up
to t*. The Hawkes process assumes that the
probability of a new event occurring in the time
interval [t*,¢* + dt) and in space [s,s + ds) is
A(t*,s | Hyr)dtds, where \: Ry x Q@ — Ry is

called the intensity function. Conditioning on the
past events, it captures how past fixations (¢*/,s)
influence the probability of new fixations (i.e.,
self-excite) in an additive manner:

At s |[Hes) = 4
v+ Z p(t —t*') f(s]s),

(t*lzs/) € Hyx

where v € R, is the base intensity, ¢: Ry — R4
is an exponentially decaying temporal kernel
governing the influence of past events, and f(s | s’)
is a distribution over €2. Note that omitting the sum
in Eq. (4) yields a Poisson process (Palm, 1943).

Temporal Kernel. We let each past fixation con-
tribute an exponentially decaying influence on the
intensity of future fixations. The exponential decay
kernel is defined as

6(8) = g(xta) exp( —g(B)A), )

where A = t* — t*/ is the time elapsed between
transformed onset times, x;« € RP is a vector of
predictor values, o, 5 € RP are learnable param-
eters, and g: R — Ry is a linking function that
ensures the non-negativity of the parameters, e.g.,
a ReLU. Note that the linking function is used
twice in Eq. (5); g(xg; a) quantifies how much
a fixation increases the probability of subsequent
fixations (excitation strength), while g(x% 3) de-
termines how quickly the influence of the fixation
diminishes over time (decay rate). Since they de-
pend on an event-specific vector of predictor values
X+, the strength of excitation and decay rate may
vary across different spatio-temporal conditions.

Spatial Distribution. We model the spatial com-
ponent f(s | s’) with a normal distribution with
a mean pu(s’) which depends on s’. We assume
a scalar variance o (i.e., a spherical Gaussian),
yielding the density function:

1 N
fs18) = - exp (-50) )

Overall Hawkes Density. These design choices
result in the intensity function \ being a mixture of
Gaussian components, each corresponding to a past
fixation event. Thus, we obtain a multimodal spa-
tial distribution. This aligns well with reading be-
havior, since it captures that eye fixations may jump
either forward or backward in the text with varying
probabilities. The overall density is defined as

A", s | Hi)
Z )

Srp(t758 | Hez) = ©)



where the normalizing constant Z is

o
Z = exp (/ /)\(u,z\’Hu)dzdu> , (8
ty, Jo

with t7, = maxe{t* | (t*,5,d) € Hy-}, ie., the
onset of the saccade in the history that occurred
latest in time.

3.3 Parametric Distribution for Fixation
Durations

We model fixation duration as a nonnegative ran-
dom variable with density fy(t | H:), where H;
denotes the history of the reading session up to time
t (here referring to the original, non-transformed
session). To capture time-to-event data such as fixa-
tion durations, we employ a survival analysis frame-
work. Within this framework, the density is factor-
ized into a hazard function and a survival function:

fa(t | He) = Bt [ He) S(E[He), )

where
t
S(t|He) =exp (/ h(s | H¢) ds> . (10)
0

The hazard function h(t | H;) represents the
instantaneous rate at which a fixation terminates
at time ¢, given that it has persisted until then. For
example, the hazard is typically low at the onset
of a fixation but increases as the reader proceeds
through the stages of processing, eventually peak-
ing at an optimal moment when the reader is most
prepared to shift attention. The survival framework
accommodates a variety of hazard functions. Fur-
thermore, we parameterize f; via a linear model
and a linking function which incorporates predic-
tors from previous fixations through a temporal
convolution, as in Shain and Schuler (2021).

3.4 Unified Generative Model

Putting it all together, the reading process unfolds
as follows:

(a) Draw a new fixation onset (¢;,s;) from the
Hawkes process in the transformed timeline:

(t*5,81) ~ fup( | Her,)s  ti = h' (t5),

(b) Sample fixation duration d; ~ fq(- | H,) us-
ing Eq. (9).

(c) Update the history by adding the new sample
& = (ti,si, d;) o

Hti+1 = {H,, UG}

This process is then repeated for any new fixation
up to an ending time 7" € R;. We implement
this framework in PyTorch to learn parameters
shared across different reading sessions through
automated differentiation.

4 Experimental Setup

4.1 Data

We use the MECO dataset (Siegelman et al., 2022)
as a source of reading data. It contains 12 short
text excerpts from Wikipedia. These texts were dis-
played on a 1920x1080 screen in monospaced Con-
solas 22pt font. As summarized in Tab. 1 (App. B),
the number of characters per text ranges from 831
to 1230 (average 1093), and the number of lines
from 8 to 12 (average 10.5). We use the Python
Tesseract OCR library? to identify characters and
their bounding boxes. More details in App. B.

Fixation Data. The MECO dataset provides gaze
measurements for multiple readers and reading ses-
sions. For each session, we consolidated the mea-
surements into a sequence 7 for each reader. This
yielded a dataset where each fixation event & could
be aligned with a bounding box in space and a
specific time interval. We split the dataset into an
80% training, 10% validation, and 10% test. The
training set contains 78, 033 fixation samples.

Surprisal. We are interested in whether word-
and character-level surprisal influences the spatio-
temporal dynamics of reading. Let X be a finite,
non-empty set of lexical units (i.e., characters or
words), called an alphabet, and >* be the set of all
strings that can be formed by concatenating units
in X. We further assign a special symbol EOS ¢
> to denote the end of an utterance, and define
Y ¥ % U {Eos}. Following Shannon’s (1948)
formulation of information content, the surprisal
of a unit w; € ¥ in a preceding context of units
woy € X* is defined as

st(wt) = - logy p(wy | w<),

where p(- | w<;) is the true (albeit unknown) distri-
bution over X conditioned on the preceding context

2ht’cps: //pypi.org/project/pytesseract/


https://pypi.org/project/pytesseract/

w<y. In practice, we estimate p(- | w<;) using an
autoregressive language model. Since most mod-
ern language models learn a distribution over to-
ken sequences, which may or may not correspond
to standard linguistic units (Bostrom and Durrett,
2020; Gow-Smith et al., 2022; Beinborn and Pinter,
2023), we need a way of transforming the proba-
bility of a token sequence to one over words and
characters. To obtain character-level surprisals, we
use the algorithm proposed by Vieira et al. (2024);
the surprisal values are taken from Giulianelli et al.
(2024) and were computed using GPT-2 (Radford
et al., 2019). Word-level surprisals are obtained
simply by summing the surprisal values of the sub-
word tokens that comprises the word; these values
are taken from Opedal et al. (2024) and were com-
puted using mGPT (Shliazhko et al., 2024).> The
surprisal value associated with a fixation is taken as
the surprisal of the corresponding character or word
of the bounding box in which the fixation landed.
We do not assign a surprisal value to fixations that
did not land within a bounding box.

5 Modeling Saccade Onset and Fixation
Location

We employ the framework introduced in §3.2 to
model saccade onsets and fixation locations. First,
we define three baseline models. We then propose
a series of extensions intended to investigate the
spatio-temporal dynamics of reading.

5.1 Baseline Models

The baseline models capture spatial and temporal
dependencies by modifying the intensity function
in Eq. (4). The first is a Poisson Baseline that as-
sumes every fixation in space and time is equally
likely and independent of past events. The second
is a Last-Fixation Baseline that posits each new
fixation is normally distributed around the previous
fixation with constant variance. Finally, we intro-
duce a Standard Hawkes Baseline, extending the
Last-Fixation Baseline by incorporating past fixa-
tions with a temporally decaying influence on the
next fixation. Further details on these models are

3 Alternative methods have been proposed to compute the
probability of words (Oh and Schuler, 2024; Pimentel and
Meister, 2024) or any character string (Vieira et al., 2024)
from language models over tokens. While their impact on
psycholinguistic predictive power is evident when considering
sub- or super-word strings (Giulianelli et al., 2024), it remains
less clear whether the additional runtime of these alternative
methods provides the same benefits when focusing on words
(Oh and Schuler, 2024; Pimentel and Meister, 2024).
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Figure 2: Bootstrap distributions for the log-likelihood
ratio in the Hawkes Process. The left plot compares
the Last Fixation Baseline (LF Baseline), the Standard
Hawkes Process Baseline (SH Baseline), the Constant
Spatila Shift (CSS), and the Constant Shift (CSS) +
Reader Mixed Effects (RME) model with the Poisson
baseline. The right plot compares the three models with
added predictors (character-level surprisal, duration, and
word-level surprisal) against the CSS + RME model.

provided in App. C.

5.2 Modeling Extensions

We consider three modeling extensions that incor-
porate a notion of mechanical spatial shift, reader-
specific effects, and fixation attributes such as the
fixation region’s surprisal.

Constant Spatial Shift (CSS) Model. We
consider an extension that evaluates whether a
learned but constant spatial shift from previous
fixations—independent of textual content—can
account for eye movements. The underlying
assumption is that eye movements follow a
mechanical progression through text. From a
modeling perspective, we modify the standard
Hawkes process by allowing pu(s) to learn a
translation, represented by a matrix A € R?*2 and
an offset b € R2, from location s, i.e.,

wu(s) = As + b.

The model parameters are O, =
{v,a, B,0% A, b}.

Reader Mixed-Effects (RME) + CSS Model.
The models introduced so far treat all reading ses-
sions as though they come from a single, average
reader. In practice, however, individuals often ex-
hibit distinct reading styles. To capture these dif-
ferences, we extend the model to include reader-
specific deviations in both the temporal and spatial
parameters. Specifically, for each reader r, we



introduce subject-level offsets ~, and 7} for the
temporal kernel parameters :

o' =a+4) and § =B+,

where « and [ are the global (population-level)
temporal parameters, and 7,75 € R capture how
reader r’s temporal dynamics differ from the aver-
age. To account for spatial biases, we let the mean
of the spatial distribution shift by a reader-specific
vector d” € R?:

u(s)=As+b+d".

Here, d” represents an z- and y-offset indicating
reader r’s typical gaze shift relative to the global
mean. Under this mixed-effects formulation, the
overall parameter set is:

0, =0, U {vp, 75, d" | r=1,.., R},
where O, collects the global parameters.

Incorporating Fixation Attributes. Finally, we
treat each fixation’s attributes—duration (d),
character-level surprisal (s.), and word-level sur-
prisal (s,,)—as “marks” m, that modulate the tem-
poral kernel and spatial mean. For example, for
reader r and fixation i:

pi(s) = As + b + d" + gnmi

where m; € {d, s, sw}. The new parameters
{am, Bm,&m} capture how each attribute shifts
temporal or spatial dynamics. We gather them in:

Omarks = {amv Bms gm}me{d,sc,sw}7
so the full parameter setis @™ = O, U Oparks-

5.3 Results on Hawkes Process Model

We train the models until convergence under differ-
ent hyperparameter values; see App. G for details.
The final model candidate is selected based on like-
lihood on the validation set and subsequently tested
on a held-out test set. The model performance on
the test set is compared using log-likelihood ratios.

Fit on held-out data. First, we investigate how
well our family of models fits with held-out reading
data. Fig. 2 (left) shows the log-likelihood ratio
under bootstrapped uncertainty intervals relative
to the Poisson-process baseline for four different
models: (i) the Fixation Baseline (Last-Fixation

Model), (ii) the Standard Hawkes Baseline, (iii) the
Constant Spatial Shift extension (CSS), and (iv)
the Constant Spatial Shift + Reader Mixed-Effect
extension (CSS + RME). First, we observe the last-
fixation and Hawkes process baselines yield sig-
nificant improvements over the Poisson process.
Moreover, while the self-excitation behavior on its
own is not sufficient to yield improvements over
a model only accounting for the last fixation, the
model incorporating a constant spatial shift does
show a marked improvement in log-likelihood ratio.
This supports the hypothesis that saccade genera-
tion involves memory of recent fixation locations
and that reading unfolds in space and time with a
strong mechanical component. Specifically, the es-
timated parameters indicate a global rightward shift
of approximately 1.25 units per fixation. Given that
the x-axis ranges from O to 20 on the screen, each
new fixation is thus predicted to move about 5%
further to the right. Further introducing reader-
specific mixed effects reveals substantial individual
variability (e.g., in skipping or regressing). Ana-
lyzing the temporal coefficients per reader yields
a mean & of 5.63 (SD = 0.44) and a mean B of
9.12 (SD = 1.21). The lower & compared to B sug-
gests that although recent fixations do influence the
likelihood of another fixation in short succession,
this influence decays relatively quickly over time.
Fig. 1, shows the CSS + RME intensity at differ-
ent times during a reading session. Qualitatively,
the figure demonstrates how this model success-
fully captures the intensity around the next fixation,
whether it is a forward fixation, a regressive fixa-
tion, or one that remains on the same word.

Influence of surprisal and past durations. Next,
we study whether incorporating surprisal and past
durations into the model helps predicting the lo-
cation of the fixation. In Fig. 2 (right), we illus-
trate the gains from further adding these fixation-
level attributes as compared to the RME + CSS
model. We see a modest but consistent improve-
ment beyond the mechanical and reader-dependent
factors, suggesting that local cognitive load also
helps shape eye-movement decisions. In all cases
we find that &,,, > Bm, which suggests that past
fixations with larger durations, character-level and
word-level surprisals increase the temporal influ-
ence on the next fixation. We extend on this state-
ment in the appendix in relation to the branching
ratio of a Hawkes process (App. F).



5.4 Modeling Fixation Durations

We model fixation durations using a log-normal
distribution, chosen for parameter interpretability
through cross-validated comparison to alternatives
like the gamma distribution (App. D). Lett > 0
denote duration with:

logt ~ N (,ud(Ht), 02>

where 11¢(H;) encodes history-dependent effects
(e.g., prior fixation dynamics) and o2 is a shared
log-variance parameter. Our baseline estimates
(,ug, 0?) € R?, with extensions proposed below.
We show a full survival analysis derivation in
App. D.

Mark-Dependent Past Influence. We let each
fixation’s duration depend on the history of prior
“marks” (e.g., durations or surprisals). Let m; de-
note a mark at time ¢;. We define the discrete con-
volution:

(fF * Um)(t ‘0‘7767’57) = (11)
Yo mfe(t =t a8y 6,).

(t',m’) € Hy
where 7" is a discrete measure for mark m, and fr
is the density of a shifted-gamma distribution, as
previously employed by Shain and Schuler (2018).
We refer to App. E for details. For a fixation ¢, the
mean log-duration p¢ is modeled via

pl = Bo + B (fr=n™)(t:) + .
In the case of character or word-level surprisal, we

also include an additional predictor for the current
word’s (or character’s) surprisal value.

5.5 Results

We followed the experimental protocol described in
§5.3 to evaluate the test-set likelihoods of our pro-
posed models. Our primary objective is to assess
the impact of three predictors—duration, character-
level surprisal, and word-level surprisal—on in-
dividual duration modeling, while controlling for
mixed reader effects. The results (Fig. 3) demon-
strate that established methods for modeling ag-
gregated durations only detect very weakly effects
when applied to individual-level predictions. While
bootstrapping confirms statistically significant like-
lihood ratios for each mark-dependent model, the
small magnitude of these ratios (0.03—0.05) indi-
cates limited predictive power in disaggregated set-
tings. We note that these experiments were per-
formed on unfiltered data, which could be noisy.

Bootstrapped Log-Likelihood Ratio
from Reader Mixed Effect Model (MRE)

0.06 1
0.05 1
0.031

0.02 4

0.011

Log Likelihood Ratio (higher is better)

0.00

MRE +
Word-Surp

MRE +
Duration

MRE +
Char Surpr

Figure 3: Bootstrapped distributions of the Log-
Likelihood Ratio for the duration model, comparing
the three models with added predictors (character-level
surprisal, duration, and word-level surprisal) against the
Reader-Mixed Effect (MRE) Duration model.

6 Conclusion

We introduced a unified probabilistic framework
for modeling reading behavior, integrating fixation
duration, location, and saccade timing within a sin-
gle mathematical structure. Unlike models that fo-
cus solely on temporal patterns (Shain and Schuler,
2018, 2021), our alternating renewal process cap-
tures both spatial and temporal dynamics, enabling
a detailed examination of both oculomotor control
and cognitive processes underlying reading. Our
results highlight the significant role of mechanical
processes, such as systematic left-to-right shifts,
in shaping reading behavior. They also emphasize
the importance of explicitly modeling inter-subject
variability, particularly when analyzing disaggre-
gated data. Moreover, while predictors like sur-
prisal effectively model aggregate reading patterns,
we find they struggle to generalize to individual
fixation-level dynamics. Specifically, word and
character surprisal exhibit only moderate predictive
power for saccade timing and landing position and
very weak predictive power for individual fixation
durations, suggesting a potential oversimplifica-
tion of the link between cognitive mechanisms and
reading behavior. Overall, our work challenges the
direct applicability of aggregated cognitive models
to individual-level analysis and provides a flexible
foundation for more precise and scalable investiga-
tions of reading behavior.



Limitations

While our framework advances eye-movement
modeling, four limitations merit discussion. First,
our analysis uses English data from MECO, leav-
ing the 10 other languages unexamined. Cross-
linguistic validation is needed to assess whether our
findings generalize to languages with distinct ortho-
graphic or syntactic properties (e.g., languages that
read from right to left). Second, we intentionally
constrained linguistic predictors (e.g., surprisal fea-
tures) to simple link-linear relationships (i.e., a lin-
ear transformation combined with a link function)
to maintain interpretability; however, this may over-
simplify the cognitive-ocular relationships com-
pared to high-capacity neural architectures. Our
open-source PyTorch implementation enables fu-
ture exploration of nonlinear or hierarchical fea-
ture interactions. Third, for fixation durations, we
compared previous work on aggregated data to the
disaggregated setting but did not propose a method
tailored specifically for the disaggregated setting.
Finally, the Standard Hawkes process baseline and
Last Fixation baseline showed comparable perfor-
mance. While we augmented the Standard Hawkes
model to capture spatial gaze patterns, we did not
similarly extend the Last Fixation baseline. A more
symmetrical evaluation—testing both models with
spatial covariates—could clarify their relative ad-
vantages.
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A Common Aggregations of Reading Data and their Interpretation

The most common word-level aggregation of reading data are first fixation time, first-pass time, and total
fixation time. These are generally thought to reflect progressively later stages of language processing
(Inhoff, 1984; Berzak and Levy, 2023). We describe them here, along with their standard interpretations.
First-fixation time, the duration of only the first fixation that lands on a word, is associated with word
identification and lexical processing (Clifton et al., 2007; Berzak and Levy, 2023) and tends to exhibit
smaller surprisal effects (Wilcox et al., 2023; de Varda et al., 2024). First-pass time (or gaze duration),
the summed duration of all fixations between landing on a word’s region and leaving it, is thought to be
indicative of early syntactic and semantic processing, and typically considered the aggregate to be most
strongly associated with processing difficulty (e.g., Smith and Levy, 2013; Goodkind and Bicknell, 2018;
Wilcox et al., 2020). Total fixation time, the summed duration of all the fixations on the word, including
refixations of the region after it was left, is thought to be indicative of integrative processes (e.g., Demberg
and Keller, 2008; Roberts and Siyanova-Chanturia, 2013) and sometimes exhibits, somewhat unexpectedly,
stronger surprisal effects than first-fixation and first-pass time (Wilcox et al., 2023; Giulianelli et al., 2024).

B Optical Character Recognition (OCR)

We applied the Python Tesseract OCR library* to each image in the MECO dataset (Siegelman et al.,
2022) to identify textual characters and their bounding boxes. The number of characters per text, the
number of lines, and bounding box information are summarized in Tab. 1. Tesseract provides the position
and dimensions of each recognized character. We set the heights to a constant value by adjusting them to
match the tallest character in the image, and the widths to the 90th percentile of character widths. This
ensures a consistent character grid for subsequent analysis. Because Tesseract does not detect whitespace
as distinct regions, we identified whitespace ourselves by comparing gaps between adjacent character
boxes. Whenever the horizontal gap was at least 80% of a typical single-character width, we considered
the gap to be a whitespace and assigned it a bounding box of the same constant height.

Avg SD  Min Max
Lines 10.5 1.2 8.0 12.0
Characters 1093.0 1252 831.0 1231.0
BBox width 12.0 0.0 120 12.0
BBox height 22.3 22 180 24.0

Table 1: Summary statistics of raw MECO data, including the number of lines and characters per text and bounding
box (BBox) dimensions.

C Detailed Description of Baseline Models

In this section, we provide a comprehensive description of the baseline models designed to capture
progressively more sophisticated spatial and temporal dependencies in fixation behavior. Each model is
defined via a modification of the intensity function introduced in Eq. (4).

C.1 Poisson Process

The Poisson process model assumes that every fixation is equally likely regardless of spatial location or
temporal history, implying independent fixations in space and time. Its intensity function is

AT,s | Hr) =,

where v € R, is the only learnable parameter. This serves as the simplest baseline, ignoring any spatial
or temporal dependencies.

4h’ctps ://pypi.org/project/pytesseract/
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C.2 Last-Fixation Model

The last-fixation model introduces a basic spatial dependency by assuming that each new fixation is

normally distributed around the most recent fixation. Let s, denote the location of the last fixation. Then,
H

the intensity function is given by

Mrs|He)=v+ f(s] st;{,aQ),

where f(- | s,—, 0?) is the probability density function of a normal distribution centered at s ,— with
H H

variance 2. This model introduces two learnable parameters: the baseline intensity v and the variance
o2, making the set Oy = {v, 0%}.

C.3 Standard Hawkes Process

The standard Hawkes process builds upon the last-fixation model by incorporating the influence of all past
fixations with a temporally decaying impact. Specifically, each previous fixation contributes to the current
intensity with an exponential decay. The intensity function is defined as

AN7,s| Hey) =v+ Z e P—t) f(s| u(si),o'Q),

ti<T
where:

e « and (3 are the temporal kernel parameters governing the strength and decay rate of the influence
from past fixations.

» f(- | p(s;),0?) is the spatial component, with j(s;) = s; representing the location of the i-th fixation.

The complete parameter set for this model is given by ©,, = Oy, U {«, 8}, where ©,, = {v, 0%} are the
parameters inherited from the last-fixation model.

D Modeling Duration: A Survival Analysis Framework

Survival analysis provides an optimal framework for modeling fixation durations as it naturally handles
right-skewed, time-to-event distributions. We evaluated six candidate distributions through K-fold cross-
validation on training and validation data: Rayleigh, exponential, Weibull, normal, log-normal, and
gamma.

Comparison of Time-to-Event Distributions for Duration Modeling
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Figure 4: Goodness-of-fit comparison of candidate distributions for fixation durations. Both log-normal and gamma
distributions showed superior performance compared to simpler other forms (higher log-likelihood indicate better
fit). The log-normal was ultimately selected for its enhanced parameter interpretability.
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While the log-normal and gamma distributions demonstrated comparable predictive performance
(Fig. 4), we selected the log-normal distribution for two key reasons: (1) its parameters directly corre-
spond to moments of the log-transformed durations, enabling more intuitive interpretation, and (2) it
provides closed-form expressions for survival and hazard functions through relationship with the normal
distribution.

D.1 Log-Normal Survival Model Specification

Let £ > 0 represent fixation duration with associated survival characteristics:
s Log-transformed duration: Int ~ N (u%(H;), o0?)

* Probability density function (PDF):

fa(t| He) =

i ()

¢ Survival function:

S<t>=P<th>:1_¢(mt—M)

g

where ®(-) denotes the standard normal CDF

¢ Hazard function:

* Expected duration:
2

Eft | H,] = exp (ud(m) + ‘;)

Here 11%(H;) represents the conditional mean of log-durations given the fixation history H;, while o
captures residual variance on the log-scale. This parameterization enables direct interpretation of covariate
effects in terms of proportional changes in duration expectation through the exponential relationship.

E Convolution-Based Duration Model Details
We provide full details on the convolution-based predictor described in the main text.

E.1 Measure Definition

We define the discrete measure n™ for a general mark m; at time ¢; as

dg™(r) = Y mid(r —ty),

(ti,mi) eEH
where §(-) is the Dirac delta function, and H is the set of all past events.

E.2 Shifted Gamma Kernel
We use a shifted Gamma kernel f(7 | A, 0, 8) (Shain and Schuler, 2018), which takes the form

(7_ _ 5)071 A A (t=96)
I'(0)

f(rX06,6)=
where A > 0,6 > 0,and 6 < 0.
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E.3 Discrete Convolution
The discrete convolution of the kernel f with the measure n"" at time ¢ is

(fxn™(t|X,0,0) = > m f(t—t | A6,0).

' m’) € Hy
This sum effectively weighs each past mark m’ by the kernel evaluated at the lag ¢ — t'.

F Branching Ratio with Reader-Specific Effects

In a hawkes process with exponential temporal decay, the branching ratio (Laub et al., 2015) is defined
as = and it quantifies the average number of events directly triggered by a single event. The higher the
branching ratio, the more subsequent events are generated by each past events; that is the influence that

past events have on future occurrences is greater. For reader r, our model specifies covariate-dependent
parameters:

o =a+ 'Y; +amms, 5T =B+ ’7[3 +Bmm; (12)
Baseline Baseline

where m; is the mark (e.g., fixation duration), v,,, VE are reader-specific random effects, and «,, 3, are
fixed coefficients. The reader-specific branching ratio for a fixation with mark m; is:

A (@A) +
TU) = 5 = B & B 1%

F.1 Mark Modulation of Influence

The derivative with respect to m; reveals how marks modify temporal influence within readers:
o om(B+75) — Bl 75)

i (5 p) + ]

(14)

atyh

=i < 1) - which all our estimates do -

When «,,, > ,, and the baseline ratio satisfies stationarity (

the numerator simplifies to:

a+ 7,
B+

am (B +75) = Bm(a+74) > Bm (B+75) —(@+7)| =0 (15)

where the inequality follows from vy, /B > (a0 +75) /(8 + 7). Thus, 9n"/Om; > 0 - larger marks
increase the branching ratio for fixations from the same reader.

G More Details on Experimental Setup

Our models are implemented in PyTorch and we estimated model parameters using gradient-based
techniques. A systematic hyperparameter search was conducted over batch sizes {64, 128,256,512},
learning rates {0.0001,0.001,0.01, 0.1}, and weight decay values {0,0.0001}. In our experiments, we
compared different optimizers, including the Adam optimizer and SGD with Nesterov momentum.

To reduce the risk of converging to different local optima across experiments, we employed a progressive
training strategy. We trained models sequentially, moving from simpler to more complex architectures
in terms of the number of parameters. When training a more complex model, we initialized its shared
parameters with the best values from the corresponding nested simpler model, and set any additional
parameters to O (when possible). This approach was designed to mitigate the possibility of converging to
an optimum that had not been explored in the simpler model, by ensuring that each more complex model
started from the same local minimum as its less complex predecessor.
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