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ABSTRACT

Deep learning models can extract predictive and actionable information from com-
plex inputs. The richer the inputs, the better these models usually perform. How-
ever, models that leverage rich inputs (e.g., multi-modality) can be challenging to
deploy widely, because some inputs may be missing at inference. Current popular
solutions to this issue include marginalization, imputation, and training multiple
models. Marginalization can obtain calibrated predictions, but it is computation-
ally expensive and therefore only feasible for low dimensional inputs. Imputation
may result in inaccurate predictions because it employs point estimates for miss-
ing variables and does not work well for high dimensional inputs (e.g., images).
Training multiple models, where each model is designed to handle different sub-
sets of inputs, can work well but requires knowing prior knowledge of missing
input patterns. Furthermore, training and retaining multiple models can be costly.
We propose an efficient method to learn both the conditional distribution using full
inputs and the marginal distributions. Our method, Knockout, randomly replaces
input features with appropriate placeholder values during training. We provide
a theoretical justification for Knockout and show that it can be interpreted as an
implicit marginalization strategy. We evaluate Knockout across a wide range of
simulations and real-world datasets and show that it offers strong empirical per-
formance.

1 INTRODUCTION

In many real-world applications of machine learning and statistics, not all variables might be avail-
able for every data point. This issue, as known as missingness, is well-studied in the literature (Little
& Rubin, 2019) and common in fields like healthcare, social sciences, and environmental studies.
From a Bayesian perspective, missingness can be viewed as a marginalization problem, where we
would like a model to marginalize out the missing variables from the conditioning set. However,
during training, we often do not know which features will be missing at inference time.

In lieu of training multiple models for every missingness pattern, a common strategy is imputation,
which uses a point estimate (usually the mean or mode or a constant) to impute the missing fea-
ture (Le Morvan et al.). This can be seen as approximating the marginalization with a delta function.
More sophisticated methods for handling missingness include using EM imputation (Josse et al.,
2019) or neural-based imputation (Mattei & Frellsen, 2019; Ipsen et al., 2022). Although many
prior methods may work well in some instances, they may not scale readily to high-dimensional
inputs like images (Kyono et al., 2021; You et al., 2020), require additional networks for genera-
tion of missing variables (Ipsen et al., 2022), only apply to continuous inputs (Le Morvan et al.,
2020; 2021), assume linearity of predictors (Le Morvan et al.), or make assumptions about the data
distribution (Hazan et al., 2015).

In this work, we propose a simple, effective, and theoretically-justified augmentation strategy, called
Knockout, for handling missing inputs. During training, features are augmented by randomly
“knocking out” and replacing them with constant “placeholder” values. At inference time, using
the placeholder value corresponds mathematically to estimation with the appropriate marginal dis-
tribution. In particular, we demonstrate how Knockout can be seen as implicitly maximizing the
likelihood of a weighted sum of the conditional estimators and all desired marginals in a single
model.
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In a suite of experiments, we demonstrate the broad applicability of Knockout. We use both syn-
thetic and real-world data with image-based and tabular inputs. Real world experiments include
Alzheimer’s forecasting, noisy label learning, multi-modal MR image segmentation and detection,
and multi-view tree genus classification. We show the effectiveness of Knockout in handling low and
high-dimensional missing inputs, and compare it with appropriate baselines, including imputation
and ensemble-based methods.

2 METHOD

2.1 BACKGROUND

The goal of supervised machine learning (ML) is to learn the conditional distribution p(Y |X) where
Y is the output (predictive target) and X → RN are the vector of inputs or features. The prediction
for a new sample x is ŷ = argmaxY p(Y |X = x). However, in many practical applications, not
all features may be present for a given input. Consider the case when Xi is missing, and denote the
vector of non-missing features as X→i. In general, multiple features may be missing at a time, and
we can represent this with a missingness indicator set M and corresponding non-missing features
as X→M. In this case, what we really want is p(Y |X→M).

How can we account for missingness? A simple approach is to train a separate model for
p(Y |X→M), i.e. a model that takes only the non-missing features X→M as inputs. However, this
is expensive because a separate model is needed for each missingness pattern. Furthermore, there is
no sharing of information between these separate models, even though they are theoretically related.

Another approach relies on rewriting p(Y |X→M) in terms of the already available p(Y |X):

p(Y |X→M) =

∫

XM

p(Y,XM|X→M)dXM =

∫

XM

p(Y |X)p(XM|X→M)dXM. (1)

The goal now is to obtain p(XM|X→M) and perform the integration over all possible XM.

Imputation methods approximate Eq. (1) by replacing p(XM|X→M) with a delta function. For
example, “mean imputation” uses the mean of the missing features XM, E[XM], for XM itself.
In Eq. 1, this corresponds to approximating p(XM|X→M) ↑ ω(E[XM]), a delta function. While
convenient and commonly used, mean imputation ignores the dependency between XM and X→M,
and does not account for any uncertainty.

More sophisticated approaches to imputation capture the interdependencies between inputs (Troy-
anskaya et al., 2001; Stekhoven & Bühlmann, 2012), for example by explicitly modeling
p(XM|X→M) by training a separate model. At inference time, the point estimate xM =
argmaxXM p(XM|X→M) can be used for the missing XM. While properly accounting for in-
terdependencies between inputs, this approach requires fitting a separate model for p(XM|X→M).
In multiple imputation, multiple samples from p(XM|X→M) are drawn and a Monte Carlo approx-
imation is used to estimate the integral on the RHS of Eq. 1 Kyono et al. (2021). Although this is
more accurate than single imputation, it is not effective in high dimensional space.

2.2 KNOCKOUT

We propose a simple augmentation strategy for neural network training called Knockout that en-
ables estimation of the conditional distribution p(Y |X) and all desired marginals p(Y |X→M) in a
single, high capacity, nonlinear model, such as a deep neural network. During training, features are
augmented by randomly “knocking out” and replacing them with constant, “placeholder” values.
At inference time, using the placeholder value corresponds mathematically to estimation with the
suitable marginal distribution.

Specifically, let M = [M1,M2, . . . ,MN ] → {0, 1}N denote a binary, induced missingness indicator
vector. Let x̄ := [x̄1, x̄2, . . . , x̄N ] → RN denote a vector of placeholder values. Then, define
X ↑(M ,X) = M ↓ x̄+(1↔M)↓X as augmented Knockout inputs, where 1 is a vector of ones
and ↓ denotes element-wise multiplication. During one training iteration, a different Knockout input
is used corresponding to a different randomly sampled M for every data sample. The model weights
are trained to minimize the loss function with respect to Y , as is done regularly.
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Two mild conditions are required to ensure proper training. First, the placeholder values must be
“appropriate,” as we will elaborate below. For our theoretical treatment, we will use out-of support
values as appropriate; i.e. x̄M ↗→ Support(XM). Second, M must be independent of X and Y , i.e.
M ↘↘ X, Y .1 It follows straightforwardly that these two conditions lead to modeling the desired
conditional and marginal distributions simultaneously. First, since x̄M is not in the support of XM,

X ↑
M = x̄M ≃⇐ MM = 1, X ↑

M ↗= x̄M ≃⇐ MM = 0 and X ↑
M = XM, (2)

where 0 and 1 are vectors of zeros and ones of appropriate shape. Second, since M is independent
of X and Y , it follows that imputing with the default value x̄M is equivalent to marginalization of
the missing variables defined by M:
p(Y |X ↑

M=x̄M,X ↑
→M=x→M) = p(Y |MM=1,M→M=0,X→M=x→M) = p(Y |X→M=x→M).

(3)
In particular, at the two extremes, no Knockout (M = 0) corresponds to the original conditional
distribution, and full Knockout (M = 1) corresponds to the full marginal:

p(Y |X ↑=x) = p(Y |M=0,X=x) = p(Y |X=x), (4)
p(Y |X ↑=x̄) = p(Y |M=1) = p(Y ) (5)

For a new test input x, the prediction when xM is missing is simply
argmax

Y
p(Y |X→M=x→M) = argmax

Y
p(Y |X ↑

M=x̄M,X ↑
→M=x→M), (6)

i.e., the learned estimator with the augmented Knockout input.

2.2.1 KNOCKOUT AS AN IMPLICIT MULTI-TASK OBJECTIVE

The missingness indicator M determines how inputs are replaced with appropriate placeholder val-
ues during training. To satisfy the independence condition of M with X and Y , the variables M
are sampled independently from a distribution p(M) during training. We show that this training
strategy can be viewed as a multi-task objective (Caruana, 1997) decomposed as a weighted sum of
terms, where each term is a separate marginal weighted by the distribution of M . Let ε denote the
loss function to be minimized (e.g., mean-squared-error or cross-entropy loss):

L(ϑ) = EX→,Y ε(Y ; fω(X
↑(M ,X)) = EX,Y EM

∑

m↓M

I(M=m) ε(Y ; fω(X
↑(M ,X))) (7)

= EX,Y

∑

m↓M

p(M=m) ε(Y ; fω(X
↑(m,X))) (8)

=
∑

m

p(M=m) EX,Y ε(Y ; fω(X
↑(m,X))), (9)

where I is the indicator function.

If there is knowledge about the missingness patterns at inference (e.g., some Xi and Xj exhibit cor-
related missingness), one can design p(M) appropriately to cover all the expected missing patterns,
i.e. by sampling m during training with different weights. In the absence of such knowledge, the
most general distribution for M is i.i.d. Bernoulli. A common way correlated missingness arises in
real-world applications is in structured inputs like latent features or images, where the entire feature
vector or whole image is missing. In our experiments, we demonstrate the superiority of structured
Knockout, over naive i.i.d. Knockout, when such correlated missingness is known a priori.

2.3 CHOOSING APPROPRIATE PLACEHOLDER VALUES

Our theoretical treatment assumes that the placeholder value x̄i is not in the support of Xi (see
Appendix A.2 for further analysis). This is mathematically justified and works well in many cases,
especially when Xi is low dimensional. However, for high dimensional inputs like vectors/images,
choosing an out-of-range placeholder can be suboptimal for practical reasons such as unstable gra-
dients and/or limited modeling capacity. In the following sections, we relax the out-of-support
assumption and make some recommendations for appropriate placeholder values for various types
of Xi, informed by these practical considerations.

1Note it is not necessary that Mi →→ Mj for any i, j.
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Table 1: List of different types of Xi and the recommended x̄i

Type of Xi Example Dimension Support Normalized? x̄i

Categorical Gender 1 {1, . . . , NXi} N/A NXi + 1
Continuous Test scores 1 [a, b] Scale to [0, 1] -1
Continuous Temperature 1 [a,⇒) or (↔⇒, b] Scale to [0,⇒) -1
Continuous White noise 1 (↔⇒,⇒) Z-score ±10

Structured Images >1000 [a, b] Scale to [0, 1] 0
Structured Latent vectors >16 (↔⇒,⇒) Z-score 0

2.3.1 NON-STRUCTURED

In this section, we recommend suitable placeholder values for non-structured, scalar-valued inputs.

Categorical. If Xi is a categorical variable with NXi integer-valued classes from 1 to NXi , then x̄i

can be NXi + 1. If one-hot encoded, x̄i can be a vector of 0s.

Continuous and Non-empty Infeasible Set. If Xi is a continuous value within a bounded range,
then we can scale the range to [0, 1] and choose x̄i = ↔1. More generally, if Xi has unbounded
range but a non-empty infeasible set, then x̄i can be set to a value in the infeasible set. For example,
if Xi only takes positive values, then we can set x̄i = ↔1.

Continuous and Empty Infeasible Set. When Xi has unbounded range and an empty infeasible set,
then we suggest applying Z-score normalization and choosing x̄i such that it lies in a low probability
region of the normalized Xi, p(Xi=x̄i) ↑ 0. As we argue in Appendix A.1, this approach leads to
an approximation of the desired marginal.

Figure 1: The region of high density of standard Gaussian shifts away from the origin as the number
of dimensions increases. This motivates different choices of placeholder values at different dimen-
sions.

Although, different distributions have different regions of low probability, we use the behavior of
the Gaussian distribution as a guide to choose x̄i. Fig. 1 shows the histogram of the norm of points
sampled from standard Gaussian distributions with different dimensionality. For a univariate stan-
dard Gaussian, most of the points lie close to the origin so we should choose x̄i far away from the
origin. However, as the dimension increases, most of the points lie on the hyper-sphere away from
the origin so we should choose x̄i to be the point at origin (i.e. a vector of zeros).

Table 1 summarizes the choices of x̄i for different types of random variables Xi.

2.3.2 STRUCTURED

For structured inputs like images and feature vectors, we have found that Knockout applied with
an out-of-support placeholder like →1, though theoretically sound, can cause issues like unstable
gradients. Therefore, we recommend an appropriate placeholder to be either the image of all 0s
or the mean image. When Z-score normalization is applied, the 0 image and the mean image
coincide. Theoretically, it is well known that the mean of a high dimensional random variable,
such as a Gaussian, has very low probability (Vershynin, 2018) (also see Fig. 1). We believe this
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Table 2: Summary of experimental setups

Task Type of Xi Dimension Normalized? x̄i ẋ

Simulations Categorical/Continuous 1 Z-score (Cont. Xi) 10 -10
Alzheimer’s Forecasting Continuous 1 Z-score 10 -10
Privileged Information Continuous 1 Scale to [0, 1] -1 N/A
Tumor Segmentation Structured (images) 2563 Scale to [0, 1] 0 N/A
Tree Genus Classification Structured (latent) 768 or 2048 Z-score 0 N/A
Prostate Cancer Detection Structured (latent) 256 Z-score 0 N/A

recommendation balances the tension between ensuring an extremely-low probability placeholder
with proper convergence and performance. For an empirical demonstration, see Appendix A.3.

2.4 OBSERVED MISSINGNESS DURING TRAINING

The treatment above assumes complete training data, and inference-time missingness only. We now
consider the situation where training data has observed missing inputs. Let N be the binary mask
indicating the observed data missingness. N is different from M , which denotes the missingness
induced by Knockout during training. Thus, N is fixed for a data sample, while M is stochastic.
Observed missingness generally falls under the following scenarios (Little & Rubin, 2019).

Missing Completely at Random (MCAR): This implies that N ↘↘ X, Y . Let M ↑ := N ⇑ M
be the augmented masking indicator, where ⇑ denotes the logical OR operation. Since N ↘↘ X, Y
and M ↘↘ X, Y , so M ↑ ↘↘ X, Y . Therefore, we can obtain the same result in Section 2.2 when
using M ↑ instead of M as the masking indicator vector. This implies that Knockout can be applied
to MCAR training data simply by masking all the missing values using the same placeholders x̄.

Missing at Random (MAR) and Missing not at Random (MNAR): This implies that N ↗↘↘ X, Y .
Thus, we cannot replace the missing values in training data using the same placeholders. However,
we can substitute these values using placeholders that are different from x̄ but are also outside the
support of the input variables (or very unlikely values). Let the placeholders for the data missingness
be ẋ ↗= x̄. During training, Knockout still randomly masks out input variables, including those that
are not observed in the data. Thus, the results in Section 2.2 still hold since M ↘↘ X, Y .

During inference, if we know a priori that xi of a sample is missing not at random, then we can use
ẋi as the placeholder. Otherwise, if we know xi is missing at completely random, we use x̄i.

3 RELATED WORK

Knockout is similar to and inspired by other methods with unrelated aims. Dropout (Srivastava et al.,
2014; Gal & Ghahramani, 2016) prevents overfitting by randomly dropping units (hidden and visi-
ble) during training and can be viewed as marginalizing over model parameters. During inference,
marginalizing over parameters can be approximated by predicting once without dropout (Srivastava
et al., 2014) or averaging multiple predictions with dropout (Gal & Ghahramani, 2016). Blank-
out (Maaten et al., 2013) and mDAE (Chen et al., 2014) learn to marginalize out the effects of
corruption over inputs. In contrast, Knockout learns different marginals to handle different missing
input patterns.

Imputation techniques impute missing inputs explicitly, for example by imputing with the mean,
median, or mode. In model-based imputation, a separate model or technique first predicts the
missing inputs to impute. These models include k-nearest neighbors (Troyanskaya et al., 2001),
chained equations (Van Buuren & Groothuis-Oudshoorn, 2011), random forests (Stekhoven &
Bühlmann, 2012), autoencoders (Gondara & Wang, 2018; Ivanov et al., 2019; Lall & Robinson,
2022), GANs (Yoon et al., 2018; Li et al., 2019; Belghazi et al., 2019), or normalizing flows (Li et al.,
2020). Although more accurate than simple mean/median imputation, model-based imputation in-
curs significant additional computation costs, especially when missing inputs are high-dimensional.
In contrast, Knockout makes predictions without having to impute missing inputs explicitly. For
example, some approaches (Ma et al., 2021; Peis et al., 2022) require additional training of multiple
VAEs or sub-networks. Other approaches (Mattei & Frellsen, 2019; Ma et al., 2019) require training
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only one VAE but they are formulated for homogeneous data (all continuous variables or all binary
variables) and therefore not as flexible as Knockout. Besides, these approaches still require training
two models (VAE and classifier), whereas Knockout trains only a single model (the classifier).

Another relevant line of work is causal discovery (Spirtes et al., 2000), which often involves fitting
a model using different subsets of available inputs and multiple distributions simultaneously (Lippe
et al., 2022; James et al., 2023). To reduce computational cost, it is common to train a single model
that can handle different subsets of inputs using dropout (Ke et al., 2023; Brouillard et al., 2020;
Lippe et al., 2022).

Techniques like Knockout are often used in practice to train a single neural network that models
multiple distributions, but are often justified empirically with little care taken in choosing place-
holder values. Many works use zeros without theoretical justification (Belghazi et al., 2019; Ke
et al., 2023; Brouillard et al., 2020; Lippe et al., 2022). GAIN (Yoon et al., 2018) and MisGAN (Li
et al., 2019) impute using out-of-support values similar to Knockout. However, both are limited
in their treatment by assuming that the supports are bounded, and do not consider categorical vari-
ables. While the approach is similar to some prior work for structural inputs (Neverova et al., 2015;
Parthasarathy & Sundaram, 2020) or low-dimensional inputs (Bertsimas et al., 2024), Knockout’s
theoretical backing shows that it can handle multiple data types and multiple missingness types
(complete/MCAR/MAR/MNAR). Many self-supervised learning techniques can be interpreted as
training to reconstruct the inputs with Knockout. In addition, Knockout can be trained with standard
empirical risk minimization while some approaches need more complex optimization (Ma et al.,
2021; 2022). For example, masked language modeling (Devlin et al., 2019) randomly maps to-
kens to an unseen “masked” token. Denoising autoencoders (Vincent et al., 2010) randomly replace
image patches with black patches, which are arguably out of the support of natural images.

4 EXPERIMENTS

In all experiments, unless stated otherwise, we compare Knockout against a common baseline
model trained on complete data, which, at inference time, imputes missing variables with mean
(if continuous) or mode (if discrete) values. If the training is done on incomplete data with ob-
served missing variables, imputed with mean/mode, we denote this as common baseline*. For
most results we report a variant of Knockout but with sub-optimal placeholders (i.e. mean/mode
for continuous/categorical features). We denote this variant as Knockout*. Note that both Knock-
out* and common baseline* use the same placeholder (mean/mode), with the only difference being
that Knockout*-trained models observe randomly knocked-out missingness in addition to (possible)
observed missingness during training.

In all Knockout implementations, we choose random knockout rates such that, in expectation, half of
the mini-batches have no induced missing variable. In batches with induced missingness, variables
(or groups of variables in structured Knockout) are independently removed, with a probability equal
to the knockout rate. The summary of the experimental setups are shown in Table 2.

4.1 SIMULATIONS

We perform simulations on both regression and classification, where the output Y needs to be pre-
dicted from some input X . In each simulation run, we sample 30k data points in total and use
10% for training. All methods use the same neural network architecture composed of a 3-layer
multi-layer perceptron (MLP) with hidden layers 100 and ReLU activations. Training is done using
Adam (Kingma & Ba, 2014) with learning rate 3e-3 for 5k steps. We restrict our focus in this section
to regression results. For further experimental details and classification experiments and results, see
Appendix B.1. We generate training data corresponding to complete training data, MCAR training
data, and MNAR training data. For MNAR data, we adopt the self-censored missing setup where a
variable is missing if its value is above the variable 90th percentile. In the regression experiments, we
additionally compare against missForest (Stekhoven & Bühlmann, 2012), a competitive baseline for
inference-time imputation. We also include another popular baseline (ZI) which takes zero-imputed
data and a missingness indicator/mask as inputs. We tried comparing against MIRACLE (Kyono
et al., 2021) but the test set size (27k) and the high number of missing patterns tested make running
MIRACLE intractable.
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Figure 2: Test MSE evaluated against Bayes optimal prediction (E[Y |X]) from 10 repetitions of the
regression simulation. Lower is better. X axis indicates the number of missing variables at inference
time. CB: Common baseline, ZI: zero-imputation with mask. a) Complete training data. b) Missing
completely at random (MCAR) training data. c) Missing not at random (MNAR) training data

We experiment on varying the number of missing features of X → R9 from 0 to 3. This resulted in
130 different missing patterns. We evaluate the models’ predictions against the MMSE-minimizing
Bayes optimal predictions: E[Y |X]. Fig. 2 shows the results of 10 repetitions of this simulation.
Both variants of Knockout outperform baselines regardless of the types of training data (complete,
MCAR, or MNAR). In particular, Knockout outperforms Knockout* in general; this underscores the
importance of choosing an appropriate placeholder value.

4.2 MISSING CLINICAL VARIABLES IN ALZHEIMER’S DISEASE FORECASTING

We demonstrate Knockout’s ability to manage observed missingness in a real-world clinical task:
predicting the risk of progression from mild cognitive impairment (MCI) to Alzheimer’s Disease
(AD) over the next five years, using data from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (Mueller et al., 2005). Input features X include subject demographic variables,
genetics, cognitive assessment scores, cerebrospinal fluid (CSF) measurements, and measurements
derived from magnetic resonance imaging (MRI) and positron emission tomography (PET) images.
The target Y is a binary vector and indicates AD diagnosis in each of the five follow-up years. We
employ the state-of-the-art model of Karaman et al. (2022). For Knockout, we use an out-of-range
value of 10 for induced missingness and -10 for observed missingness, both during training and
testing. Further details about the dataset and experimental setup are provided in Appendix B.2.

Figure 3 presents the average AUROC (area under the receiver operating characteristic curve) scores
obtained when each input feature is missing during inference. We perform 10 random 80-20 train-
test splits and calculate a Composite AUROC by averaging the AUROC scores from the five follow-
up years in each split. We observe that Knockout outperforms the common baseline* in vast majority
of cases, suggesting that knocking out input during training enhances the model’s ability to handle
missingness at test time. Furthermore, Knockout is largely better than Knockout*, which under-
scores the importance of choosing an appropriate placeholder. We note that we present a similar
analysis using the complete portion of the training dataset (i.e., with no observed missingness in
training data) in Figure S5 of Appendix B.2, further demonstrating Knockout’s effectiveness.

4.3 PRIVILEGED INFORMATION FOR NOISY LABEL LEARNING

In this experiment, we show that Knockout can be used for learning with privileged information (PI)
that is available in training but absent during testing. Specifically, we evaluate this in a noisy label
learning task, where the objective is to use PI, such as annotator ID or annotation time, to enhance
model robustness against label noise. Due to the absence of PI in testing, existing methods (Ortiz-
Jimenez et al., 2023; Wang et al., 2023) require an auxiliary classification head for PI utilization. We
demonstrate that Knockout can be directly applied with a method that accepts PI as input and achieve
competitive performance. We follow previous experiment setups (Wang et al., 2023) and evaluated
model performance on CIFAR-10H (Peterson et al., 2019) and CIFAR-10/100N (Wei et al., 2021).
These datasets involve relabeled versions of the original CIFAR. For more details, see Appendix B.6.
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Figure 3: Composite AUROC scores obtained for the three model variants when each input feature
is missing during inference (x-axis) in the Alzheimer’s Disease forecasting experiment. Displayed
are averages of 10 train-test splits. Error bars indicate the standard error across these splits.

Table 3: Test accuracy of different methods on noisy label datasets with PI. We report mean and
standard deviation accuracy over 5 runs. PI quality ”High” indicates a sample-wise PI is provided
by the dataset. ”Low” means only batch average is provided. Best results in bold, second-best
underlined.

Datasets PI quality No-PI HET SOP Common baseline Knockout

CIFAR-10H (Worst) High 51.1±2.2 50.8±1.4 51.3±1.9 55.2±0.8 57.4±0.6

CIFAR-10N (Worst) Low 80.6±0.2 81.9±0.4 85.0±0.8 82.3±0.3 84.7±0.7

CIFAR-100N (Fine) Low 60.4±0.5 60.8±0.4 61.9±0.6 60.7±0.6 62.1±0.3

As a no-PI baseline, we train a Wide-ResNet-10-28 (Zagoruyko & Komodakis, 2016) model that
ignores PI. We also compare against recent noisy label learning methods: HET (Collier et al., 2021)
and SOP (Liu et al., 2022). We implement Knockout with a similar architecture and training scheme
as the no-PI baseline, where we concatenate the PI with the image-derived features and randomly
knock PI out during training. As a common baseline, we train the same architecture with complete
training, but mean imputation for PI data during inference. Table 3 lists test accuracy results. For the
CIFAR-10H dataset, where we have high quality PI, Knockout outperforms all baselines by a large
margin, improving test accuracy by 6%. For CIFAR-10/100N datasets, where we have low quality
PI during training, Knockout’s boost is more modest, performing similarly with SOP and slightly
better than HET and the no-PI baseline. We conclude that Knockout can offer competitive results
when we have access to high quality PI during training.

4.4 MISSING IMAGES IN TUMOR SEGMENTATION

Here, we investigate the ability of Knockout to handle missingness in a high-dimensional, 3D
dense image segmentation task. In particular, we experiment on a multi-modal tumor segmenta-
tion task (Baid et al., 2021), where the goal is to delineate adult brain gliomas in 3D brain MRI
volumes given 4 modalities per subject: T1, T1Gd, T2, and FLAIR. We use a 3D UNet as the seg-
mentation model (Ronneberger et al., 2015). We minimize a sum of cross-entropy loss and Dice loss
with equal weighting and use Adam optimizer with a learning rate of 1e-3. See Appendix B.3 and
A.3 for further details.

At inference time, we evaluate on all modality missingness patterns. Fig. 4 shows Dice scores.
We observe that the Knockout-trained model has better Dice performance across all missingness
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Figure 4: Dice performance of multi-modal tumor segmentation across varying missingness patterns
of modality images. Knockout-trained models have better Dice performance across all missingness
patterns than the common baseline. Error bars depict the 95% confidence interval over test subjects.

patterns. When all modalities are available, Knockout and the common baseline achieve the same
performance level.

4.5 MISSING VIEWS IN TREE GENUS CLASSIFICATION

We demonstrate Knockout’s ability to deal with missing data at the latent feature level in a classi-
fication task. The Auto Arborist dataset (Beery et al., 2022), a multi-view (street and aerial) image
dataset, is used for this purpose. In this experiment, we used the top 10 genera for multi class pre-
diction and reported results from 2 sites. A frozen ResNet-50 (He et al., 2016) and ViT-B-16 (Doso-
vitskiy et al., 2021) pretrained with ImageNet-v2 (Recht et al., 2019) is used as a feature extractor.
The two features from street and aerial images are concatenated and were fed into 3-layer MLP with
ReLU activations. We trained Knockout to randomly replace the whole latent vectors with vectors
of 0s as placeholders after normalization. This variant is denoted as Knockout (Structured). We ad-
ditionally trained two baselines for comparison: 1) Knockout (Features) where individual features
in the latent vectors are independently replaced with placeholders, and 2) an imputation baseline,
substituting latent vectors from missing views with vectors of zeros during inference. The results
in Table 4 and Section S10 shows Knockout (Structured) outperforming Knockout (Features), sug-
gesting that matching p(M) with missing patterns that we expect to see at inference can be more
effective.

Table 4: F1-scores of Auto Arborist averaged over 5 random seeds (site: Columbus). Each column
represents non-missing modalities at inference time. Best results in bold, second-best underlined.

Aerial+Street Aerial Street

ResNet-50 Common baseline 0.4834±0.0167 0.3129±0.0177 0.3565±0.0240

Knockout (Features) 0.4934±0.0209 0.2841±0.0230 0.3814±0.0221

Knockout (Structured) 0.4961±0.0169 0.3089±0.0242 0.4165±0.0140

ViT-B-16 Common baseline 0.4649±0.0183 0.3052±0.0224 0.3889±0.0110

Knockout (Features) 0.4732±0.0197 0.3159±0.0086 0.3833±0.0108

Knockout (Structured) 0.4803±0.0179 0.3243±0.0196 0.4088±0.0151

4.6 MISSING MR MODALITIES IN PROSTATE CANCER DETECTION

We demonstrate structured Knockout in the context of a binary image classification task, where
Knockout is applied at the latent level. The dataset consists of T2-weighted (T2w), diffusion-
weighted (DWI) and apparent diffusion coefficient (ADC) MR images per subject (Saha et al.,
2022). A simple “ensemble baseline” approach to address missingness is to train a separate convo-
lutional classifier for each modality, and average the predictions of available modalities at inference
time (Kim et al., 2023; Hu et al., 2020).
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To train a model with latent-level structured Knockout, we use the same 3 feature extractors. Each
feature extractor is trained with a different modality. The loss function is binary cross entropy loss
and we use an Adam optimizer with a learning rate of 1e-3. We randomly knock out each modality.
In the “common baseline” approach, we trained the same architecture with complete modalities. At
inference time, the latent features from missing modalities are imputed with 0s. See Appendix B.5
for more details. In the “ensemble baseline” approach, we averaged the predicted values from the
three extractors without additional training.

Knockout generally outperforms the baselines in the majority of scenarios as shown in Table 5 for
F1 scores and Table S11 for AUC scores, except for inputs with ADC, where the common baseline
achieves the best results. Notably, the F1 scores from the popular ensemble baseline are significantly
lower than Knockout.

Table 5: F1 scores of prostate cancer dataset averaged over 5 random seeds, showing performance
of ensemble baseline, common baseline, and Knockout across varying missingness patterns at in-
ference time. Each column represents non-missing modalities. Best results in bold, second-best
underlined.

T2 ADC DWI ADC
+DWI

T2
+DWI

T2
+ADC All

Ensemble 0.212±0.091 0.373±0.016 0.285±0.032 0.327±0.015 0.181±0.044 0.337±0.033 0.305±0.050

Common 0.432±0.014 0.687±0.021 0.616±0.021 0.706±0.009 0.510±0.033 0.652±0.006 0.673±0.016

Knockout 0.639±0.023 0.601±0.019 0.628±0.025 0.677±0.016 0.667±0.010 0.649±0.023 0.688±0.014

5 CONCLUSION AND LIMITATIONS

We introduced Knockout, a novel, easy-to-implement strategy designed to handle missing inputs,
using a mathematically principled approach. By simulating missingness during training via random
“knock out” and substitution with appropriate placeholder values, our method allows a single model
to learn the conditional distribution and all desired marginals. Our extensive experimental evaluation
underscores the versatility and robustness of Knockout. Across diverse datasets, including both
synthetic and real-world scenarios, Knockout consistently achieves competitive performance levels
compared to conventional imputation and ensemble-based techniques across both low and high-
dimensional missing inputs. We also extend Knockout to handle observed missing values in the
training set. Our results highlight the importance of choosing the appropriate placeholder values
for induced and observed missingness in training and during inference. Furthermore, we present
structured version of Knockout that is more effective when entire feature vectors or input modalities
might be missing.

There are several future directions for further investigation. While our paper highlights the im-
portance of choosing an appropriate placeholder value, and there appears to be a practical tension
between selecting an unlikely/infeasible value versus achieving numerical stability (e.g., avoiding
exploding gradients), one can conduct a more detailed study of this to optimize the placeholder
value. In our experiments, we did not compare Knockout with individual strong baseline models
trained for specific missingness patterns. We considered this out of scope, as it became computa-
tionally infeasible for all the scenarios we considered. However, in practice, missingness patterns
may be limited, making such an approach feasible. It remains unclear how Knockout would per-
form against such a strong baseline, which requires further evaluation. Another promising direction
of future research is adapting Knockout to address distribution shifts in the presence of missingness.
Finally, Knockout’s theoretical treatment hinges on the use of a very high capacity, non-linear model
trained on very large data. In applications, where low capacity models are used and/or training data
are limited, Knockout might not be as effective.
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