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Abstract

Large models have demonstrated state-of-the-
art performance on Vision-and-Language Navi-
gation tasks, but their high computational cost
limits deployment in hardware-constrained en-
vironments. Token pruning reduces compu-
tation by decreasing the size of navigation
inputs, offering a promising solution. How-
ever, in VLN tasks, input pruning can lead
to information loss, causing the agent to take
longer paths to determine when to stop, thus
increasing computational demands and limit-
ing efficiency gains. Moreover, attention-based
pruning for instructions often fails to discard
non-critical words, misspending valuable token
budget. To improve navigation efficiency and
address these challenges, we prune the navi-
gation input from three angles. First, we di-
vide the panoramic views into action and back-
ground tokens, preserving key information for
action prediction while improving navigation
efficiency by pruning the background views.
Second, we prune nodes from the agent’s nav-
igation map to discourage backtracking and
shorten paths. Finally, we leverage a Large Lan-
guage Model to assess word importance in in-
structions, enabling us to accurately prune non-
essential words. Experimental results show our
methods significantly outperformed state-of-
the-art pruning strategies in FLOPS efficiency,
while maintaining higher accuracy across di-
verse VLN models and datasets.

1 Introduction

Vision-and-Language Navigation (VLN) enables
Al agents to interpret natural language instruc-
tions and visual information to navigate effectively
in their environments. While progress has been
achieved in the efficacy of navigation agents (Fried
et al., 2018; Tan et al., 2019; Hong et al., 2021;
Chen et al., 2021, 2022; Wang et al., 2024c), ad-
vancements often come with computational costs
too high for hardware-limited agents, underscoring
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Figure 1: The proposed method reduces the naviga-
tion length through token pruning compared to other
methods, in this example, FastV (Chen et al., 2025) on
R2R (Anderson et al., 2018).
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the need to prioritize navigation efficiency, the
task we are addressing here.

Token pruning enhances the computational effi-
ciency of VLN models by reducing the size of their
inputs, making it an attractive approach for low-
ering computational costs. Moreover, token prun-
ing offers flexibility: the same VLN model can be
adapted to meet different hardware constraints by
simply adjusting the pruning rates, without the need
for retraining. However, as more tokens are pruned,
the navigation duration increases because the agent
has less information to make correct and/or effi-
cient decisions, as shown in Fig. 1. Longer paths
incur higher computational costs, which under-
mines the benefits of token pruning. Furthermore,
widely adopted attention-score-based text pruning
methods fail to identify the important words in
the instruction. As shown in Fig. 3, tokens such
as “the” or “.” are retained after pruning since
they have high attention scores. Consequently, the
VLN agent struggles to navigate effectively with
instructions that lack critical information. To ad-
dress these challenges we propose a “walk and read
less” approach, where navigation is made efficient
by targeting tokens in the input and addressing the
above challenges.

We first observe that view inputs comprise of
two token types: action and background tokens.
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Figure 2: An overview of applying BGP, BTP, and VPP on a VLN model. (a) BTP prunes the unvisited history nodes
from {vg, v, ..., v} on the navigation map constructed by the VLN models to discourage backtracking behaviors.
(b) VPP prunes the irrelevant word tokens from the instruction tokens {wy, ws, ..., wy,} to shorten textual inputs,
and (c) BGP reduces the size of visual inputs by pruning the non-critical background views from {01, 02, ..., 036}

While action tokens are essential for navigation, : pruned words Walk the couch towards
. . . Red: preserved keywords Kitchen the Walk
background tokens are ideal for pruning, which :
Walk behind the couch go

significantly reduces computational cost. We call )
N . towards the kitchen. Enter the
this proposed process BackGround Pruning (BGP). Walk behind the couch 1

kitchen. Walk towards the
Background pruning lengthens navigation paths. doors that go outside. Kitehen Emzroors Kitehen :;’:Ze
We mitigate this with our BackTracking Pruning Instruction Ours
(BTP), which removes unvisited nodes from the Figure 3: An example of words preserved in the instruc-
navigation map of the environment to discourage tion after pruning between prior works and ours.
backtracking and reduce costs (Fig. 1).

1. We introduce BackGround view Pruning
(BGP) to reduce input views and BackTrack-
ing Pruning (BTP) for more efficient pathing.

Attention-based pruning often fails to preserve
key navigation words. To address this, we propose
Vocabulary Priority Pruning (VPP), which retains

essential words by building a “vocabulary of irrel- 2. We introduce VPP, a strategy utilizes a Large
evance.” By prompting a large language model Language Model (LLM) to prioritize the prun-
(e.g., Llama 3 (Dubey et al., 2024)) to identify non- ing of word tokens irrelevant to navigation,
critical words, VPP prunes these tokens before the while preserving essential guidance tokens.
rest. As shown in Fig. 3, critical words like “couch,” 3. By integrating VPP, BTP, and BGP, our strat-
“enter,” and “doors” thus remain intact. egy achieves a performance that is almost
By combining BGP, BTP, and VPP (Fig. 2), the twice as fast as the original model and 1.4 as
VLN agent navigates more efficiently by taking fast as the model with the most recent pruning
shorter paths (“walk less”), processing shorter in- strategy in terms of GFLOPS (Giga FLoating-
structions and fewer inputs of views (“read less”), point OPerations per Second), with only a
while outperforming generic pruning strategies (i.e. couple of percent points decrease in naviga-
prior work for VLM that have not been used for tion success rate. These improvements are
VLN yet). . observed across multiple VLN models and

Our contributions are summarized as follows: datasets.



2 Related Work

VLN Datasets and Models. Multiple datasets (An-
derson et al., 2018; Ku et al., 2020; Qi et al., 2020;
Zhu et al., 2021; Hong et al., 2022) have been
curated to address challenges that include long
paths (Ku et al., 2020) and object localization (Qi
et al., 2020; Zhu et al., 2021). To navigate through
the environment, agents rely on transformer-based
architectures for action prediction (Chen et al.,
2021, 2022; An et al., 2023; Zhao et al., 2022;
Huo et al., 2023; Wang et al., 2023a; Li and Bansal,
2023b; Wang et al., 2023b; Qiao et al., 2023a; Li
and Bansal, 2023a; Wang et al., 2024b).
Advancements include history modules for nav-
igation memory (Chen et al., 2021), backtracking
mechanisms with topological mapping (Chen et al.,
2022), enabling BTP as an efficiency-performance
trade-off, and the use of synthesized visual data (Li
and Bansal, 2023b). Wang et al. (2024b) further im-
proved navigation accuracy with a debiasing strat-
egy. Regarding VLN efficiency, Qiao et al. (2023b)
explored Parameter-Efficient Transfer Learning,
while Zhu et al. (2024) and Wang et al. (2024c) ap-
plied knowledge distillation to train smaller VLN
models. These methods require new modules or
model reconstruction, while our approach does not.
Token Reduction (Pruning and Merging). Re-
cent works (Goyal et al., 2020; Wang et al., 2021;
Kim et al., 2022; Liang et al., 2022; Bolya et al.,
2022; Wei et al., 2023; Wang et al., 2024a; Zhang
et al., 2024; Chen et al., 2025) primarily rely
on attention scores to reduce sequence lengths in
transformers. POWER-BERT (Goyal et al., 2020)
prunes input tokens based on self-attention. SpAt-
ten (Wang et al., 2021) formally introduced cas-
cade token and head pruning. Liang et al. (2022)
addressed information loss by fusing pruned to-
kens, while Bolya et al. (2022) focused on remov-
ing feature redundancy. Chen et al. (2025) prune
all unimportant tokens at a specific layer of the
VLM. Sparse VLM (Zhang et al., 2024) leverages
external LLMs to assess visual token importance.
Previous strategies assume attention scores reflect
token importance, failing under high text pruning
rates. They also ignore the impact of view token
pruning on efficiency. We are the first to propose
VLN-specific pruning to address these challenges.

3 Method: BGP, BTP, and VPP

Our method comprises three components: Back-
Ground Pruning (BGP) for view pruning (Sec.3.2),

BackTracking Pruning (BTP) for backtracking
node pruning (Sec.3.3), and Vocabulary Priority
Pruning (VPP) for instruction pruning (Sec. 3.4),
which are integrated into VLN models (e.g.,
GOAT (Wang et al., 2024b)) as shown in Fig. 2.

3.1 The VLN Task, Inputs and Token Pruning

In VLN, an agent navigates based on an in-
struction of words I = {wi,...,wr}. At each
step, it processes views from a panorama P =
{o1,...,0on} (Fried et al., 2018) and selects navi-
gable locations a € A until it predicts a “STOP” ac-
tion agp. Using the Matterport 3D simulator (An-
derson et al., 2018; Ku et al., 2020; Qi et al., 2020),
navigation is successful if the agent stops within 3
meters of the target; agent in REVERIE (Qi et al.,
2020) must also locate the target object.

Most VLN models split the views in panora-
mas P = {o1,...,on} into action views Oy =
{o1,...,0n} and background views Oy, =
{on+1,-..,on} providing visual context. The ac-
tion views {0y, ...,0,} correspond to navigable
nodes {aq, ..., a,} indicating navigable locations
at the current step. In addition to views, DUET-
based (Chen et al., 2022) models (Li and Bansal,
2023b; Wang et al., 2024b,c; Zhu et al., 2024)
adopt a topological map as “history” to track the
unvisited nodes Viyisited = {v1,02, ..., vy} and
visited nodes Viisited = {Um+1sUm+2,---, U}
with V,,uisited €nabling backtracking actions
{ab,...,a%}. The model’s inputs are thus tri-
modal, including I, P, and V. At each step, the
model selects an action from stop, navigate, or
backtrack using the policy a = 7 (I, P, V'), where

bt bt
a € {asop; a1, ..., an} U {al’, ... ap}.
Given an instruction I = {w,ws,...,wr},

views P = {01, ...,0n}, and history nodes V' =
{v1,va,...,upr}, token pruning reduces sequence
lengths with a certain process, denoted as func-
tion f. We obtain the pruned sequences I’ =
f[(wl, ...,U)L), P = fp(Ol, ...,ON), and V' =
fv(v1,...,wpr), such that |I'| < |I], |P'| < |P
|V'| < |V]. The VLN model then selects an ac-
tion a = w(I’, P, V') with lower computational
cost. Efficient token pruning hinges on accurately
assessing token importance, which we detail next.

)

3.2 Token Importance and Background
Pruning

The token importance we adopted for BGP and
BTP is attention-score-based, which is calculated
during the transformer blocks in the VLN model.
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Figure 4: (a) BGP prunes view feature tokens based on

their importance score before the residual connection
+”. (b) VPP is similar to BGP, except a vocabulary of

irrelevance is used to help decide token importance.

Concretely, during the navigation process, the
panoramic views P are projected into a feature
space using a pre-trained feature extractor, such as
CLIP-B/16 (Radford et al., 2021), and enhanced
with learned positional encodings that represent the
viewing direction. This results in a sequence of NV
view tokens, each associated with a feature x. For
simplicity, we denote the encoded view token se-
quence as P and each view feature token as o. Our
token importance scores come from the transformer
blocks processing P. Specifically, each transformer
block consists of a self-attention module with at-
tention heads, followed by a feed-forward network.
At each head h in layer i, self-attention scores are
computed to quantify the dependencies between
tokens as follows:

Attny,, = softmax[Q); x K1, (D

where Q; = P; x Wq’”, K; = (P; x W,i“), and
thi, W,i” are trained weight matrices. The result-
ing Attny, is a N x N matrix, where each entry
Attny, [0, 0] represents the normalized depen-
dency of view o, on view o,,. A higher value of
Attny, [0y, 05| usually indicates that view o, has
a stronger influence on constructing the updated
representation of o, in the output P; ;.

To determine the overall importance of each to-
ken, we aggregate the attention scores by summing
each column of Attny,, across all attention heads H;
at layer 7. This gives a vector of scores indicating
the influence of each token o’ on all tokens:

Z Z Attny, [0, 0']. 2)

h;eH; oeP

Score(0') =

We interpret Score(o’) as the importance score
of view o/, which guides the pruning process
by identifying less influential background views.
Similar scores can be obtained for words w and

Score(0)

oOln|T|Q

Table of Token
Importance (t-1)
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Figure 5: The BTP process. BTP prunes the unvisited
nodes b and c at step ¢ based on a table of token impor-
tance constructed from the cross-modal module at step
t — 1. Nodes b and c are no longer navigable at step ¢.

history nodes v from the language module and
cross-modal module, respectively. The module
concludes by computing the latent feature Z; =
concatenate(Ay, x (P; x W})), where the con-
catenation is performed across all heads and W/
is the weight matrix for each head.

BackGround view Pruning (BGP) reduces the
size of Oy, in P by removing kpgp tokens at each
layer of the vision transformer encoder. Inspired by
Bolya et al. (2022), BGP is applied after computing
the attention matrix Attng, for P and before pass-
ing Z; to the residual connection and feed-forward
network (see Fig. 4). BGP retains all action view
tokens Oy While pruning the kpgp tokens with
the lowest Score(0) from Oy, (i.e., removing their
o and z values from Oy, and Z;). The pruned F;
and Z; are then processed to yield P; ;. Conse-
quently, the final output P, contains kpgp - L
fewer tokens than the original P, resulting in a
smaller visual input for action prediction. Despite
BGP reduces the visual inputs, it causes poorer ac-
tion decisions, leading to longer navigation paths,
which is addressed by BTP.

3.3 Backtracking Pruning

Backtracking in DUET-based VLN models (Chen
et al., 2022) refers to returning to unvisited nodes
from previous navigation steps. We propose Back-
Tracking Pruning (BTP) to remove a subset of
these unvisited nodes Vi ,pisiteq from the history
input V' (nodes B & C in Fig. 5). Specifically,
Vinvisited = {1, 2, ..., Uy } contains action view
tokens from earlier steps that were not selected,

{vi,v9, ..., v} {01,092, ...,0m}, where
{01,02,...,0m} € OZ’ct at previous steps t' < t.



Method R2R RxR-English REVERIE
Seenf[UnseenT[Steps| [GFLOPS] [Seen |[Unseenf [Steps| [GFLOPS[ [Seenf [Unseen{ [ Steps] [GFLOPS]
Upper Bound, 100% Tokens

VLN-GOAT | 848  78.1 7.3 100 | 752 696 8.1 100 | 80.7 538 10.1 100
Retain ~70% Tokens

Random 79.1 74.1 7.0 78.1 73.3 68.1 8.4 84.2 71.5 48.1 11.5 82.3

FastV' 80.7 725 7.1 80.5 702  66.2 8.5 84.1 80.2 542 10.0 76.0

Cascade Pruning® | 80.4  73.9 7.0 77.4 7377 682 8.3 33.4 80.0 54.0 10.1 75.5

Cascade + ToMe® | 80.1 73.8 6.7 74.6 73.3 67.7 8.3 83.6 71.6 47.9 114 81.3

Ours 81.8 732 6.2 68.3 73.8 68.0 8.3 81.5 793 524 10.0 74.2
Retain ~60% Tokens

Random 71.8 717 7.4 72.9 719 664 8.6 78.7 625 429 13.0 77.2

FastV'! 77.8 693 7.6 77.2 682 634 8.7 79.9 632 427 13.3 81.5

Cascade Pruning2 77.9 71.3 7.5 74.1 72.1 66.8 8.6 78.3 63.3 43.0 134 79.0

Cascade + ToMe® | 783  71.6 7.3 72.0 722 670 8.5 78.3 629 429 12.9 77.4

Ours 81.6 729 6.3 61.8 734  68.2 8.4 75.5 78.8 521 10.1 65.9
Retain ~50% Tokens

Random 73.8 673 8.3 68.6 69.4 642 9.0 74.0 540 350 144 70.3

FastV? 73.8 63.8 8.7 74.6 64.7 59.7 9.1 78.5 54.0 35.2 149 76.8

Cascade Pruning® | 75.1  67.6 8.6 70.6 68.6 642 9.1 74.4 538  35.1 14.8 72.8

Cascade + ToMe® | 76.4  67.5 7.9 69.5 703  65.7 8.6 754 538 354 14.6 71.7

Ours 799 710 6.6 53.6 72.6  66.6 8.6 69.6 777 48.1 10.4 59.8

Table 1: Performance of VLN-GOAT under various token pruning strategies. Metrics include navigation success
rate (“Seen”,“Unseen”), average steps, and GFLOPS% relative to the base model. FastV!(Chen et al., 2025) (textual
& visual), Cascade pruning? (textual & visual) (Goyal et al., 2020; Wang et al., 2021), Cascade pruning and Token
Merging (Bolya et al., 2022) (Cascade + ToMe?, visual) are pruning techniques that are compared to our method.

Algorithm 1 Vocabulary Priority Pruning

1: procedure VPP(I,V, Scores, kypp)

2: I, < empty sequence = retained tokens
3: I, < empty sequence = pruned tokens
4: Sort w’s in I by Score(w) from high to low

5: for w in I do

6: if w not in V then

7. I,.add(w)

8: else

9: I,.add(w)
10: if kvpp > length([) - length(/,) then
11: for i = 1 to kyyp do
12: I.add(w;)
13: else
14: for w in I, do
15: if length([) - length(Z;.) = k.pp then
16: break
17: I,.add(w)
18: return /,

To determine the most crucial nodes for successful
navigation, we track the importance scores of these
tokens from the attention heads of the last cross-
modal transformer block at each step (e.g., 0.4 for
node a in Fig. 5). At the beginning of the next step,
BTP retains the top kgtp unvisited nodes based on
their latest Score(o) and discards the remainder, so
that Viypvisited = {vla X kaTP}'

BTP offers two main benefits: It reduces the
size of the history input V' to the cross-modal
module, lowering computational cost, and it lim-
its backtracking options from {a},...,al,} to
{a},...,a},}, enhancing path efficiency by re-

Method Retain| Validation Seen Validation Unseen
Rate [SRT SPLT GFLOPS||SR? SPLT GFLOPS]
HAMT - 70 67 100 63 58 100

gﬁy\f) 06 |63 60 72 |56 50 75
05|58 55 65 |50 45 68
07 [71 66 79 (5 53  8I
HAMT | ¢ 169 65 72 |56 51 74
(Ours™)

DUET - |79 73 100 72 60 100

gFU}f\T/) 06 |62 56 66 |54 44 65
as 05 |59 52 56 |50 40 55
07 (77 65 71 |68 57 75

I(%U]fg 06 |75 69 64 |66 55 68
s los |72 T 57 |63 52 59

Table 2: Model performance on the R2R dataset with
different pruning strategies. Ours™ indicates pruning
without BTP.

ducing potential unnecessary backtracking.

3.4 Vocabulary Priority Pruning

VPP operates similarly to BGP by pruning in-
struction tokens w € I based on the importance
Score(w) derived from the attention mechanism of
the language transformer block (Fig. 4, Section 3.2).
However, we found that the attention scores do not
accurately reflect each word’s importance for nav-
igation. For example, as shown in Table 3, non-
informative tokens, such as punctuation, often re-
ceive a high Score(w) and are retained, thereby
wasting the token budget. To improve instruction
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“Given words: 1. Walk
2. down
3.one ...
Which of them are irrelevant to all the
following information:
a. Heading/direction
b. Environment description
c. Indoor/outdoor objects?”

“Here's the list of words with their
relevance:

1. walk : relevant (heading/direction)
2. down : relevant (heading/direction)
3. one: irrelevant (not related to
direction or environment description)

Prompt Llama 3

Figure 6: The construction of the “vocabulary of irrela-
vance” V, it involves four steps, (a) collecting a lexicon
of words appeared in the training VLN instructions, (b)
building a prompt to ask the LLM to identify words
irrelevant to navigation, (c) having the LLM generate
classification results, and (d) collecting words classified
as “irrelevant” into the vocabulary.

Retain Instruction Tokens
Method
% (grey ones are pruned)
100 |- <s>Exit the room . Turn right . Start down
the stairs and stop 3 steps down . </s>

50 |vpp <s>EX}t room . Turn right . Start
stairs stop - steps

50 |Att. Scores|~>” . the - Start
stairs 3 .

25 VPP <s>Exit right . Start

steps
25 |Att. Scores|~> the 3

Table 3: Instruction tokens retained under different prun-
ing rates. VPP is more effective in preserving key infor-
mation than attention-score pruning, which fails to keep
navigation-relevant words.

pruning, we prompt an LLM to construct a “vocab-
ulary of irrelevance” V that identifies unimportant
words based on its general knowledge rather than
attention scores. The construction process is illus-
trated in Fig. 6. We tokenized the training data
to form a lexicon and prompted Llama 3 (Dubey
et al., 2024) to label each word as “relevant” or
“irrelevant” for navigation based on its association
with direction/heading, environment description, or
indoor/outdoor objects. Words labeled “irrelevant”
were compiled into V; see Appendix A.1 for an
example prompt and vocabulary.

At each layer of the language transformer en-
coder, VPP prunes kyp, instruction tokens via a
two-step process. First, it filters out all words
present in V. If the number of filtered tokens is
less than kypp, the remaining tokens are pruned
based on their attention scores Score(w) until the
requirement is met. Otherwise, if more tokens are
filtered than necessary, some are reinstated accord-

ing to Score(w) to preserve additional information.
The VPP process is detailed in Algorithm 1.

VPP more effectively retains essential words
in instructions, enabling the navigation system to
function normally even at higher pruning rates com-
pared to attention-based strategies (Table 3).

By combining BGP, BTP, and VPP, we obtain
the pruned views Pggp, history nodes Vgtp, and in-
struction Iypp where the lengths are L-kpgp, M —
kstp, and kypp shorter than P,V,I. The VLN
model then calculates the prediction action a by
7(Pscp, VBrP, IvPP), resulting in lower computa-
tional cost, as detailed in the next section.

4 Experiments

Datasets. We evaluated our proposed pruning
strategies on three VLN benchmarks: R2R (An-
derson et al., 2018), RxR (Ku et al., 2020), and
REVERIE (Qi et al., 2020). For each dataset, to-
ken pruning was tested on two splits, the validation
“seen” split and validation “unseen” split.
Evaluation Metrics. Our primary efficacy metric
is navigation Success Rate (SR), which measures
the agent’s ability to navigate under pruning con-
ditions. Additional efficacy metrics are reported in
our result tables.

Our efficiency metric is a simplified version of a
GFLOPS-based formula introduced by Wang et al.
(2024¢):

Gtotal = Glan(I>+D'(Gvis(P)+Gcm(I7 P7 V))+C7

where D is the number of the decision steps
(“steps”), Gian is the GFLOPS of language module
getting instruction features, G ;s is the GFLOPS of
visual module processing view features, G, is the
GFLOPS of the cross-modal module predicting ac-
tions from all input features, and c is the cost from
other sources, if any. We assess efficiency improve-
ment in terms of GFLOPS, as detailed in Section 4.
To convey efficiency improvements, we report the
ratio of GFLOPS after pruning to GFLOPS before
pruning (in %):

GFLOPS = Gpruned/ Goriginal- (3)

Our computation cost is computed using the Python
toolkit thop.

VLN Models. We evaluated our token pruning
strategies on three VLN models: HAMT (Chen
et al.,, 2021), DUET (Chen et al., 2022), and
GOAT (Wang et al., 2024b). All experiments use



Method Retain Validation Unseen
Rate [SRT SPLT RGST RGSPLT GFLOPS]
HAMT | - |32 29 19 7 100
07 |32 29 18 6 73
gAl\t/IVT) 06 |30 27 16 14 68
as 05 |27 24 14 12 65
07 |31 29 19 17 69
HOANT 06 | 31 28 18 17 64
©urs™) ) o5 |20 26 17 15 59
DUET 47 34 32 23 100
07 | 39 28 23 6 )
?Fgg) 06 | 34 24 19 13 73
s 05 [ 30 20 16 11 64
07 | 47 33 31 22 80
R)UEf 06 | 45 32 31 2 70
urs 05 |43 30 28 20 62
Table 4: Performance of pruning strategies on

REVERIE data Ours™ indicates pruning without BTP.
Efficacy is measured in Success Rate (SR) Per Length
(SPL), Remote Grounding Success rate (RGS), and Re-
mote Grounding Success rate Per Length (RGSPL).

BGP BTP VPP|SR{ SPL! Steps| |GFLOPS|
X X X 781 676 170 100
VX X |754 624 80 72.3
X VX |746 660 66 90.1
X X v |755 646 13 95.8
v o/ X |722 619 172 60.7
VX v |739 607 82 65.7
X v / |724 634 681 | 855
v o/ v |710 603 73 54.4

Table 5: Ablation of BGP, BTP, and VPP contribution
to efficiency and influence to SR and SPL on R2R vali-
dation unseen split.

the pre-tuned parameters provided by the respec-
tive authors. We extensively tested VLN-GOAT for
its outstanding performance across datasets. VLN-
GOAT comprises six transformer layers in the lan-
guage module, two layers in the view module, and
three layers in the cross-modal module.

Pruning Strategies. We are the first to apply multi-
modal token pruning to the VLN task. For baseline
comparisons, we selected several pruning strategies
based on VLN model performance and if they are
applicable to VLN inputs. For instruction pruning,
we compared our method against three approaches,
removing tokens randomly, cascade pruning (Goyal
et al., 2020; Wang et al., 2021), which prunes a
portion of tokens at each transformer layer, and
FastV (Chen et al., 2025), which prunes the re-
quired number of tokens all at once at a specific
layer. For view input pruning, we only consider
background pruning without removing any action
views, as the SR drops significantly even with min-
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Figure 7: (a) Success rates and GFLOPS of different
pruning rates for BGP, and BGP with various BTP set-
tings. (b) Average Steps for navigation and GFLOPS of
different pruning rates for BGP with no BTP, and BTP
with various fixed BGP settings.

imal action view removal (see Appendix A.3). We
also evaluated merging tokens with similar key vec-
tor features (Bolya et al., 2022). For the settings
of BGP, BTP, VPP, we retained the same amount
of views and words as the baselines, while always
keeping at most 8 unvisited node for BTP.

4.1 Comparison with Baselines

The performance of the base model GOAT under
various token pruning strategies and rates across
three datasets is reported in Table 1. Our approach
consistently yields greater GFLOPS reduction and
shorter navigation paths while maintaining com-
parable or higher Success Rates (SR) than base-
lines. At a 50% token pruning rate, our VLN
model attains SRs of 71.0%, 66.6%, and 48.1%
on the Unseen splits of R2R, RxR-English, and
REVERIE, compared to 67.6%, 65.7%, and 35.4%
from baselines (last row of Table 1). Additionally,
our method saves up to 15 percent points (pp) in
GFLOPS and reduces navigation steps, demonstrat-
ing enhanced pathing efficiency.

We validated our method on HAMT (Chen et al.,
2021) and DUET (Chen et al., 2022) using the R2R
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Figure 9: An example of navigation with our strategies
applied. BTP prevents a long and failed navigation path
by pruning unvisited nodes.

and REVERIE datasets, compared to FastV (Chen
et al., 2025) (see Tables 2 and 4). In DUET, our
method outperforms FastV by 5pp to 10pp in SR,
SPL, RGS, and RGSPL with similar GFLOPS. In
HAMT, where BTP cannot be applied, our ap-
proach still shows superior SR and SPL on R2R
and outperforms FastV in both navigation perfor-
mance and efficiency on REVERIE.

To illustrate the impact of our pruning strategy,
Fig. 9 shows a navigation example. VPP preserves
key instruction words, enabling the agent to follow
and complete the route. Meanwhile, BTP “forces”
the agent to stop at the correct destination by re-
moving potential backtracking nodes; without it,
unpruned unvisited nodes would cause backtrack-
ing, resulting in longer paths and navigation failure.

4.2 Ablation Study

We conducted an ablation study to assess the ef-
fectiveness of BTP, BGP, and VPP under a 50%
pruning rate setting (Table 5). BGP yields the high-
est GFLOPS reduction (27.7pp), indicating that

background views are highly prunable. BTP adds
roughly 10pp in GFLOPS reduction and reduces av-
erage navigation steps by one, while VPP improves
GFLOPS by 5pp, due to R2R’s short instructions.
VPP benefits the model more if the dataset contains
longer instructions (shown in Appendix A.4).

To further examine BTP’s impact, we evalu-
ated various BTP settings in combination with
BGP at different pruning rates on the R2R dataset,
tracking changes in SR, SPL, and navigation steps
(Fig. 7). In part (a), retaining 6 or 8 unvisited
nodes per step caused minimal drops in SR and
SPL while further reducing GFLOPS. However, a
more aggressive setting—retaining only 4 unvis-
ited nodes (orange)—resulted in a 3-4% SR loss at
lower BGP rates, though efficiency improved sig-
nificantly (over 10pp GFLOPS reduction). Overall,
moderate BTP provides additional efficiency gains
with minimal impact on success rate, whereas more
aggressive BTP clearly trades success rate for ef-
ficiency. When combined with other background
pruning strategies and applied to various datasets,
BTP further enhances navigation efficiency with
minimal SR loss (Appendix A.5). Fig. 7(b) shows
that BTP reduces navigation steps across various
BGP settings, further supporting our findings.

Lastly, we compare VPP with Cascade Pruning
and FastV for instruction token removal on R2R,
RxR, and REVERIE (Fig. 8). VPP (green) consis-
tently outperforms the other two strategies across
most pruning rates, with optimal improvements in
the 40-60% range. Our experiments show that the
same vocabulary can be effectively applied across
different text tokenizers and datasets without the
need for reconstruction (Appendix A.6).

5 Conclusion

Our work introduces three token pruning strate-
gies: BGP, BTP, and VPP for VLN that effectively
reduce input size while addressing issues of in-
creased navigation path length and inadequate re-
tention of critical instruction information observed
with generic pruning methods. Experiments on the
R2R, RxR, and REVERIE datasets show that our
approach outperforms them in both navigation suc-
cess rates and computational efficiency. Overall,
our robust, model- and dataset-agnostic solution
significantly lowers computational costs without
sacrificing performance, paving the way for more
efficient deployment of VLN models in resource-
constrained environments.



6 Limitations

A majority of generic token pruning strategies, in-
cluding our BGP and BTP, assume that attention
scores accurately reflect the true importance of to-
ken features for navigation success. However, this
assumption is inherently flawed. While VPP partly
mitigates this issue for instruction pruning, an anal-
ogous solution for view pruning would incur expen-
sive costs, such as those associated with gradient-
or perturbation-based saliency. Moreover, as shown
in Table 1, random token pruning performs nearly
as well as attention-based methods—except for our
approach. This suggests that many VLN tokens
may contribute similarly to navigation, yielding
comparable efficiency gains and success rate losses
regardless of the pruning method. We hope our
work serves as a starting point for understanding
token importance in VLN for both text and visu-
als, and inspires further development of effective,
cost-efficient indicators for VLN token pruning.
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Figure 10: GFLOPS curve over different instruction
lengths with 50% token pruning rate.

A Appendix

A.1 Vocabulary Example

We provide an example of how we prompt the LLM
to construct the vocabulary of irrelevance, with
explanations from Llama 3 why such tokens are
classified to be relevant or irrelevant (see Table 6).

A.2 VLN Datasets Statistics

The statistic of VLN dataset statistic is given in
Table 7. The tokens numbers are averaged over
steps of all navigation tasks.

A.3 Pruning Action Views

In VLN, action views are essential as they provide
directional cues and define navigable paths. As
shown in Table 8, pruning action views drastically
reduces SR—resulting in longer paths or halted
movement—whereas BGP maintains performance
with smoother path lengths, making it ideal for
improving navigation efficiency.

A.4 Instruction Length Influence on
Efficiency Improvement

VPP’s efficiency gains are closely related to in-
struction length. Under the default settings for
R2R, RxR, and REVERIE (36 views, 14 history
nodes, and a 7-step navigation), we evaluated the
efficiency improvement from a 50% instruction
pruning rate across different instruction lengths
(see Fig. 10). The results show that a 50-token in-
struction achieves a 10 percentage point GFLOPS
reduction, which increases to 20 percentage points
for a 150-token instruction.

A.5 BTP alone, and combined with different
view pruning strategies

We compare the effectiveness of BackTracking
Pruning (BTP) with Background Pruning (BGP) in
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Figure 11: A comparison of applying BGP and BTP
alone.

Figure 11. Our results indicate that pruning back-
ground views is far more effective than pruning
backtracking nodes, making BTP alone impractical.
Thus, combining BTP with background view prun-
ing is more preferable to counteract the increased
path length resulting from view pruning.

Specifically, we evaluated the GFLOPS improve-
ments when applying BTP with cascade token prun-
ing, FastV, and Token Merging (ToMe) across the
R2R, RxR, and REVERIE datasets (see Fig. 12).
Our findings show that incorporating BTP reduces
GFLOPS by approximately 5 percentage points
at high BGP rates (e.g., 80%), while resulting in
a Success Rate drop of less than 0.5 percentage
points.

A.6 Adopting a Single Vocabulary of
Irrelevance to Different Language Models
and Datasets

We observed that the vocabulary constructed by
the LLM can be applied across different language
modules and datasets without needing to re-build
it for each case. To validate this, we built vocabu-
laries from different datasets and from the tokeniz-
ers of three pre-trained language models (BERT,
RoBERTa, XLM-RoBERTa), then applied them to
a VLN language module initialized with weights
from a different language model (Table 9). The
improvements from VPP were similar regardless
of the vocabulary source, demonstrating that VPP
is a robust, model- and dataset-agnostic pruning
strategy.



Given the following set of words: “walk”, “down”, ..., “landing”,
can you point out which of them are irrelevant to the following types of information:
Prompt | 1. A direction to go; 2. Describing the environment; 3. Object(s) in the indoor/outdoor environments.
Please don’t change the word in the quotation mark and explain why.
Please answer in the following: format: “{word} : relevant/irrelevant {explanation}”
Word | Relevance Explanation
walk relevant direction to go
down relevant direction to go
one irrelevant | not related to direction or environment description
flight irrelevant | not related to indoor environment navigation
of irrelevant | preposition, not related to direction or environment description
stairs relevant object in the environment
and irrelevant | conjunction, not related to direction or environment description
stop relevant direction to go
the irrelevant | article, not related to direction or environment description
landing relevant object in the environment

Table 6: Our prompt to Llama 3, and examples of words in the vocabulary of irrelevance, explained by the LLM
why they are relevant/irrelevant.

Dataset R2R RxR-english| REVERIE
Seen Unseen|Seen Unseen|Seen Unseen
Size 1020 2349 (2939 4551 (1423 3521
History nodes size 14 19 16
View tokens 38 38 42
Instruction tokens 32 127 20

Table 7: Statistics of R2R, RxR-English, and REVERIE
regarding token pruning. The numbers are averaged
over all navigation tasks and steps.

Pruning All Views BGP
Rate  [SR7? Steps| GFLOPS||SR1 Steps| GFLOPS|
0 78 7 100 78 7 100
025 |62 9 108 78 7 87
04 |44 11 111 77 7 80
07 |13 6 55 75 8 70
0.9 1 1 14 69 11 73

Table 8: A comparison of pruning view tokens including
action views and BGP. Pruning a large fraction of action
views caused significant SR and GFLOPS drops while
pruning at a lower rate led to higher computation cost.

12

Source| p)R RxR REVERIE
Target
R2R 760 755 740
(68.8) (+72)  (+6.7) (+5.2)
RXR 630 682 682
(66.4) (+1.6)  (+1.8) (+1.8)
REVERIE 498 479 500
(36.5) (+133) (+11.4) (+13.5)
SOUICe | RoBERTa BERT ~XLM-R
Target
RoBERTa 682 684 690
(66.4) (+1.8)  (+2.0) (+2.6)
BERT 654 660 657
(59.3) +6.1)  (+6.7)  (+6.4)
XLM-R 554 561 554
(40.4) (+15.0) (+15.7) (+15.0)

Table 9: Navigation success rates using a vocabulary
of irrelevance built on the source dataset (top) or tok-
enizer (bottom) and applied during inference on the tar-
get dataset/tokenizer. The leftmost column (e.g., 68.8)
shows success rates with a 50% instruction pruning rate.
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