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Abstract

Large models have demonstrated state-of-the-001
art performance on Vision-and-Language Navi-002
gation tasks, but their high computational cost003
limits deployment in hardware-constrained en-004
vironments. Token pruning reduces compu-005
tation by decreasing the size of navigation006
inputs, offering a promising solution. How-007
ever, in VLN tasks, input pruning can lead008
to information loss, causing the agent to take009
longer paths to determine when to stop, thus010
increasing computational demands and limit-011
ing efficiency gains. Moreover, attention-based012
pruning for instructions often fails to discard013
non-critical words, misspending valuable token014
budget. To improve navigation efficiency and015
address these challenges, we prune the navi-016
gation input from three angles. First, we di-017
vide the panoramic views into action and back-018
ground tokens, preserving key information for019
action prediction while improving navigation020
efficiency by pruning the background views.021
Second, we prune nodes from the agent’s nav-022
igation map to discourage backtracking and023
shorten paths. Finally, we leverage a Large Lan-024
guage Model to assess word importance in in-025
structions, enabling us to accurately prune non-026
essential words. Experimental results show our027
methods significantly outperformed state-of-028
the-art pruning strategies in FLOPS efficiency,029
while maintaining higher accuracy across di-030
verse VLN models and datasets.031

1 Introduction032

Vision-and-Language Navigation (VLN) enables033

AI agents to interpret natural language instruc-034

tions and visual information to navigate effectively035

in their environments. While progress has been036

achieved in the efficacy of navigation agents (Fried037

et al., 2018; Tan et al., 2019; Hong et al., 2021;038

Chen et al., 2021, 2022; Wang et al., 2024c), ad-039

vancements often come with computational costs040

too high for hardware-limited agents, underscoring041

Figure 1: The proposed method reduces the naviga-
tion length through token pruning compared to other
methods, in this example, FastV (Chen et al., 2025) on
R2R (Anderson et al., 2018).

the need to prioritize navigation efficiency, the 042

task we are addressing here. 043

Token pruning enhances the computational effi- 044

ciency of VLN models by reducing the size of their 045

inputs, making it an attractive approach for low- 046

ering computational costs. Moreover, token prun- 047

ing offers flexibility: the same VLN model can be 048

adapted to meet different hardware constraints by 049

simply adjusting the pruning rates, without the need 050

for retraining. However, as more tokens are pruned, 051

the navigation duration increases because the agent 052

has less information to make correct and/or effi- 053

cient decisions, as shown in Fig. 1. Longer paths 054

incur higher computational costs, which under- 055

mines the benefits of token pruning. Furthermore, 056

widely adopted attention-score-based text pruning 057

methods fail to identify the important words in 058

the instruction. As shown in Fig. 3, tokens such 059

as “the” or “.” are retained after pruning since 060

they have high attention scores. Consequently, the 061

VLN agent struggles to navigate effectively with 062

instructions that lack critical information. To ad- 063

dress these challenges we propose a “walk and read 064

less” approach, where navigation is made efficient 065

by targeting tokens in the input and addressing the 066

above challenges. 067

We first observe that view inputs comprise of 068

two token types: action and background tokens. 069
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Figure 2: An overview of applying BGP, BTP, and VPP on a VLN model. (a) BTP prunes the unvisited history nodes
from tva, vb, ..., vhu on the navigation map constructed by the VLN models to discourage backtracking behaviors.
(b) VPP prunes the irrelevant word tokens from the instruction tokens tw1, w2, ..., wLu to shorten textual inputs,
and (c) BGP reduces the size of visual inputs by pruning the non-critical background views from to1, o2, ..., o36u.

While action tokens are essential for navigation,070

background tokens are ideal for pruning, which071

significantly reduces computational cost. We call072

this proposed process BackGround Pruning (BGP).073

Background pruning lengthens navigation paths.074

We mitigate this with our BackTracking Pruning075

(BTP), which removes unvisited nodes from the076

navigation map of the environment to discourage077

backtracking and reduce costs (Fig. 1).078

Attention-based pruning often fails to preserve079

key navigation words. To address this, we propose080

Vocabulary Priority Pruning (VPP), which retains081

essential words by building a “vocabulary of irrel-082

evance.” By prompting a large language model083

(e.g., Llama 3 (Dubey et al., 2024)) to identify non-084

critical words, VPP prunes these tokens before the085

rest. As shown in Fig. 3, critical words like “couch,”086

“enter,” and “doors” thus remain intact.087

By combining BGP, BTP, and VPP (Fig. 2), the088

VLN agent navigates more efficiently by taking089

shorter paths (“walk less”), processing shorter in-090

structions and fewer inputs of views (“read less”),091

while outperforming generic pruning strategies (i.e.092

prior work for VLM that have not been used for093

VLN yet). .094

Our contributions are summarized as follows:095

Figure 3: An example of words preserved in the instruc-
tion after pruning between prior works and ours.

1. We introduce BackGround view Pruning 096

(BGP) to reduce input views and BackTrack- 097

ing Pruning (BTP) for more efficient pathing. 098

2. We introduce VPP, a strategy utilizes a Large 099

Language Model (LLM) to prioritize the prun- 100

ing of word tokens irrelevant to navigation, 101

while preserving essential guidance tokens. 102

3. By integrating VPP, BTP, and BGP, our strat- 103

egy achieves a performance that is almost 104

twice as fast as the original model and 1.4 as 105

fast as the model with the most recent pruning 106

strategy in terms of GFLOPS (Giga FLoating- 107

point OPerations per Second), with only a 108

couple of percent points decrease in naviga- 109

tion success rate. These improvements are 110

observed across multiple VLN models and 111

datasets. 112
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2 Related Work113

VLN Datasets and Models. Multiple datasets (An-114

derson et al., 2018; Ku et al., 2020; Qi et al., 2020;115

Zhu et al., 2021; Hong et al., 2022) have been116

curated to address challenges that include long117

paths (Ku et al., 2020) and object localization (Qi118

et al., 2020; Zhu et al., 2021). To navigate through119

the environment, agents rely on transformer-based120

architectures for action prediction (Chen et al.,121

2021, 2022; An et al., 2023; Zhao et al., 2022;122

Huo et al., 2023; Wang et al., 2023a; Li and Bansal,123

2023b; Wang et al., 2023b; Qiao et al., 2023a; Li124

and Bansal, 2023a; Wang et al., 2024b).125

Advancements include history modules for nav-126

igation memory (Chen et al., 2021), backtracking127

mechanisms with topological mapping (Chen et al.,128

2022), enabling BTP as an efficiency-performance129

trade-off, and the use of synthesized visual data (Li130

and Bansal, 2023b). Wang et al. (2024b) further im-131

proved navigation accuracy with a debiasing strat-132

egy. Regarding VLN efficiency, Qiao et al. (2023b)133

explored Parameter-Efficient Transfer Learning,134

while Zhu et al. (2024) and Wang et al. (2024c) ap-135

plied knowledge distillation to train smaller VLN136

models. These methods require new modules or137

model reconstruction, while our approach does not.138

Token Reduction (Pruning and Merging). Re-139

cent works (Goyal et al., 2020; Wang et al., 2021;140

Kim et al., 2022; Liang et al., 2022; Bolya et al.,141

2022; Wei et al., 2023; Wang et al., 2024a; Zhang142

et al., 2024; Chen et al., 2025) primarily rely143

on attention scores to reduce sequence lengths in144

transformers. PoWER-BERT (Goyal et al., 2020)145

prunes input tokens based on self-attention. SpAt-146

ten (Wang et al., 2021) formally introduced cas-147

cade token and head pruning. Liang et al. (2022)148

addressed information loss by fusing pruned to-149

kens, while Bolya et al. (2022) focused on remov-150

ing feature redundancy. Chen et al. (2025) prune151

all unimportant tokens at a specific layer of the152

VLM. SparseVLM (Zhang et al., 2024) leverages153

external LLMs to assess visual token importance.154

Previous strategies assume attention scores reflect155

token importance, failing under high text pruning156

rates. They also ignore the impact of view token157

pruning on efficiency. We are the first to propose158

VLN-specific pruning to address these challenges.159

3 Method: BGP, BTP, and VPP160

Our method comprises three components: Back-161

Ground Pruning (BGP) for view pruning (Sec.3.2),162

BackTracking Pruning (BTP) for backtracking 163

node pruning (Sec.3.3), and Vocabulary Priority 164

Pruning (VPP) for instruction pruning (Sec. 3.4), 165

which are integrated into VLN models (e.g., 166

GOAT (Wang et al., 2024b)) as shown in Fig. 2. 167

3.1 The VLN Task, Inputs and Token Pruning 168

In VLN, an agent navigates based on an in- 169

struction of words I “ tw1, . . . , wLu. At each 170

step, it processes views from a panorama P “ 171

to1, . . . , oNu (Fried et al., 2018) and selects navi- 172

gable locations a P A until it predicts a “STOP” ac- 173

tion astop. Using the Matterport 3D simulator (An- 174

derson et al., 2018; Ku et al., 2020; Qi et al., 2020), 175

navigation is successful if the agent stops within 3 176

meters of the target; agent in REVERIE (Qi et al., 177

2020) must also locate the target object. 178

Most VLN models split the views in panora- 179

mas P “ to1, ..., oNu into action views Oact “ 180

to1, ..., onu and background views Obgr “ 181

ton`1, ..., oNu providing visual context. The ac- 182

tion views to1, ..., onu correspond to navigable 183

nodes ta1, ..., anu indicating navigable locations 184

at the current step. In addition to views, DUET- 185

based (Chen et al., 2022) models (Li and Bansal, 186

2023b; Wang et al., 2024b,c; Zhu et al., 2024) 187

adopt a topological map as “history” to track the 188

unvisited nodes Vunvisited “ tv1, v2, ..., vmu and 189

visited nodes Vvisited “ tvm`1, vm`2, ..., vMu, 190

with Vunvisited enabling backtracking actions 191

tabt1 , ..., a
bt
mu. The model’s inputs are thus tri- 192

modal, including I , P , and V . At each step, the 193

model selects an action from stop, navigate, or 194

backtrack using the policy a “ πpI, P, V q, where 195

a P tastop, a1, . . . , anu Y tabt1 , . . . , a
bt
mu. 196

Given an instruction I “ tw1, w2, ..., wLu, 197

views P “ to1, ..., oNu, and history nodes V “ 198

tv1, v2, ..., vMu, token pruning reduces sequence 199

lengths with a certain process, denoted as func- 200

tion f . We obtain the pruned sequences I 1 “ 201

fIpw1, ..., wLq, P 1 “ fP po1, ..., oN q, and V 1 “ 202

fV pv1, ..., wM q, such that |I 1| ă |I|, |P 1| ă |P |, 203

|V 1| ă |V |. The VLN model then selects an ac- 204

tion a “ πpI 1, P 1, V 1q with lower computational 205

cost. Efficient token pruning hinges on accurately 206

assessing token importance, which we detail next. 207

3.2 Token Importance and Background 208

Pruning 209

The token importance we adopted for BGP and 210

BTP is attention-score-based, which is calculated 211

during the transformer blocks in the VLN model. 212
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Figure 4: (a) BGP prunes view feature tokens based on
their importance score before the residual connection
“+”. (b) VPP is similar to BGP, except a vocabulary of
irrelevance is used to help decide token importance.

Concretely, during the navigation process, the213

panoramic views P are projected into a feature214

space using a pre-trained feature extractor, such as215

CLIP-B/16 (Radford et al., 2021), and enhanced216

with learned positional encodings that represent the217

viewing direction. This results in a sequence of N218

view tokens, each associated with a feature x. For219

simplicity, we denote the encoded view token se-220

quence as P and each view feature token as o. Our221

token importance scores come from the transformer222

blocks processing P . Specifically, each transformer223

block consists of a self-attention module with at-224

tention heads, followed by a feed-forward network.225

At each head h in layer i, self-attention scores are226

computed to quantify the dependencies between227

tokens as follows:228

Attnhi
“ softmaxrQi ˆ KT

i s, (1)229

where Qi “ Pi ˆ W hi
q , Ki “ pPi ˆ W hi

k q, and230

W hi
q , W hi

k are trained weight matrices. The result-231

ing Attnhi
is a N ˆ N matrix, where each entry232

Attnhi
rom, ons represents the normalized depen-233

dency of view on on view om. A higher value of234

Attnhi
rom, ons usually indicates that view on has235

a stronger influence on constructing the updated236

representation of om in the output Pi`1.237

To determine the overall importance of each to-238

ken, we aggregate the attention scores by summing239

each column of Attnhi
across all attention heads Hi240

at layer i. This gives a vector of scores indicating241

the influence of each token o1 on all tokens:242

Scorepo1q “
ÿ

hiPHi

ÿ

oPP

Attnhi
ro, o1s. (2)243

We interpret Scorepo1q as the importance score244

of view o1, which guides the pruning process245

by identifying less influential background views.246

Similar scores can be obtained for words w and247

Figure 5: The BTP process. BTP prunes the unvisited
nodes b and c at step t based on a table of token impor-
tance constructed from the cross-modal module at step
t ´ 1. Nodes b and c are no longer navigable at step t.

history nodes v from the language module and 248

cross-modal module, respectively. The module 249

concludes by computing the latent feature Zi “ 250

concatenatepAhi
ˆ pPi ˆ W hi

v qq, where the con- 251

catenation is performed across all heads and W hi
v 252

is the weight matrix for each head. 253

BackGround view Pruning (BGP) reduces the 254

size of Obgr in P by removing kBGP tokens at each 255

layer of the vision transformer encoder. Inspired by 256

Bolya et al. (2022), BGP is applied after computing 257

the attention matrix AttnHi for P and before pass- 258

ing Zi to the residual connection and feed-forward 259

network (see Fig. 4). BGP retains all action view 260

tokens Oact while pruning the kBGP tokens with 261

the lowest Scorepoq from Obgr (i.e., removing their 262

o and z values from Obgr and Zi). The pruned Pi 263

and Zi are then processed to yield Pi`1. Conse- 264

quently, the final output PL`1 contains kBGP ¨ L 265

fewer tokens than the original P , resulting in a 266

smaller visual input for action prediction. Despite 267

BGP reduces the visual inputs, it causes poorer ac- 268

tion decisions, leading to longer navigation paths, 269

which is addressed by BTP. 270

3.3 Backtracking Pruning 271

Backtracking in DUET-based VLN models (Chen 272

et al., 2022) refers to returning to unvisited nodes 273

from previous navigation steps. We propose Back- 274

Tracking Pruning (BTP) to remove a subset of 275

these unvisited nodes Vunvisited from the history 276

input V (nodes B & C in Fig. 5). Specifically, 277

Vunvisited “ tv1, v2, ..., vmu contains action view 278

tokens from earlier steps that were not selected, 279

i.e., tv1, v2, ..., vmu “ to1, o2, ..., omu, where 280

{o1, o2, ..., omu P Ot1

act at previous steps t1 ă t. 281

4



R2R RxR-English REVERIEMethod SeenÒ UnseenÒ StepsÓ GFLOPSÓ SeenÒ UnseenÒ StepsÓ GFLOPSÓ SeenÒ UnseenÒ StepsÓ GFLOPSÓ

Upper Bound, 100% Tokens
VLN-GOAT 84.8 78.1 7.3 100 75.2 69.6 8.1 100 80.7 53.8 10.1 100

Retain „70% Tokens
Random 79.1 74.1 7.0 78.1 73.3 68.1 8.4 84.2 71.5 48.1 11.5 82.3
FastV1 80.7 72.5 7.1 80.5 70.2 66.2 8.5 84.1 80.2 54.2 10.0 76.0
Cascade Pruning2 80.4 73.9 7.0 77.4 73.7 68.2 8.3 83.4 80.0 54.0 10.1 75.5
Cascade + ToMe3 80.1 73.8 6.7 74.6 73.3 67.7 8.3 83.6 71.6 47.9 11.4 81.3
Ours 81.8 73.2 6.2 68.3 73.8 68.0 8.3 81.5 79.3 52.4 10.0 74.2

Retain „60% Tokens
Random 77.8 71.7 7.4 72.9 71.9 66.4 8.6 78.7 62.5 42.9 13.0 77.2
FastV1 77.8 69.3 7.6 77.2 68.2 63.4 8.7 79.9 63.2 42.7 13.3 81.5
Cascade Pruning2 77.9 71.3 7.5 74.1 72.1 66.8 8.6 78.3 63.3 43.0 13.4 79.0
Cascade + ToMe3 78.3 71.6 7.3 72.0 72.2 67.0 8.5 78.3 62.9 42.9 12.9 77.4
Ours 81.6 72.9 6.3 61.8 73.4 68.2 8.4 75.5 78.8 52.1 10.1 65.9

Retain „50% Tokens
Random 73.8 67.3 8.3 68.6 69.4 64.2 9.0 74.0 54.0 35.0 14.4 70.3
FastV1 73.8 63.8 8.7 74.6 64.7 59.7 9.1 78.5 54.0 35.2 14.9 76.8
Cascade Pruning2 75.1 67.6 8.6 70.6 68.6 64.2 9.1 74.4 53.8 35.1 14.8 72.8
Cascade + ToMe3 76.4 67.5 7.9 69.5 70.3 65.7 8.6 75.4 53.8 35.4 14.6 71.7
Ours 79.9 71.0 6.6 53.6 72.6 66.6 8.6 69.6 77.7 48.1 10.4 59.8
Table 1: Performance of VLN-GOAT under various token pruning strategies. Metrics include navigation success
rate (“Seen”,“Unseen”), average steps, and GFLOPS% relative to the base model. FastV1(Chen et al., 2025) (textual
& visual), Cascade pruning2 (textual & visual) (Goyal et al., 2020; Wang et al., 2021), Cascade pruning and Token
Merging (Bolya et al., 2022) (Cascade + ToMe3, visual) are pruning techniques that are compared to our method.

Algorithm 1 Vocabulary Priority Pruning
1: procedure VPP(I,V, Scores, kvpp)
2: Ir Ð empty sequence Ź retained tokens
3: Ip Ð empty sequence Ź pruned tokens
4: Sort w’s in I by Scorepwq from high to low
5: for w in I do
6: if w not in V then
7: Ir .add(w)
8: else
9: Ip.add(w)

10: if kvpp ą length(I) - length(Ir) then
11: for i “ 1 to kvpp do
12: Ir .add(wi)
13: else
14: for w in Ip do
15: if length(I) - length(Ir) = kvpp then
16: break
17: Ir .add(w)
18: return Ir

To determine the most crucial nodes for successful282

navigation, we track the importance scores of these283

tokens from the attention heads of the last cross-284

modal transformer block at each step (e.g., 0.4 for285

node a in Fig. 5). At the beginning of the next step,286

BTP retains the top kBTP unvisited nodes based on287

their latest Scorepoq and discards the remainder, so288

that Vunvisited “ tv1, ..., vkBTPu.289

BTP offers two main benefits: It reduces the290

size of the history input V to the cross-modal291

module, lowering computational cost, and it lim-292

its backtracking options from ta1
1, . . . , a

1
mu to293

ta1
1, . . . , a

1
kBTP

u, enhancing path efficiency by re-294

Method Retain
Rate

Validation Seen Validation Unseen
SRÒ SPLÒ GFLOPSÓ SRÒ SPLÒ GFLOPSÓ

HAMT - 70 67 100 63 58 100

HAMT
(FastV)

0.7 67 64 80 60 54 82
0.6 63 60 72 56 50 75
0.5 58 55 65 50 45 68

HAMT
(Ours´)

0.7 71 66 79 59 53 81
0.6 69 65 72 56 51 74
0.5 63 60 66 52 46 68

DUET - 79 73 100 72 60 100

DUET
(FastV)

0.7 68 62 73 60 50 73
0.6 62 56 66 54 44 65
0.5 59 52 56 50 40 55

DUET
(Ours)

0.7 77 65 71 68 57 75
0.6 75 69 64 66 55 68
0.5 72 71 57 63 52 59

Table 2: Model performance on the R2R dataset with
different pruning strategies. Ours´ indicates pruning
without BTP.

ducing potential unnecessary backtracking. 295

3.4 Vocabulary Priority Pruning 296

VPP operates similarly to BGP by pruning in- 297

struction tokens w P I based on the importance 298

Scorepwq derived from the attention mechanism of 299

the language transformer block (Fig. 4, Section 3.2). 300

However, we found that the attention scores do not 301

accurately reflect each word’s importance for nav- 302

igation. For example, as shown in Table 3, non- 303

informative tokens, such as punctuation, often re- 304

ceive a high Scorepwq and are retained, thereby 305

wasting the token budget. To improve instruction 306
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Figure 6: The construction of the “vocabulary of irrela-
vance” V , it involves four steps, (a) collecting a lexicon
of words appeared in the training VLN instructions, (b)
building a prompt to ask the LLM to identify words
irrelevant to navigation, (c) having the LLM generate
classification results, and (d) collecting words classified
as “irrelevant” into the vocabulary.

Retain
% Method Instruction Tokens

(grey ones are pruned)

100 - <s>Exit the room . Turn right . Start down
the stairs and stop 3 steps down . </s>

50 VPP <s>Exit the room . Turn right . Start down
the stairs and stop 3 steps down . </s>

50 Att. Scores <s>Exit the room . Turn right . Start down
the stairs and stop 3 steps down . </s>

25 VPP <s>Exit the room . Turn right . Start down
the stairs and stop 3 steps down . </s>

25 Att. Scores <s>Exit the room . Turn right . Start down
the stairs and stop 3 steps down . </s>

Table 3: Instruction tokens retained under different prun-
ing rates. VPP is more effective in preserving key infor-
mation than attention-score pruning, which fails to keep
navigation-relevant words.

pruning, we prompt an LLM to construct a “vocab-307

ulary of irrelevance” V that identifies unimportant308

words based on its general knowledge rather than309

attention scores. The construction process is illus-310

trated in Fig. 6. We tokenized the training data311

to form a lexicon and prompted Llama 3 (Dubey312

et al., 2024) to label each word as “relevant” or313

“irrelevant” for navigation based on its association314

with direction/heading, environment description, or315

indoor/outdoor objects. Words labeled “irrelevant”316

were compiled into V; see Appendix A.1 for an317

example prompt and vocabulary.318

At each layer of the language transformer en-319

coder, VPP prunes kvpp instruction tokens via a320

two-step process. First, it filters out all words321

present in V . If the number of filtered tokens is322

less than kvpp, the remaining tokens are pruned323

based on their attention scores Scorepwq until the324

requirement is met. Otherwise, if more tokens are325

filtered than necessary, some are reinstated accord-326

ing to Scorepwq to preserve additional information. 327

The VPP process is detailed in Algorithm 1. 328

VPP more effectively retains essential words 329

in instructions, enabling the navigation system to 330

function normally even at higher pruning rates com- 331

pared to attention-based strategies (Table 3). 332

By combining BGP, BTP, and VPP, we obtain 333

the pruned views PBGP, history nodes VBTP, and in- 334

struction IVPP where the lengths are L¨kBGP ,M´ 335

kBTP, and kVPP shorter than P, V, I . The VLN 336

model then calculates the prediction action a by 337

πpPBGP, VBTP, IVPPq, resulting in lower computa- 338

tional cost, as detailed in the next section. 339

4 Experiments 340

Datasets. We evaluated our proposed pruning 341

strategies on three VLN benchmarks: R2R (An- 342

derson et al., 2018), RxR (Ku et al., 2020), and 343

REVERIE (Qi et al., 2020). For each dataset, to- 344

ken pruning was tested on two splits, the validation 345

“seen” split and validation “unseen” split. 346

Evaluation Metrics. Our primary efficacy metric 347

is navigation Success Rate (SR), which measures 348

the agent’s ability to navigate under pruning con- 349

ditions. Additional efficacy metrics are reported in 350

our result tables. 351

Our efficiency metric is a simplified version of a
GFLOPS-based formula introduced by Wang et al.
(2024c):

Gtotal “ GlanpIq`D¨pGvispP q`GcmpI, P, V qq`c,

where D is the number of the decision steps 352

(“steps”), Glan is the GFLOPS of language module 353

getting instruction features, Gvis is the GFLOPS of 354

visual module processing view features, Gcm is the 355

GFLOPS of the cross-modal module predicting ac- 356

tions from all input features, and c is the cost from 357

other sources, if any. We assess efficiency improve- 358

ment in terms of GFLOPS, as detailed in Section 4. 359

To convey efficiency improvements, we report the 360

ratio of GFLOPS after pruning to GFLOPS before 361

pruning (in %): 362

GFLOPS “ Gpruned{Goriginal. (3) 363

Our computation cost is computed using the Python 364

toolkit thop. 365

VLN Models. We evaluated our token pruning 366

strategies on three VLN models: HAMT (Chen 367

et al., 2021), DUET (Chen et al., 2022), and 368

GOAT (Wang et al., 2024b). All experiments use 369
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Method Retain
Rate

Validation Unseen
SRÒ SPLÒ RGSÒ RGSPLÒ GFLOPSÓ

HAMT - 32 29 19 17 100

HAMT
(FastV)

0.7 32 29 18 16 73
0.6 30 27 16 14 68
0.5 27 24 14 12 65

HAMT
(Ours´)

0.7 31 29 19 17 69
0.6 31 28 18 17 64
0.5 29 26 17 15 59

DUET - 47 34 32 23 100

DUET
(FastV)

0.7 39 28 23 16 82
0.6 34 24 19 13 73
0.5 30 20 16 11 64

DUET
(Ours)

0.7 47 33 31 22 80
0.6 45 32 31 22 70
0.5 43 30 28 20 62

Table 4: Performance of pruning strategies on
REVERIE data Ours´ indicates pruning without BTP.
Efficacy is measured in Success Rate (SR) Per Length
(SPL), Remote Grounding Success rate (RGS), and Re-
mote Grounding Success rate Per Length (RGSPL).

BGP BTP VPP SRÒ SPLÒ StepsÓ GFLOPSÓ

✗ ✗ ✗ 78.1 67.6 7.0 100
✓ ✗ ✗ 75.4 62.4 8.0 72.3
✗ ✓ ✗ 74.6 66.0 6.6 90.1
✗ ✗ ✓ 75.5 64.6 7.3 95.8
✓ ✓ ✗ 72.2 61.9 7.2 60.7
✓ ✗ ✓ 73.9 60.7 8.2 65.7
✗ ✓ ✓ 72.4 63.4 6.81 85.5
✓ ✓ ✓ 71.0 60.3 7.3 54.4

Table 5: Ablation of BGP, BTP, and VPP contribution
to efficiency and influence to SR and SPL on R2R vali-
dation unseen split.

the pre-tuned parameters provided by the respec-370

tive authors. We extensively tested VLN-GOAT for371

its outstanding performance across datasets. VLN-372

GOAT comprises six transformer layers in the lan-373

guage module, two layers in the view module, and374

three layers in the cross-modal module.375

376

Pruning Strategies. We are the first to apply multi-377

modal token pruning to the VLN task. For baseline378

comparisons, we selected several pruning strategies379

based on VLN model performance and if they are380

applicable to VLN inputs. For instruction pruning,381

we compared our method against three approaches,382

removing tokens randomly, cascade pruning (Goyal383

et al., 2020; Wang et al., 2021), which prunes a384

portion of tokens at each transformer layer, and385

FastV (Chen et al., 2025), which prunes the re-386

quired number of tokens all at once at a specific387

layer. For view input pruning, we only consider388

background pruning without removing any action389

views, as the SR drops significantly even with min-390

Figure 7: (a) Success rates and GFLOPS of different
pruning rates for BGP, and BGP with various BTP set-
tings. (b) Average Steps for navigation and GFLOPS of
different pruning rates for BGP with no BTP, and BTP
with various fixed BGP settings.

imal action view removal (see Appendix A.3). We 391

also evaluated merging tokens with similar key vec- 392

tor features (Bolya et al., 2022). For the settings 393

of BGP, BTP, VPP, we retained the same amount 394

of views and words as the baselines, while always 395

keeping at most 8 unvisited node for BTP. 396

4.1 Comparison with Baselines 397

The performance of the base model GOAT under 398

various token pruning strategies and rates across 399

three datasets is reported in Table 1. Our approach 400

consistently yields greater GFLOPS reduction and 401

shorter navigation paths while maintaining com- 402

parable or higher Success Rates (SR) than base- 403

lines. At a 50% token pruning rate, our VLN 404

model attains SRs of 71.0%, 66.6%, and 48.1% 405

on the Unseen splits of R2R, RxR-English, and 406

REVERIE, compared to 67.6%, 65.7%, and 35.4% 407

from baselines (last row of Table 1). Additionally, 408

our method saves up to 15 percent points (pp) in 409

GFLOPS and reduces navigation steps, demonstrat- 410

ing enhanced pathing efficiency. 411

We validated our method on HAMT (Chen et al., 412

2021) and DUET (Chen et al., 2022) using the R2R 413
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Figure 8: Success rates for different pruning strategies
and rates for BGP and BVP.

Figure 9: An example of navigation with our strategies
applied. BTP prevents a long and failed navigation path
by pruning unvisited nodes.

and REVERIE datasets, compared to FastV (Chen414

et al., 2025) (see Tables 2 and 4). In DUET, our415

method outperforms FastV by 5pp to 10pp in SR,416

SPL, RGS, and RGSPL with similar GFLOPS. In417

HAMT, where BTP cannot be applied, our ap-418

proach still shows superior SR and SPL on R2R419

and outperforms FastV in both navigation perfor-420

mance and efficiency on REVERIE.421

To illustrate the impact of our pruning strategy,422

Fig. 9 shows a navigation example. VPP preserves423

key instruction words, enabling the agent to follow424

and complete the route. Meanwhile, BTP “forces”425

the agent to stop at the correct destination by re-426

moving potential backtracking nodes; without it,427

unpruned unvisited nodes would cause backtrack-428

ing, resulting in longer paths and navigation failure.429

4.2 Ablation Study430

We conducted an ablation study to assess the ef-431

fectiveness of BTP, BGP, and VPP under a 50%432

pruning rate setting (Table 5). BGP yields the high-433

est GFLOPS reduction (27.7pp), indicating that434

background views are highly prunable. BTP adds 435

roughly 10pp in GFLOPS reduction and reduces av- 436

erage navigation steps by one, while VPP improves 437

GFLOPS by 5pp, due to R2R’s short instructions. 438

VPP benefits the model more if the dataset contains 439

longer instructions (shown in Appendix A.4). 440

To further examine BTP’s impact, we evalu- 441

ated various BTP settings in combination with 442

BGP at different pruning rates on the R2R dataset, 443

tracking changes in SR, SPL, and navigation steps 444

(Fig. 7). In part (a), retaining 6 or 8 unvisited 445

nodes per step caused minimal drops in SR and 446

SPL while further reducing GFLOPS. However, a 447

more aggressive setting—retaining only 4 unvis- 448

ited nodes (orange)—resulted in a 3–4% SR loss at 449

lower BGP rates, though efficiency improved sig- 450

nificantly (over 10pp GFLOPS reduction). Overall, 451

moderate BTP provides additional efficiency gains 452

with minimal impact on success rate, whereas more 453

aggressive BTP clearly trades success rate for ef- 454

ficiency. When combined with other background 455

pruning strategies and applied to various datasets, 456

BTP further enhances navigation efficiency with 457

minimal SR loss (Appendix A.5). Fig. 7(b) shows 458

that BTP reduces navigation steps across various 459

BGP settings, further supporting our findings. 460

Lastly, we compare VPP with Cascade Pruning 461

and FastV for instruction token removal on R2R, 462

RxR, and REVERIE (Fig. 8). VPP (green) consis- 463

tently outperforms the other two strategies across 464

most pruning rates, with optimal improvements in 465

the 40–60% range. Our experiments show that the 466

same vocabulary can be effectively applied across 467

different text tokenizers and datasets without the 468

need for reconstruction (Appendix A.6). 469

5 Conclusion 470

Our work introduces three token pruning strate- 471

gies: BGP, BTP, and VPP for VLN that effectively 472

reduce input size while addressing issues of in- 473

creased navigation path length and inadequate re- 474

tention of critical instruction information observed 475

with generic pruning methods. Experiments on the 476

R2R, RxR, and REVERIE datasets show that our 477

approach outperforms them in both navigation suc- 478

cess rates and computational efficiency. Overall, 479

our robust, model- and dataset-agnostic solution 480

significantly lowers computational costs without 481

sacrificing performance, paving the way for more 482

efficient deployment of VLN models in resource- 483

constrained environments. 484
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6 Limitations485

A majority of generic token pruning strategies, in-486

cluding our BGP and BTP, assume that attention487

scores accurately reflect the true importance of to-488

ken features for navigation success. However, this489

assumption is inherently flawed. While VPP partly490

mitigates this issue for instruction pruning, an anal-491

ogous solution for view pruning would incur expen-492

sive costs, such as those associated with gradient-493

or perturbation-based saliency. Moreover, as shown494

in Table 1, random token pruning performs nearly495

as well as attention-based methods—except for our496

approach. This suggests that many VLN tokens497

may contribute similarly to navigation, yielding498

comparable efficiency gains and success rate losses499

regardless of the pruning method. We hope our500

work serves as a starting point for understanding501

token importance in VLN for both text and visu-502

als, and inspires further development of effective,503

cost-efficient indicators for VLN token pruning.504
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Figure 10: GFLOPS curve over different instruction
lengths with 50% token pruning rate.

A Appendix692

A.1 Vocabulary Example693

We provide an example of how we prompt the LLM694

to construct the vocabulary of irrelevance, with695

explanations from Llama 3 why such tokens are696

classified to be relevant or irrelevant (see Table 6).697

A.2 VLN Datasets Statistics698

The statistic of VLN dataset statistic is given in699

Table 7. The tokens numbers are averaged over700

steps of all navigation tasks.701

A.3 Pruning Action Views702

In VLN, action views are essential as they provide703

directional cues and define navigable paths. As704

shown in Table 8, pruning action views drastically705

reduces SR—resulting in longer paths or halted706

movement—whereas BGP maintains performance707

with smoother path lengths, making it ideal for708

improving navigation efficiency.709

A.4 Instruction Length Influence on710

Efficiency Improvement711

VPP’s efficiency gains are closely related to in-712

struction length. Under the default settings for713

R2R, RxR, and REVERIE (36 views, 14 history714

nodes, and a 7-step navigation), we evaluated the715

efficiency improvement from a 50% instruction716

pruning rate across different instruction lengths717

(see Fig. 10). The results show that a 50-token in-718

struction achieves a 10 percentage point GFLOPS719

reduction, which increases to 20 percentage points720

for a 150-token instruction.721

A.5 BTP alone, and combined with different722

view pruning strategies723

We compare the effectiveness of BackTracking724

Pruning (BTP) with Background Pruning (BGP) in725

Figure 11: A comparison of applying BGP and BTP
alone.

Figure 11. Our results indicate that pruning back- 726

ground views is far more effective than pruning 727

backtracking nodes, making BTP alone impractical. 728

Thus, combining BTP with background view prun- 729

ing is more preferable to counteract the increased 730

path length resulting from view pruning. 731

Specifically, we evaluated the GFLOPS improve- 732

ments when applying BTP with cascade token prun- 733

ing, FastV, and Token Merging (ToMe) across the 734

R2R, RxR, and REVERIE datasets (see Fig. 12). 735

Our findings show that incorporating BTP reduces 736

GFLOPS by approximately 5 percentage points 737

at high BGP rates (e.g., 80%), while resulting in 738

a Success Rate drop of less than 0.5 percentage 739

points. 740

A.6 Adopting a Single Vocabulary of 741

Irrelevance to Different Language Models 742

and Datasets 743

We observed that the vocabulary constructed by 744

the LLM can be applied across different language 745

modules and datasets without needing to re-build 746

it for each case. To validate this, we built vocabu- 747

laries from different datasets and from the tokeniz- 748

ers of three pre-trained language models (BERT, 749

RoBERTa, XLM-RoBERTa), then applied them to 750

a VLN language module initialized with weights 751

from a different language model (Table 9). The 752

improvements from VPP were similar regardless 753

of the vocabulary source, demonstrating that VPP 754

is a robust, model- and dataset-agnostic pruning 755

strategy. 756
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Prompt

Given the following set of words: “walk”, “down”, ..., “landing”,
can you point out which of them are irrelevant to the following types of information:
1. A direction to go; 2. Describing the environment; 3. Object(s) in the indoor/outdoor environments.
Please don’t change the word in the quotation mark and explain why.
Please answer in the following: format: “{word} : relevant/irrelevant {explanation}”

Word Relevance Explanation
walk relevant direction to go
down relevant direction to go
one irrelevant not related to direction or environment description

flight irrelevant not related to indoor environment navigation
of irrelevant preposition, not related to direction or environment description

stairs relevant object in the environment
and irrelevant conjunction, not related to direction or environment description
stop relevant direction to go
the irrelevant article, not related to direction or environment description

landing relevant object in the environment

Table 6: Our prompt to Llama 3, and examples of words in the vocabulary of irrelevance, explained by the LLM
why they are relevant/irrelevant.

Dataset R2R RxR-english REVERIE
Seen Unseen Seen Unseen Seen Unseen

Size 1020 2349 2939 4551 1423 3521
History nodes size 14 19 16

View tokens 38 38 42
Instruction tokens 32 127 20

Table 7: Statistics of R2R, RxR-English, and REVERIE
regarding token pruning. The numbers are averaged
over all navigation tasks and steps.

Pruning
Rate

All Views BGP
SRÒ StepsÓ GFLOPSÓ SRÒ StepsÓ GFLOPSÓ

0 78 7 100 78 7 100
0.25 62 9 108 78 7 87
0.4 44 11 111 77 7 80
0.7 13 6 55 75 8 70
0.9 1 1 14 69 11 73

Table 8: A comparison of pruning view tokens including
action views and BGP. Pruning a large fraction of action
views caused significant SR and GFLOPS drops while
pruning at a lower rate led to higher computation cost.

PPPPPPTarget
Source R2R RxR REVERIE

R2R
(68.8)

76.0
(+7.2)

75.5
(+6.7)

74.0
(+5.2)

RxR
(66.4)

68.0
(+1.6)

68.2
(+1.8)

68.2
(+1.8)

REVERIE
(36.5)

49.8
(+13.3)

47.9
(+11.4)

50.0
(+13.5)

PPPPPPTarget
Source RoBERTa BERT XLM-R

RoBERTa
(66.4)

68.2
(+1.8)

68.4
(+2.0)

69.0
(+2.6)

BERT
(59.3)

65.4
(+6.1)

66.0
(+6.7)

65.7
(+6.4)

XLM-R
(40.4)

55.4
(+15.0)

56.1
(+15.7)

55.4
(+15.0)

Table 9: Navigation success rates using a vocabulary
of irrelevance built on the source dataset (top) or tok-
enizer (bottom) and applied during inference on the tar-
get dataset/tokenizer. The leftmost column (e.g., 68.8)
shows success rates with a 50% instruction pruning rate.
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Figure 12: SR and GFLOPS curves for different view
pruning rates with and without BTP. Performance is
evaluated on the R2R, RxR and REVERIE datasets.
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