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Abstract

The ability to generate privacy-preserving synthetic versions of sensitive image datasets
could unlock numerous ML applications currently constrained by data availability. Due
to their astonishing image generation quality, diffusion models are a prime candidate for
generating high-quality synthetic data. However, recent studies have found that, by default,
the outputs of some diffusion models do not preserve training data privacy. By privately fine-
tuning ImageNet pre-trained diffusion models with more than 80M parameters, we obtain
SOTA results on CIFAR-10 and Camelyon17 in terms of both FID and the accuracy of
downstream classifiers trained on synthetic data. We decrease the SOTA FID on CIFAR-
10 from 26.8 to 9.8, and increase the accuracy from 51.0% to 88.0%. On synthetic data
from Camelyon17, we achieve a downstream accuracy of 91.1% which is close to the SOTA
of 96.5% when training on the real data. We leverage the ability of generative models to
create infinite amounts of data to maximise the downstream prediction performance, and
further show how to use synthetic data for hyperparameter tuning. Our results demonstrate
that diffusion models fine-tuned with differential privacy can produce useful and provably
private synthetic data, even in applications with significant distribution shift between the
pre-training and fine-tuning distributions.

1 Introduction

Delivering impactful ML-based solutions for real-world applications in domains like health care and recom-
mendation systems requires access to sensitive personal data that cannot be readily used or shared without
risk of introducing ethical and legal implications. Replacing real sensitive data with private synthetic data
following the same distribution is a clear pathway to mitigating these concerns (Patki et al., 2016; Dankar
& Ibrahim, 2021; Chen et al., 2021b). However, despite their theoretical appeal, general-purpose methods
for generating useful and provably private synthetic data remain a subject of active research (Dockhorn
et al., 2022; McKenna et al., 2022; Torfi et al., 2022). The central challenge in this line of work is how to
obtain truly privacy-preserving synthetic data free of the common pitfalls faced by classical anonymization
approaches (Stadler et al., 2021), while at the same time ensuring the resulting datasets remain useful for a
wide variety of downstream tasks, including statistical and exploratory analysis as well as machine learning
model selection, training and testing.

It is tempting to obtain synthetic data by training and then sampling from well-known generative models
like variational auto-encoders (Kingma & Welling, 2013; Rezende et al., 2014), generative adversarial nets
(Goodfellow et al., 2020), and denoising diffusion probabilistic models (Song & Ermon, 2019; Ho et al.,
2020). Unfortunately, it is well-known that out-of-the-box generative models can potentially memorise and
regenerate their training data points1 and, thus, reveal private information. This holds for variational
autoencoders (Hilprecht et al., 2019), generative adversarial nets (Hayes et al., 2017), and also diffusion
models (Carlini et al., 2023; Somepalli et al., 2022; Hu & Pang, 2023; Duan et al., 2023). In particular,
diffusion models have recently gained a lot of attention, with pre-trained models made available online

1A model does not contain its training data, but rather has “memorised” training data when the model is able to use the
rules and attributes it has learned about the training data to generate elements of that training data.
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CIFAR-10 Camelyon17

Figure 1: DP diffusion models are capable of producing high-quality images. More images can be found in
Figures 5, 6, 7.

(Dhariwal & Nichol, 2021; Rombach et al., 2022), and being fine-tuned on potentially sensitive data such as
chest X-rays (Chambon et al., 2022b; Ali et al., 2022; Chambon et al., 2022a) and brain MRIs (Rouzrokh
et al., 2022; Pinaya et al., 2022).

Mitigating the privacy loss from sharing synthetic data produced by generative models trained on sensitive
data is not straightforward. Differential privacy (DP) (Dwork et al., 2006) has emerged as the gold stan-
dard privacy mitigation when training ML models, and its application to generative models would provide
guarantees on the information the model (and synthetic data sampled from it) can leak about individual
training examples. Yet, scaling up DP training methods to modern large-scale models remains a significant
challenge due to the slow down incurred by DP-SGD (the standard workhorse of DP for deep learning)
(Wang et al., 2017) and the stark utility degradation often observed when training large models from scratch
with DP (Zhang et al., 2022; Stadler et al., 2021; Stadler & Troncoso, 2022). Most previous works on DP
generative models worked around these issues by focusing on small models, low-complexity data (Xie et al.,
2018; Torkzadehmahani et al., 2019; Harder et al., 2021) or using non-standard models (Harder et al., 2022).
However, for DP applications to image classification it is known that using models pre-trained on public data
is a method for attaining good utility which is compatible with large-scale models and complex datasets (Bu
et al., 2022a; De et al., 2022; Cattan et al., 2022; Xu et al., 2022; Tramèr et al., 2022; Bu et al., 2022b).

Contributions. In this paper we demonstrate how to accurately train standard diffusion models with
differential privacy. Despite the inherent difficulty of this task, we propose a simple methodology that allows
us to generate high-quality synthetic image datasets that are useful for a variety of important downstream
tasks. In particular, we privately train denoising diffusion probabilistic models (Ho et al., 2020) with more
than 80M parameters on CIFAR-10 and Camelyon17 (Koh et al., 2021), and evaluate the usefulness of
synthetic images for downstream model training and evaluation. Crucially, we show that by pre-training
on publicly available data (i.e. ImageNet), it is possible to considerably outperform the results of extremely
recent work on a similar topic (Dockhorn et al., 2022). With this method, we are able to accurately train
models 45x larger than Dockhorn et al. (2022) and to achieve a high utility on datasets that are significantly
more challenging (e.g. CIFAR-10 and a medical dataset – instead of MNIST). Please refer to Table 2 for a
detailed comparison of our works. Our contributions can be summarized as follows:

• We demonstrate that diffusion models can be trained with differential privacy to sufficient quality that
we can create accurate classifiers based on the synthesized data only. To do so, we leverage pre-training,
and we demonstrate large state-of-the-art (SOTA) improvements even when there exists a significant
distribution shift between the pre-training and the fine-tuning data sets.
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• We propose simple and practical improvements over existing methods to further boost the performance
of the model. Namely, we employ both image and timestep augmentations when using augmentation
multiplicity, and we bias the diffusion timestep sampling so as to encourage learning of the most chal-
lenging phase of the diffusion process.

• With this approach, we fine-tune a differentially private diffusion model with more than 80 million
parameters on CIFAR-10, and beat the previous SOTA by more than 50%, decreasing the Fréchet
Inception Divergence (FID) from 26.8 to 9.8. Furthermore, we privately fine-tune the same model
on histopathological scans of lymph node tissue available in the Camelyon17 dataset and show that a
classifier trained on synthetic data produced by this model achieves 91.1% accuracy (the highest accuracy
reported on the WILDS leaderboard (Koh et al., 2021) is 96.5% for a non-private model trained on real
data).

• We demonstrate that the accuracy of downstream classifiers can be further improved to a significant
extent by leveraging larger synthetic datasets and ensembling, which comes at no additional privacy
cost. Finally, we show that hyperparameter tuning downstream classifiers on the synthetic data reveals
trends that are also reflected when tuning on the private data set directly.

2 Related Work

Differentially private synthetic image generation. DP image generation is an active area of research
(Fan, 2020; Croft et al., 2022; Chen et al., 2022b). Most efforts have focused on applying a differentially
private stochastic gradient procedure on popular generative models, i.e. generative adversarial networks (Xie
et al., 2018; Jordon et al., 2018; Torkzadehmahani et al., 2019; Augenstein et al., 2019; Xu et al., 2019a; Liu
et al., 2019; Chen et al., 2020; Yoon et al., 2020; Chen et al., 2021a), or variational autoencoders (Pfitzner &
Arnrich, 2022; Jiang et al., 2022). Only one other work has so far analysed the application of differentially
private gradient descent on diffusion models (Dockhorn et al., 2022) which we contrast against in Table 2.
Others have instead proposed custom architectures (Chen et al., 2022a; Wang et al., 2021; Cao et al., 2021;
Harder et al., 2021; 2022). Harder et al. (2022), for instance, pre-train a perceptual feature extractor using
public data, then privatize the mean of the feature embeddings of the sensitive data records, and use the
privatised mean to train a generative model.

Limitations of previous work. DP image generation based on custom training pipelines and architec-
tures that are not used outside of the DP literature do not profit from the constant research progress on
public image generation. Other works that instead build upon popular public generative approaches have
been shown to not be differentially private despite such claims. This could be either due to faulty imple-
mentations or proofs. See Stadler et al. (2021) for successful privacy attacks on DP GANs, or Appendix B
of Dockhorn et al. (2022) for an explanation on why DPGEN (Chen et al., 2022b) does not satisfy DP.

Limited success on natural images. DP synthesizers have found applications on tabular electronic
healthcare records (Zhang et al., 2021; Torfi et al., 2022; Fang et al., 2022; Yan et al., 2022), mobility trajec-
tories (Alatrista-Salas et al., 2022) and network traffic data (Fan & Pokkunuru, 2021). In the space of image
generation, positive results have only been reported on MNIST, FashionMNIST and CelebA (downsampled
to 32 × 32) (Harder et al., 2021; Wang et al., 2021; Liew et al., 2021; Bie et al., 2022). These datasets are
relatively easy to learn thanks to plain backgrounds, class separability, and repetitive image features within
and even across classes. Meanwhile, CIFAR-10 has been established as a considerably harder generation
task than MNIST, FashionMNIST or CelebA (Radiuk, 2017). The images are not only higher dimensional
than MNIST and FashionMNIST (32× 32× 3 compared to 28× 28 feature dimensions), but the dataset has
wider diversity and complexity. This is reflected by more complex features and textures, such as lightning
conditions, object orientations, and complex backgrounds (Radiuk, 2017). Moreover, MNIST and Fashion-
MNIST are considerably lower dimensional than CIFAR-10 and Camelyon (28× 28 vs 32× 32× 3 features),
and CelebA is downsampled to the same feature dimensionality as CIFAR-10 but has more than 3 times as
many samples as CIFAR-10 (50k vs 162k) which considerably reduces the information loss introduced by
DP training. As far as we know, only two other concurrent works have attempted DP image generation on
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CIFAR-10. While Dockhorn et al. (2022) achieve a FID of only 97.7 by training a DP diffusion model from
scratch, Harder et al. (2022) used pre-training on ImageNet and achieved the SOTA with a FID of 26.8, and
a downstream accuracy of only 50%.

Limited targeted evaluation. The evaluation carried out on DP synthetic datasets is often not suffi-
ciently targeted towards their utility in practice. The performance of DP image synthesizers is commonly
evaluated on two types of metrics: 1) perceptual difference measures between the synthetic and real data
distribution, such as FID, and 2) predictive performance of classifiers that are trained on a synthetic dataset
of the size of the original training dataset and tested on the real test data. The former metric is known to
be easy to manipulate with factors not related to the image quality, such as the number of samples, or the
version number of the inception network (Kynkäänniemi et al., 2022). At the same time, it is not obvious
how to jointly incorporate the information from both metrics given that they may individually imply differ-
ent conclusions. Dockhorn et al. (2022), for instance, identify different diffusion model samplers to minimise
either the FID or the downstream test loss. While some works have proposed evaluation frameworks for
synthetic data outside of computer vision (e.g. Lin et al., 2020; Xu et al., 2019b; El Emam, 2020), it is not
obvious how their analysis translates to the assessment of image generators. Further, recent research has
identified use cases where synthetic data is not able to capture important first or second order statistics
despite reportedly scoring highly on those metrics (Stadler et al., 2021; Stadler & Troncoso, 2022). In this
paper, we set out to provide examples of additional downstream evaluations.

3 Background

3.1 Denoising Diffusion Probabilistic Models

Denoising diffusion models (Sohl-Dickstein et al., 2015; Song et al., 2020; Ho et al., 2020) are a class of
likelihood-based generative models that recently established SOTA results across diverse computer vision
problems (Dhariwal & Nichol, 2021; Rombach et al., 2022; Lugmayr et al., 2022). Given a forward Markov
chain that sequentially perturbs a real data sample x0 to obtain a pure noise distribution xT , diffusion models
parameterize the transition kernels of a backward chain by deep neural networks to denoise xT back to x0.

Given x0 ∼ q(x0), one defines a forward process that generates gradually noisier samples x1, ..., xT using a
transition kernel q(xt|xt−1) typically chosen as a Gaussian perturbation. At inference time, xT , an observa-
tion sampled from a noise distribution, is then gradually denoised xT −1, xT −2, ... until the final sample x0 is
reached. Ho et al. (2020) parameterize this process by a function ϵθ(xt, t) (resp. ϵθ(xt, y, t) if x0 has label y)
which predicts the noise component ϵ of a noisy sample xt given timestep t. They then propose a simplified
training objective to learn θ, namely

L(θ|x0) = Et,xt,ϵ[∥ϵ− ϵθ(xt, t)∥2] = Et,x0,ϵ[∥ϵ− ϵθ(
√

αtx0 +
√

1− αtϵ, t)∥2] (1)

with t ∼ U{0, T}, where T is the pre-specified maximum timestep, and U{a, b} is the discrete uniform
distribution bounded by a and b. The noisy sample xt is defined by xt =

√
αtx0+

√
1− αtϵ where ϵ ∼ N (0, I)

is a noise sample of the same dimensionality as the data sample x0, and αt is defined such that xt follows
the pre-specified forward process. Most importantly, αt =

∏T
s=1(1− βs) is a decreasing function of timestep

t where the form of βs is a hyperparameter. Thus, the larger t is, the noisier xt will be.

3.2 Differential Privacy

Differential Privacy (DP) is a formal privacy notion that, in informal terms, bounds how much a single
observation can change the output distribution of a randomised algorithm. More formally:
Definition 3.1 (Differential Privacy (Dwork et al., 2006)). Let A be a randomized algorithm, and let ε > 0,
δ ∈ [0, 1]. We say that A is (ε, δ)-DP if for any two neighboring datasets D, D′ differing by a single element
and S denoting the support of A, we have that

∀ S ⊂ S, P[A(D) ∈ S] ≤ exp(ε)P[A(D′) ∈ S] + δ.
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The privacy guarantee is thus controlled by two parameters, ε and δ. While ε bounds the log-likelihood
ratio of any particular output that can be obtained when running the algorithm on two datasets differing in
a single data point, δ is a small probability which bounds the occurrence of infrequent outputs that violate
this bound (typically 1/n, where n is the number of training examples). The smaller these two parameters
get, the higher is the privacy guarantee. We therefore refer to the tuple (ε, δ) as privacy budget.

3.3 Differentially Private Stochastic Gradient Descent

Neural networks are typically privatised with Differentially Private Stochastic Gradient Descent (DP-SGD)
(Abadi et al., 2016), or alternatively a different DP optimizer like DP-Adam (McMahan et al., 2018). At
each training iteration, the mini-batch gradient is clipped per example, and Gaussian noise is added to it.
More formally, let L(θ|x0) denote the learning objective given model parameters θ ∈ Rp, input features
x0 ∈ Rd and label y. When training conditional image diffusion models, we estimate the loss function by
L̂(θ|x0, y, t, ϵ) = ∥ϵ− ϵθ(

√
αtx0 +

√
1− αtϵ, y, t)∥2] where x0 ∈ Rd, t ∼ U{1, T}, ϵ ∼ N (0, Id) and Ip ∈ Rd×d

being the identity matrix. Let clipC(v) : v ∈ Rp 7→ min
{

1, C
∥v∥2

}
· v ∈ Rp denote the clipping function

which re-scales its input to have a maximal ℓ2 norm of C. For a minibatch B ⊂ D with |B| = B samples
from the dataset D, the "privatised" minibatch gradient ĝ takes on the form

ĝ = 1
B

∑
x0∈B

clipC (∇L(θ|x0)) + σC

B
ξ,

with ξ ∼ N (0, Ip). In practice, the choice of noise standard deviation σ > 0, batch-size B and maximum
number of training iterations are constrained by the predetermined privacy budget (ε, δ) which is tracked
during training with a built-in privacy accountant (Abadi et al., 2016; Mironov et al., 2019). Crucially,
the choice of hyperparameters can have a large impact on the accuracy of the resulting model, and overall
DP-SGD makes it challenging to accurately train deep neural networks. On CIFAR-10 for example, the
highest reported test accuracy for a DP model trained with ϵ = 8 was 63.4% in 2021 (Yu et al., 2021). De
et al. (2022) improved performance on image classification tasks and in particular obtained nearly 95% test
accuracy for ϵ = 1 on CIFAR-10, using 1) pre-training, 2) large batch sizes, and 3) augmentation multiplicity.

As part of this paper, we analyze to what extent these performance gains transfer from DP image classification
to DP image generation by training diffusion models with DP-Adam. Diffusion models are inherently different
model architectures that exhibit different training dynamics than standard classifiers which makes introduces
additional difficulties in adapting DP training. First, diffusion models are significantly more computationally
expensive to train. Indeed, they operate on higher dimensional representations than image classifiers, so that
they can output full images instead of a single label. This makes each update step much more computationally
expensive for diffusion models than for classification ones. In addition, diffusion models also need more epochs
to converge in public settings compared to classifiers. For example, for a batch size of 128 samples Ho et al.
(2020) train a diffusion model for 800k steps on CIFAR-10, while Zagoruyko & Komodakis (2016) train a
Wide ResNet for classification in less than 80k steps. This high computational cost of training a diffusion
model makes it difficult to finetune the hyperparameters, which is known to be both challenging and crucial
for good performance (De et al., 2022). Second, and related to sample inefficiency, the noise inherent to
the training of diffusion models introduces an additional variance that compounds with the one injected by
DP-SGD, which makes training all the more challenging. Thus overall, it is currently not obvious how to
efficiently and accurately train diffusion models with differential privacy.

4 Improvements towards Fine-Tuning Diffusion Models with Differential Privacy

Similarly to Dockhorn et al. (2022), we propose to train diffusion models with a differentially private opti-
mizer. We will now elaborate on how to improve upon the naive application of DP-SGD.

Recommendations from previous work. De et al. (2022) identify pre-training, large batch sizes, and
augmentation multiplicity as effective strategies in DP image classification. We adopted their recommenda-
tions in the training of DP diffusion models, and confirmed the effectiveness of their strategies to the task
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of DP image generation. In contrast to the work of Dockhorn et al. (2022), where the batch-size only scales
up to 2,048 samples, we implemented virtual batching which helps us to scale to up to 32,768 samples.

Pre-training. Pre-training is especially integral to generating realistic image datasets, even if there is
a considerable distribution shift between the pre-training and fine-tuning distributions. We note that pre-
training might not always be an option if 1) pre-trained models are not available, 2) it is too computationally
expensive to pre-train the models, or 3) the privacy of the pre-training data set needs to be protected.
However, it facilitates and is often necessary for obtaining results of acceptable quality on tasks other than
MNIST. Multiple SOTA pre-trained models are further available online (Rombach et al., 2022; Dhariwal
& Nichol, 2021) and can be used for commercial use-cases (Rombach et al., 2022). When starting training
from a good pre-trained model, finetuning is known to be computationally less expensive than training from
scratch.

Unless otherwise specified, we thus pre-train all of our models on ImageNet32 (Chrabaszcz et al., 2017).
ImageNet has been a popular pre-training dataset used when little data is available (Raghu et al., 2019), to
accelerate convergence times (Liu et al., 2020), or to increase robustness (Hendrycks et al., 2019).

Augmentation multiplicity with timesteps. De et al. (2022) observe that data augmentation, as
it is commonly implemented in public training, has a detrimental effect on the accuracy in DP image
classification. Instead they propose the use of augmentation multiplicity (Fort et al., 2021). In more detail,
they augment each unique training observation within a batch, e.g. with horizontal flips or random crops,
and average the gradients of the augmentations before clipping them. Similarly to Dockhorn et al. (2022), we
extend augmentation multiplicity to also sample multiple timesteps t for each mini-batch observation in the
estimation of Equation 1, and average the corresponding gradients before clipping. In contrast to Dockhorn
et al. (2022) where only timestep multiplicity is considered, we combine it with traditional augmentation
methods, namely random crops and flipping. As a result, while Dockhorn et al. (2022) find that the FID
plateaus for around 32 augmentations per image, we see increasing benefits the more augmentation samples
are used (see Figure 9). For computational reasons, we limit augmentation multiplicity to 128 samples.

Modified timestep sampling. The training objective for diffusion models in Equation 1 samples the
timestep t uniformly from U{0, T} because the model must learn to de-noise images at every noise level.
However, it is not straightforward that uniform sampling is the best strategy, especially in the DP setting
where the number of model updates is limited by the privacy budget. In particular, in the fine-tuning scenario,
a pre-trained model has already learned that at small timesteps the task is to remove small amounts of
Gaussian noise from a natural-looking image, and at large timesteps the task is to project a completely noisy
sample closer to the manifold of natural-looking images. The model behavior at small and large timesteps is
thus more likely to transfer to different image distributions without further tuning. In contrast, for medium
timesteps the model must be aware of the data distribution at hand in order to compose a natural-looking
image. A similar observation has been recently made for membership inference attacks (Carlini et al., 2023;
Hu & Pang, 2023): the adversary has been shown to more likely succeed in membership inference when it uses
a diffusion model to denoise images with medium amounts of noise compared to high- or low-variance noised
images. This motivates us to explore modifications of the training objective where the timestep sampling
distribution is not uniform, and instead focuses on training the regimes that contribute more to modelling
the key content of an image.

Motivated by this reasoning, we considered replacing the uniform timestep distribution with a mixture
of uniform distributions t ∼

∑K
i=1 wi · U{li, ui} where

∑K
i=1 wi = 1, 0 ≤ l0, uK ≤ T and uk−1 ≤ lk for

k ∈ {2, ..., K}. On CIFAR-10, we found the best performance for a distribution with probability mass focused
within {30, ..., 600} for T = 1, 000 where timesteps outside this interval are assigned a lower probability than
timesteps within this interval. We assume this is due to ImageNet-pre-trained diffusion models being able
to denoise other (potentially unseen) natural images if only a small amount of noise is added. Training
with privacy for small timesteps can then decrease the performance because more of the training budget
is allocated to the timesteps that are harder to learn and because of the noisy optimization procedure.
Even when training from scratch on MNIST, we observe that focusing the limited training capacity on the
harder-to-learn moderate time steps increases test performance.
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We combine all the strategies mentioned above and train DP diffusion models similarly to public diffusion
models but replace the aggregated batch gradient with a privatised version. Please see algorithm 1 for an
overview of the full training pipeline. We highlighted changes to public model training in blue. While the
algorithm is defined as outputting the model parameters and the privacy budget (ε, δ), in practise we pre-
specify the number of iterations, the batch size, the clipping norm and the privacy level, and optimise over
the noise standard deviation such that the privacy accountant returns the desired privacy level (ε, δ).

Algorithm 1: Finetuning of conditional DP image diffusion models.
Input: Labelled dataset D, number of iterations E, maximum number of timesteps T , parameters of

timestep distribution {wi, li, ui}K
i=1, {αt}T

t=1, batch size B, clipping norm C, relative noise
standard deviation σ, pre-trained denoising diffusion model ϵθ(xt, y, t) that given learned
parameter vector θ and timestep t maps the noised data (xt, y) to a denoised estimate x̂0 ∼ Rd,
optimization algorithm optim(θ, ĝ) as a function of the current parameter vector θ, and the
batch gradient ĝ, augmentation method augment(x0) that returns a label-preserving
augmentation of x0, number of augmentation samples A

Output: DP diffusion model parameters θ, privacy parameter ε
;
for e = 1 to E do

Sample batch B ⊂ D with |B| = B;
for (x0, y) ∈ B do

for a = 1 to A do
Sample augmented image x̃0,a =Augment(x0);
Sample t ∼

∑K
i=1 wi · U{li, . . . , ui};

Sample a noise vector ϵ ∼ N (0, Ip);
Estimate the simplified loss function L̂(θ|x̃0,a, y) = ∥ϵ− ϵθ(

√
αtx0 +

√
1− αtϵ, y, t)∥2;

Compute the public gradient ∇θL̂(θ|x̃0,a, y);
Average the gradients of the augmented images g̃(x0, y) = 1

A

∑A
a=1∇θL̂(θ|x̃0,a, y)

Compute the privatised batch gradient ĝ(x0, y) = 1
B

∑
(x0,y)∈B

clipC (g̃(x0, y)) + σC
B ξ, ξ ∼ N (0, Ip);

Update model parameters θ ← optim(θ, ĝe);
return DP model parameters θ and compute overall privacy cost (ε, δ) using a privacy accounting
method (Abadi et al., 2016; Mironov et al., 2019);

5 Empirical Results on Differentially Private Image Generation and their Evaluation

5.1 Current Evaluation Framework for DP Image Generators

The FID (Heusel et al., 2017) has been the most widely used metric for assessing the similarity between
artificially generated and real images (Dhariwal & Nichol, 2021), and has thus been widely applied in the DP
image generation literature as the first point of comparison (Dockhorn et al., 2022). While the FID is the
most popular metric, numerous other metrics have been proposed, including the Inception Score (Salimans
et al., 2016), the Kernel Inception Distance (Bińkowski et al., 2018), and Precision and Recall (Sajjadi et al.,
2018). For the calculation of these metrics, the synthetic and real images are typically fed through an
inception network that has been trained for image classification on ImageNet, and a distance between the
two data distributions is computed based on the feature embeddings of the final layer.

Even though these metrics have been designed to correlate with the visual quality of the images, they can be
misleading since they highly vary with image quality unrelated factors such as the number of observations, or
the version number of the inception network (Kynkäänniemi et al., 2022). They also reduce complex image
data distributions to single values that might not capture what practitioners are interested in when dealing
with DP synthetic data. Most importantly, they may not effectively capture the nuances in image quality the
further apart the observed data distribution is from ImageNet. For example, CIFAR-10 images have to be
upscaled significantly, to be fed through the inception network which will then capture undesirable artifacts
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Table 1: A summary of the best results provided in this paper when training diffusion models with DP-SGD.
We report the test accuracy of classifiers trained on different data sets. The highest reported current SOTA
corresponds to classifiers trained on DP synthetic data, as reported in the literature. Here, [Do22] refers to
Appendix F Rebuttal Discussions in Dockhorn et al. (2022), and [Ha22] to Harder et al. (2022). Our test
accuracy (Ours) denotes the accuracy of a classifier trained on a synthetic dataset that was generated by
a DP diffusion model and is of the same size as the original training data. Note that we also report the
model size of our generative models (Diffusion M. Size). The Non-synth test accuracy corresponds to the
test accuracy of a DP classifier trained on the real dataset, using the techniques introduced by De et al.
(2022). ∗[De22] This number is taken from De et al. (2022) for ϵ = 8.

Dataset Image Diffusion Pre-Training Test Accuracy (%) Privacy
Resolution M. Size Data SOTA Ours Non-synth (ϵ, δ)

MNIST 28× 28 4.2M – 98.1 [Do22] 98.6 99.1 (10, 10−5)
CIFAR-10 32× 32× 3 80.4M ImageNet32 51.0 [Ha22] 88.0 96.6 ∗

[De22] (10, 10−5)
Camelyon17 32× 32× 3 80.4M ImageNet32 - 91.1 90.5 (10, 3 · 10−6)

introduced by upsampling. In contrast, MNIST images are digit-based and thus exhibit other variations
than natural images, further diminishing the effectiveness of the evaluation.

An alternative way of comparing DP image generation models is by looking at the test performance of a
downstream classifier trained on a synthetic dataset of the same size as the real dataset (Xie et al., 2018;
Dockhorn et al., 2022), and tested on the real dataset. We argue that the way DP generative models are
currently evaluated downstream, i.e. by evaluating a single model or metric on a limited data set, needs to
be revisited. Instead, we propose to explore how synthetic data can be most effectively used for prediction
model training and hyperparameter tuning.

This line of thinking motivates the proposal of an evaluation framework that focuses on how DP image
generative models are used by practitioners. Similar reasoning has motivated work on developing a rigorous
evaluation framework for synthetic data outside of the computer vision literature (Lin et al., 2020; Xu et al.,
2019b; El Emam, 2020). As these works typically consider marginal distributions, correlative structures, or
prediction tasks on tabular data, it is not obvious how to translate their suggestions to the image domain. As
such, our experiments focus on two specific use cases for private synthetic image data: downstream prediction
tasks, and model selection. Downstream prediction tasks include classification or regression models trained
on synthetic data and evaluated on real samples. This corresponds to the setting where a data curator
aims to build a production-ready model that achieves the highest possible performance at test time while
preserving the privacy of the training samples. Model selection refers to a use case where the data curator
shares the generative model with a third party that trains a series of models on the synthetic data with
the goal to provide guidance on the model ranking when evaluated on the sensitive real data records. We
hope that with these two experiments we cover the most important downstream tasks and set an example
for future research on the development of DP generative models. After presenting our results within the
evaluation framework that is commonly used in the current literature, we investigate the utility of the DP
image diffusion model trained on CIFAR-10 for the aforementioned tasks in section 6.

5.2 Experimental Setup

We now evaluate the empirical efficiency of our proposed methods on three image datasets: MNIST, CIFAR-
10 and Camelyon17. Please refer to Table 1 for an overview on our main results. For CIFAR-10, we provide
additional experiments to prove the utility of the synthetic data for model selection in section 6. While these
benchmarks may be considered small-scale by modern non-private machine learning standards, they remain
an outstanding challenge for image generation with DP at this time.

We train diffusion models with a U-Net architecture as used by Ho et al. (2020) and Dhariwal & Nichol
(2021). In contrast to Dockhorn et al. (2022), we found that classifier guidance led to a drop in performance.
Unless otherwise specified, all diffusion models are trained with a privatized version of Adam (McMahan
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et al., 2018; Kingma & Ba, 2014). The clipping norm is set to 10−3, since we observed that the gradient
norm for diffusion models is usually small, especially in the fine-tuning regime. The privacy budget is set
to ϵ = 10, as commonly considered in the DP image generation literature. The same architecture is used
for the diffusion model across all datasets. More specifically, the diffusion is performed over 1,000 timesteps
with a linear noise schedule, and the convolutional architecture employs the following details: a variable
width with 2 residual blocks per resolution, 192 base channels, 1 attention head with 16 channels per head,
attention at the 16x16 resolution, channel multipliers of (1,2,2,2), and adaptive group normalization layers
for injecting timestep and class embeddings into residual blocks as introduced by Dhariwal & Nichol (2021).
When fine-tuning, the model is pre-trained on ImageNet32 (Chrabaszcz et al., 2017) for 200,000 iterations.
All hyperparameters can be found in Table 3.

As a baseline, we also train DP classifiers directly on the sensitive data, using the training pipeline introduced
by De et al. (2022), and additionally hyperparameter tuning the learning rate. Please refer to Table 5 for
more details. It is not surprising that these results partly outperform the image generators as the training
of the DP classifiers is targeted towards maximising downstream performance.

5.3 Training from Scratch (∅ → MNIST)

The MNIST dataset (LeCun, 1998) consists out of 60,000 28 × 28 training images depicting the 10 digit
classes in grayscale. Since it is the most commonly used dataset in the DP image generation literature, it is
included here for the sake of completeness.

Method. We use a DP diffusion model of 4.2M parameters without any pre-training, with in particular 64
channels, and channel multipliers (1,2,2). The diffusion model is trained for 4,000 iterations at a constant
learning-rate of 5 · 10−4 at batch-size 4,096, with augmult set to 128, and a noise multiplier of 2.852.
The timesteps are sampled uniformly within {0, . . . , 200} with probability 0.05, within {200, . . . , 800} with
probability 0.9, and within {800, . . . , 1, 000} with probability 0.05. To evaluate the quality of the images,
we generate 50,000 samples from the diffusion model. Then we train a WRN-40-4 on these synthetic images
(hyperparameters given in Table 4), and evaluate it on the MNIST test set.

Results. As reported in Table 1, this yields a SOTA top-1 accuracy of 98.6%, to be compared to the
98.1% accuracy obtained by Dockhorn et al. (2022). Crucially, we find that to obtain this SOTA result, it
is important to bias the timestep sampling of the diffusion model at training time: this allows the model to
get more training signal from the challenging phases of the generation process through diffusion. Without
this biasing, we obtain a classification accuracy of only 98.2%.

5.4 Fine-tuning on a Medical Application (ImageNet32 → Camelyon17)

To show that fine-tuning works even in settings characterised by dataset shift from the pre-training distri-
bution, we fine-tune a DP diffusion model on a medical dataset. Camelyon17 (Bandi et al., 2018; Koh et al.,
2021) comprises 455,954 histopathological 96 × 96 image patches of lymph node tissue from five different
hospitals. The label signifies whether at least one pixel in the center 32× 32 pixels has been identified as a
tumor cell. Camelyon17 is also part of the WILDS (Koh et al., 2021) leaderboard as a domain generalization
task: The training dataset contains 302,436 images from three different hospitals whereas the validation and
test set contain respectively 34,904 and 85,054 images from a fourth and fifth hospital. Since every hospital
uses a different staining technique, it is easy to overfit to the hues of the training data with empirical risk
minimisation. At the time of writing, the highest accuracy reported in the leaderboard of official submissions
is 92.1% with a classifier that uses a special augmentation approach (Gao et al., 2022). The SOTA that does
not fulfill the formal submission guidelines achieves up to 96.5% by pre-training on a large web image data
set and finetuning only specific layers of the classification network (Kumar et al., 2022).

Method. First we pre-train an image diffusion model on ImageNet32, before finetuning it with (10, 3·10−6)-
DP on the training data, downsampled to 32× 32, with a batch size of 16,384 for 200 steps. We tuned the
hyperparameters to achieve the lowest FID on the training data, and used the out-of-distribution validation
data to tune the downstream classifiers. The timestep is sampled with 0.015 probability from {0, . . . , 30},
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with a probability of 0.785 in {30, . . . , 600}, and with 0.2 in {600, . . . , 1, 000}. Since the diffusion model
is pre-trained on ImageNet, we assume that the data is also available for pre-training the classifier. The
pre-trained classifier is then further fine-tuned on a synthetic dataset of the same size as the original training
dataset, which we find to systematically improve results. The classifiers were trained on augmented data
where the augmentations include flipping, and color-jittering.

Results. We achieve close to SOTA classification performance with 91.1% by training only on the synthetic
data whereas the best DP classifier we trained on the real dataset achieved only 90.5%. So while the synthetic
dataset is not only useful for in-distribution classification, training on synthetic data is also an effective
strategy to combat overfitting to domain artifacts and generalise in out-of-distribution classification tasks,
as noted elsewhere in the literature (Zhou et al., 2020; Gheorghit,ă et al., 2022).

5.5 Fine-tuning on Natural Images (ImageNet32 → CIFAR-10)

CIFAR-10 (Krizhevsky et al., 2009) is a natural image dataset of 10 different classes with 50,000 RGB images
of size 32× 32 during training time.

Method. We use the same pre-trained model as for Camelyon17, that is an image diffusion model with
more than 80M parameters trained on ImageNet32. We tune the remaining hyperparameters by splitting
the training data into a set of 45,000 images for training, and 5,000 images for assessing the validation
performance based on FID. As for Camelyon17, we found that sampling the timestep with probability 0.15
in {0, . . . , 30}, with 0.785 in {30, . . . 60} and 0.2 in {600, . . . , 1, 000} gives us the lowest FID. More details
can be found in Table 3.

Results. We improve the SOTA FID with ImageNet pre-training (Harder et al., 2022) from 26.8 to 9.8,
which is a drop of more than 50%, and increase the downstream accuracy from 51.0% to 75.6% without
pre-training the classifier. With pre-training the classifier on ImageNet32, we can achieve a classification
accuracy of 86.6% with a single WRN. Modifying the timestep distribution led to a reduction in the FID
from 11.6 to 9.8. Note that we achieved the results for different privacy levels by linearly scaling the number
of iterations proportionally with ϵ, and adjusting the noise level to the given privacy budget, keeping all
parameters the same.

As detailed in Figure 2, we obtain SOTA accuracy for a variety of privacy levels. Even for a budget as small
as ϵ = 1, the FID obtained with our method is smaller than the current SOTA for ϵ = 10. These results
can also be compared with the very recent work by Dockhorn et al. (2022), who report an FID of 97.7 when
training diffusion models with DP on CIFAR-10 without any pre-training. Due to the difficulty of the task
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of learning the diffusion model with DP from scratch, the model did not learn to generate CIFAR-10-like
samples, and the generated images do not seem to display any clear CIFAR-10 class instances at all. We
believe that such mixed results are a clear motivation for our proposed method of pre-training on public
data, which makes learning more tractable and realistic, and allows to obtain useful image generation.

To further confirm that the diffusion model has correctly learned the distribution shift, we trained a ResNet18
model to discriminate images from CIFAR-10 and ImageNet32 achieving a test accuracy of 98.0% on that
task. We then evaluated it on 50,000 synthetically generated images out of which 92% were classified as
CIFAR-10 images. This supports our hypothesis that the fine-tuned diffusion model does generate images
that are more similar to CIFAR-10 than to the pre-training data of ImageNet.

5.6 Maximizing Downstream Prediction Performance by Sampling Arbitrary Many Data Records
(ImageNet32 → CIFAR-10)

Dataset sample size. One benefit of synthetic data generators is their ability to render infinitely many
synthetic images. As such, there is no reason why the comparison of real and synthetic samples should be
limited to predictive models trained on the same number of training samples. We, therefore, investigate
whether the performance of a downstream predictor increases with more training images. In Figure 3,
we observe that the downstream classification accuracy constantly increases the more synthetic training
observations are generated. In particular, we increase the downstream classification accuracy from 72.9% to
86.0% by sampling 1M instead of 50K images– without pretraining the classifier. We note that this difference
is much more significant on the more challenging dataset of CIFAR-10 than e.g. MNIST, where we find that
increasing the number of samples offers virtually no benefit in terms of downstream accuracy.

We note that the classifier can also be pre-trained on the pre-training distribution for performance increases
for smaller data set sizes. The predictive performance does not increase significantly when fine-tuning on
more samples (see the appendix - Figure 10). The benefit of pre-training the downstream classification
performance thus diminishes for 1M synthetic samples.

Ensembling. We observe that we can further improve the classification accuracy given by a single WRN
classifier by instead ensembling five different networks that differ only in the subsampling of the minibatches.
As reported in Table 1, we can achieve a test accuracy of 88% on CIFAR-10 using this approach (see Figure 3).

6 Model Selection (ImageNet32 → CIFAR-10)

One important benefit of training a DP image generator over a DP classifier is the potential to use the
generated data repeatedly for training a range of different prediction models and choosing the best one
across them. Each experiment training a model on the data comes with a privacy cost, thus tuning a large
number of DP classifiers increases the required privacy budget (Papernot & Steinke, 2021). In this section
we consider how synthetic data can be used to gain initial insights on the choice of model, and to reduce
the number of experiments run on the sensitive data records. The goal here is to identify the model that
performs best on real data, while only having access to synthetic data. This becomes particularly relevant
and useful when synthetic data needs to be released for research purposes (Chambon et al., 2022b), or data
challenges (de Montjoye et al., 2014; Feuerverger et al., 2012; McFee et al., 2012).

For this purpose, we train 3 different model architectures that are commonly employed on CIFAR-10 (De
et al., 2022; Bu et al., 2022a): a WRN-28-8 (Zagoruyko & Komodakis, 2016), a ResNet50 (He et al., 2016),
and a VGG (Simonyan & Zisserman, 2014). For each architecture, we sweep over combinations of three
to five different learning rates and three different values of weight decay. Please refer to Table 6 for more
details. We now assess the utility of synthetic data for model selection in two stages of increasing difficulty.
First, we check whether models – trained on the synthetic data – rank similarly on the real and synthetic
test data. This corresponds to the application setting where a third party tunes a model on the synthetic
data, and releases a model that is trained on the same data.

Once we have established that the test performance on real and synthetic data is sufficiently correlated to
ensure that a model ranks similarly no matter which data set it was evaluated on, we train each model
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Figure 4: We observe that models rank similarly when evaluated on synthetic and real data. This suggests
that findings on hyperparameter selection made on synthetic data can be transferred to the private dataset.

separately on 50K real and on the same number of synthetic samples. In both cases, models are tested on
the same source of data they have been learned on (with sources being real or synthetic here). We then
assess whether the test performance on the real and synthetic data is still correlated between models of the
same architecture and hyperparameter constellation. This corresponds to the setting where a third party is
responsible for finding the best model pipeline, but the data curator trains the final model with the optimal
hyperparameters for their own internal use.

In Figure 4, we report our findings. We see that we can select the best or second best hyperparameter
constellation in both application settings. More generally, we find that models rank similarly on both
synthetic and real data, suggesting that findings with respect to relative model performance might transfer
from the DP data to the original real data. However, we also notice that models overfit to the synthetic
data distribution and that within one model group it is not obvious which hyperparameter constellation
is the best. We therefore advice that synthetic data is used for a high-level orientation of the research
direction. Note that the absolute test performance is not of interest here, only the correlation between the
test performance on real and synthetic data as the best model will be released externally.

7 Conclusion

DP image generation has long attracted interest as a way of sharing synthetic data sets in sensitive application
domains. Because of the degradation in performance introduced by DP-SGD, successful results on DP image
generation have been limited to small and low-complexity data sets, like MNIST. In this paper, we set out to
scale DP image generation to 32×32×3 RGB image datasets. We proposed a methodology for DP diffusion
models based on pre-training, timestep augmentation multiplicity, and a modified timestep sampling scheme.
We are the first to train a DP image generator on a medical dataset where we achieved a downstream
classification accuracy of 91.1% that is close to the SOTA of 96.5% with training on the real data. What is
more, we also increased the SOTA downstream classification accuracy on CIFAR-10 from 51.0% to 88.0%.
Recently proposed methods like latent diffusion models (Rombach et al., 2022) constitute a promising model
class for DP fine-tuning on higher dimensional datasets, and we hope that our findings can contribute to
future research exploring this direction.

Finally, we questioned how DP synthetic image data has been currently evaluated in the computer vision
literature, and proposed an evaluation framework that is more suited to the needs of practitioners who would
use the DP synthetic data as a replacement of the private dataset. For this purpose, we first considered
maximising the downstream prediction performance by generating up to 1M data samples, and training
ensembles. Second, we showed that findings from hyperparameter tuning on synthetic data translate to the
corresponding findings on the real data.
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Supplementary Materials

A Comparison to Related Work

Please refer to Table 2 for a summary of details that differentiate our work from that of Dockhorn et al.
(2022).

Dockhorn et al. (2022) Ours

Analysed for finetuning False True
Maximal parameter count 1.8M 80.4M
Time step scale continuous discrete
Classifier guidance True False
Modifications to time step sampling False True
Augmentation strategies time step time step, random crop, flipping
Number of samples for augmentation multiplicity 32 128
Maximal batch size 2,048 16,384

Evaluation FID, downstream accuracy
FID, downstream accuracy,

maximal downstream performance
hyperparameter tuning

Table 2: Comparison of our work and Dockhorn et al. (2022).

B Additional Experimental Details and Results

The code for the DP accounting and the classification models can be found on https://github.com/deepm
ind/jax_privacy. The implementation of the diffusion models follows https://github.com/openai/guid
ed-diffusion. We present our hyperparameters in Tables 3, 4, 5 and 6.

Details on evaluation metrics. To evaluate the generative performance of DP diffusion models, we
estimate the FID and the downstream accuracy. For the former, we follow Dhariwal & Nichol (2021). For
the latter, we generate as many samples from the diffusion model as the original private training data has,
unless otherwise specified. We then train a classifier on the synthetic data set and report its test performance
on the real test data. For the model selection experiments in section 6, we follow a similar procedure. Note
that we here train and evaluate the downstream classifiers on the real or the synthetic data, as specified.

Example DP synthetic images can be found in Figures 5, 6 and 7. As a baseline, we also added samples
from Dockhorn et al. (2022) when training from scratch on CIFAR-10 in Figure 8. This illustrates the
importance of pre-training for large scale DP image generation. Please refer to Figure 9 for a sensitivity
study of augmentation multiplicity. Finally, we show with class-wise metrics in Figure 11 that our model is
not overfitting to a single class.
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Figure 5: Random samples drawn from a DP image diffusion model trained on MNIST.

Figure 6: Random samples drawn from a DP image diffusion model trained on Camelyon17.
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Figure 7: Random samples drawn from a DP image diffusion model trained on CIFAR-10.

Figure 8: Samples from CIFAR-10 as provided by (Dockhorn et al., 2022) in Appendix F Rebuttal Discus-
sions.
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ImageNet32 MNIST CIFAR-10 Camelyon17

Pre-training data set - - ImageNet32 ImageNet32
Privacy budget (ϵ, δ) ∞ (10, 10−5) (*varies, 10−5) (10, 10−5)
Iterations 200k 4,000 200 200
Clipping norm - 10−3 10−3 10−3

Noise schedule linear linear linear linear
Model size 80.4M 4.2M 80.4M 80.4M
Channels 192 64 192 192
Depth 2 1 2 2
Channels multiple 1,2,2,2 1,2,2 1,2,2,2 1,2,2,2
Heads channels 64 64 64 64
Attention resolution 16 16 16 16
Batch size 1,024 4,096 16,384 16,384
Learning rate - 5×10−4 10−3 10−3

Optimizer Adam Adam Adam Adam
Scheduler linear(from 0 to LR in 5K steps) constant constant constant
w1, w2, w3 0.03, 0.77, 0.2 0.05, 0.9, 0.05 0.015, 0.785, 0.2 0.015, 0.785, 0.2
l1, u1 = l2, u2 = l3, u3 0, 30, 800, 1000 0, 200, 800, 1000 0, 30, 600, 1000 0, 30, 600, 1000
# Augmentation samples 0 128 (timestep) 128 (timestep, flip) 128 (timestep, flip)
Exponential moving average 0.9999 0.9999 0.9999 0.9999

Table 3: Hyperparameters for diffusion models. The scale of the gradient noise is adjusted to ensure the
desired privacy budget. *We report results for ϵ ∈ {1, 5, 10, 32}. The implementation follows https:
//github.com/openai/guided-diffusion.

MNIST CIFAR-10 Camelyon17

Pre-training data set - - ImageNet32
Iterations 10,000 20,000 4,000
Depth 40 40 40
Width 4 4 4
Dropout 0.5 0.0 0.0
Weight decay 5 · 10−4 5 · 10−4 1 · 10−5

Label smoothing 0.05 0.0 0.0
Batch size 64 4,096 512
Learning rate 0.1 cosine decay(start at 0.1 with α = 0, 1 decay step) 10−4

Optimizer SGD SGD SGD
Nesterov’s momentum 0.9 0.9 0.9
Samples augmentation multiplicity 0 0 16
Exponential moving average 0.9999 0.9999 0.9999
# Augmentation samples 1 (crop) 16 (crop, flip, color) 16 (color, flip, crop)

Table 4: Hyperparameters for downstream classification WRNs trained on synthetic data.

22

https://github.com/openai/guided-diffusion
https://github.com/openai/guided-diffusion


Under review as submission to TMLR

MNIST Camelyon17

Privacy budget (ϵ, δ) (10, 10−5) (10, 10−5)
Pre-training data set - ImageNet32
Clipping norm 1 1
Noise standard deviation 3.0 4.0
Depth 16 40
Width 4 4
Batch size 16,384 4,096
Learning rate 4.0 0.5
Optimizer SGD SGD
Samples augmentation multiplicity 0 16 (color, flip, crop)
Exponential moving average 0.9999 0.9999

Table 5: Hyperparameters for DP WRN classifiers trained on the sensitive data records. Training was
stopped once ϵ = 10 was reached.

ResNet50 VGG WRN-16-4

Learning rate 5 · 10−4, 2 · 10−3, 4 · 10−3 0.07, 0.04, 0.025, 0.01, 5 · 10−3 0.01, 0.02, 0.03
Weight decay 0, 0.1, 0.01 0.0, 10−3, 5 · 10−3 0.0, 0.1, 0.01
Iterations 15,000 15,000 15,000
Label smoothing 0.05 0.0 0.0
Batch size 128 128 128
Optimizer SGD SGD SGD
Momentum 0.0 0.9 0.9
Scheduler cosine decay* constant cosine decay*
Samples augmentation multiplicity 16 (flip, crop) 0 16 (flip, crop)
Exponential moving average 0.9999 0.9999 0.9999

Table 6: Hyperparameters for classifiers for the model selection experiment. All combinations of different
values displayed for learning rate and weight decay were trained. *Cosine decay schedule with initial learning
rate swept over, 1 decay step, and α = 0.0.
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Figure 9: FID on CIFAR-10 for different values of
augmentation multiplicity samples. We see that the
FID is decreasing for values up to 256.
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Figure 10: Downstream accuracy of an ImageNet32
pre-trained CIFAR-10 WRN-40-4 as function of the
number of synthetic data samples used to train it.
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(a) Percentage of samples per class classified as CIFAR-10 images by ResNet18 model trained to discriminate CIFAR-10 and
ImageNet32 images.
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Figure 11: Class-wise metrics on CIFAR-10.
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