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Abstract

Sequential recommender systems (SRS) aim to predict users’ subsequent choices
based on their historical interactions and have found applications in diverse fields
such as e-commerce and social media. However, in real-world systems, most users
interact with only a handful of items, while the majority of items are seldom con-
sumed. These two issues, known as the long-tail user and long-tail item challenges,
often pose difficulties for existing SRS. These challenges can adversely affect user
experience and seller benefits, making them crucial to address. Though a few works
have addressed the challenges, they still struggle with the seesaw or noisy issues
due to the intrinsic scarcity of interactions. The advancements in large language
models (LLMs) present a promising solution to these problems from a semantic
perspective. As one of the pioneers in this field, we propose the Large Language
Models Enhancement framework for Sequential Recommendation (LLM-ESR).
This framework utilizes semantic embeddings derived from LLMs to enhance SRS
without adding extra inference load from LLMs. To address the long-tail item chal-
lenge, we design a dual-view modeling framework that combines semantics from
LLMs and collaborative signals from conventional SRS. For the long-tail user chal-
lenge, we propose a retrieval augmented self-distillation method to enhance user
preference representation using more informative interactions from similar users.
To verify the effectiveness and versatility of our proposed enhancement framework,
we conduct extensive experiments on three real-world datasets using three popular
SRS models. The results show that our method surpasses existing baselines consis-
tently, and benefits long-tail users and items especially. The implementation code
is available at https://github.com/Applied-Machine-Learning-Lab/LLM-ESR.

1 Introduction

The objective of sequential recommendation is to predict the next likely item for users based on
their historical records [7, 53]. Owing to its wide-ranging applicability in various domains such as e-
commerce [47] and social media [5], sequential recommendation has garnered considerable attention
in recent years. Given that the essence of sequential recommendation revolves around extracting user
preferences from their interaction records, several innovative architectures have been proposed. For
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(a) Long-tail User Challenge (b) Long-tail Item Challenge

Figure 1: The preliminary experiments of SASRec on Beauty dataset.

instance, SASRec [18] applies the self-attention technique to capture the users’ long-term preference,
while FMLPRec [24] introduces a pure MLP architecture to identify dynamics in users’ preference.

Despite significant advancements in sequential recommendation, the long-tail challenges continue
to undermine its practical utility. Generally, these challenges can be categorized into two types,
affecting either the user or the item side. To illustrate, we present the performance of a well-known
SRS model, SASRec [18], on the Amazon Beauty dataset, along with its statistics in Figure 1. i)
Long-tail User Challenge: In Figure 1 (a), we note that above 80% users have interacted with fewer
than 10 items (i.e., long-tail users), and SASRec’s performance is subpar for these users compared to
those with more interaction records. This suggests that the majority of users receive less than optimal
recommendation services. ii) Long-tail Item Challenge: Figure 1 (b) demonstrates that SASRec
performs significantly better on more popular items. However, the histogram indicates that around
71.4% items own no more than 30 interaction records, meaning they are less frequently consumed.
Addressing these long-tail challenges is crucial for elevating user experience and seller benefits.

To tackle the long-tail item challenge, existing studies [17, 20] examine the co-occurrence pattern
between popular and long-tail items, aiming to enrich the representation of long-tail items with that
of popular ones. Nevertheless, ignorance of the true relationship between items may cause a seesaw
problem [35]. As for the long-tail user challenge, existing research [36, 34] explores the interaction
history of all users, attempting to augment pseudo items for tail users. However, these approaches
still only rely on collaborative information, which inclines to generate noisy items due to inaccurate
similarity between users [34]. At this time, superb semantic relations between users or items can
make an effect, which indicates the potential of utilizing semantics to face long-tail challenges.

Recent advancements in large language models (LLMs) offer promise for alleviating long-tail chal-
lenges from a semantic perspective. However, LLMs are initially designed for natural language
processing tasks but not for recommendation ones. Some works [62, 42] have made efforts to
adapt, but two problems still exist. i) Inefficient Integration: Recent research has explored de-
riving informative prompts to activate ChatGPT [54, 10] or modifying the tokenization method of
LLaMA [25, 27, 58] for sequential recommendation. Despite their impressive performance, these
approaches are challenging to apply in industrial settings. This is because recommender systems
typically require low latency for online deployment, whereas LLMs often entail high inference
costs [11]. ii) Deficiency of Semantic Information: Several recent works [13, 16] propose utilizing
embeddings derived from LLMs to initialize the item embedding layer of sequential recommendation
models, thereby integrating semantic information. However, the fine-tuning process, if not done
without freezing the embedding layer, may erode the original semantic relationships between items.
Additionally, these approaches focus solely on the item side, neglecting the potential benefits of
incorporating semantic information on the user side which could aid the sequence encoder of an SRS.

In this paper, to better integrate LLMs into SRS for addressing long-tail challenges, we design a Large
Langauge Models Enhancement framework for Sequential Recommendation (LLM-ESR). Firstly,
we derive the semantic embeddings of items and users by encoding prompt texts from LLMs. Since
these embeddings can be cached in advance, our integration does not impose any extra inference
burden from LLMs. To tackle the long-tail item challenge, we devise a dual-view modeling framework
that combines semantic and collaborative information. Specifically, the embeddings derived from
LLMs are frozen to avoid deficiency of semantics. Next, we propose a retrieval augmented self-
distillation method to enhance the sequence encoder of an SRS model using similar users. The
similarity between users is measured by the user representations from LLMs. Finally, it is important
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Figure 2: The overview of the proposed LLM-ESR framework.

to note that the proposed framework is model-agnostic, allowing it to be adapted to any sequential
recommendation model. The contributions of this paper are as follows:

• We propose a large language models enhancement framework, which can alleviate both long-tail
user and item challenges for SRS by introducing semantic information from LLMs.

• To avoid the inference burden of LLMs, we design an embedding-based enhancement method.
Besides, the derived embeddings are utilized directly to retain the original semantic relations.

• We conduct extensive experiments on three real-world datasets with three backbone SRS models to
validate the effectiveness and flexibility of LLM-ESR.

2 Problem Definition

The goal of the sequential recommendation is to give out the next item that users are possible
to interact with based on their interaction records. The set of users and items are denoted as
U = {u1, . . . , ui, . . . , u|U|} and V = {v1, . . . , vi, . . . , v|V|}, respectively, where |U| and |V| are the
number of users and items. Each user has an interaction sequence, which arranges the interacted
items by timeline, denoted as Su = {v(u)1 , . . . , v

(u)
i , . . . , v

(u)
nu }. nu represents the interaction number

of user u. For simplicity, we omit the superscript (u) in the following sections. Then, the problem of
sequential recommendation can be defined as follows:

argmax
vi∈V

P (vnu+1 = vi|Su) (1)

Following the existing works related to long-tailed SRS [17, 20], we can split the users and items
into tail and head groups. Let nu and pv denote the length of the user’s interaction sequence and the
popularity of the item v (i.e., the total interaction number). Firstly, we sort the users and items by the
values of nu and pv in descending order. Then, take out the top 20% users and items as head user
and head item according to Pareto principle [4], denoted as Uhead and Vhead. The rest of the users
and items are the tail user and tail item, i.e., Utail = U \ Uhead and Vtail = V \ Vhead. To alleviate
the long-tail challenges, we aim to elevate the recommending performance for Utail and Vtail.
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3 LLM-ESR

3.1 Overview

The overview of the proposed LLM-ESR is shown in Figure 2. To acquire the semantic information,
we adopt LLMs to encode textual users’ historical interactions and items’ attributes into LLMs
user embedding and LLMs item embedding. Then, two modules are proposed to augment long-tail
items and long-tail users, respectively, i.e., Dual-view Modeling and Retrieval Augmented Self-
Distillation. i) Dual-view Modeling: This module consists of two branches. One is semantic-view
modeling, which aims to extract the semantic information from the user’s interaction sequence. It
first utilizes the semantic embedding layer, derived from LLMs item embedding, to encode the items.
Then, an adapter is designed for dimension adaptation and space transformation. The output item
embedding sequence will be fed into cross-attention for fusion and then sequence encoder to get
the user representation in semantic view. The other branch is collaborative-view modeling, which
transforms the interaction sequence into an embedding one by a collaborative embedding layer.
Next, followed by a cross-attention and the sequence encoder, the collaborative user preference is
obtained. At the end of this module, the user representations in the two views will be fused for
the final recommendations. ii) Retrieval Augmented Self-Distillation: This module expects to
enhance long-tail users through informative interactions of similar users. First, the derived LLMs
user embedding is considered as a semantic user base for retrieving similar users. Then, similar
users are fed into dual-view modeling to get their user representations, which are the guide signal for
self-distillation. Finally, the derived distillation loss will be utilized as an auxiliary loss for training.

3.2 Dual-view Modeling

The traditional SRS models are skilled in capturing collaborative signals, which can recommend
for popular items well [20, 17]. However, they compromise on long-tail items due to the lack of
semantics [2]. Therefore, we model the preferences of users from the dual views to cover all items
simultaneously. Besides, we propose a two-level fusion to better combine the benefits from both two.

Semantic-view Modeling. In general, the attributes and descriptions of items contain abundant se-
mantics. To utilize the powerful semantic understanding abilities of LLMs, we organize the attributes
and descriptions into textual prompts (the template of prompts can be found in Appendix A.1). Then,
in avoid of possible inference burden brought by LLMs, we cache the embeddings derived from
LLMs for usage. In specific, the embeddings can be obtained by taking out the last hidden state
of open-sourced LLMs, such as LLaMA [50], or the public API, such as text-embedding-ada-0022.
We adopt the latter one in this paper. Let Ese ∈ R|V|×dllm denotes the LLMs embedding of all
items, where dllm is dimension of LLMs embedding. Then, the semantic embedding layer Ese

from LLMs can be used for semantic-view modeling to enhance long-tail items. However, previous
works [13, 16] often adapt it as the initialization of the item embedding layer, which may ruin the
original semantic relations during fine-tuning. In order to retain the semantics, we freeze the Ese and
propose an adapter to transform the raw semantic space into the recommending space. For each item
i, we can get its LLMs embedding ellmi by taking the i-th row of Ese. Then, it will be fed into the
tunable adapter to get the semantic embedding:

esei = Wa
2(W

a
1e

llm
i + ba

1) + ba
2 (2)

where Wa
1 ∈ R

dllm
2 ×dllm ,Wa

2 ∈ Rd× dllm
2 and ba

1 ∈ R
dllm

2 ×1,ba
2 ∈ Rd×1 are the weight matrices

and bias of adapter. Following this process, we can obtain the item embedding sequence of the user’s
interaction records, denoted as Sse = [ese1 , . . . , esenu

]. Similar to a general SRS model, we employ a
sequence encoder fθ (e.g., self-attention layers [51] for SASRec [18]) to get the representation of
user preference in semantic view as follows:

use = fθ(Sse) (3)

where use ∈ Rd×1 is the user preference representation in semantic view and θ denotes the parameters
of sequence encoder in an SRS model.

Collaborative-view Modeling. To utilize the collaborative information, we adopt a trainable item
embedding layer and supervised update it by interaction data. Let Eco ∈ R|V|×d denotes the

2https://platform.openai.com/docs/guides/embeddings
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collaborative embedding layer of the item. Then, the item embedding sequence Sco = [eco1 , . . . , econu
]

is acquired by extracting the corresponding rows from Eco. To get the user preference uco in the
collaborative view, we input embedding sequence to sequence encoder, i.e., uco = fθ(Sco). It is
worth noting that, the sequence encoder fθ is the same one in both semantic and collaborative views
for the shared sequential pattern and higher efficiency [45]. Besides, the embedding layers in the
two views are in unbalanced training stages (one is pretrained, while the other is from scratch),
which may lead to optimization difficulty [1]. To handle such a problem, we initialize the Eco by
dimension-reduced Ese. The Principal Component Analysis (PCA) [43] is used as the dimension
reduction method in this paper.

Two-level Fusion. The effective integration of both semantic-view and collaborative-view is essential
to absorb the benefits of these two. However, the direct merge of the user representations in dual
views may overlook the nuanced inter-relationships between item sequences. Thus, we design a
two-level fusion method for the dual-view modeling module, i.e., sequence-level and logit-level. The
former aims to implicitly capture the mutual relationships between the item sequences of dual views,
while the latter explicitly targets the combination of recommending abilities. In specific, we propose
a cross-attention mechanism for sequence-level fusion. To simplify the description, we only take the
semantic view interacting with the collaborative view for illustration, and the other view is the same.
Specifically, Sse is considered as the query, and Sco as the key and value in attention mechanism. Let
Q = SseWQ, K = ScoWK , V = ScoWV , where WQ,WK ,WV ∈ Rd×d are weight matrices.
Then, the interacted collaborative embedding sequence can be formulated as follows:

Ŝco = Softmax(
QKT

√
d

)V (4)

Following the same process of cross-attention, we can also get the corresponding semantic embedding
sequence Ŝse. Finally, Sse,Sco are substituted by Ŝse, Ŝse to be fed into fθ(·). As for logit-level
fusion, we concatenate the two-view user and item embeddings for recommendation. The probability
score of recommending item j for the user u is therefore calculated as:

P (vnu+1 = vj |v1:nu
) = [esej : ecoj ]T [use : uco] (5)

where “:” denotes the concatenation operation of two vectors. Based on the probability score, we
adopt the pairwise ranking loss to train the framework:

LRank = −
∑
u∈U

nu∑
k=1

logσ(P (v+k+1 = |v1:k)− P (v−k+1 = |v1:k)) (6)

where v+k+1 and v−k+1 are the ground-truth item and paired negative item. It is worth noting that the
ranking loss may differ a little according to different backbone SRS models, e.g., sequence-to-one
pairwise loss for GRU4Rec [14].

3.3 Retrieval Augmented Self-Distillation

The long-tail user problem originates from the lack of enough interactions for the sequence encoder
in an SRS to capture users’ preferences. Thus, we propose a self-distillation method to augment
the extraction capacity of the sequence encoder. Self-distillation [12, 60] is a type of knowledge
distillation that considers one model as both the student and teacher for model enhancement. As for
the SRS, since multiple similar users have more informative interactions, it is promising to transfer
their knowledge to the target user for strengthening. Thereafter, there are two key challenges for such
knowledge transfer, i.e., how to retrieve similar users and how to transfer the knowledge.

Retrieve Similar Users. Previous works have confirmed that LLMs can understand the semantic
meanings of textual user interaction records for recommendation [25, 10]. Based on their observation,
we organize the item’s title that interacted by users into the textual prompts (the template of prompts
can be found in Appendix A.1). Then, similar to the derivation of LLMs item embedding Ese, we
can obtain and save the LLMs user embedding, denoted as Ullm ∈ R|U|×dllm . It is also dubbed as
the semantic user base in this paper, because the semantic relations are encoded in it. For each target
user k, we can retrieve the similar user set Uk as follows:

Uk = Top({cos(ullm
k ,ullm

j )}|U|
j=1, N) (7)
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where cos(·, ·) is the cosine similarity function to measure the distance between two vectors. N
represents the size of similar user sets, which is a hyper-parameter.

Self-Distillation. As mentioned before, we design the self-distillation to transfer the knowledge from
several similar users to the target user. Since the representation of user preference, i.e., use and uco,
encode the comprehensive knowledge of the user, we configure such representation as the mediator
for the distillation. To get the teacher mediator, we first utilize the dual-view modeling framework
(Section 3.2) to get the user representation for each similar user, denoted as {use

j ,uco
j }|Uk|

j=1 . Then, the
teacher mediator is calculated by mean pooling, as the following formula:

[use
Tk

: uco
Tk
] = Mean_Pooling({[use

j : uco
j ]}|Uk|

j=1) (8)

The student mediator is the representation of target user k, i.e., [use
k : uco

k ]. Based on the teacher and
student mediators, the self-distillation loss can be formulated as:

LSD =
1

|U|

|U|∑
k=1

|[use
k : uco

k ]− [use
Tk

: uco
Tk
]|2 (9)

Note that the gradients of use
Tk

and uco
Tk

are stopped, because they only provide the guidance signal
instead of optimizing the model.

3.4 Train and Inference

Train. Based on the illustration in Section 3.2 and Section 3.3, we only update the collaborative
embedding layer, adapter, cross-attention and sequence encoder during the training, while freezing
the semantic embedding layer and semantic user base. Since the original LLMs embeddings Ese and
Ullm are frozen, the original semantic relations get preserved well. The training loss for optimization
is the combination of pairwise ranking loss and self-distillation loss, which can be written as follows:

L = LRank + α · LSD (10)

where α is a hyper-parameter to adjust the magnitude of self-distillation.

Inference. During the inference process of the LLM-ESR, the retrieval augmented self-distillation
module is exempted due to no need for the auxiliary loss. Thus, we follow the dual-view modeling
process for the final recommendation by Equation (5). Besides, since the semantic embedding layer
can be cached in advance, the call for LLMs is avoided, which prevents the extra inference costs. Due
to the limited space, the algorithm lies in Appendix A.2 for more clarity.

4 Experiment

4.1 Experimental Settings

Dataset. There are three real-world datasets applied for evaluation, i.e., Yelp, Amazon Fashion and
Amazon Beauty. We follow the previous SRS works [18, 49] for preprocessing and data split. More
details about the datasets and preprocessing can be seen in Appendix B.1.

Baselines. To validate the flexibility, we combine the competing baselines and LLM-ESR with three
well-known backbone SRS models: GRU4Rec [14], Bert4Rec [48] and SASRec [18]. Then, two
groups of baselines are compared in the experiments. One group is the traditional enhancement
framework for the long-tailed sequential recommendation, including CITIES [17] and MELT [20].
The other group is the LLM-based enhancement framework, which contains RLMRec [44] and
LLMInit [13, 16]. The more details about baselines are put into Appendix B.2.

Implementation Details. The hardware used in all experiments is an Intel Xeon Gold 6133
platform with Tesla V100 32G GPUs, while the basic software requirements are Python 3.9.5
and PyTorch 1.12.0. The hyper-parameters N and α are searched from {2, 6, 10, 14, 18} and
{1, 0.5, 0.1, 0.05, 0.01}. More details about the implementation details are in Appendix B.3. The
implementation code is available at https://github.com/Applied-Machine-Learning-Lab/LLM-ESR.

Evaluation Metrics. In the experiments, we adopt the metrics of Top-10 list for evaluation. Specifi-
cally, the Hit Rate (H@10) and Normalized Discounted Cumulative Gain (N@10) are used. Follow-
ing [18], we randomly sample 100 items that the user has not interacted with as the negatives paired
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Table 1: The overall results of competing baselines and our LLM-ESR. The boldface refers to
the highest score and the underline indicates the next best result of the models. “*” indicates the
statistically significant improvements (i.e., two-sided t-test with p < 0.05) over the best baseline.

Dataset Model Overall Tail Item Head Item Tail User Head User
H@10 N@10 H@10 N@10 H@10 N@10 H@10 N@10 H@10 N@10

Yelp

GRU4Rec 0.4879 0.2751 0.0171 0.0059 0.6265 0.3544 0.4919 0.2777 0.4726 0.2653
- CITIES 0.4898 0.2749 0.0134 0.0051 0.6301 0.3543 0.4936 0.2783 0.4756 0.2618
- MELT 0.4985 0.2825 0.0201 0.0079 0.6393 0.3633 0.5046 0.2865 0.4750 0.2671

- RLMRec 0.4886 0.2777 0.0188 0.0067 0.6269 0.3574 0.4920 0.2804 0.4756 0.2671
- LLMInit 0.4872 0.2749 0.0201 0.0072 0.6246 0.3537 0.4908 0.2775 0.4732 0.2647

- LLM-ESR 0.5724* 0.3413* 0.0763* 0.0318* 0.7184* 0.4324* 0.5782* 0.3456* 0.5501* 0.3247*

Bert4Rec 0.5307 0.3035 0.0115 0.0044 0.6836 0.3916 0.5325 0.3047 0.5241 0.2988
- CITIES 0.5249 0.3015 0.0041 0.0014 0.6783 0.3899 0.5274 0.3032 0.5155 0.2954
- MELT 0.6206 0.3770 0.0429 0.0149 0.7907 0.4836 0.6210 0.3780 0.6191 0.3733

- RLMRec 0.5306 0.3039 0.0104 0.0040 0.6938 0.3922 0.5351 0.3065 0.5137 0.2936
- LLMInit 0.6199 0.3781 0.0874 0.0330 0.7766 0.4797 0.6204 0.3796 0.6178 0.3723

- LLM-ESR 0.6623* 0.4222* 0.1227* 0.0500* 0.8212* 0.5318* 0.6637* 0.4247* 0.6571* 0.4127*

SASRec 0.5940 0.3597 0.1142 0.0495 0.7353 0.4511 0.5893 0.3578 0.6122 0.3672
- CITIES 0.5828 0.3540 0.1532 0.0700 0.7093 0.4376 0.5785 0.3511 0.5994 0.3649
- MELT 0.6257 0.3791 0.1015 0.0371 0.7801 0.4799 0.6246 0.3804 0.6299 0.3744

- RLMRec 0.5990 0.3623 0.0953 0.0412 0.7474 0.4568 0.5966 0.3613 0.6084 0.3658
- LLMInit 0.6415 0.3997 0.1760 0.0789 0.7785 0.4941 0.6403 0.4010 0.6462 0.3948

- LLM-ESR 0.6673* 0.4208* 0.1893* 0.0845* 0.8080* 0.5199* 0.6685* 0.4229* 0.6627* 0.4128*

Fashion

GRU4Rec 0.4798 0.3809 0.0257 0.0101 0.6606 0.5285 0.3781 0.2577 0.6118 0.5408
- CITIES 0.4762 0.3743 0.0252 0.0103 0.6557 0.5191 0.3729 0.2501 0.6103 0.5354
- MELT 0.4884 0.3975 0.0291 0.0112 0.6712 0.5513 0.3890 0.2770 0.6173 0.5538

- RLMRec 0.4795 0.3808 0.0253 0.0105 0.6603 0.5282 0.3773 0.2577 0.6120 0.5405
- LLMInit 0.4864 0.4095 0.0250 0.0104 0.6702 0.5684 0.3852 0.2973 0.6177 0.5550

- LLM-ESR 0.5409* 0.4567* 0.0807* 0.0384* 0.7242* 0.6233* 0.4560* 0.3568* 0.6512* 0.5864*

Bert4Rec 0.4668 0.3613 0.0142 0.0067 0.6470 0.5024 0.3500 0.2344 0.6183 0.5258
- CITIES 0.4926 0.4090 0.0223 0.0099 0.6799 0.5679 0.3952 0.2975 0.6190 0.5535
- MELT 0.4897 0.3810 0.0059 0.0019 0.6823 0.5319 0.3842 0.2514 0.6266 0.5491

- RLMRec 0.4744 0.3567 0.0044 0.0015 0.6615 0.4981 0.3626 0.2268 0.6194 0.5251
- LLMInit 0.4854 0.4035 0.0328 0.0161 0.6655 0.5577 0.3773 0.2846 0.6255 0.5578

- LLM-ESR 0.5487* 0.4529* 0.0525* 0.0225* 0.7462* 0.6243* 0.4629* 0.3460* 0.6599* 0.5916*

SASRec 0.4956 0.4429 0.0454 0.0235 0.6748 0.6099 0.3967 0.3390 0.6239 0.5777
- CITIES 0.4923 0.4423 0.0407 0.0214 0.6721 0.6098 0.3936 0.3392 0.6203 0.5760
- MELT 0.4875 0.4150 0.0368 0.0144 0.6670 0.5745 0.3792 0.2933 0.6280 0.5729

- RLMRec 0.4982 0.4457 0.0410 0.0223 0.6803 0.6143 0.3990 0.3415 0.6270 0.5808
- LLMInit 0.5119 0.4492 0.0596 0.0305 0.6920 0.6159 0.4184 0.3501 0.6332 0.5777

- LLM-ESR 0.5619* 0.4743* 0.1095* 0.0520* 0.7420* 0.6424* 0.4811* 0.3769* 0.6668* 0.6005*

Beauty

GRU4Rec 0.3683 0.2276 0.0796 0.0567 0.4371 0.2683 0.3584 0.2191 0.4135 0.2663
- CITIES 0.2456 0.1400 0.1122 0.0760 0.2774 0.1552 0.2382 0.1346 0.2795 0.1645
- MELT 0.3702 0.2161 0.0009 0.0003 0.4582 0.2675 0.3637 0.2116 0.3997 0.2365

- RLMRec 0.3668 0.2278 0.0780 0.0560 0.4357 0.2688 0.3576 0.2202 0.4089 0.2626
- LLMInit 0.4151 0.2713 0.0896 0.0637 0.4928 0.3208 0.4059 0.2621 0.4571 0.3133

- LLM-ESR 0.4917* 0.3140* 0.1547* 0.0801* 0.5721* 0.3698* 0.4851* 0.3079* 0.5220* 0.3420*

Bert4Rec 0.3984 0.2367 0.0101 0.0038 0.4910 0.2922 0.3851 0.2272 0.4593 0.2801
- CITIES 0.3961 0.2339 0.0023 0.0008 0.4900 0.2895 0.3832 0.2250 0.4551 0.2746
- MELT 0.4716 0.2965 0.0709 0.0291 0.5671 0.3603 0.4596 0.2865 0.5263 0.3423

- RLMRec 0.3977 0.2365 0.0090 0.0032 0.4903 0.2921 0.3853 0.2277 0.4539 0.2765
- LLMInit 0.5029 0.3209 0.0927 0.0451 0.6007 0.3867 0.4919 0.3117 0.5530 0.3632

- LLM-ESR 0.5393* 0.3590* 0.1379* 0.0745* 0.6350* 0.4269* 0.5295* 0.3507* 0.5839* 0.3972*

SASRec 0.4388 0.3030 0.0870 0.0649 0.5227 0.3598 0.4270 0.2941 0.4926 0.3438
- CITIES 0.2256 0.1413 0.1363 0.0897 0.2468 0.1536 0.2215 0.1406 0.2441 0.1444
- MELT 0.4334 0.2775 0.0460 0.0172 0.5258 0.3995 0.4233 0.2673 0.4796 0.3241

- RLMRec 0.4460 0.3075 0.0924 0.0658 0.5303 0.3652 0.4365 0.3016 0.4892 0.3345
- LLMInit 0.5455 0.3656 0.1714 0.0965 0.6347 0.4298 0.5359 0.3592 0.5893 0.3948

- LLM-ESR 0.5672* 0.3713* 0.2257* 0.1108* 0.6486* 0.4334* 0.5581* 0.3643* 0.6087* 0.4032*

with the ground truth for calculation of the metrics. To guarantee the robustness of the experimental
results, we report the average results of the triplicate test with random seeds {42, 43, 44}.

4.2 Overall Performance

To validate the effectiveness and flexibility of the proposed LLM-ESR, we show the overall, tail and
head performance on three datasets in Table 1. At a glance, we find that the proposed LLM-ESR can
outperform all competing baselines with all SRS models across all user or item groups, which verifies
the usefulness of our framework. Then, we probe more conclusions by the following analysis.
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Table 2: The ablation study on the Yelp dataset with SASRec as the backbone SRS model. The
boldface refers to the highest score and the underline indicates the next best result of the models.

Model Overall Tail Item Head Item Tail User Head User
H@10 N@10 H@10 N@10 H@10 N@10 H@10 N@10 H@10 N@10

- LLM-ESR 0.6673 0.4208 0.1893 0.0845 0.8080 0.5199 0.6685 0.4229 0.6627 0.4128
- w/o Co-view 0.6320 0.3816 0.1898 0.0856 0.7621 0.4687 0.6318 0.3823 0.6325 0.3787
- w/o Se-view 0.6468 0.4038 0.1105 0.0460 0.8047 0.5091 0.6459 0.4043 0.6501 0.4018

- w/o SD 0.6572 0.4121 0.2003 0.0898 0.7911 0.5071 0.6566 0.4130 0.6574 0.4091
- w/o Share 0.6595 0.4158 0.1728 0.0783 0.8027 0.5152 0.6606 0.4186 0.6552 0.4055
- w/o CA 0.6644 0.4160 0.1850 0.0803 0.8004 0.5119 0.6652 0.4175 0.6616 0.4105

1-layer Adapter 0.6108 0.3713 0.1107 0.0469 0.7580 0.4668 0.6065 0.3702 0.6269 0.3754
Random Init 0.6440 0.3984 0.1899 0.0839 0.7777 0.4910 0.6454 0.4018 0.6388 0.3853

Overall Comparison. From the results, we observe that the proposed LLM-ESR leads the overall
performance under both two metrics, which indicates better-enhancing effects. LLMInit is often the
secondary. This phenomenon shows that the injection of semantics from LLMs actually augments the
SRS. However, RLMRec often underperforms compared with other LLM-based methods, because
it is devised for collaborative filtering algorithms, incompatible with SRS. As for the traditional
baselines, MELT stays ahead in most cases. The reason lies in that it addresses the long-tail user and
long-tail item challenges simultaneously. By comparison, CITIES is even sometimes inferior to the
backbone SRS model due to the seesaw problem, i.e., drastic drops for popular items.

Long-tail Item and User Comparison. According to the split method illustrated in Section 2, the
items are grouped into Tail Item and Head Item. From Table 1, we observe that our LLM-ESR not
only achieves the best on the tail item group but also gets the first place on the head item group. Such
performance comparison highlights the combination of semantics and collaborative signals by our
dual-view modeling. LLMInit leads the tail group across all baselines, which suggests that semantic
information can benefit long-tail items. It is worth noting that CITIES sometimes perform better for
the tail group but harm those popular items, which means it has a seesaw problem. Additionally,
the results illustrate that MELT, LLMInit and LLM-ESR can augment the tail user group markedly.
MELT is devised to enhance tail user, but underperforms our method because of its limitations to
collaborative perspective. Though LLMInit can also benefit tail users by introducing semantics, it
ignores the utilization of LLMs from the user side.

Flexibility. Table 1 shows that the proposed framework can get the largest performance improvements
on all three backbone SRS models, which indicates the flexibility of LLM-ESR. By comparison, the
other baselines incline to depend on the type of SRS. The traditional method, i.e., CITIES and MELT,
tend to perform better for GRU4Rec, while LLMInit is more beneficial to Bert4Rec and SASRec.

4.3 Ablation Study

The results of the ablation study are shown in Table 2. Firstly, we remove the collaborative view or
semantic view to investigate the dual-view modeling, denoted as w/o Co-view and w/o Se-view. The
results show that w/o Co-view downgrades performance dramatically on the head group, while w/o
Se-view harms tail items evidently. Such changes indicate the distinct specialty of collaborative and
semantic information, highlighting the combination of both. w/o SD means dropping self-distillation,
which shows performance drops for long-tail users. It suggests the effects of the proposed retrieval
augmented self-distillation. The results of these three variants validate the motivation for designing
each component for LLM-ESR. w/o Share and w/o CA represent using split sequence encoder and
removing cross-attention. The decrease in performance of these two illustrates the effectiveness of
the sharing design and sequence-level fusion. More results can be seen in Appendix C.1.

Furthermore, we have two designs to ease the optimization of the entire LLM-ESR framework. One
is that we use dimension-reduced LLM item embeddings to initialize the collaborative embedding
layer instead of random initialization. On the other hand, we propose a two-layer adapter to fill the
large dimension gap between LLM embeddings and item embeddings. To illustrate the effectiveness
of these two designs, we compare 1-layer Adapter and Random Init variants of LLM-ESR. The
results, shown in Table 2, indicate that both variants underperform the original LLM-ESR, verifying
the success of our special designs.
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Figure 3: The hyper-parameter experiments on the weight of self-distillation loss α and the number
of retrieved similar users N . The results are based on the Yelp dataset with the SASRec model.

(a) User Group (b) Item Group

SASRec MELT LLMInit LLM-ESR

Figure 4: The results of the proposed LLM-ESR and competing baselines in meticulous user and
item groups. The results are based on the Beauty dataset with the SASRec model.

4.4 Hyper-parameter Analysis

To investigate the effects of the hyper-parameters in LLM-ESR, we show the performance trend along
with their changes in Figure 3. The hyper-parameter α controls to what extent the designed self-
distillation affects the optimization. With α ranging from 1 to 0.01, the recommending accuracy rises
first and drops then. The reason for the compromised performance of large α lies in that overemphasis
on self-distillation will affect the convergence of ranking loss. Smaller α also downgrades the
performance, which indicates the usefulness of the designed self-distillation. As for the number
of retrieved users N , the best is 10. The reason is that more users can provide more informative
interactions. However, too large N may decrease the relatedness of the retrieved users.

4.5 Group Analysis

For more meticulous analysis, we split the users and items into 5 groups according to sequence length
nu and popularity pv, and show the performance of each group in Figure 4. From the results, we
observe that LLM-based frameworks derive increases in every user and item group, while MELT has
a positive effect on some specific groups. It reflects the seesaw problem of MLET and reveals the
benefit of making use of semantic embeddings from LLMs. Comparing LLMInit with LLM-ESR,
LLM-ESR can get more increments on the long-tail groups (e.g., 1-4 user group and 1-9 item group),
which proves the better reservation of semantic information from LLMs by our framework. The
group analysis of Bert4Rec and GRU4Rec as backbones are shown in Appendix C.3.

5 Related Works

5.1 Sequential Recommendation

The core of sequential recommendation refers to capturing the sequence pattern for the next likely
item [29, 38, 31, 37, 59, 24, 23, 26, 39]. Thus, at the early stage, researchers focus on fabricating the
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architecture to improve model capacity. GRU4Rec [14] and Caser [49] apply RNNs and CNNs [21]
for sequence modeling. Later, inspired by the great success of self-attention [51] in natural language
processing, SASRec [18] and Bert4Rec [48] verify its potential in SRS. Also, Zhou et al. [65]
proposes a pure MLP architecture, achieving similar accuracy but higher efficiency compared with
SASRec. Despite the great progress in SRS, long-tail problems are still underexplored. As for the
long-tail item problem, CITIES [17] designs an embedding inference function for those long-tail items
specially. In terms of the long-tail user problem, data augmentation is the main way [36, 34]. Only
one work, MELT [20], addresses both two problems simultaneously but still sticks to a collaborative
perspective. By comparison, the proposed LLM-ESR handles both the two long-tail problems better
from a semantic view by introducing LLMs.

5.2 LLMs for Recommendation

Large language models [62, 42] have attracted widespread attention due to their powerful abilities
in semantic understanding. Recently, There emerge several works to explore how to utilize LLMs
in recommender systems (RS) [63, 28, 22, 40, 56, 57, 64, 32, 30], which can be categorized into
two lines, i.e., LLMs as RS and LLMs enhancing RS. The first line of research aims to complete
recommendation tasks by LLMs directly. At the early stage, researchers tend to fabricate the prompt
templates to stimulate the recommending ability of LLMs by dialogues. For example, ChatRec [10]
proposes a dialogue process to complete recommendation tasks step by step. DRDT [54] integrates a
retrieval-based dynamic reflection process for SRS by in-context learning [6]. LLMRerank [9] and
UniLLMRec [61] fabricate the chain-of-thought prompts to target the reranking stage and whole rec-
ommendation process, respectively. Besides, some other researchers explore fine-tuning open-sourced
LLMs for RS. TALLRec [2] is the first one, which fine-tunes a LLaMA-7B by parameter-efficient
fine-tuning techniques [15, 33]. Some following works, including E4SRec [25], LLaRA [27] and
RecInterpreter [58], target combining collaborative signals into LLMs by modifying the tokenization.
However, this line of work faces the challenge of high inference costs. Another line, LLMs enhancing
RS, is more practical, because they avoid the use of LLMs while recommending. For instance,
RLMRec [44] aligns with LLMs by an auxiliary loss. AlphaRec [46] adopts LLMs embedding to
enhance the collaborative filtering models. On the other hand, LLM4MSR [55] and Uni-CTR [8]
propose to utilize LLMs to augment the multi-domain recommendation models. As for LLMs
enhancing sequential recommendation, Harte et al. [13] and Hu et al. [16] adopt LLMs embedding
as the initialization for the traditional models. The proposed LLM-ESR belongs to the latter category
but further alleviates the problem of defect of semantic information.

6 Conclusion

In this paper, we propose a large language model enhancement framework for sequential recommen-
dation (LLM-ESR) to handle the long-tail user and long-tail item challenges. Firstly, we acquire
and cache the semantic embeddings derived from LLMs, which is for inference efficiency. Then, a
dual-view modeling framework is proposed to combine the semantics from LLMs and collaborative
signals contained in the traditional model. It can help augment the long-tail items in SRS. Next, we
design the retrieval augmented self-distillation to alleviate the long-tail user challenge. Through the
comprehensive experiments, we verify the effectiveness and flexibility of our LLM-ESR.
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A Supplement to Method

In this section, the details of prompt design and the procedures of LLM-ESR are addressed.

A.1 Prompt Design

In Section 3.2 and Section 3.3, we format the attributes of items and historical interactions of users
into textual prompts, for their semantic embeddings by LLMs. During the process of constructing
prompts, the templates play a vital role. Here, the templates are listed as follows.

Item Prompt Template. The templates mainly organize the attributes and descriptions of items,
which vary across distinct datasets due to different recorded attributes. In the following templates,
the words underlined are the corresponding attributes that will be filled in.

Item Prompt Template (Yelp)

The point of interest has the following attributes:
name is <NAME>; category is <CATEGORY>; type is <TYPE>; open status is <OPEN>;
review count is <COUNT>; city is <CITY>; average score is <STARS>.

Item Prompt Template (Fashion)

The fashion item has the following attributes:
name is <TITLE>; brand is <BRAND>; score is <DATE>; price is <PRICE>.
The item has the following features: <FEATURE>.
The item has the following descriptions: <DESCRIPTION>.

Item Prompt Template (Beauty)

The beauty item has the following attributes:
name is <TITLE>; brand is <BRAND>; price is <PRICE>.
The item has the following features: <CATEGORIES>.
The item has the following descriptions: <DESCRIPTION>.

User Prompt Template. This template mainly organizes the items that the user has interacted with.
To utilize the semantic information and avoid excess of the limitation of input length, the item in the
prompt is represented by its title. Besides, the three datasets share a unique template.

User Prompt Template

The user has visited the following items:
<ITEM1_TITLE>, <ITEM2_TITLE>, ...
please conclude the user’s preference.

A.2 Train and Inference Process

For a clearer illustration of the training and inference process, we conclude them in Algorithm 1. First,
the hyper-parameters and backbone SRS model are specified (lines 1-3). Then, organize the attributes
of items and historical interactions into textual prompts to get their semantic embeddings (line 4).
At the beginning of the training, we initialize the embedding layers in the dual-view framework
(line 5). Next, calculate the ranking loss by dual-view modeling (lines 7-9) and auxiliary loss by
retrieval augmented self-distillation (lines 10-11). Through the sum of these two losses (line 12), we
can optimize the whole LLM-ESR. During the inference, only the dual-view modeling process is
conducted to get the final recommendations (lines 16-17).
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Algorithm 1 Train and inference process of LLM-ESR

1: Indicate the backbone sequential recommendation model fθ.
2: Indicate the number of retrieved similar users N .
3: Indicate the weight of self-distillation loss α.
4: Get the semantic embeddings Ese and Ullm by LLMs.

Train Process
5: Initialize the embedding layers in the dual-view framework by the raw and dimension-reduced

Ese. Freeze the raw Ese.
6: for a batch of users UB in U do
7: Get the user preference representation in semantic and collaborative views, i.e., use and uco,

respectively.
8: Calculate the probability score of ground-truth and negative items by Equation (5).
9: Calculate the ranking loss by Equation (6).

10: Retrieve the similar users for each user in UB by Equation (7).
11: Calculate the self-distillation loss by Equation (9).
12: Sum the ranking loss and self-distillation loss. Then, update the parameters.
13: end for
Inference Process
14: Load Ese for item embedding layers and other trained parameters.
15: for each user uk in U do
16: Get the user preference representation in semantic and collaborative views, i.e., use and uco.
17: Calculate the probability score of each candidate item by Equation (5) and give out the final

recommended list.
18: end for

B Experimental Settings

In this section, we will refer to more details about the experimental settings.

B.1 Dataset and Preprocessing

The comprehensive experiments in this paper are conducted on three common-used datasets, i.e., Yelp,
Fashion and Beauty. Yelp3 is the dataset that records the check-in histories and corresponding reviews
of users. We only adopt the check-in data and the attribute information of the point-of-interests.
Amazon4 [41] is a large e-commerce dataset, which includes user’s reviews on commodities. There
are several sub-categories in this dataset and we use two of them, i.e., Fashion and Beauty.

For preprocessing, we refer to the procedures in SASRec [18]. Since the sequential recommendation
is often utilized for implicit interactions, we consider all review or rate records as interactions. Then,
the users with fewer than three interacted items are dropped, because we do not explore the problem
of cold-start users in this paper. As for the data split, the last item vnu

and the penultimate item vnu−1

of each interaction sequence are taken out as the test and validation, respectively. The statistics of the
three preprocessed datasets are shown in Table 3.

Table 3: The statistics of the preprocessed datasets
Dataset # Users # Items Sparsity Avg.length

Yelp 15,720 11,383 99.89% 12.23
Fashion 9,049 4,722 99.92% 3.82
Beauty 52,204 57,289 99.99% 7.57

3https://www.yelp.com/dataset
4https://cseweb.ucsd.edu/~jmcauley/datasets.html#amazon_reviews
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B.2 Backbone and Baseline

Backbone Models. To show the flexibility of our enhancement method, we test three popular
sequential recommendation models in the experiments. The main distinction between these models
refers to the sequence encoder fθ and ranking loss LRank.

• GRU4Rec [14]. It adopts the GRU as the sequence encoder, and sequence-to-one pairwise loss as
the final ranking loss.

• Bert4Rec [48]. Inspired by the training pattern of Bert [19], this backbone proposes a combination
between pairwise ranking loss and cloze task, which mask a proportion of items in one sequence.
The sequence encoder of Bert4Rec is the stack of bi-directional self-attention layers.

• SASRec [18]. Compared with Bert4rec, SASRec adopts the causal self-attention layer as the basic
unit of its sequence encoder. Besides, the sequence-to-sequence pairwise ranking loss is applied
for optimization during the training.

There are two groups of up-to-date baselines that are compared within this paper, i.e., traditional
baselines and LLM-based baselines.

Traditional Baselines. This category split the users and items into long-tail and head groups at first.
Then, they enhance the long-tail users or items by fabricated training procedures. Note that they only
utilize the collaborative signals essentially and do not introduce any semantics.

• CITIES [17]. This work devises an embedding-inference function to refine the embeddings of
long-tail items specially. Such embedding-inference function is trained by head items and used for
long-tail items during inference. We follow the hyper-parameters in the original paper and code5.

• MELT [20]. MELT proposes a bilateral-branch framework to enhance the long-tail users and items.
One branch is trained to generate the head user representations and enhance the tail users while
inference. The other branch is to recover the embeddings of head items during training and update
embeddings of tail items during inference. We refer to the implementation and the hyper-parameter
settings in official code6.

LLM-based Baselines. The methods in this line aim to combine the semantic information derived
from LLMs to enhance the recommendation models.

• RLMRec [44]. This baseline is one of the pioneers in utilizing the semantic embeddings derived
from LLMs. However, it is designed for collaborative filtering but not sequential recommendation.
For a fair comparison, we eliminate the process of profile generation during the implementation.
We refer to the source code7 of RLMRec to adapt it to sequential recommendation models.

• LLMInit [13, 16]. More recent works, i.e., LLM2Bert4Rec [13] and SAID [16], both utilize the
LLMs embedding to initialize the item embedding layer in SRS models and then fine-tune it by
interaction data. In this paper, we dub this way as LLMInit.

B.3 Implementation Details

We conduct all experiments on an Intel Xeon Gold 6133 platform with Tesla V100 32G GPUs.
Besides, the implementation is based on Python 3.9.5 and PyTorch 1.12.0. In terms of the hyper-
parameter search, the criterion is N@10 on the validation set. To avoid overfitting, we adopt the early
stop strategy with 20-epoch patience. For the backbone SRS models, the number of GRU layers is set
to 1 for GRU4Rec, while the number of self-attention layers is fixed at 2 for SASRec and Bert4Rec.
Also, the dropout rate is 0.6 for Bert4Rec. In terms of the training, the batch size and learning rate
are set as 128 and 0.001 for all datasets. The embedding size is 128 for all baselines, while 64 for
LLM-ESR. The reason is that there are two branches in LLM-ESR, and the half size of the other
unique-branch baseline is a fair setting. Then, we choose the Adam as the optimizer. The hyper-
parameters N and α for LLM-ESR are searched from {2, 6, 10, 14, 18} and {1, 0.5, 0.1, 0.05, 0.01}.
We find that the best choice is 10 for N and 0.1 for α for all three datasets used in this paper.

5https://github.com/swonj90/CITIES
6https://github.com/rlqja1107/MELT
7https://github.com/HKUDS/RLMRec
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Table 4: The ablation study on the Yelp dataset with Bert4Rec as the backbone SRS model. The
boldface refers to the highest score and the underline indicates the next best result of the models.

Model Overall Tail Item Head Item Tail User Head User
H@10 N@10 H@10 N@10 H@10 N@10 H@10 N@10 H@10 N@10

- LLM-ESR 0.6623 0.4222 0.1227 0.0500 0.8212 0.5318 0.6637 0.4247 0.6571 0.4127
- w/o Co-view 0.6273 0.3737 0.1272 0.0520 0.7745 0.4684 0.6296 0.3760 0.6184 0.3647
- w/o Se-view 0.6521 0.4125 0.0981 0.0395 0.8153 0.5224 0.6533 0.4150 0.6477 0.4031

- w/o SD 0.6539 0.4114 0.1299 0.0534 0.8081 0.5168 0.6539 0.4129 0.6538 0.4055
- w/o Share 0.6592 0.4193 0.1182 0.0480 0.8187 0.5276 0.6619 0.4229 0.6482 0.4100
- w/o CA 0.6368 0.3924 0.0940 0.0369 0.7966 0.4971 0.6369 0.3940 0.6367 0.3862

Table 5: The ablation study on the Yelp dataset with GRU4Rec as the backbone SRS model. The
boldface refers to the highest score and the underline indicates the next best result of the models.

Model Overall Tail Item Head Item Tail User Head User
H@10 N@10 H@10 N@10 H@10 N@10 H@10 N@10 H@10 N@10

- LLM-ESR 0.5724 0.3413 0.0763 0.0318 0.7184 0.4324 0.5782 0.3456 0.5501 0.3247
- w/o Co-view 0.5660 0.3263 0.0831 0.0331 0.7022 0.4097 0.5720 0.3310 0.5530 0.3188
- w/o Se-view 0.5273 0.3091 0.0441 0.0187 0.6695 0.3945 0.5316 0.3122 0.5107 0.2971

- w/o SD 0.5562 0.3236 0.0720 0.0309 0.7028 0.4053 0.5605 0.3371 0.5498 0.3203
- w/o Share 0.5661 0.3353 0.0789 0.0325 0.7124 0.4274 0.5689 0.3297 0.5536 0.3285
- w/o CA 0.5657 0.3327 0.0736 0.0304 0.7126 0.4128 0.5755 0.3426 0.5493 0.3227

Furthermore, the embeddings of LLMs are derived from the API8 named “text-ada-embedding-002”
provided by OpenAI.

C More Experimental Results

In this section, we will show more experimental results to further analyze the flexibility and effective-
ness of our LLM-ESR.

C.1 Ablation Study

For further analysis, we conduct the ablation study on the proposed LLM-ESR with Bert4Rec and
GRU4Rec as the backbone SRS models. The results are shown in Table 4 and Table 5. At first, we
probe the effects of dual-view modeling by removing one of the views, denoted as w/o Co-view and
w/o Se-view. From the overall performance, these two variants both underperform, which indicates
the essence of the dual-view. Besides, w/o Co-view downgrades the accuracy of the head item group
more, while w/o So-view harms the long-tail item group compared with LLM-ESR. This phenomenon
highlights the advantages of the collaborative view and semantic view, respectively. As for distinct
SRS backbone models, we find that Bert4Rec benefits more from collaborative information, because
removing the collaborative view causes a more severe performance drop. By comparison, GRU4Rec
can get more enhancement from the semantic view. Then, w/o SD means eliminating self-distillation.
It downgrades the performance of the tail user group consistently, which indicates the proposed
retrieval augmented self-distillation can actually help alleviate the long-tail user challenge. w/o Share
represents using separate sequence encoders for the dual views. This variant is a little worse than
applying a shared encoder, illustrating the common pattern for both views. Another advantage of the
shared encoder is higher parameter efficiency. Besides, LLM-ESR without cross-attention (w/o CA)
is inferior to LLM-ESR totally, which indicates the effectiveness of the sequence-level fusion.

At the same time, it is risky to overfit with semantic embeddings when the textual data is scarce. To
validate the robustness of our LLM-ESR, we conduct additional experiments in scenarios with limited
textual data. To simulate this situation, we removed all attributes from the item descriptions except
for “name” and “categories” when constructing the textual prompts for the Yelp dataset (originally
using 8 attributes). This reduced the average word count of the textual prompts from 38.38 to 20.33.
We used SASRec as the backbone model in these supplementary experiments, with results presented

8https://api.openai.com/v1/embeddings
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Table 6: The experiments for limited text and the design of freezing semantic embedding. All the
experiments are conducted on the Yelp dataset and for LLM-ESR. “Full” and “Crop” mean that we
use the completed item prompt and attribute-cropped prompt to get the LLM embeddings, respectively.
“w/o F” means that we train the LLM-ESR without freezing the semantic embedding layer.

Model Overall Tail Item Head Item Tail User Head User
H@10 N@10 H@10 N@10 H@10 N@10 H@10 N@10 H@10 N@10

Full 0.6673 0.4208 0.1893 0.0845 0.8080 0.5199 0.6685 0.4229 0.6627 0.4128
Full w/o F 0.6069 0.3664 0.1284 0.0541 0.7477 0.4584 0.6028 0.3647 0.6226 0.3730

Crop 0.6477 0.4046 0.1478 0.0675 0.7807 0.4968 0.6468 0.4058 0.6511 0.3998
Crop w/o F 0.6025 0.3630 0.1247 0.0563 0.7432 0.4563 0.6004 0.3615 0.6109 0.3786

in Table 6. In the table, Full and Crop represent the use of the complete and cropped prompts,
respectively. w/o F denotes training LLM-ESR without freezing the semantic embedding layer. The
results show a decrease in performance for both Full and Crop due to the limited textual prompt.
Moreover, Full w/o F and Crop w/o F yield similar results, indicating that semantic embeddings
suffer from overfitting with both complete and cropped prompts. In contrast, freezing the semantic
embedding layer improves performance in both scenarios and significantly benefits long-tail items,
demonstrating that our design effectively alleviates the overfitting issue.

C.2 Visualization

To further investigate how LLMs enhance the traditional SRS models, we visualize the item embed-
dings of SASRec, CITIES, MELT, our LLM-ESR (concatenate the semantic embedding ese and
collaborative embedding eco), and LLM using t-SNE, as shown in Figure 5. We group the items into
four categories based on their popularity. The t-SNE figures reveal that the embeddings of SASRec,
CITIES, and MELT tend to cluster according to item popularity. In contrast, the distribution of LLM
embeddings is more uniform, indicating that the semantic relationships are not skewed by popularity.
Furthermore, the embeddings of our LLM-ESR also show a more even distribution, validating that our
method effectively corrects the embedding distribution in SRS and thus can enhance the performance
of long-tail items.

1-4 10-29 30+5-9

(a) SASRec (b) CITIES (c) MELT (d) LLM-ESR (e) LLM

Figure 5: The visualization of the item embeddings by t-SNE. The dataset used in the experiments is
Yelp. “CITIES”, “MELT” and “LLM-ESR” are all based on the SASRec backbone model. “LLM”
represents the embeddings derived from LLM, which encodes the semantics of textual item prompts.
Different colors of circles shown in the figures mean different popularity groups of the item.

C.3 Group Analysis

For a more meticulous analysis of to what extent the proposed LLM-ESR alleviates the long-tail
challenges, we categorize users and items into 5 groups. The performances of each method with
Bert4Rec and GRU4Rec as backbone models are shown in Table 6 and Tabel 7, respectively. Firstly,
we analyze the results in different user groups. Undoubtedly, all methods perform worse for those
users with fewer interactions, which highlights the long-tail user challenge. MELT can enhance the
Bert4Rec well so that the performances in all groups get increased, but is incompatible with GRU4Rec
and thus harms several groups. By comparison, LLMInit and our LLM-ESR can benefit all user
groups consistently. Due to the better utilization of semantics from LLMs, LLM-ESR can outperform
LLMInit evidently. Besides, the superiority is larger for more long-tailed users, i.e., 1-4 and 5-9
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(a) User Group (b) Item Group

Bert4Rec MELT LLMInit LLM-ESR

Figure 6: The results of the proposed LLM-ESR and competing baselines in meticulous user and
item groups. The results are based on the Beauty dataset with the Bert4Rec model.

(a) User Group (b) Item Group

GRU4Rec MELT LLMInit LLM-ESR

Figure 7: The results of the proposed LLM-ESR and competing baselines in meticulous user and
item groups. The results are based on the Beauty dataset with the GRU4Rec model.

user groups. As for the item groups, MLET, LLMInit and LLM-ESR all elevate the recommending
accuracy for long-tail items, but get a slight drop for popular items. Such a phenomenon indicates
a trade-off between head and tail items. Despite that, larger increments for long-tail items of these
methods result in an advance in overall performance. Also, the proposed LLM-ESR leads in 1-9 item
group observably, which means it can alleviate the long-tail item challenge better.

D Limitation

Two potential limitations should be considered for this paper. Firstly, there are two hyper-parameters
for the proposed LLM-ESR, i.e., the weight of self-distillation loss α and the number of retrieved
similar users N , which is time-consuming to search for the best model. Secondly, only the LLMs
embedding provided by OpenAI API is validated in the experiments, but other more recent models [3,
52] may lead to better performance. Nonetheless, the experiments on various datasets and backbone
models consistently validate the effectiveness of our LLM-ESR
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The contributions and scope of the paper are included in the abstract and
Section 1. Please refer to the first and last paragraph of Section 1 for scope and contributions,
respectively.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: A limitation section is included in the appendix (Section D).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
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• The authors should discuss the computational efficiency of the proposed algorithms
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We introduce the details of the experiment, such as the information on hardware
and software, in the implementation detail section, i.e., Section B.3, in the appendix. Besides,
we also release the code to ease the reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have attached the data and code used in this paper in the supplementary
material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the details of the experimental settings, such as the data split,
optimizer, etc., in the experimental setting section (Section 4.1) in the main paper and the
implementation detail section (Section B.3) in the appendix.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the two-sided t-test with p < 0.05 results in the main experiments,
i.e., Table 1.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the details of compute resources in the implementation detail
section (Section B.3) in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
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9. Code Of Ethics
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Answer: [Yes]
Justification: We have made sure that our paper conforms with the NeurIPS Code of Ethics.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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Answer: [Yes]
Justification: We discuss the potential positive impacts that our algorithm will bring in the
Introduction section, i.e., Section 1
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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to point out that an improvement in the quality of generative models could be used to
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Answer: [NA]
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the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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Guidelines:
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• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We have attached the introduction of how to run the code and the license in the
code repository.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing or research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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