
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

A LANGUAGE MODEL BASED MODEL MANAGER

Anonymous authors
Paper under double-blind review

ABSTRACT

In the current landscape of machine learning, we face a “model lake” phenomenon:
a proliferation of deployed models often lacking adequate documentation. This
presents significant challenges for model users attempting to navigate, differentiate,
and select appropriate models for their needs. To address the issue of differentiation,
we introduce Model Manager, a framework designed to facilitate easy comparison
among existing models. Our approach leverages a large language model (LLM) to
generate verbalizations of two models’ differences by sampling from two models.
We use a novel protocol that makes it possible to quantify the informativeness
of the verbalizations. We also assemble a suite with a diverse set of commonly-
used models: Logistic Regression, Decision Trees, and K-Nearest Neighbors. We
additionally performed ablation studies on crucial design decisions of the Model
Managers. Our analysis yields pronounced results. For a pair of logistic regression
models with a 20-25% performance difference on the blood dataset, the Model
Manager effectively verbalizes their variations with up to 80% accuracy. The
Model Manager framework opens up new research avenues for improving the
transparency and comparability of machine learning models in a post-hoc manner.

1 INTRODUCTION

The rapid increase in the number of machine learning models across various domains has led
to the saturation of these models, many of which are poorly documented and lack standardized
evaluation metrics. This abundance creates a "model lake" (Pal et al., 2024), a vast and complex
landscape where navigating and selecting models for specific tasks is increasingly challenging since
it’s often a struggle to discern the strengths and weaknesses of these models. Several efforts have
been made to improve model management and documentation. One example is ModelDB (Vartak
et al., 2016), which serves as a versioning system that tracks models’ metadata across successive
iterations (such as model configurations, training datasets, and evaluation metrics). ModelDB’s
primary focus is on ensuring reproducibility and traceability of models over time, allowing users
to track changes and reproduce past experiments. Similarly, Model Cards (Mitchell et al., 2019)
and Data Cards (Pushkarna et al., 2022), along with recent work on their automated generation
(Liu et al., 2024), offer valuable documentation on data characteristics, model architectures, and
training processes. While these methods provide critical insights into individual models and datasets,
they do not explicitly dive into verbalizing the differences in model predictions across the feature
space. Addressing these limitations and providing interpretable verbalizations is essential for enabling
more informed decisions when selecting or developing new and effective models. Yet, research
aimed at systematically differentiating models remains sparse, leaving room for innovation in model
transparency and comparison techniques.

Recently, Large Language Models (LLMs) have shown exceptional capabilities over a diverse range
of tasks (Hendy et al., 2023; Brown et al., 2020). Previous work has shown that LLMs can be
leveraged to explain model behavior (Kroeger et al., 2023) and to develop explanation methods for
other modules (Singh et al., 2023). These advancements motivate us to build a "Model Manager"
framework that leverages LLMs to verbalize the model differences.

The Model Manager framework is designed to compare two models trained on the same dataset by
capturing and verbalizing their differences. It does so by serializing a representative sample of input
instances (from the dataset) and the corresponding model outputs in a JSON format. The serialization,
along with a task description, is passed to the LLM through a zero-shot-based prompt. The LLM then

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

analyzes the patterns from the serialization, captures the inconsistencies in the predictions between
the two models, and summarizes them in human-understandable texts.

The Model Manager framework is flexible. Since the framework primarily relies on comparing
input-output samples, it can be used with various model types and datasets. Additionally, the Model
Manager is extensible. The framework allows the user to incorporate model-specific information, for
example, textual descriptions of the structures of decision trees, which can improve the informative-
ness of the verbalization — we present the effects via ablation studies in Section 6.

To evaluate the verbalization of Model Manager, we set up a novel protocol that is inspired by the
evaluation of natural language explanations (Kopf et al., 2024; Singh et al., 2023). Given the inputs,
the first model’s outputs, and the verbalization, we use an external LLM to infer the second model’s
output. The accuracy of the inference is used to quantify the quality of the verbalization.

We test and compare the Model Managers utilizing state-of-the-art LLMs through a series of exper-
iments across different datasets, and model types (Logistic Regression, Decision Tree, K-Nearest
Neighbor). Our investigation reveals the following key findings:

• The framework can effectively verbalize differences between model-based learning algo-
rithms.

• Providing access to models’ internals (e.g., learned parameters) leads to more accurate
verbalizations.

• Obfuscating model-type information from our framework has no statistically significant
effect on its performance.

We demonstrate that our work provides a valuable starting point for future directions in explainable ar-
tificial intelligence (XAI) where LLMs can be used to manage models and enhance their transparency
and comparability in a post-hoc manner.

2 RELATED WORKS

Neuron-Level Semantics Research into the semantics of individual DNN components, particularly
neurons, has evolved significantly. Early investigations, such as those by Mu and Andreas (2020),
focused on identifying compositional logical concepts within neurons. Building on this, Hernandez
et al. (2022) developed techniques to map textual descriptions to neurons by optimizing pointwise mu-
tual information. More recent approaches have incorporated external models to enhance explanations
of neuron functions. For instance, Bills et al. (2023) conducted a proof-of-concept study using an
external large language model (LLM), such as GPT-4, to articulate neuron functionalities. However,
the perfection of these methods remains elusive, as noted by Huang et al. (2023). Evaluating the
effectiveness of these explanations is currently a vibrant area of inquiry, with ongoing studies like
those by Kopf et al. (2024) and Mondal et al. (2024).

Model-Level Explanations Beyond individual neurons, the field is extending towards automated
explanation methods for broader model components. Singh et al. (2023) approaches models as opaque
"text modules," providing explanations without internal visibility. Our methodology diverges by
incorporating more detailed information about the models, which we believe enhances the accuracy
of explanations, a concept supported by Ajwani et al. (2024). Notably, our work aligns with Kroeger
et al. (2023), who employ in-context learning for prompting LLMs to explain machine learning
models. Our strategy differs as we emphasize zero-shot instructions.

Interpretable Feature Extraction Concurrently, there is a shift towards extracting interpretable
features directly from neurons. Techniques such as learning sparse auto-encoders have been explored
by Bricken et al. (2023). A significant advancement by Templeton et al. (2024) scales up these efforts
to newer architectures like Claude 3.5 Sonnet (Anthropic, 2024). Unlike previous methods, we do
not assume a predefined set of features for explanation, opting instead to use the LLM as a dynamic
"model manager" to generate explanatory content.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: Overview of the model manager framework: Given a dataset and a pair of models trained
on that dataset, the framework verbalizes the differences between the two models.

Verbalization Techniques Another prevalent approach is the use of the language model head of
DNNs as a "logit lens," as demonstrated by nostalgebraist (2020). This method has been further
developed and diversified by researchers like Pal et al. (2023) and Belrose et al. (2023). The
PatchScope framework by Ghandeharioun et al. (2024) extends these techniques, incorporating
methods that modify the representations themselves. In our research, rather than utilizing the language
model head directly, we employ an external LLM to serve as the "model manager," providing a novel
means of interpreting and explaining model behaviors.

LLM Distinction Several approaches have emerged to differentiate between LLMs. One method,
LLM Fingerprinting, introduces a cryptographically inspired technique called Chain and Hash
(Russinovich and Salem, 2024). This approach generates a set of unique questions (the "fingerprints")
and corresponding answers, which are hashed to prevent false claims of ownership over models.
Complementing this, another method (Richardeau et al., 2024) proposes using a sequence of binary
questions, inspired by the 20 Questions game, to determine if two LLMs are identical. Unlike
fingerprinting or binary distinction, our framework focuses on the behavioral aspect of models.
Moreover, our current work does not aim to compare LLMs themselves; rather, we leverage LLMs as
a tool to compare and verbalize the differences among other models.

3 THE MODEL MANAGER

Here we present our framework (as illustrated by Figure 1) that generates natural-language descrip-
tions of the differences between two ML models trained on the same dataset, i.e., the verbalizations.

Notation: Let X = {xi}ni=1 be a tabular dataset where each xi ∈ Rd represents a feature vector.
Since we consider classification, suppose the target vector is y = {yi}ni=1, where yi ∈ C and C is
a set of possible classes. We denote a subset of the dataset as Xsub, with size nsub. Similarly, the
corresponding subset of target values is denoted by ysub = {yi}nsub

i=1. We define the feature names
of X as F = {f1, f2, . . . , fd}, where each fi represents a natural-language description of a feature,
such as "age" or "glucose."

Let M1 and M2 be the two models that we compare with our Model Manager. For each data point
xi ∈ Xsub, the predicted target values from models M1 and M2 are represented as ŷ(1)sub,i = M1(xi)

and ŷ
(2)
sub,i = M2(xi), respectively. The corresponding predicted target vectors for the subset are

denoted by ŷ
(1)
sub and ŷ

(2)
sub .

Representative Sample: We construct our representative sample using the verb split of the dataset
Xverb (size nverb) along with the predicted target vectors ŷ(1)

verb and ŷ
(2)
verb from models M1 and M2

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

respectively. Before passing the verbalization sample {Xverb, ŷ
(1)
verb, ŷ

(2)
verb} to the LLM, we serialize it

into a JSON format.

LLM for Verbalization: The framework can be used with different LLMs. Let LLMverb represent
the LLM responsible for generating verbalizations. The verbalization produced, denoted by v, lies
within the vocabulary space of LLMverb.

Prompt: We assemble the serialized results into a prompt to the verbalizer LLMverb. Our prompt
is inspired by previous LLM work in XAI (Kroeger et al., 2023) and includes the following elements:
Context, Dataset, Task, and Instructions, as illustrated in Box 1.

The Context outlines the type of models used, the classification task they perform, and a general
overview of the dataset, including details about the features and the target variable. We choose
to explicitly mention the feature names, F = {f1, f2, . . . , fd}, drawing insights from previous
work (Hegselmann et al., 2023), which showed that feature names can help improve interpretability.
We include the order of features in the representative sample to ensure that LLMverb can correctly
associate feature names with their corresponding feature values. Additionally, we explicitly explain
the meaning of the target variable, including what each possible value c ∈ C represents.

The Dataset is the serialized representative sample, as described above.

The Task section states the underlying task we want LLMverb to perform.

The Instructions enumerate detailed instructions for the LLM.

Context: We have two logistic regression models trained on the same dataset for a binary
classification task. The dataset contains details about random donors at a Blood Transfusion
Service. The 4 features that it contains, in order, are: Recency (months), Frequency (times),
Monetary (c.c. blood) and Time (months). The target feature (Blood Donated) is a binary
variable representing whether the donor donated blood in March 2007 (1 stands for donating
blood; 0 stands for not donating blood).

The dataset below contains a sample which includes the 4 input features in the order mentioned
above as well as the outputs/predictions generated by each of the two models.

Dataset: ["input":[-66.287, -76.971, -76.971, -126.295], "output":{"model1":0,
"model2": 0}, "input": [-66.287, 67.376, 67.376, -25.604],"output": {"model1": 1,
"model2": 0} ...]

Task: Based on the above sample set, generate a verbalization of the differences between the
decision boundaries of the 2 models.

Instructions:
1. Go through the sample and analyze where the outputs differ and where they don’t.
2. Identify the specific ranges of feature values for which the decision boundaries diverge.

Provide these ranges in numerical terms, not just descriptive terms like ’high’ or ’low’.
Moreover, specify how the decisions of the two models diverge for these feature values.

3. Identify any features that appear to have a notable influence on the differences between
the models’ outputs.

4. Provide a clear and effective verbalization of how the decision boundaries of the two
models diverge.

Box 1: Verbalization prompt template for LR models trained on the Blood dataset. It includes:
Context, Dataset, Task, and Instructions.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4 EVALUATION

If a verbalization v accurately captures the differences between two models, it should facilitate an
evaluator to predict the second model’s outputs given the inputs and the outputs of the first.

We use an LLM to be the evaluator, and refer to it as LLMeval. It uses the verbalization v to
analyze an evaluation sample {Xeval, ŷ

(1)
eval}, which contains the input features Xeval and only the

corresponding outputs of M1, ŷ(1)
eval. LLMeval generates a simulated output ỹ(2)

eval corresponding to
Xeval. To assess the accuracy of simulated output, ỹ(2)

eval, we use three evaluation metrics:

1. Mismatch Accuracy (Accmismatch): It evaluates the cases where the outputs of M1 and M2

disagree, i.e, Imismatch = {i | ŷ(1)eval,i ̸= ŷ
(2)
eval,i}. For these cases, the accuracy is computed as

proportion of cases where the simulated output matches that of M2, i.e., ỹ(2)eval,i = ŷ
(2)
eval,i, for

i ∈ Imismatch. The Accmismatch quantifies how well the verbalization v captures the points of
divergence between the models.

2. Match Accuracy (Accmatch): It considers the cases where the outputs of M1 and M2 agree,
i.e., Imatch = {i | ŷ(1)eval,i = ŷ

(2)
eval,i}. The accuracy is similarly computed as the proportion of

these cases where the simulated output matches that of M2. The Accmatch quantifies the
extent of v introducing false differences between the models.

3. Overall Accuracy (Accoverall): This evaluates v’s performance across all instances, com-
bining both agreement and disagreement cases. It is computed as the overall proportion of
cases where the synthetic output matches that of M2.

The evaluation prompt template can be found in the appendix (see Appendix B).

5 EXPERIMENTAL SETUP

Datasets: We consider classification tasks, and based on prior work involving LLMs ((Hegselmann
et al., 2023)), we selected the following three datasets: Blood (784 rows, 4 features, 2 classes),
Diabetes (768 rows, 8 features, 2 classes), and Car (1,728 rows, 6 features, 4 classes). The
datasets were first divided into training and test sets. From the test set, we further split the data
equally into two subsets: the verb split, which is used as a representative sample for verbalization (as
explained in Figure 3), and the eval split, which is reserved for evaluation purposes. This ensures
that verbalization and evaluation operate on distinct subsets.

To keep the input context manageable and ensure that each dataset had approximately 150 samples
in both verb and eval splits, we adjusted the proportions of the initial train-test split. The train-test
splits are shown in Table 1.

Dataset Train Split (%) Test Split (%)

Blood 60% 40%
Diabetes 60% 40%
Car 82% 18%

Table 1: Train-Test Split Percentages for Datasets

The datasets were scaled, and preprocessing steps were consistent across all model types.

Models: Through our experiments we study the performance of our framework across the two
fundamental machine learning paradigms: model-based learning and instance-based learning. This
complementary perspective spans different approaches to classification, while we anticipate poorer
performance on instance-based algorithms due to their reliance on the entire training dataset and
complex, data-dependent decision boundaries.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

In the paradigm of model-based learning algorithms, we evaluate the efficacy of LLMs in verbalizing
differences between two popular learning algorithms: (i) Logistic Regression (LR) and (ii) Decision
Tree (DT). We specifically chose these algorithms because they are widely used, interpretable and
serve as good baselines in the development of LLM-based model management frameworks. To
demonstrate the significant challenge of evaluating instance-based learning algorithms, we quantita-
tively demonstrate the difficulties faced by LLMs in verbalizing the difference for (iii) the K-Nearest
Neighbors (KNNs) algorithm.

To streamline our study, we stratified the experiments based on the percentage of differing outputs
between each pair of models, with three levels: (i) Level 1 (15%− 20%), (ii) Level 2 (20%− 25%),
and (iii) Level 3 (25% − 30%). To measure the differences between models, we computed the
percentage of differing outputs on the verb split. For each of these levels, we generated multiple
pairs of models for all three model types.

To generate pairs of LR models with a specific percentage of differing outputs, we first train a
base model using RandomizedSearchCV. Then we create multiple variations by adding randomly
generated noise to the base model’s coefficients. The noise is controlled by a modification factor m
(noise ∼ N (0,mβ)), where β represents the vector of the base model’s coefficients. We carefully
adjust m until the percentage of differing outputs between the base model and the modified model
reaches the desired level. Rather than limiting our comparisons to the base model obtained from
RandomizedSearchCV, we also compare the modified models against each other, identifying a diverse
collection of model pairs.

We follow a similar process for Decision Trees and KNNs, with the details provided in Appendix A.
For each model type and across all levels of output differences, we generate multiple base models
and corresponding modified models.

Verbalizers: We include three state-of-the-art LLMs as LLMverb: Claude 3.5 Sonnet (Anthropic,
2024), Gemini 1.5 Pro (Google, 2024), and GPT-4o (OpenAI, 2024). For each of these LLMs, we set
the temperature as T = 0.1 in their respective API calls.

Evaluator: We let LLMeval be the same model as LLMverb, to avoid the bias introduced when
LLMs process the outputs of the other language models.

Ablation Study on the effects of including model’s internals: The access to the internals, com-
pared to solely relying on the representative samples, may help LLMverb understand (and therefore
verbalize) how the models make decisions. We hypothesize that providing such model-specific infor-
mation enables LLMs to generate more accurate and faithful verbalizations. We examine the effect of
incorporating the models’ internals on the performance of our framework in generating verbalizations.
By internals, we refer to textual descriptions of a model’s learned structure or information about
its inner workings. Different model types have different key pieces of information that they rely
upon to make predictions. For Logistic Regression, this entails providing the framework with the
learned coefficients. For Decision Trees, we provide a textual representation of the learned structure,
focusing on the decision rules and splits. Lastly, for completeness, we include KNNs, incorporating
the number of neighbors (K) and the distance metric, as these parameters define their behavior.

Ablation Study on the effects of excluding model-type: The model-type is the name of the type
of the model (e.g., Logistic Regression, Decision Tree, or KNN). We study the impact of excluding
the model type when comparing models. We aim to evaluate if our framework can generate accurate
verbalizations based purely on the observed behavior, rather than the names.

It should be noted that all our ablation studies are conducted using stratification Level 2 (20-25%) as
the default configuration. Specific details about prompts can be found Appendix B.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Model Example Verbalization Excerpts

Claude . . . The divergence is most pronounced when Recency is in the -90 to -65 range,
Frequency and Monetary are very low (around -75 to -60), and Time is very low (-135
to -80). In these scenarios, Model 1 predicts a positive outcome, while Model 2 predicts
a negative outcome . . .

GPT . . . The decision boundaries of the two logistic regression models diverge primarily in
the negative ranges of the features Recency, Frequency, Monetary, and Time. Specifi-
cally, when the values of these features are within the ranges of approximately -90 to
-60 for Recency, -77 to -61 for Frequency and Monetary, and -135 to -126 for Time,
Model 2 is more likely to predict a positive outcome (1) compared to Model 1, which
tends to predict a negative outcome (0) . . .

Gemini . . . Model 2 appears to predict ’1’ (donating blood) more often than Model 1 for certain
ranges of feature values. Specifically, Model 2 predicts ’1’ when:

- Frequency is positive and Time is between approximately -25 and 40 months, and
Recency is less than approximately -70 months . . .

Table 2: Verbalization Excerpts for a pair of Level 2 (20%-25%) LR models trained on the Blood
Dataset.

Model Example Verbalization Excerpts

Claude . . . Model 2 tends to be more lenient in its classifications compared to Model 1, often
assigning higher class values.

The most significant divergence occurs when the buying price (first feature) is 0 or 1,
maintenance price (second feature) is 0 or 1, and safety (sixth feature) is 2. In these
cases, Model 2 often assigns a class of 2, while Model 1 assigns a class of 0 or 1 . . .

GPT . . . When the buying price is low (0), Model 2 tends to predict higher classes (more
favorable evaluations) compared to Model 1, especially when other conditions such as
safety, capacity, and maintenance are moderate to high.

Similar to buying price, lower maintenance costs (0) often lead to higher predictions in
Model 2 compared to Model 1, under favorable conditions in other features . . .

Gemini . . . **Model 2 demonstrates greater leniency towards cars with higher maintenance
costs.** Specifically, when the maintenance price is "high" (encoded as 2) or "very
high" (encoded as 3), Model 2 tends to assign a higher evaluation class compared to
Model 1, even when other features like buying price are less favorable . . .

Table 3: Verbalization Excerpts for a pair of Level 2 (20%-25%) DT models trained on the Car
Dataset.

6 RESULTS

6.1 COMPARING LOGISTIC REGRESSORS

Our framework demonstrates strong performance when applied to logistic regression across datasets,
likely due to their linear nature. Figure 2a shows the performance on LR models trained on the
Blood and Car datasets. Among the 3 LLMs, Claude 3.5 Sonnet achieves the best performance,
with a Accmismatch of 0.831±0.016 and a Accmatch of 0.860±0.018, indicating its ability to effec-
tively articulate the points of divergence without introducing any false differences. GPT-4o follows
closely with slightly lower yet competitive results, achieving a Accmismatch of 0.779±0.026 and a
Accmatch of 0.822±0.020. Gemini lags behind, obtaining a Accmismatch of 0.676±0.027 and a Accmatch
of 0.820±0.023. This indicates significant variation in how well each LLM handles the task of
verbalization for a pair of logistic regression models.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) Logistic Regression

(b) Decision Trees

Figure 2: Performance of three LLMs. 2a shows the Accmismatch and Accmatch for Level 2 (20%−
25%) LR models trained on Blood, Diabetes, and Car datasets. 2b shows the same for DTs.

Performance decreases across all datasets at the most challenging level, Level 1 (15-20%), as detailed
in Table 4. This suggests that as the problem complexity increases, even the best-performing LLMs
can’t keep up the same level of accuracy.

For the Diabetes and Car dataset, we observe a drop in the performance of the framework, which
can be attributed to the increasing complexity of the datasets - Diabetes with a larger number of
features and Car with multiple classes. Nevertheless, both Claude and GPT-4o maintain Accmismatch
of 0.605±0.028 and 0.574±0.031 respectively for the Car dataset, indicating that their performance
remains substantially above the random-guessing baseline. These results suggest that LLMs are
effective at verbalizing differences between logistic regression models. Table 2 shows excerpts from
some of these verbalizations.

6.2 COMPARING DECISION TREES

Decision Trees present a difficult challenge compared to LR models, mainly due to their non-linear
decision boundaries. Consequently, the framework’s performance when applied to DTs is lower,
although similar trends from LR are observed.

Figure 2b illustrates that, on the Blood dataset, Claude 3.5 Sonnet remains the top performer, with
a Accmismatch of 0.700±0.03 and Accmatch of 0.837±0.017. While competitive, GPT-4o’s results
are slightly lower than Claude’s, with a Accmismatch of 0.694±0.020 and Accmatch of 0.803±0.024.
In contrast, Gemini performs notably worse, with a particularly low Accmismatch of 0.493±0.030,
highlighting its difficulties in capturing points of divergence.

The Car dataset introduces additional complexity. Claude’s performance drops slightly but remains
strong, with Accmismatch of 0.700±0.020 and Accmatch of 0.757±0.016. GPT-4o displays a similar
decline in its performance with Accmismatch of 0.662±0.025 and Accmatch of 0.717±0.022. Gemini’s
results are again the lowest, with indicating its difficulty in distinguishing between DTs.

Despite the drop in overall performance for DTs across the datasets, Claude and GPT-4o manage to
maintain a relatively strong performance. These findings suggest a broader trend: LLMs are generally

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

able to verbalize the difference between DTs effectively. Table 3 shows excerpts from some of these
verbalizations.

6.3 COMPARING KNNS

KNNs appear more challenging for our framework due to their instance-based learning nature. Given
their reliance on specific local data points for predictions, we anticipate that our Model Manager
struggles to effectively verbalize instance-based learning algorithms, and our observations support
the anticipation. For Level 2 (20%− 25%) models on the Blood dataset, the Accmismatch scores were
lower than 0.7, with Gemini lower than 0.6. On the Car and Diabetes datasets, the performance
declines further, with Claude and GPT-4o failing to surpass 0.50 for Accmismatch. We include the
complete details of the KNN experiments in Table 6.

6.4 ABLATION STUDIES

Figure 3: Comparison of GPT-4o’s performance on DTs, with and without models’ internals, for the
Blood, Diabetes, and Car datasets. Including models’ internals resulted in performance improvements
across all cases.

a) Effects of including models’ internals: For LR, the inclusion of coefficients results in either
performance remaining within the error margin or showing a modest increase (3-5%) across all
datasets. This suggests that while the coefficients may help LLMs to better understand feature
importances, the relatively simple nature of logistic regression means the gains are minimal.

The most pronounced impact of including models’ internals can be seen for Decision Trees (Figure 3).
For the Blood Dataset, GPT-4o’s performance jumps to a Accmismatch of 0.945±0.015 and Accmatch
of 0.971±0.01, representing a 23.81% increase in Accoverall. For Claude it increases to a Accmismatch
of 0.747±0.029 and Accmatch of 0.879±0.018. Even Gemini shows a notable increase, reaching to an
Accmismatch of 0.747±0.03 and an Accmatch of 0.852±0.026. Similar trends were observed across the
other datasets, with GPT-4o showing a 25.4% improvement on the Diabetes dataset, while the Car
dataset exhibited more moderate but still meaningful gains.

These findings indicate that decision trees’ rule-based nature likely enables LLMs to better capture
and articulate the model’s underlying decision-making process. The explicit structure of decision
paths in decision trees seems to facilitate more accurate and interpretable verbalizations.

As hypothesized, KNN models showed minimal or even slightly negative effects when model-specific
information was included. This reinforces the idea that KNN’s reliance on local instance-based
learning, rather than explicit parameters or decision rules, poses challenges for LLMs in verbalizing
model behavior effectively. The slight negative effect can be attributed to LLM focusing on the
parameters passed and not the sample set.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

The impact of including model-specific information varied depending upon the type of model. For
logistic regression, a marginal increase was observed in the scores. However, decision trees witness
the most substantial improvement, with performance gains across all datasets and all LLMs, with
Accoverall even reaching above 0.9 in some cases. This underscores the effectiveness of including
model-specific information in generating more accurate and faithful verbalizations. These find-
ings suggest a broader trend: For certain model types, including model-specific information can
significantly enhance the quality of generated verbalizations.

b) Effects of excluding model-type: The results in subsection A.2 show that removing model-type
information from the prompt had little effect on the quality of verbalizations, with performance
variations remaining within the margin of error. This implies that our framework relies mainly
on the observed behavior (i.e., the representative sample) when verbalizing differences in decision
boundaries.

7 DISCUSSION

Our results show promising trends when verbalizing the differences of parametric models (LR and
DT). The non-parametric KNN models, on the other hand, introduce more challenges, as indicated
by the lower Accmatch and Accmismatch. On one hand, these indicate that future Model Managers on
non-parametric models need to consider factors that describe the dataset. On the other hand, these
indicate that the Model Managers can be extended to verbalizing the differences between Deep Neural
Networks, especially incorporating approaches that describe the models’ internals (e.g., mechanistic
interpretability). Considering the complex nature of DNNs, the developers for Model Managers on
DNNs will have to consider a lot of intricate details.

The plug-and-compare flexibility of Model Manager allows potential upgrades to the Manager. When
newer, higher-capability LMs are developed, we can replace the LM in Model Manager with the
next-generation ones. The same flexibility applies to the prompting techniques and the expected tasks
(for example, comparing across more than two models).

A good resource manager does not just observe. Beyond verbalization, a fully-fledged Model Manager
should be able to automatically inspect the individual models, question the potential weaknesses, and
potentially recommend improvement methods, including but not limited to model merging, model
safeguarding, and model debiasing. A lot of future work is needed toward this goal, which we believe
deserves more attention from the field.

8 CONCLUSION

In conclusion, the Model Manager framework establishes a foundational step toward automatic
management of machine learning models. The Model Manager verbalizes the difference between two
models. While it excels in identifying differences between parametric models, challenges remain with
non-parametric models like KNNs, highlighting the need for tailored strategies that accommodate the
unique characteristics of various model types. This research sets the stage for future research in model
management tools that can dynamically adapt to the evolving landscape of ML technologies. As we
look to the future, integrating more sophisticated language models and expanding the framework’s
capabilities will be essential in advancing the field towards more transparent, accountable, and
effective AI systems.

REFERENCES

Rohan Ajwani, Shashidhar Reddy Javaji, Frank Rudzicz, and Zining Zhu. 2024. LLM-generated
black-box explanations can be adversarially helpful. In arXiv preprint arXiv:2405.06800.

Anthropic. 2024. Introducing claude 3.5 sonnet.

10

https://arxiv.org/abs/2405.06800
https://arxiv.org/abs/2405.06800
https://www.anthropic.com/news/claude-3-5-sonnet

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Nora Belrose, Zach Furman, Logan Smith, Danny Halawi, Igor Ostrovsky, Lev McKinney, Stella
Biderman, and Jacob Steinhardt. 2023. Eliciting latent predictions from transformers with the
tuned lens.

Steven Bills, Nick Cammarata, Dan Mossing, Henk Tillman, Leo Gao, Gabriel Goh, Ilya Sutskever,
Jan Leike, Jeff Wu, and William Saunders. 2023. Language models can explain neurons in
language models.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick
Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu, Shauna Kravec,
Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex Tamkin, Karina
Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and
Christopher Olah. 2023. Towards monosemanticity: Decomposing language models with dictio-
nary learning. Transformer Circuits Thread.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. 2020. Language models are few-shot learners. Preprint,
arXiv:2005.14165.

Asma Ghandeharioun, Avi Caciularu, Adam Pearce, Lucas Dixon, and Mor Geva. 2024. Patchscopes:
A unifying framework for inspecting hidden representations of language models.

Google. 2024. Introducing Gemini 1.5, Google’s next-generation AI model.

Stefan Hegselmann, Alejandro Buendia, Hunter Lang, Monica Agrawal, Xiaoyi Jiang, and David
Sontag. 2023. Tabllm: Few-shot classification of tabular data with large language models. Preprint,
arXiv:2210.10723.

Amr Hendy, Mohamed Abdelrehim, Amr Sharaf, Vikas Raunak, Mohamed Gabr, Hitokazu Mat-
sushita, Young Jin Kim, Mohamed Afify, and Hany Hassan Awadalla. 2023. How good are gpt
models at machine translation? a comprehensive evaluation. Preprint, arXiv:2302.09210.

Evan Hernandez, Sarah Schwettmann, David Bau, Teona Bagashvili, Antonio Torralba, and Jacob
Andreas. 2022. Natural language descriptions of deep visual features.

Jing Huang, Atticus Geiger, Karel D’Oosterlinck, Zhengxuan Wu, and Christopher Potts. 2023.
Rigorously assessing natural language explanations of neurons.

Laura Kopf, Philine Lou Bommer, Anna Hedström, Sebastian Lapuschkin, Marina M. C. Höhne, and
Kirill Bykov. 2024. CoSy: Evaluating textual explanations of neurons.

Nicholas Kroeger, Dan Ley, Satyapriya Krishna, Chirag Agarwal, and Himabindu Lakkaraju. 2023.
Are large language models post hoc explainers?

Jiarui Liu, Wenkai Li, Zhijing Jin, and Mona Diab. 2024. Automatic generation of model and data
cards: A step towards responsible ai. Preprint, arXiv:2405.06258.

Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman, Ben Hutchinson,
Elena Spitzer, Inioluwa Deborah Raji, and Timnit Gebru. 2019. Model cards for model reporting.
In Proceedings of the Conference on Fairness, Accountability, and Transparency, FAT* ’19. ACM.

Shrayani Mondal, Rishabh Garodia, Arbaaz Qureshi, Taesung Lee, and Youngja Park. 2024. Towards
generating informative textual description for neurons in language models.

Jesse Mu and Jacob Andreas. 2020. Compositional explanations of neurons. CoRR, abs/2006.14032.

nostalgebraist. 2020. Interpreting GPT: the logit lens.

11

https://doi.org/10.48550/arXiv.2303.08112
https://doi.org/10.48550/arXiv.2303.08112
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://arxiv.org/abs/2005.14165
https://doi.org/10.48550/arXiv.2401.06102
https://doi.org/10.48550/arXiv.2401.06102
https://developers.googleblog.com/en/gemini-15-pro-now-available-in-180-countries-with-native-audio-understanding-system-instructions-json-mode-and-more/
https://arxiv.org/abs/2210.10723
https://arxiv.org/abs/2302.09210
https://arxiv.org/abs/2302.09210
http://arxiv.org/abs/2309.10312
https://doi.org/10.48550/ARXIV.2405.20331
https://openreview.net/forum?id=MOtZlKkvdz
https://arxiv.org/abs/2405.06258
https://arxiv.org/abs/2405.06258
https://doi.org/10.1145/3287560.3287596
https://doi.org/10.48550/ARXIV.2401.16731
https://doi.org/10.48550/ARXIV.2401.16731
https://arxiv.org/abs/2006.14032
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

OpenAI. 2024. Hello gpt-4o.

Koyena Pal, David Bau, and Renée J. Miller. 2024. Model lakes. Preprint, arXiv:2403.02327.

Koyena Pal, Jiuding Sun, Andrew Yuan, Byron C. Wallace, and David Bau. 2023. Future lens:
Anticipating subsequent tokens from a single hidden state. In Proceedings of the 27th Conference
on Computational Natural Language Learning (CoNLL), pages 548–560.

Mahima Pushkarna, Andrew Zaldivar, and Oddur Kjartansson. 2022. Data cards: Purposeful and
transparent dataset documentation for responsible ai. Preprint, arXiv:2204.01075.

Gurvan Richardeau, Erwan Le Merrer, Camilla Penzo, and Gilles Tredan. 2024. The 20 questions
game to distinguish large language models. Preprint, arXiv:2409.10338.

Mark Russinovich and Ahmed Salem. 2024. Hey, that’s my model! introducing chain hash, an llm
fingerprinting technique. Preprint, arXiv:2407.10887.

Chandan Singh, Aliyah R. Hsu, Richard Antonello, Shailee Jain, Alexander G. Huth, Bin Yu, and
Jianfeng Gao. 2023. Explaining black box text modules in natural language with language models.
Preprint, arxiv:2305.09863.

Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen, Adam
Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham, Nicholas L Turner,
Callum McDougall, Monte MacDiarmid, C. Daniel Freeman, Theodore R. Sumers, Edward Rees,
Joshua Batson, Adam Jermyn, Shan Carter, Chris Olah, and Tom Henighan. 2024. Scaling
monosemanticity: Extracting interpretable features from claude 3 sonnet.

Manasi Vartak, Harihar Subramanyam, Wei-En Lee, Srinidhi Viswanathan, Saadiyah Husnoo, Samuel
Madden, and Matei Zaharia. 2016. Modeldb: a system for machine learning model management.
In Proceedings of the Workshop on Human-In-the-Loop Data Analytics, HILDA ’16, New York,
NY, USA. Association for Computing Machinery.

A APPENDIX: EXPERIMENT DETAILS AND FULL RESULTS

A.1 ADDITIONAL EXPERIMENTAL DETAILS

DT generation: For DTs, similar to the LR models, we first train a base model using
RandomizedSearchCV. To generate a modified DT, we introduce two levels of variation. First,
we randomly sample new hyperparameters from the defined space. This ensures that the modified
tree has a structure different from the base model. Second, we add noise to the splitting thresholds
of the nodes. The noise is normally distributed and controlled by a modification factor m (noise
∼ N (0,m)) and is scaled to the level of thresholds (noise = τ∗ noise). We carefully adjust m until
the percentage of differing outputs between the base model and the modified model reaches the desired
level. Rather than limiting our comparison to the base model obtained from RandomizedSearchCV,
we also compare the modified models against each other, identifying a diverse collection of pairs.

KNNs generation : In the case of KNNs, we first train a base model using RandomizedSearchCV.
To generate modified versions, we randomly sample new hyperparameters and compare the predictions
of the base model with each modified model, calculating the percentage of differing outputs until it
reaches the desired level. Additionally, we compare the modified models against each other to obtain
a diverse collection of pairs.

A.2 FULL EXPERIMENTAL RESULTS

We present complete results for these models in Table 4, Table 5 and Table 6.

12

https://openai.com/index/hello-gpt-4o/
https://arxiv.org/abs/2403.02327
https://doi.org/10.18653/v1/2023.conll-1.37
https://doi.org/10.18653/v1/2023.conll-1.37
https://arxiv.org/abs/2204.01075
https://arxiv.org/abs/2204.01075
https://arxiv.org/abs/2409.10338
https://arxiv.org/abs/2409.10338
https://arxiv.org/abs/2407.10887
https://arxiv.org/abs/2407.10887
https://arxiv.org/abs/2305.09863
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://doi.org/10.1145/2939502.2939516

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Table 4: Evaluation metrics for LR models across different datasets. Each row includes the per-
formance metrics for an LLM, measured across Level 1 (15%-20%), Level 2 (20%-25%), Level 3
(25% − 30%), Level 4 (20% − 25% With Models’ Internals), and Level 5 (20% − 25% Without
Model Type).

LLM Metric Level 1 Level 2 Level 3 Level 4 Level 5

Blood Dataset

Claude
3.5
Sonnet

Accmismatch 0.806 ±.021 0.831 ±.016 0.871 ±.009 0.869 ±.019 0.828 ±.014
Accmatch 0.697 ±.012 0.860 ±.018 0.808 ±.015 0.844 ±.014 0.861 ±.023
Accoverall 0.717 ±.009 0.854 ±.016 0.824 ±.09 0.850 ±.013 0.854 ±.019

GPT-4o
Accmismatch 0.744 ±.016 0.779 ±.026 0.763 ±.013 0.804 ±.020 0.780 ±.025
Accmatch 0.804 ±.016 0.822 ±.020 0.828 ±.013 0.812 ±.015 0.839 ±.018
Accoverall 0.794 ±.013 0.815 ±.015 0.809 ±.009 0.811 ±.013 0.827 ±.014

Gemini
1.5 Pro

Accmismatch 0.670 ±.033 0.674 ±.027 0.710 ±.021 0.663 ±.030 0.716 ±.023
Accmatch 0.761 ±.022 0.820 ±.023 0.760 ±.020 0.854 ±.024 0.793 ±.029
Accoverall 0.747 ±.016 0.776 ±.019 0.744 ±.013 0.816 ±.021 0.774 ±.023

Car Dataset

Claude
3.5
Sonnet

Accmismatch 0.612 ±.025 0.605 ±.028 0.711 ±.021 0.655 ±.020 0.602 ±.033
Accmatch 0.741 ±.022 0.763 ±.025 0.802 ±.026 0.762 ±.021 0.758 ±.034
Accoverall 0.718 ±.017 0.725 ±.018 0.776 ±.020 0.735 ±.016 0.719 ±.024

GPT-4o
Accmismatch 0.541 ±.026 0.574 ±.031 0.608 ±.024 0.629 ±.020 0.557 ±.031
Accmatch 0.713 ±.027 0.737 ±.030 0.771 ±.023 0.762 ±.020 0.745 ±.033
Accoverall 0.679 ±.023 0.697 ±.022 0.729 ±.015 0.729 ±.016 0.699 ±.023

Gemini
1.5 Pro

Accmismatch 0.416 ±.014 0.418 ±.025 0.446 ±.016 0.417 ±.023 0.406 ±.021
Accmatch 0.693 ±.024 0.688 ±.019 0.606 ±.032 0.755 ±.017 0.690 ±.022
Accoverall 0.638 ±.018 0.624 ±.016 0.562 ±.023 0.674 ±.014 0.624 ±.019

Diabetes Dataset

Claude
3.5
Sonnet

Accmismatch 0.522 ±.040 0.610 ±.019 0.616 ±.025 0.619 ±.017 0.600 ±.026
Accmatch 0.777 ±.024 0.864 ±.015 0.831 ±.021 0.874 ±.012 0.884 ±.017
Accoverall 0.702 ±.017 0.805 ±.011 0.772 ±.018 0.815 ±.008 0.820 ±.013

GPT-4o
Accmismatch 0.442 ±.030 0.611 ±.025 0.544 ±.027 0.628 ±.022 0.617 ±.021
Accmatch 0.687 ±.023 0.825 ±.018 0.687 ±.025 0.829 ±.011 0.846 ±.018
Accoverall 0.642 ±.016 0.776 ±.015 0.645 ±.020 0.786 ±.008 0.791 ±.013

Gemini
1.5 Pro

Accmismatch 0.398 ±.023 0.556 ±.034 0.454 ±.029 0.583 ±.034 0.564 ±.026
Accmatch 0.808 ±.016 0.828 ±.021 0.671 ±.032 0.855 ±.021 0.814 ±.025
Accoverall 0.723 ±.013 0.768 ±.015 0.607 ±.024 0.800 ±.015 0.756 ±.020

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 5: Evaluation metrics for DT models across different datasets. Each row includes the per-
formance metrics for an LLM, measured across Level 1 (15%-20%), Level 2 (20%-25%), Level 3
(25% − 30%), Level 4 (20% − 25% With Models’ Internals), and Level 5 (20% − 25% Without
Model Type).

LLM Metric Level 1 Level 2 Level 3 Level 4 Level 5

Blood Dataset

Claude
3.5
Sonnet

Accmismatch 0.654 ±.015 0.701 ±.033 0.788 ±.024 0.747 ±.029 0.699 ±.029
Accmatch 0.861 ±.019 0.837 ±.017 0.861 ±.023 0.879 ±.018 0.849 ±.018
Accoverall 0.826 ±.018 0.812 ±.010 0.834 ±.015 0.854 ±.017 0.822 ±.017

GPT-4o
Accmismatch 0.693 ±.029 0.694 ±.020 0.758 ±.022 0.945 ±.015 0.699 ±.023
Accmatch 0.823 ±.025 0.803 ±.024 0.838 ±.022 0.971 ±.010 0.805 ±.019
Accoverall 0.800 ±.022 0.780 ±.019 0.808 ±.015 0.966 ±.009 0.783 ±.017

Gemini
1.5 Pro

Accmismatch 0.521 ±.021 0.493 ±.030 0.739 ±.041 0.747 ±.030 0.499 ±.025
Accmatch 0.817 ±.029 0.804 ±.036 0.852 ±.020 0.852 ±.026 0.793 ±.022
Accoverall 0.764 ±.024 0.737 ±.027 0.818 ±.017 0.832 ±.020 0.729 ±.021

Car Dataset

Claude
3.5
Sonnet

Accmismatch 0.599 ±.028 0.699 ±.020 0.680 ±.026 0.732 ±.039 0.700 ±.024
Accmatch 0.753 ±.022 0.757 ±.016 0.772 ±.020 0.823 ±.024 0.753 ±.017
Accoverall 0.721 ±.013 0.743 ±.014 0.748 ±.015 0.802 ±.024 0.740 ±.015

GPT-4o
Accmismatch 0.599 ±.025 0.662 ±.025 0.620 ±.028 0.772 ±.040 0.663 ±.024
Accmatch 0.778 ±.018 0.717 ±.022 0.794 ±.019 0.911 ±.016 0.720 ±.019
Accoverall 0.745 ±.014 0.703 ±.019 0.749 ±.017 0.882 ±.014 0.706 ±.015

Gemini
1.5 Pro

Accmismatch 0.483 ±.028 0.522 ±.029 0.510 ±.000 0.567 ±.037 0.528 ±.034
Accmatch 0.721 ±.026 0.684 ±.022 0.699 ±.000 0.835 ±.013 0.678 ±.028
Accoverall 0.677 ±.021 0.651 ±.020 0.652 ±.000 0.774 ±.016 0.647 ±.023

Diabetes Dataset

Claude
3.5
Sonnet

Accmismatch 0.479 ±.019 0.551 ±.015 0.610 ±.019 0.657 ±.033 0.553 ±.021
Accmatch 0.828 ±.018 0.781 ±.018 0.843 ±.021 0.913 ±.014 0.773 ±.022
Accoverall 0.752 ±.016 0.736 ±.016 0.785 ±.013 0.864 ±.014 0.730 ±.018

GPT-4o
Accmismatch 0.548 ±.017 0.646 ±.029 0.566 ±.031 0.811 ±.032 0.652 ±.026
Accmatch 0.786 ±.019 0.737 ±.026 0.815 ±.020 0.921 ±.015 0.747 ±.022
Accoverall 0.734 ±.014 0.719 ±.019 0.754 ±.015 0.902 ±.015 0.728 ±.020

Gemini
1.5 Pro

Accmismatch 0.441 ±.031 0.452 ±.038 0.611 ±.040 0.590 ±.357 0.528 ±.34
Accmatch 0.822 ±.024 0.801 ±.025 0.899 ±.014 0.851 ±.236 0.678 ±.28
Accoverall 0.739 ±.019 0.719 ±.016 0.826 ±.013 0.801 ±.217 0.647 ±.23

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 6: Evaluation metrics for KNN models across different datasets. Each row includes the
performance metrics for an LLM, measured across Level 1 (15%-20%), Level 2 (20%-25%), Level
3 (25%− 30%), Level 4 (20%− 25% With Models’ Internals), and Level 5 (20%− 25% Without
Model Type).

LLM Metric Level 1 Level 2 Level 3 Level 4 Level 5

Blood Dataset

Claude
3.5
Sonnet

Accmismatch 0.656 ±.021 0.686 ±.023 0.777 ±.031 0.720 ±.024 0.707 ±.022
Accmatch 0.826 ±.020 0.845 ±.024 0.717 ±.020 0.847 ±.023 0.832 ±.028
Accoverall 0.795 ±.019 0.811 ±.019 0.737 ±.011 0.821 ±.018 0.805 ±.022

GPT-4o
Accmismatch 0.647 ±.019 0.648 ±.023 0.722 ±.019 0.708 ±.019 0.663 ±.029
Accmatch 0.856 ±.019 0.876 ±.015 0.776 ±.020 0.836 ±.031 0.873 ±.018
Accoverall 0.818 ±.017 0.829 ±.014 0.767 ±.015 0.809 ±.023 0.830 ±.015

Gemini
1.5 Pro

Accmismatch 0.549 ±.030 0.559 ±.031 0.608 ±.025 0.576 ±.036 0.564 ±.031
Accmatch 0.687 ±.023 0.774 ±.020 0.709 ±.024 0.802 ±.025 0.757 ±.020
Accoverall 0.662 ±.022 0.729 ±.019 0.686 ±.021 0.755 ±.020 0.717 ±.019

Car Dataset

Claude
3.5
Sonnet

Accmismatch 0.454 ±.016 0.490 ±.030 0.499 ±.014 0.469 ±.030 0.477 ±.031
Accmatch 0.760 ±.017 0.709 ±.032 0.752 ±.025 0.616 ±.046 0.654 ±.033
Accoverall 0.705 ±.013 0.657 ±.029 0.688 ±.019 0.581 ±.040 0.613 ±.030

GPT-4o
Accmismatch 0.345 ±.024 0.460 ±.031 0.455 ±.023 0.411 ±.026 0.466 ±.039
Accmatch 0.828 ±.012 0.751 ±.030 0.773 ±.020 0.651 ±.039 0.724 ±.025
Accoverall 0.737 ±.010 0.682 ±.029 0.692 ±.015 0.593 ±.033 0.665 ±.025

Gemini
1.5 Pro

Accmismatch 0.304 ±.021 0.325 ±.026 0.353 ±.019 0.332 ±.034 0.330 ±.025
Accmatch 0.593 ±.029 0.626 ±.034 0.672 ±.024 0.629 ±.026 0.625 ±.023
Accoverall 0.536 ±.024 0.554 ±.030 0.591 ±.019 0.558 ±.023 0.554 ±.021

Diabetes Dataset

Claude
3.5
Sonnet

Accmismatch 0.616 ±.014 0.603 ±.025 0.624 ±.013 0.589 ±.024 0.606 ±.033
Accmatch 0.840 ±.020 0.800 ±.029 0.716 ±.025 0.758 ±.036 0.805 ±.030
Accoverall 0.796 ±.017 0.756 ±.024 0.693 ±.022 0.720 ±.030 0.762 ±.028

GPT-4o
Accmismatch 0.626 ±.030 0.566 ±.027 0.556 ±.019 0.519 ±.022 0.490 ±.031
Accmatch 0.864 ±.019 0.784 ±.032 0.702 ±.041 0.792 ±.020 0.763 ±.032
Accoverall 0.819 ±.018 0.736 ±.026 0.664 ±.031 0.733 ±.017 0.705 ±.029

Gemini
1.5 Pro

Accmismatch 0.422 ±.022 0.473 ±.029 0.510 ±.029 0.462 ±.032 0.460 ±.034
Accmatch 0.852 ±.017 0.774 ±.030 0.699 ±.031 0.782 ±.028 0.767 ±.027
Accoverall 0.770 ±.015 0.709 ±.026 0.650 ±.024 0.713 ±.021 0.701 ±.023

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B PROMPTS

Context: We have two {MODEL_TYPE} models trained on the same dataset for a
{CLASSIFICATION_TYPE} problem. {DATASET_DESCRIPTION}

The verbalization below contains a natural language description of the differences between the
decision boundaries of the two models.

Dataset: {DATASET_SAMPLE}

Verbalization: {VERBALIZATION}

Task: Based on the above verbalization, predict the output of Model 2 for each of the input
instance in the above sample.

Instructions: Think about the question carefully. Go through the verbalization thoroughly.
Analyze the input features in the sample. After explaining your reasoning, provide the answer in
a JSON format within markdown at the end. The JSON should contain the input features and
the output of Model 2. Do not provide any further details after the JSON.

Box 2: Evaluation Prompt Template

Context: We have two {MODEL_TYPE} models trained on the same dataset for a
{CLASSIFICATION_PROBLEM} task. {DATSET_DESCRIPTION}

Model Information: {MODEL_INFO}

Dataset: {DATASET_SAMPLE}

Task: Based on the above model information and the sample set, generate a verbalization of the
differences between the decision boundaries of the two models.

Instructions:
1. Review the model information and go through the sample. Analyze where the outputs

differ and where they don’t.
2. Identify the specific ranges of feature values for which the decision boundaries diverge.

Provide these ranges in numerical terms, not just descriptive terms like ’high’ or ’low’.
Moreover, specify how the decisions of the two models diverge for these feature values.

3. Identify any features that appear to have a notable influence on the differences between
the models’ outputs.

4. Provide a clear and effective verbalization of how the decision boundaries of the two
models diverge.

Box 3: Ablation Study 1 Prompt Template (Effects of Including Model Information)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Context: We have two models trained on the same dataset for a {CLASSIFICAITON_PROBLEM}
task. {DATASET_DESCRIPTION}

Dataset: {DATASET_SAMPLE}

Task: Based on the above set, generate a verbalization of the differences between the decision
boundaries of the two models.

Instructions:
1. Go through the sample and analyze where the outputs differ and where they don’t.
2. Identify the specific ranges of feature values for which the decision boundaries diverge.

Provide these ranges in numerical terms, not just descriptive terms like ’high’ or ’low’.
Moreover, specify how the decisions of the two models diverge for these feature values.

3. Identify any features that appear to have a notable influence on the differences between
the models’ outputs.

4. Provide a clear and effective verbalization of how the decision boundaries of the two
models diverge.

Box 4: Ablation Study 2 Prompt Template (Effects of Removing Model Type)

17

	Introduction
	Related Works
	The Model Manager
	Evaluation
	Experimental Setup
	Results
	Comparing logistic regressors
	Comparing decision trees
	Comparing KNNs
	Ablation Studies

	Discussion
	Conclusion
	Appendix: Experiment Details and Full Results
	Additional Experimental Details
	Full Experimental Results

	Prompts

