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ABSTRACT

In the current landscape of machine learning, we face a “model lake” phenomenon:
a proliferation of deployed models often lacking adequate documentation. This
presents significant challenges for model users attempting to navigate, differentiate,
and select appropriate models for their needs. To address the issue of differentiation,
we introduce Model Manager, a framework designed to facilitate easy comparison
among existing models. Our approach leverages a large language model (LLM) to
generate verbalizations of two models’ differences by sampling from two models.
We use a novel protocol that makes it possible to quantify the informativeness
of the verbalizations. We also assemble a suite with a diverse set of commonly-
used models: Logistic Regression, Decision Trees, and K-Nearest Neighbors. We
additionally performed ablation studies on crucial design decisions of the Model
Managers. Our analysis yields pronounced results. For a pair of logistic regression
models with a 20-25% performance difference on the blood dataset, the Model
Manager effectively verbalizes their variations with up to 80% accuracy. The
Model Manager framework opens up new research avenues for improving the
transparency and comparability of machine learning models in a post-hoc manner.

1 INTRODUCTION

The rapid increase in the number of machine learning models across various domains has led
to the saturation of these models, many of which are poorly documented and lack standardized
evaluation metrics. This abundance creates a "model lake" (Pal et al., [2024), a vast and complex
landscape where navigating and selecting models for specific tasks is increasingly challenging since
it’s often a struggle to discern the strengths and weaknesses of these models. Several efforts have
been made to improve model management and documentation. One example is ModelDB (Vartak:
et al., [2016), which serves as a versioning system that tracks models’ metadata across successive
iterations (such as model configurations, training datasets, and evaluation metrics). ModelDB’s
primary focus is on ensuring reproducibility and traceability of models over time, allowing users
to track changes and reproduce past experiments. Similarly, Model Cards (Mitchell et al., 2019)
and Data Cards (Pushkarna et al., [2022), along with recent work on their automated generation
(L1u et al.l 2024)), offer valuable documentation on data characteristics, model architectures, and
training processes. While these methods provide critical insights into individual models and datasets,
they do not explicitly dive into verbalizing the differences in model predictions across the feature
space. Addressing these limitations and providing interpretable verbalizations is essential for enabling
more informed decisions when selecting or developing new and effective models. Yet, research
aimed at systematically differentiating models remains sparse, leaving room for innovation in model
transparency and comparison techniques.

Recently, Large Language Models (LLMs) have shown exceptional capabilities over a diverse range
of tasks (Hendy et al.| 2023} [Brown et al.| 2020). Previous work has shown that LLMs can be
leveraged to explain model behavior (Kroeger et al.,|2023)) and to develop explanation methods for
other modules (Singh et al., [2023)). These advancements motivate us to build a "Model Manager"
framework that leverages LLMs to verbalize the model differences.

The Model Manager framework is designed to compare two models trained on the same dataset by
capturing and verbalizing their differences. It does so by serializing a representative sample of input
instances (from the dataset) and the corresponding model outputs in a JSON format. The serialization,
along with a task description, is passed to the LLM through a zero-shot-based prompt. The LLM then
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analyzes the patterns from the serialization, captures the inconsistencies in the predictions between
the two models, and summarizes them in human-understandable texts.

The Model Manager framework is flexible. Since the framework primarily relies on comparing
input-output samples, it can be used with various model types and datasets. Additionally, the Model
Manager is extensible. The framework allows the user to incorporate model-specific information, for
example, textual descriptions of the structures of decision trees, which can improve the informative-
ness of the verbalization — we present the effects via ablation studies in Section [6]

To evaluate the verbalization of Model Manager, we set up a novel protocol that is inspired by the
evaluation of natural language explanations (Kopf et al.,|2024; |Singh et al.}|2023)). Given the inputs,
the first model’s outputs, and the verbalization, we use an external LLM to infer the second model’s
output. The accuracy of the inference is used to quantify the quality of the verbalization.

We test and compare the Model Managers utilizing state-of-the-art LLMs through a series of exper-
iments across different datasets, and model types (Logistic Regression, Decision Tree, K-Nearest
Neighbor). Our investigation reveals the following key findings:

* The framework can effectively verbalize differences between model-based learning algo-
rithms.

* Providing access to models’ internals (e.g., learned parameters) leads to more accurate
verbalizations.

* Obfuscating model-type information from our framework has no statistically significant
effect on its performance.

We demonstrate that our work provides a valuable starting point for future directions in explainable ar-
tificial intelligence (XAI) where LLMs can be used to manage models and enhance their transparency
and comparability in a post-hoc manner.

2 RELATED WORKS

Neuron-Level Semantics Research into the semantics of individual DNN components, particularly
neurons, has evolved significantly. Early investigations, such as those by Mu and Andreas|(2020)),
focused on identifying compositional logical concepts within neurons. Building on this, Hernandez
et al.|(2022) developed techniques to map textual descriptions to neurons by optimizing pointwise mu-
tual information. More recent approaches have incorporated external models to enhance explanations
of neuron functions. For instance, [Bills et al.| (2023) conducted a proof-of-concept study using an
external large language model (LLM), such as GPT-4, to articulate neuron functionalities. However,
the perfection of these methods remains elusive, as noted by [Huang et al.| (2023)). Evaluating the
effectiveness of these explanations is currently a vibrant area of inquiry, with ongoing studies like
those by Kopf et al.| (2024) and Mondal et al.[(2024).

Model-Level Explanations Beyond individual neurons, the field is extending towards automated
explanation methods for broader model components. |Singh et al.|(2023) approaches models as opaque
"text modules," providing explanations without internal visibility. Our methodology diverges by
incorporating more detailed information about the models, which we believe enhances the accuracy
of explanations, a concept supported by Ajwani et al.|(2024). Notably, our work aligns with |Kroeger
et al.[ (2023), who employ in-context learning for prompting LLMs to explain machine learning
models. Our strategy differs as we emphasize zero-shot instructions.

Interpretable Feature Extraction Concurrently, there is a shift towards extracting interpretable
features directly from neurons. Techniques such as learning sparse auto-encoders have been explored
by Bricken et al.[(2023)). A significant advancement by Templeton et al.|(2024) scales up these efforts
to newer architectures like Claude 3.5 Sonnet (Anthropic, [2024). Unlike previous methods, we do
not assume a predefined set of features for explanation, opting instead to use the LLM as a dynamic
"model manager" to generate explanatory content.
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Figure 1: Overview of the model manager framework: Given a dataset and a pair of models trained
on that dataset, the framework verbalizes the differences between the two models.

Verbalization Techniques Another prevalent approach is the use of the language model head of
DNNSs as a "logit lens," as demonstrated by nostalgebraist| (2020). This method has been further
developed and diversified by researchers like [Pal et al| (2023) and [Belrose et al.| (2023). The
PatchScope framework by |Ghandeharioun et al.| (2024) extends these techniques, incorporating
methods that modify the representations themselves. In our research, rather than utilizing the language
model head directly, we employ an external LLM to serve as the "model manager," providing a novel
means of interpreting and explaining model behaviors.

LLM Distinction Several approaches have emerged to differentiate between LLMs. One method,
LLM Fingerprinting, introduces a cryptographically inspired technique called Chain and Hash
(Russinovich and Salem) 2024). This approach generates a set of unique questions (the "fingerprints")
and corresponding answers, which are hashed to prevent false claims of ownership over models.
Complementing this, another method (Richardeau et al.l 2024) proposes using a sequence of binary
questions, inspired by the 20 Questions game, to determine if two LLMs are identical. Unlike
fingerprinting or binary distinction, our framework focuses on the behavioral aspect of models.
Moreover, our current work does not aim to compare LLMs themselves; rather, we leverage LLMs as
a tool to compare and verbalize the differences among other models.

3 THE MODEL MANAGER

Here we present our framework (as illustrated by that generates natural-language descrip-
tions of the differences between two ML models trained on the same dataset, i.e., the verbalizations.

Notation: Let X = {x;}"_, be a tabular dataset where each x; € R? represents a feature vector.
Since we consider classification, suppose the target vector is y = {y;}"_,, where y; € C and C'is
a set of possible classes. We denote a subset of the dataset as X, with size ngp. Similarly, the

corresponding subset of target values is denoted by ysub» = {y; };=%. We define the feature names
of X as F ={f1, f2,..., fa}, where each f; represents a natural-language description of a feature,

such as "age" or "glucose."

Let M; and M5 be the two models that we compare with our Model Manager. For each data point

x; € X, the predicted target values from models M; and M, are represented as g]s(:b) ;= Mi(x;)

and gjs(fb)l = M>(x;), respectively. The corresponding predicted target vectors for the subset are

denoted by yfjg and yffg

Representative Sample: We construct our representative sample using the verbd split of the dataset

Xyerb (81z€ nyerp) along with the predicted target vectors yﬁi}b and yﬁf)b from models M; and My
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respectively. Before passing the verbalization sample { Xy, ysjfb, ygfr{)} to the LLM, we serialize it
into a JSON format.

LLM for Verbalization: The framework can be used with different LLMs. Let L L My, represent
the LLM responsible for generating verbalizations. The verbalization produced, denoted by v, lies
within the vocabulary space of LL M.

Prompt: We assemble the serialized results into a prompt to the verbalizer L L M,,. Our prompt
is inspired by previous LLM work in XAI (Kroeger et al.,|2023)) and includes the following elements:
Context, Dataset, Task, and Instructions, as illustrated in[Box 1}

The Context outlines the type of models used, the classification task they perform, and a general
overview of the dataset, including details about the features and the target variable. We choose
to explicitly mention the feature names, F' = {f1, f2,..., f4}, drawing insights from previous
work (Hegselmann et al.| [2023)), which showed that feature names can help improve interpretability.
We include the order of features in the representative sample to ensure that L L M, can correctly
associate feature names with their corresponding feature values. Additionally, we explicitly explain
the meaning of the target variable, including what each possible value ¢ € C represents.

The Dataset is the serialized representative sample, as described above.
The Task section states the underlying task we want L LMy, to perform.

The Instructions enumerate detailed instructions for the LLM.

Context: We have two logistic regression models trained on the same dataset for a binary
classification task. The dataset contains details about random donors at a Blood Transfusion
Service. The 4 features that it contains, in order, are: Recency (months), Frequency (times),
Monetary (c.c. blood) and Time (months). The target feature (Blood Donated) is a binary
variable representing whether the donor donated blood in March 2007 (1 stands for donating
blood; 0 stands for not donating blood).

The dataset below contains a sample which includes the 4 input features in the order mentioned
above as well as the outputs/predictions generated by each of the two models.

Dataset: ["input”:[-66.287, -76.971, -76.971, -126.295], "output”:{"modell”:0,
"model2”: @}, "input": [-66.287, 67.376, 67.376, -25.604],"output”: {"modell”: 1,
"model2”: @} ... ]

Task: Based on the above sample set, generate a verbalization of the differences between the
decision boundaries of the 2 models.

Instructions:
1. Go through the sample and analyze where the outputs differ and where they don’t.

2. Identify the specific ranges of feature values for which the decision boundaries diverge.
Provide these ranges in numerical terms, not just descriptive terms like "high’ or "low’.
Moreover, specify how the decisions of the two models diverge for these feature values.

3. Identify any features that appear to have a notable influence on the differences between
the models’ outputs.

4. Provide a clear and effective verbalization of how the decision boundaries of the two
models diverge.

Box 1: Verbalization prompt template for LR models trained on the Blood dataset. It includes:
Context, Dataset, Task, and Instructions.
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4 EVALUATION

If a verbalization v accurately captures the differences between two models, it should facilitate an
evaluator to predict the second model’s outputs given the inputs and the outputs of the first.

We use an LLM to be the evaluator, and refer to it as LLM,.. It uses the verbalization v to

analyze an evaluation sample {Xevyal, yg)al}, which contains the input features Xeva and only the

5(1) (2)

corresponding outputs of M1, ¥ .- LL M.y generates a simulated output y ., corresponding to

Xeval. To assess the accuracy of simulated output, 5’.(:;);11’ we use three evaluation metrics:

1. Mismatch Accuracy (Accpismatch): It evaluates the cases where the outputs of M; and M,
disagree, i.€, Imismatch = {7 | ge(‘}a)l i F gjga)l ;}. For these cases, the accuracy is computed as

proportion of cases where the simulated output matches that of Mo, i.e., gje(fa)l ;= gjgzl ;» for

© € Inmismatch- The AcCpismach quantifies how well the verbalization v captures the points of
divergence between the models.

2. Match Accuracy (AccCpqecn): It considers the cases where the outputs of M7 and M, agree,
i.e., Imach = {7 ] g]évla)l ;= Qe(fa)l ;}. The accuracy is similarly computed as the proportion of
these cases where the simulated output matches that of Ms. The A ccpqaen quantifies the
extent of v introducing false differences between the models.

3. Overall Accuracy (AccCoyeran): This evaluates v’s performance across all instances, com-
bining both agreement and disagreement cases. It is computed as the overall proportion of
cases where the synthetic output matches that of Ms.

The evaluation prompt template can be found in the appendix (see[Appendix B).

5 EXPERIMENTAL SETUP

Datasets: We consider classification tasks, and based on prior work involving LLMs ((Hegselmann
et al.} [2023))), we selected the following three datasets: Blood (784 rows, 4 features, 2 classes),
Diabetes (768 rows, 8 features, 2 classes), and Car (1,728 rows, 6 features, 4 classes). The
datasets were first divided into training and test sets. From the test set, we further split the data
equally into two subsets: the verbd split, which is used as a representative sample for verbalization (as
explained in[Figure 3)), and the eval split, which is reserved for evaluation purposes. This ensures
that verbalization and evaluation operate on distinct subsets.

To keep the input context manageable and ensure that each dataset had approximately 150 samples
in both verb and eval splits, we adjusted the proportions of the initial train-test split. The train-test

splits are shown in [Table T]

Dataset  Train Split (%) Test Split (%)

Blood 60% 40%
Diabetes 60% 40%
Car 82% 18%

Table 1: Train-Test Split Percentages for Datasets

The datasets were scaled, and preprocessing steps were consistent across all model types.

Models: Through our experiments we study the performance of our framework across the two
fundamental machine learning paradigms: model-based learning and instance-based learning. This
complementary perspective spans different approaches to classification, while we anticipate poorer
performance on instance-based algorithms due to their reliance on the entire training dataset and
complex, data-dependent decision boundaries.
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In the paradigm of model-based learning algorithms, we evaluate the efficacy of LLMs in verbalizing
differences between two popular learning algorithms: (i) Logistic Regression (LR) and (ii) Decision
Tree ( DT). We specifically chose these algorithms because they are widely used, interpretable and
serve as good baselines in the development of LL.M-based model management frameworks. To
demonstrate the significant challenge of evaluating instance-based learning algorithms, we quantita-
tively demonstrate the difficulties faced by LLMs in verbalizing the difference for (iii) the K-Nearest
Neighbors (KNNs) algorithm.

To streamline our study, we stratified the experiments based on the percentage of differing outputs
between each pair of models, with three levels: (i) Level 1 (15% — 20%), (ii) Level 2 (20% — 25%),
and (iii) Level 3 (25% — 30%). To measure the differences between models, we computed the
percentage of differing outputs on the verbd split. For each of these levels, we generated multiple
pairs of models for all three model types.

To generate pairs of LR models with a specific percentage of differing outputs, we first train a
base model using RandomizedSearchCV. Then we create multiple variations by adding randomly
generated noise to the base model’s coefficients. The noise is controlled by a modification factor m
(noise ~ N (0, mf3)), where 3 represents the vector of the base model’s coefficients. We carefully
adjust m until the percentage of differing outputs between the base model and the modified model
reaches the desired level. Rather than limiting our comparisons to the base model obtained from
RandomizedSearchCV, we also compare the modified models against each other, identifying a diverse
collection of model pairs.

We follow a similar process for Decision Trees and KNNs, with the details provided in[Appendix A]
For each model type and across all levels of output differences, we generate multiple base models
and corresponding modified models.

Verbalizers: We include three state-of-the-art LLMs as LLM,: Claude 3.5 Sonnet (Anthropicl
2024])), Gemini 1.5 Pro (Google| [2024), and GPT-40 (OpenAll 2024). For each of these LLMs, we set
the temperature as 7" = 0.1 in their respective API calls.

Evaluator: We let LLM.,, be the same model as L LM,.s, to avoid the bias introduced when
LLMs process the outputs of the other language models.

Ablation Study on the effects of including model’s internals: The access to the internals, com-
pared to solely relying on the representative samples, may help L LM,.,, understand (and therefore
verbalize) how the models make decisions. We hypothesize that providing such model-specific infor-
mation enables LLMs to generate more accurate and faithful verbalizations. We examine the effect of
incorporating the models’ internals on the performance of our framework in generating verbalizations.
By internals, we refer to textual descriptions of a model’s learned structure or information about
its inner workings. Different model types have different key pieces of information that they rely
upon to make predictions. For Logistic Regression, this entails providing the framework with the
learned coefficients. For Decision Trees, we provide a textual representation of the learned structure,
focusing on the decision rules and splits. Lastly, for completeness, we include KNNs, incorporating
the number of neighbors (K) and the distance metric, as these parameters define their behavior.

Ablation Study on the effects of excluding model-type: The model-type is the name of the type
of the model (e.g., Logistic Regression, Decision Tree, or KNN). We study the impact of excluding
the model type when comparing models. We aim to evaluate if our framework can generate accurate
verbalizations based purely on the observed behavior, rather than the names.

It should be noted that all our ablation studies are conducted using stratification Level 2 (20-25%) as
the default configuration. Specific details about prompts can be found [Appendix B]
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Model | Example Verbalization Excerpts

Claude | ...The divergence is most pronounced when Recency is in the -90 to -65 range,
Frequency and Monetary are very low (around -75 to -60), and Time is very low (-135
to -80). In these scenarios, Model 1 predicts a positive outcome, while Model 2 predicts
a negative outcome . ..

GPT ... The decision boundaries of the two logistic regression models diverge primarily in
the negative ranges of the features Recency, Frequency, Monetary, and Time. Specifi-
cally, when the values of these features are within the ranges of approximately -90 to
-60 for Recency, -77 to -61 for Frequency and Monetary, and -135 to -126 for Time,
Model 2 is more likely to predict a positive outcome (1) compared to Model 1, which
tends to predict a negative outcome (0) ...

Gemini | ...Model 2 appears to predict ’1’ (donating blood) more often than Model 1 for certain
ranges of feature values. Specifically, Model 2 predicts "1’ when:

- Frequency is positive and Time is between approximately -25 and 40 months, and
Recency is less than approximately -70 months ...

Table 2: Verbalization Excerpts for a pair of Level 2 (20%-25%) LR models trained on the Blood
Dataset.

Model | Example Verbalization Excerpts

Claude | ...Model 2 tends to be more lenient in its classifications compared to Model 1, often
assigning higher class values.

The most significant divergence occurs when the buying price (first feature) is O or 1,
maintenance price (second feature) is O or 1, and safety (sixth feature) is 2. In these
cases, Model 2 often assigns a class of 2, while Model 1 assigns aclassof Oor 1 ...

GPT ... When the buying price is low (0), Model 2 tends to predict higher classes (more
favorable evaluations) compared to Model 1, especially when other conditions such as
safety, capacity, and maintenance are moderate to high.

Similar to buying price, lower maintenance costs (0) often lead to higher predictions in
Model 2 compared to Model 1, under favorable conditions in other features ...

Gemini | ...**Model 2 demonstrates greater leniency towards cars with higher maintenance
costs.** Specifically, when the maintenance price is "high" (encoded as 2) or "very
high" (encoded as 3), Model 2 tends to assign a higher evaluation class compared to
Model 1, even when other features like buying price are less favorable ...

Table 3: Verbalization Excerpts for a pair of Level 2 (20%-25%) DT models trained on the Car
Dataset.

6 RESULTS

6.1 COMPARING LOGISTIC REGRESSORS

Our framework demonstrates strong performance when applied to logistic regression across datasets,
likely due to their linear nature. shows the performance on LR models trained on the
Blood and Car datasets. Among the 3 LLMs, Claude 3.5 Sonnet achieves the best performance,
with a AccCmismach Of 0.831+0.016 and a Accpyen of 0.860+0.018, indicating its ability to effec-
tively articulate the points of divergence without introducing any false differences. GPT-4o follows
closely with slightly lower yet competitive results, achieving a AcCpismatch Of 0.779+0.026 and a
A ccpaen 0f 0.82240.020. Gemini lags behind, obtaining a A cCpismacch 0f 0.676+0.027 and a A cCpach
of 0.820+0.023. This indicates significant variation in how well each LLM handles the task of
verbalization for a pair of logistic regression models.
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Figure 2: Performance of three LLMs. [2al shows the A cCpismatch and AcCmyen for Level 2 (20% —
25%) LR models trained on , , and datasets. shows the same for DTs.

Performance decreases across all datasets at the most challenging level, Level 1 (15-20%), as detailed
in[Table 4] This suggests that as the problem complexity increases, even the best-performing LLMs
can’t keep up the same level of accuracy.

For the Diabetes and Car dataset, we observe a drop in the performance of the framework, which
can be attributed to the increasing complexity of the datasets - Diabetes with a larger number of
features and Car with multiple classes. Nevertheless, both Claude and GPT-40 maintain A cCpismatch
of 0.605+0.028 and 0.574+0.031 respectively for the Car dataset, indicating that their performance
remains substantially above the random-guessing baseline. These results suggest that LLMs are
effective at verbalizing differences between logistic regression models. shows excerpts from
some of these verbalizations.

6.2 COMPARING DECISION TREES

Decision Trees present a difficult challenge compared to LR models, mainly due to their non-linear
decision boundaries. Consequently, the framework’s performance when applied to DTs is lower,
although similar trends from LR are observed.

[Figure 2D illustrates that, on the Blood dataset, Claude 3.5 Sonnet remains the top performer, with
a Accpismaeh Of 0.700+0.03 and Accpyen of 0.837+0.017. While competitive, GPT-40’s results
are slightly lower than Claude’s, with a AccCpismatch Of 0.694+0.020 and A ccpyeen Of 0.803+0.024.
In contrast, Gemini performs notably worse, with a particularly low AccCpismaich Of 0.49340.030,
highlighting its difficulties in capturing points of divergence.

The Car dataset introduces additional complexity. Claude’s performance drops slightly but remains
strong, with Accpismach Of 0.70040.020 and Accpyen of 0.75740.016. GPT-40 displays a similar
decline in its performance with A cCpismatch Of 0.662+0.025 and A.cCpyeh Of 0.717+0.022. Gemini’s
results are again the lowest, with indicating its difficulty in distinguishing between DTs.

Despite the drop in overall performance for DTs across the datasets, Claude and GPT-40 manage to
maintain a relatively strong performance. These findings suggest a broader trend: LLMs are generally
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able to verbalize the difference between DTs effectively. shows excerpts from some of these
verbalizations.

6.3 COMPARING KNNs

KNNs appear more challenging for our framework due to their instance-based learning nature. Given
their reliance on specific local data points for predictions, we anticipate that our Model Manager
struggles to effectively verbalize instance-based learning algorithms, and our observations support
the anticipation. For Level 2 (20% — 25%) models on the Blood dataset, the A cCyismach SCOres were
lower than 0.7, with Gemini lower than 0.6. On the Car and Diabetes datasets, the performance
declines further, with Claude and GPT-40 failing to surpass 0.50 for Accpismach- We include the
complete details of the KNN experiments in[Table 6|

6.4 ABLATION STUDIES

1.09 1.09
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Figure 3: Comparison of GPT-40’s performance on DTs, with and without models’ internals, for the
, , and datasets. Including models’ internals resulted in performance improvements
across all cases.

a) Effects of including models’ internals: For LR, the inclusion of coefficients results in either
performance remaining within the error margin or showing a modest increase (3-5%) across all
datasets. This suggests that while the coefficients may help LLMs to better understand feature
importances, the relatively simple nature of logistic regression means the gains are minimal.

The most pronounced impact of including models’ internals can be seen for Decision Trees (Figure 3).
For the Blood Dataset, GPT-40’s performance jumps to a A cCpismatch Of 0.945+0.015 and A ccpaen
of 0.971+0.01, representing a 23.81% increase in AcCCoyera- For Claude it increases to a A cCpismatch
of 0.747+0.029 and Accpyeh of 0.879+0.018. Even Gemini shows a notable increase, reaching to an
A cCismatch 0f 0.74740.03 and an A cCyaen Of 0.85240.026. Similar trends were observed across the
other datasets, with GPT-40 showing a 25.4% improvement on the Diabetes dataset, while the Car
dataset exhibited more moderate but still meaningful gains.

These findings indicate that decision trees’ rule-based nature likely enables LLMs to better capture
and articulate the model’s underlying decision-making process. The explicit structure of decision
paths in decision trees seems to facilitate more accurate and interpretable verbalizations.

As hypothesized, KNN models showed minimal or even slightly negative effects when model-specific
information was included. This reinforces the idea that KNN’s reliance on local instance-based
learning, rather than explicit parameters or decision rules, poses challenges for LLMs in verbalizing
model behavior effectively. The slight negative effect can be attributed to LLM focusing on the
parameters passed and not the sample set.
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The impact of including model-specific information varied depending upon the type of model. For
logistic regression, a marginal increase was observed in the scores. However, decision trees witness
the most substantial improvement, with performance gains across all datasets and all LLMs, with
A ccyyeran €ven reaching above 0.9 in some cases. This underscores the effectiveness of including
model-specific information in generating more accurate and faithful verbalizations. These find-
ings suggest a broader trend: For certain model types, including model-specific information can
significantly enhance the quality of generated verbalizations.

b) Effects of excluding model-type: The results in show that removing model-type
information from the prompt had little effect on the quality of verbalizations, with performance
variations remaining within the margin of error. This implies that our framework relies mainly
on the observed behavior (i.e., the representative sample) when verbalizing differences in decision
boundaries.

7 DISCUSSION

Our results show promising trends when verbalizing the differences of parametric models (LR and
DT). The non-parametric KNN models, on the other hand, introduce more challenges, as indicated
by the lower A ccpych and A cCpismatch- On one hand, these indicate that future Model Managers on
non-parametric models need to consider factors that describe the dataset. On the other hand, these
indicate that the Model Managers can be extended to verbalizing the differences between Deep Neural
Networks, especially incorporating approaches that describe the models’ internals (e.g., mechanistic
interpretability). Considering the complex nature of DNNSs, the developers for Model Managers on
DNNs will have to consider a lot of intricate details.

The plug-and-compare flexibility of Model Manager allows potential upgrades to the Manager. When
newer, higher-capability LMs are developed, we can replace the LM in Model Manager with the
next-generation ones. The same flexibility applies to the prompting techniques and the expected tasks
(for example, comparing across more than two models).

A good resource manager does not just observe. Beyond verbalization, a fully-fledged Model Manager
should be able to automatically inspect the individual models, question the potential weaknesses, and
potentially recommend improvement methods, including but not limited to model merging, model
safeguarding, and model debiasing. A lot of future work is needed toward this goal, which we believe
deserves more attention from the field.

8 CONCLUSION

In conclusion, the Model Manager framework establishes a foundational step toward automatic
management of machine learning models. The Model Manager verbalizes the difference between two
models. While it excels in identifying differences between parametric models, challenges remain with
non-parametric models like KNNs, highlighting the need for tailored strategies that accommodate the
unique characteristics of various model types. This research sets the stage for future research in model
management tools that can dynamically adapt to the evolving landscape of ML technologies. As we
look to the future, integrating more sophisticated language models and expanding the framework’s
capabilities will be essential in advancing the field towards more transparent, accountable, and
effective Al systems.

REFERENCES

Rohan Ajwani, Shashidhar Reddy Javaji, Frank Rudzicz, and Zining Zhu. 2024. LLM-generated
black-box explanations can be adversarially helpful. In arXiv preprint arXiv:2405.06800.

Anthropic. 2024. Introducing claude 3.5 sonnet.

10


https://arxiv.org/abs/2405.06800
https://arxiv.org/abs/2405.06800
https://www.anthropic.com/news/claude-3-5-sonnet

Under review as a conference paper at ICLR 2025

Nora Belrose, Zach Furman, Logan Smith, Danny Halawi, Igor Ostrovsky, Lev McKinney, Stella
Biderman, and Jacob Steinhardt. 2023. Eliciting latent predictions from transformers with the
tuned lens.

Steven Bills, Nick Cammarata, Dan Mossing, Henk Tillman, Leo Gao, Gabriel Goh, Ilya Sutskever,
Jan Leike, Jeff Wu, and William Saunders. 2023. Language models can explain neurons in
language models.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick
Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu, Shauna Kravec,
Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex Tamkin, Karina
Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and
Christopher Olah. 2023. Towards monosemanticity: Decomposing language models with dictio-
nary learning. Transformer Circuits Thread.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. 2020. Language models are few-shot learners. Preprint,
arXiv:2005.14165.

Asma Ghandeharioun, Avi Caciularu, Adam Pearce, Lucas Dixon, and Mor Geva. 2024. Patchscopes:
A unifying framework for inspecting hidden representations of language models.

Google. 2024. Introducing Gemini 1.5, Google’s next-generation Al model.

Stefan Hegselmann, Alejandro Buendia, Hunter Lang, Monica Agrawal, Xiaoyi Jiang, and David
Sontag. 2023. Tabllm: Few-shot classification of tabular data with large language models. Preprint,
arXiv:2210.10723.

Amr Hendy, Mohamed Abdelrehim, Amr Sharaf, Vikas Raunak, Mohamed Gabr, Hitokazu Mat-
sushita, Young Jin Kim, Mohamed Afify, and Hany Hassan Awadalla. 2023. How good are gpt
models at machine translation? a comprehensive evaluation. Preprint, arXiv:2302.09210.

Evan Hernandez, Sarah Schwettmann, David Bau, Teona Bagashvili, Antonio Torralba, and Jacob
Andreas. 2022. Natural language descriptions of deep visual features.

Jing Huang, Atticus Geiger, Karel D’Oosterlinck, Zhengxuan Wu, and Christopher Potts. 2023.
Rigorously assessing natural language explanations of neurons.

Laura Kopf, Philine Lou Bommer, Anna Hedstrom, Sebastian Lapuschkin, Marina M. C. Hohne, and
Kirill Bykov. 2024. CoSy: Evaluating textual explanations of neurons,

Nicholas Kroeger, Dan Ley, Satyapriya Krishna, Chirag Agarwal, and Himabindu Lakkaraju. 2023.
Are large language models post hoc explainers?

Jiarui Liu, Wenkai Li, Zhijing Jin, and Mona Diab. 2024. Automatic generation of model and data
cards: A step towards responsible ai. Preprint, arXiv:2405.06258.

Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman, Ben Hutchinson,
Elena Spitzer, Inioluwa Deborah Raji, and Timnit Gebru. 2019. Model cards for model reporting!
In Proceedings of the Conference on Fairness, Accountability, and Transparency, FAT* *19. ACM.

Shrayani Mondal, Rishabh Garodia, Arbaaz Qureshi, Taesung Lee, and Youngja Park. 2024. Towards
generating informative textual description for neurons in language models.

Jesse Mu and Jacob Andreas. 2020. (Compositional explanations of neurons. CoRR, abs/2006.14032.

nostalgebraist. 2020. Interpreting GPT: the logit lens.

11


https://doi.org/10.48550/arXiv.2303.08112
https://doi.org/10.48550/arXiv.2303.08112
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://arxiv.org/abs/2005.14165
https://doi.org/10.48550/arXiv.2401.06102
https://doi.org/10.48550/arXiv.2401.06102
https://developers.googleblog.com/en/gemini-15-pro-now-available-in-180-countries-with-native-audio-understanding-system-instructions-json-mode-and-more/
https://arxiv.org/abs/2210.10723
https://arxiv.org/abs/2302.09210
https://arxiv.org/abs/2302.09210
http://arxiv.org/abs/2309.10312
https://doi.org/10.48550/ARXIV.2405.20331
https://openreview.net/forum?id=MOtZlKkvdz
https://arxiv.org/abs/2405.06258
https://arxiv.org/abs/2405.06258
https://doi.org/10.1145/3287560.3287596
https://doi.org/10.48550/ARXIV.2401.16731
https://doi.org/10.48550/ARXIV.2401.16731
https://arxiv.org/abs/2006.14032
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens

Under review as a conference paper at ICLR 2025

OpenAl. 2024. Hello gpt-4o.
Koyena Pal, David Bau, and Renée J. Miller. 2024. Model lakes. Preprint, arXiv:2403.02327.

Koyena Pal, Jiuding Sun, Andrew Yuan, Byron C. Wallace, and David Bau. 2023. [Future lens!
Anticipating subsequent tokens from a single hidden statel In Proceedings of the 27th Conference
on Computational Natural Language Learning (CoNLL), pages 548—560.

Mahima Pushkarna, Andrew Zaldivar, and Oddur Kjartansson. 2022. Data cards: Purposeful and
transparent dataset documentation for responsible ail Preprint, arXiv:2204.01075.

Gurvan Richardeau, Erwan Le Merrer, Camilla Penzo, and Gilles Tredan. 2024. The 20 questions
game to distinguish large language models. Preprint, arXiv:2409.10338.

Mark Russinovich and Ahmed Salem. 2024. Hey, that’s my model! introducing chain hash, an llm
fingerprinting techniquel Preprint, arXiv:2407.10887.

Chandan Singh, Aliyah R. Hsu, Richard Antonello, Shailee Jain, Alexander G. Huth, Bin Yu, and
Jianfeng Gao. 2023. Explaining black box text modules in natural language with language models.
Preprint, arxiv:2305.09863.

Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen, Adam
Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham, Nicholas L Turner,
Callum McDougall, Monte MacDiarmid, C. Daniel Freeman, Theodore R. Sumers, Edward Rees,
Joshua Batson, Adam Jermyn, Shan Carter, Chris Olah, and Tom Henighan. 2024. Scaling
monosemanticity: Extracting interpretable features from claude 3 sonnet.

Manasi Vartak, Harihar Subramanyam, Wei-En Lee, Srinidhi Viswanathan, Saadiyah Husnoo, Samuel
Madden, and Matei Zaharia. 2016. Modeldb: a system for machine learning model management.
In Proceedings of the Workshop on Human-In-the-Loop Data Analytics, HILDA °16, New York,
NY, USA. Association for Computing Machinery.

A APPENDIX: EXPERIMENT DETAILS AND FULL RESULTS

A.1 ADDITIONAL EXPERIMENTAL DETAILS

DT generation: For DTs, similar to the LR models, we first train a base model using
RandomizedSearchCV. To generate a modified DT, we introduce two levels of variation. First,
we randomly sample new hyperparameters from the defined space. This ensures that the modified
tree has a structure different from the base model. Second, we add noise to the splitting thresholds
of the nodes. The noise is normally distributed and controlled by a modification factor m (noise
~ N (0,m)) and is scaled to the level of thresholds (noise = 7# noise ). We carefully adjust m until
the percentage of differing outputs between the base model and the modified model reaches the desired
level. Rather than limiting our comparison to the base model obtained from RandomizedSearchCV,
we also compare the modified models against each other, identifying a diverse collection of pairs.

KNNs generation : In the case of KNNs, we first train a base model using RandomizedSearchCV.
To generate modified versions, we randomly sample new hyperparameters and compare the predictions
of the base model with each modified model, calculating the percentage of differing outputs until it
reaches the desired level. Additionally, we compare the modified models against each other to obtain
a diverse collection of pairs.

A.2 FULL EXPERIMENTAL RESULTS

We present complete results for these models in Table [i] Table [5|and Table [6]
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Table 4: Evaluation metrics for LR models across different datasets. Each row includes the per-
formance metrics for an LLM, measured across Level 1 (15%-20%), Level 2 (20%-25%), Level 3
(25% — 30%), Level 4 (20% — 25% With Models’ Internals), and Level 5 (20% — 25% Without
Model Type).

LLM Metric Level 1 Level 2 Level 3 Level 4 Level 5

Blood Dataset

Claude  AcCmismach 0.806 £.021 0.831+£.016 0.871 £.009 0.869 +£.019 0.828 +.014
3.5 A ccCmach 0.697 +.012  0.860 £.018 0.808 £.015 0.844 +.014 0.861 +.023
Sonnet  AcCoverall 0.717£.009 0.854 +.016  0.824+.09 0.850+.013 0.854 +.019

Accpismach 0.744 £016  0.779 £.026 0.763 £.013  0.804 +.020 0.780 +.025
GPT-40 AccCmatch 0.804 £.016 0.822£.020 0.828 £.013 0.812+.015 0.839 £.018
Accoverall 0.794 £.013 0.815£.015 0.809 +£.009 0.811+.013 0.827 £.014

Accpismach 0670 £.033  0.674 £.027 0.710 £.021  0.663 +.030 0.716 +.023

?g’“;m AcCmuen  0.761£022 0.820+£.023 0.760 £020 0.854+.024 0.793 +.029
DO Accoweran 0747016 0776 £019  0.744 £013  0.816+.021 0.774 +.023
Car Dataset

Claude  AcCmismach 0.612£.025 0.605+.028 0.711 £.021 0.655 +.020  0.602 +.033
3.5 Accmach 0.741 £.022  0.763 £.025 0.802 +£.026 0.762+.021 0.758 +.034
Sonnet  AcCoverall 0.718 £.017 0.725+.018 0.776 £.020 0.735+.016 0.719 +.024

Accpismach 0.541 £.026  0.574 £.031  0.608 £.024  0.629 +.020 0.557 +.031
GPT-40 AccCmatch 0.713 £.027 0.737£.030 0.771 £.023  0.762 +.020 0.745 £.033
A ccoverall 0.679 £.023 0.697 £.022 0.729 £.015 0.729+.016 0.699 +.023

Accpismach 0416 £.014 0418 £.025 0.446+£.016 0.417 +.023 0.406 +.021

(]32“]‘;“‘ AcCmuen  0.693+.024 0.688 £019 0.606 £.032 0.755+.017 0.690 £.022
DO Accowran 0.638+.018  0.624 016 0562 £.023 0.674+.014 0.624 +.019
Diabetes Dataset

Claude  AcCmismacn 0.522£.040 0.610+£.019 0.616+.025 0.619+.017 0.600 +£.026
35 Acchach 0.777 £.024  0.864 £.015 0.831+.021 0.874+.012 0.884 +.017
Sonnet  AcCoverall 0.702 +£.017 0.805£.011 0.772+.018 0.815+.008 0.820 £.013

Accpismach 0442 +.030  0.611 £.025 0.544 £.027 0.628 +.022 0.617 +.021
GPT-40 AccCmacch 0.687 £.023 0.825+.018 0.687 £.025 0.829+.011 0.846 £.018
A ccoverall 0.642+.016 0.776 £.015 0.645 +.020 0.786 +.008 0.791 +.013

Accpismach  0.398 £.023  0.556 +£.034  0.454 £.029 0.583 +.034 0.564 +.026
A ccmaich 0.808 +.016 0.828 £.021 0.671 £.032 0.855+.021 0.814 +£.025
A ccoverall 0.723 £.013  0.768 £.015 0.607 £.024  0.800 +.015  0.756 +.020

Gemini
1.5 Pro
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Table 5: Evaluation metrics for DT models across different datasets. Each row includes the per-
formance metrics for an LLM, measured across Level 1 (15%-20%), Level 2 (20%-25%), Level 3
(25% — 30%), Level 4 (20% — 25% With Models’ Internals), and Level 5 (20% — 25% Without
Model Type).

LLM Metric Level 1 Level 2 Level 3 Level 4 Level 5

Blood Dataset

Claude  AcCmismach 0.654 £.015 0.701 £.033  0.788 +.024 0.747 £.029  0.699 +.029
3.5 A ccCmach 0.861 £.019 0.837£.017 0.861 +£.023 0.879 +.018 0.849 +.018
Sonnet  AcCoverall 0.826+.018 0.812+.010 0.834+.015 0.854+.017 0.822+.017

Accpismach  0.693 £.029  0.694 £.020 0.758 £.022  0.945+.015 0.699 +.023
GPT-40 AccCmatch 0.823 £.025 0.803 £.024 0.838 +£.022 0.971 £.010 0.805 £.019
Accoverall 0.800 +£.022 0.780 £.019 0.808 £.015 0.966 +.009 0.783 +£.017

Accpismach  0.521 £.021  0.493 £.030  0.739 £.041  0.747 +.030  0.499 +.025

?g’“;m AcCpuen  0.817+029 0804 £036 0.852+.020 0.852+.026 0.793 +.022
DHO Accowran 0764024 0737 +.027 0.818 £.017 0.832+£.020 0.729 +.021
Car Dataset

Claude  AcCmismach 0.599 £.028  0.699 £.020 0.680 +.026 0.732 +.039 0.700 +.024
3.5 Accmach 0.753 £.022 0.757 £.016 0.772 +£.020 0.823 +.024 0.753 £.017
Sonnet  AcCoverall 0.721 £.013  0.743 +.014 0.748 £.015 0.802 £.024 0.740 +.015

Accpismach 0.599 £.025  0.662 £.025 0.620 £.028 0.772 +.040 0.663 +.024
GPT-40 AccCmatch 0.778 £.018 0.717 £.022 0.794 £.019 0911016 0.720 £.019
A ccoverall 0.745+.014 0.703 £019 0.749 £.017 0.882+.014 0.706 +£.015

Accpismach  0.483 £.028 0.522+£.029 0.510+.000 0.567 +.037 0.528 +.034

(]32“]‘;“‘ AcCmuen 0721 £026 0.684 £022 0.699 £.000 0.835+.013 0.678 +.028
DHO Accowran 0.677+021  0.651+.020 0.652+.000 0.774+.016 0.647 +.023
Diabetes Dataset

Claude  AcCmismach 0.479 £.019 0.551 £.015 0.610+.019 0.657 £.033  0.553 £.021
35 Acchach 0.828 £.018 0.781 +.018 0.843 £.021 0.913£.014 0.773 +£.022
Sonnet  AcCoverall 0.752+.016 0.736 +.016 0.785+.013 0.864 £.014 0.730 +.018

Accpismach  0.548 £.017  0.646 £.029  0.566 £.031 0.811 +.032  0.652 +.026
GPT-40 AccCmacch 0.786 £.019 0.737 £.026 0.815+.020 0.921 £.015 0.747 £.022
A ccoverall 0.734 £.014 0.719 £019 0.754 £.015 0.902 +.015 0.728 +.020

Accpismach 0441 £.031  0.452+.038 0.611+£.040 0.590 +.357  0.528 +.34
A ccmaich 0.822+.024 0.801 £.025 0.899 +.014 0.851 +236 0.678 +.28
A ccoverall 0.739+.019 0.719£016 0.826 +.013 0.801 +217  0.647 +.23

Gemini
1.5 Pro
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Table 6: Evaluation metrics for KNN models across different datasets.

Each row includes the

performance metrics for an LLM, measured across Level 1 (15%-20%), Level 2 (20%-25%), Level
3 (25% — 30%), Level 4 (20% — 25% With Models’ Internals), and Level 5 (20% — 25% Without

Model Type).

LLM Metric Level 1 Level 2 Level 3 Level 4 Level 5
Blood Dataset
Claude  AcCmismach 0.656 £.021 0.686 +£.023  0.777 £.031 0.720 £.024 0.707 +.022
35 A ccmach 0.826 +.020 0.845+.024 0.717 £.020 0.847 +.023 0.832 +.028
Sonnet  AcCoverall 0.795 +019 0.811+019 0.737+011 0.821 £.018 0.805 +.022
AccCpismach  0.647 £.019  0.648 £.023 0.722 £.019 0.708 £.019 0.663 +£.029
GPT-40 AccCmaich 0.856+.019 0.876 £.015 0.776 £.020 0.836 +.031 0.873 £.018
A ccCoverall 0.818 +£.017 0.829 £.014 0.767 £.015 0.809 +.023 0.830 +.015
Gemini AccChismach  0.549 £.030 0.559 £.031 0.608 +.025 0.576 £.036 0.564 +.031
1.5 Pr A cCmaich 0.687 £.023 0.774 £.020 0.709 +£.024 0.802 +.025 0.757 £.020
= ko A ccoveranl 0.662 +.022 0.729 £.019 0.686 +.021 0.755+.020 0.717 £.019
Car Dataset
Claude  AcCmismach 0.454+£.016 0.490 £.030 0.499 +.014 0.469 +.030 0.477 +.031
35 A ccmyeh 0.760 £.017 0.709 £.032 0.752 +.025 0.616 +.046 0.654 +.033
Sonnet  AcCoverall 0.705 +.013  0.657 £.029 0.688 £.019 0.581 +.040 0.613 £.030
AccCpismach  0.345 £.024  0.460 £.031 0.455+.023 0.411£.026 0.466 £.039
GPT-40 AcCmatch 0.828 +£.012 0.751 £.030 0.773 £.020 0.651 +.039 0.724 +£.025
A ccCoverall 0.737 £.010 0.682 +.029 0.692 +£.015 0.593 +.033  0.665 +.025
Gemini AcCpismach  0.304 £.021 0.325+.026 0.353+.019 0.332+.034 0.330 +.025
15 Pr A cCmaich 0.593 +.029 0.626 £.034 0.672 +£.024 0.629 +.026 0.625 +.023
= ko A ccoverall 0.536 +.024 0.554 £.030 0.591 £.019 0.558 +.023 0.554 +.021
Diabetes Dataset
Claude  AcCmismach 0.616 £.014  0.603 £.025 0.624 +.013  0.589 +.024  0.606 +.033
35 A ccmych 0.840 £.020 0.800 £.029 0.716 £.025 0.758 +.036  0.805 £.030
Sonnet  AcCoverall 0.796 £.017  0.756 £.024  0.693 +£.022  0.720 +.030 0.762 +.028
AccChismach  0.626 £.030 0.566 £.027 0.556 +.019 0.519 £.022  0.490 +.031
GPT-40 AcCmaich 0.864 £.019 0.784 £.032 0.702 £.041 0.792 +.020 0.763 +£.032
A ccoverall 0.819+£.018 0.736 £.026 0.664 +.031 0.733 +.017 0.705 +£.029
Gemini AcChismach 0422 £.022  0.473 £.029 0.510+.029 0.462 +.032 0.460 +.034
15 Pro A ccmach 0.852+.017 0.774 £.030 0.699 +.031 0.782+.028 0.767 +.027
: A ccoverall 0.770 £.015 0.709 £.026 0.650 £.024 0.713 £.021 0.701 +£.023
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B PRrROMPTS

Context: We have two {MODEL_TYPE} models trained on the same dataset for a
{CLASSIFICATION_TYPE} problem. {DATASET_DESCRIPTION}

The verbalization below contains a natural language description of the differences between the
decision boundaries of the two models.

Dataset: {DATASET_SAMPLE}
Verbalization: {VERBALIZATION?}

Task: Based on the above verbalization, predict the output of Model 2 for each of the input
instance in the above sample.

Instructions: Think about the question carefully. Go through the verbalization thoroughly.
Analyze the input features in the sample. After explaining your reasoning, provide the answer in
a JSON format within markdown at the end. The JSON should contain the input features and
the output of Model 2. Do not provide any further details after the JSON.

Box 2: Evaluation Prompt Template

Context: We have two {MODEL_TYPE} models trained on the same dataset for a
{CLASSIFICATION_PROBLEM} task. {DATSET_DESCRIPTION}

Model Information: {MODEL_INFO}
Dataset: {DATASET_SAMPLE}

Task: Based on the above model information and the sample set, generate a verbalization of the
differences between the decision boundaries of the two models.

Instructions:

1. Review the model information and go through the sample. Analyze where the outputs
differ and where they don’t.

2. Identify the specific ranges of feature values for which the decision boundaries diverge.
Provide these ranges in numerical terms, not just descriptive terms like "high’ or "low’.
Moreover, specify how the decisions of the two models diverge for these feature values.

3. Identify any features that appear to have a notable influence on the differences between
the models’ outputs.

4. Provide a clear and effective verbalization of how the decision boundaries of the two
models diverge.

Box 3: Ablation Study 1 Prompt Template (Effects of Including Model Information)
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Context: We have two models trained on the same dataset for a {CLASSIFICAITON_PROBLEM}
task. {DATASET_DESCRIPTION}

Dataset: {DATASET_SAMPLE}

Task: Based on the above set, generate a verbalization of the differences between the decision
boundaries of the two models.

Instructions:
1. Go through the sample and analyze where the outputs differ and where they don’t.

2. Identify the specific ranges of feature values for which the decision boundaries diverge.
Provide these ranges in numerical terms, not just descriptive terms like “high’ or "low’.
Moreover, specify how the decisions of the two models diverge for these feature values.

3. Identify any features that appear to have a notable influence on the differences between
the models’ outputs.

4. Provide a clear and effective verbalization of how the decision boundaries of the two
models diverge.

Box 4: Ablation Study 2 Prompt Template (Effects of Removing Model Type)
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