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Abstract

Causal language models have demonstrated remarkable capabilities, but their size
poses significant challenges for deployment in resource-constrained environments.
Knowledge distillation, a widely-used technique for transferring knowledge from a
large teacher model to a small student model, presents a promising approach for
model compression. A significant remaining issue lies in the major differences
between teacher and student models, namely the substantial capacity gap, mode
averaging, and mode collapse, which pose barriers during distillation. To address
these issues, we introduce Temporally Adaptive Interpolated Distillation (TAID),
a novel knowledge distillation approach that dynamically interpolates student
and teacher distributions through an adaptive intermediate distribution, gradually
shifting from the student’s initial distribution towards the teacher’s distribution.
We provide a theoretical analysis demonstrating TAID’s ability to prevent mode
collapse and empirically show its effectiveness in addressing the capacity gap
while balancing mode averaging and mode collapse. Our comprehensive experi-
ments demonstrate TAID’s superior performance across various model sizes and
architectures in both instruction tuning and pre-training scenarios. Furthermore,
we showcase TAID’s practical impact by developing two state-of-the-art compact
foundation models: TAID-LLM-1.5B for language tasks and TAID-VLM-2B for
vision-language tasks. These results demonstrate TAID’s effectiveness in creat-
ing high-performing and efficient models, advancing the development of more
accessible AI technologies.

1 Introduction

Large language models are too large. Causal language models (LMs) are increasingly becoming
essential tools across various sectors (Malinka et al., 2023; Wu et al., 2023; Zhang et al., 2023a;
He et al., 2024). Scaling data size, model size, and training steps has been the primary approach to
improve LM performance (Kaplan et al., 2020; Hoffmann et al., 2022; OpenAI et al., 2024), leading
to rapid advancements in both proprietary and open-source LMs (Touvron et al., 2023; Abdin et al.,
2024; Yang et al., 2024). However, the success of large LMs creates challenges: they are too large for
edge devices (Qu et al., 2024; Thawakar et al., 2024; Liu et al., 2024), have decoding times too long
for real-time applications (Wan et al., 2023; Leviathan et al., 2023; Miao et al., 2024), and consume
significant energy resources (Luccioni et al., 2023; Faiz et al., 2024). This paradox of scale hinders
the widespread deployment and use of LMs despite their potential and high demand.
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Figure 1: Comparison of standard KD and TAID. (Left) Standard KD methods typically employ
direct optimization towards a fixed teacher distribution. (Right) TAID creates a dynamic bridge
through adaptive, time-dependent intermediate teacher distributions (green dashed lines), enabling
gradual optimization of the student. This approach facilitates a flexible transition from the student’s
initial distribution towards the teacher’s distribution over time, effectively addressing the capacity
gap and balancing knowledge transfer across varying model sizes.

Knowledge distillation offers a promising prescription. One promising approach to developing
compact yet high-performing models is knowledge distillation (KD) (Hinton et al., 2015). KD aims
to transfer the knowledge, specifically the predicted distributions, from a well-trained, high-capacity
teacher model to a more compact student model, often achieving better performance than small
models trained solely (Buciluundefined et al., 2006; Ba & Caruana, 2014; Hinton et al., 2015). In the
context of compressing large LMs, KD is becoming a mainstream approach, with many specialized
KD methods actively being developed (Xu et al., 2024; Team et al., 2024; Muralidharan et al., 2024).

The formidable, unresolved challenge of teacher-student differences. Nevertheless, KD is
not a flawless method, and two significant issues remain, both stemming from the differences
between teacher models and the student models. (i) Capacity gap — the substantial capacity gap
between a large teacher model and compact student model makes effective knowledge transfer more
difficult (Mirzadeh et al., 2020; Cho & Hariharan, 2019; Zhang et al., 2023b). As LMs continue to
grow in size and complexity, this capacity gap becomes increasingly pronounced, making it even
more challenging to distill knowledge effectively. (ii) Mode averaging and mode collapse — due to
the disparity in model capacity, KD methods often struggle with mode-averaging and mode-collapse
issues, where student models either fail to oversmooth rich output distributions of a teacher model or
become overly focused on specific modes (Wen et al., 2023; Gu et al., 2024; Agarwal et al., 2024).

A new method to overcome the teacher-student difference. To overcome the fundamental issue
of differences between teacher and student models, we introduce Temporally Adaptive Interpolated
Distillation (TAID), a new approach to KD for LMs. TAID reduces the gap between teacher and
student model throughout the training process by dynamically introducing an intermediate teacher
that interpolates teacher and student models to provide a target distribution with a modest capability
(see Figure 1). This simple technique allows for learning a higher-quality student model than
with existing KD methods (Section 5), scales student’s performance with teacher’s size even under
large capacity gaps (Appendix D.2.2), and suppresses mode-averaging and mode-collapse problems
theoretically and empirically (Section 4 and Appendix D.2.3).

Our main contributions to this paper are as follows:

• We introduce TAID (Section 3), a new knowledge distillation method that reimagines the distillation
process as a dynamic, adaptive knowledge transfer from student to teacher distributions. This
approach addresses common challenges in distilling large language models.

• We provide a theoretical analysis of TAID (Section 4) with a regression model as a proxy to the
language modeling objective, demonstrating its ability to prevent mode collapse in the distillation
process. This theoretical guarantee sets TAID apart from traditional self-distillation methods,
which can suffer from mode collapse.

• We conduct extensive experiments (Section 5) across various model sizes and architectures, demon-
strating TAID’s superiority in both instruction tuning and pre-training scenarios. Moreover, we
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experimentally reveal TAID’s robustness to capacity gaps (Appendix D.2.2), and its ability to bal-
ance between mode averaging and mode collapse, unlike existing KD methods (Appendix D.2.3).

• We demonstrate TAID’s practical impact by developing two state-of-the-art compact models
(Appendix F): TAID-LLM-1.5B achieves the best performance for language models under 2B
parameters, while TAID-VLM-2B outperforms vision-language models up to 4B parameters, show-
casing TAID’s effectiveness across different domains.

The rest of the paper is organized as follows: Section 2 reviews the problem setting for language
model distillation. Section 3 describes the TAID method in detail. Section 4 provides a theoretical
analysis of TAID’s properties. Section 5 presents our experimental results on the instruction-following
task. Finally, Section 6 discusses the implications of our findings and potential future directions.

Furthermore, Appendix C discusses related work in knowledge distillation for language models.
Appendix D presents our additional experimental results on the pre-training task and analysis of
TAID. Appendix F demonstrates the application of TAID in developing state-of-the-art compact
models.

2 Preliminaries

Problem setting for language model distillation. A language model is defined as a probability
distribution p over token sequences y = (y1, y2, . . . , yS) ∈ YS , where Y is the vocabulary and S is
the sequence length. The distribution is obtained by applying the softmax function to logit values:
p(ys | y<s) = softmax(logitp(ys | y<s)) = exp(logitp(ys|y<s))/

∑
y′∈Y exp(logitp(y

′|y<s)). The model
satisfies the autoregressive property: p(y) =

∏S
s=1 p(ys | y<s) where y<s := (y1, y2, . . . , ys−1),

and p(ys | y<s) = p(y1) for s = 1. In KD for language models, we aim to transfer knowledge from
a well-trained teacher model p to a parametric student model qθ. The objective is to find parameters θ
that minimize a distance measure J between their distributions.

Traditional knowledge distillation approaches. Hinton et al. (2015) introduced KD using the
Kullback–Leibler (KL) divergence, which is formulated for language models as: JKL(p, qθ) :=
1
S

∑S
s=1

∑
ys∈Y p(ys | y<s) log p(ys|y<s)

qθ(ys|y<s) . However, KD based on the standard KL divergence
often suffers from the mode-averaging problem, where a student model attempts to aggressively cover
all modes of a teacher distribution despite being incapable, potentially resulting in a oversmoothed
and less accurate distribution (Wen et al., 2023; Gu et al., 2024). To address this, Wen et al. (2023)
proposed using the Reverse KL (RKL) divergence: JRKL(p, qθ) := JKL(qθ, p). While this approach
mitigates the mode-averaging problem, it can lead to mode collapse, where the student model focuses
only on the dominant modes of the teacher distribution.

Curse of capacity gap. Mirzadeh et al. (2020), Cho & Hariharan (2019), and Zhang et al. (2023b)
reported a curse of capacity gap, where an excessively large model can negatively impact the
performance of the student model. This phenomenon poses a significant challenge in KD, particularly
for language models. As state-of-the-art language models continue to grow in size and complexity,
the capacity gap becomes increasingly critical in developing high-performing and compact student
models. Addressing the capacity gap is crucial for effectively transferring knowledge from large-
scale language models to more portable ones without sacrificing performance. Our experiments
(Appendix D.2.2) provide empirical evidence of the capacity gap and demonstrate how our proposed
method addresses this challenge.

3 Proposed method: TAID

We introduce Temporally Adaptive Interpolated Distillation (TAID), a novel knowledge distillation
method for large language models. TAID uses a dynamic, time-dependent intermediate teacher to
bridge the gap between student and teacher models (see Figure 1). This approach facilitates smoother
knowledge transfer, addressing the capacity gap and balancing mode-averaging and mode-collapse
issues. We show how TAID mitigates these issues in Appendix D.2.2 and D.2.3, respectively.
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3.1 Temporally interpolated distribution

The key idea behind TAID is to employ a time-dependent intermediate teacher to bridge the gap
between student and teacher models. We formally define the intermediate distribution as follows:
Definition 3.1 (TAID Interpolated Distribution). For any input sequence y<s ∈ Ys−1 and any output
token ys ∈ Y , the TAID interpolated distribution pt is defined as:

pt(ys|y<s) := softmax
(
(1− t) · logitq′θ (ys|y

<s) + t · logitp(ys|y<s)
)

(1)

where t ∈ [0, 1] is a time-dependent interpolation parameter, logitq′θ represents a detached version
of the student logits (i.e., treated as a constant without being backpropagated), and logitp represents
the teacher logits.

The interpolation is performed at the logit level to preserve relative confidence between predictions.
The TAID objective function with the interpolation parameter t is defined as the KL divergence
between the intermediate distribution pt and the student distribution qθ:
Definition 3.2 (TAID Objective). The TAID objective function at time t is defined as:

J
(t)
TAID(p, qθ) := JKL(pt, qθ) =

1

S

S∑
s=1

∑
ys∈Y

pt(ys|y<s) log
pt(ys|y<s)

qθ(ys|y<s)
. (2)

We gradually increase the interpolation parameter t from 0 to 1 during training so that the intermediate
distribution pt adaptively transitions from the student’s initial distribution towards the teacher’s
distribution. Refer to Section 3.2 for the scheduling of the interpolation parameter. The detached q′θ
in pt ensures that we only optimize the student model qθ in the denominator of the KL divergence,
effectively treating the intermediate distribution as a target.

The intermediate distribution provides a crucial advantage in addressing the capacity gap and mode-
averaging/collapse issues. By smoothly transitioning from the student’s initial distribution to the
teacher’s distribution, TAID facilitates a gradual transfer of knowledge. This approach effectively
mitigates issues associated with significant capacity gaps between teacher and student models. This
can be understood as follows: When t is small, the student model is encouraged to focus on its
own modes, reinforcing its unique characteristics. In this phase, TAID behaves similarly to self-
distillation (using the student model as the teacher), which amplifies generalization by sparsifying
the model (Mobahi et al., 2020). Thus, the student model tends to capture dominant features of the
student’s distribution. As t increases, the student gradually incorporates the teacher’s knowledge,
capturing more nuanced and rich signals from the teacher distribution. This balanced approach
results in a student model that not only captures the essential knowledge from the teacher but also
maintains its ability to generalize effectively. Despite TAID’s relevance to self-distillation, the
interpolation parameter is essential to avoid mode collapse, which self-distillation cannot escape. We
will theoretically demonstrate it in Section 4.

3.2 Adaptive interpolation parameter update

While TAID demonstrates effectiveness even with a simple linear increase of the interpolation
parameter t, we propose an adaptive update mechanism to achieve more efficient learning and
improved accuracy. The key motivation is to dynamically adjust t based on the student’s learning
progress. The adaptive update strategy is designed to aggressively increase t in the early stages when
the interpolated distribution pt is close to the student model qθ, as the model fitting is not challenging
in this phase. As the student model approaches the teacher model, the increase in t becomes more
gradual, allowing for careful fitting to the more complex teacher distribution.

Our adaptive update strategy is based on the relative change in the objective function: δn :=

(J
(tn−1)
TAID − J

(tn)
TAID)/(J

(tn−1)
TAID + ϵ), where J

(tn)
TAID is the value of the TAID objective function at

interpolation parameter tn, tn is the interpolation parameter at step n, and ϵ is a small constant to
prevent division by zero. We update t using a momentum-based approach to smooth out short-term
fluctuations: mn = βmn−1 + (1− β)δn, where β is the momentum coefficient. The interpolation
parameter is then updated as: tn ← min(1.0,max(tlinear, tn−1 + α · sigmoid(mn))), where α is the
step size for t, and tlinear is a linear increase schedule as a lower bound for t. Initially, t is set to a
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start value tstart, which is a hyperparameter. The complete TAID training procedure is summarized in
Algorithm 1 in Appendix A.

This update mechanism allows for more aggressive increases in t during the early stages of training
when the student is learning rapidly (high δt), and more gradual increases as the student model
approaches the teacher’s complexity (low δt). The sigmoid function bounds the update, ensuring
stable learning, while the max and min operations guarantee a monotonic increase within the
predefined range. A detailed analysis of how different α values affect the behavior of t and the
learning dynamics is presented in Appendix D.2.1.

4 Theoretical analysis

TAID distills from the intermediate distribution pt, partially containing the student model qθ as the
mixture component. This may apparently cause the collapse because student’s modes are amplified
repeatedly during the fitting recursion. Such a collapse phenomenon has been theoretically observed
for self-distillation, where the teacher and student models are identical (Mobahi et al., 2020). We aim
to demonstrate that TAID avoids mode collapse, unlike self-distillation.

We borrow the analysis framework of Mobahi et al. (2020) to study least-square regression as a proxy
to language modeling. In each training step, the student model is updated by fitting to the interpolated
label (1− t)yt+ tyteacher, where yt and yteacher are the labels of the current student and teacher models,
respectively, and t is the interpolation parameter (being linearly increased) at the current step. Here,
we suppose the student model achieves ϵ-interpolation of the training signals so that the regression
loss is minimized near-perfectly in each time step.
Theorem 4.1 (Non-collapse Nature (Informally)). Suppose we run distillation for T steps in total. If
the teacher model has sufficiently large signals so that the label is at least as large as Ω(

√
Tϵ), then

the student model does not collapse for any time t.

Notably, self-distillation inevitably collapses for sufficiently large steps (Mobahi et al., 2020, Proposi-
tion 4), corroborating the benefit of the intermediate distribution and its adaptive update. The formal
statement and more discussions can be found in Appendix B.

5 Experiments

We evaluate TAID across instruction tuning (Section 5.1) and pre-training scenarios (Appendix D.1),
using various model sizes and architectures. Our experiments compare TAID against state-of-the-art
methods, demonstrating its superior performance and efficiency, while providing insights into its
behavior across different capacity gaps and its ability (Appendix D.2.2) to balance mode-averaging
and mode-collapse issues (Appendix D.2.3).

5.1 Instruction tuning

Experimental setup. For the instruction-following task, we used the UltraChat 200k dataset (Ding
et al., 2023)1 for training. Performance was assessed using MT-Bench (Zheng et al., 2023), a bench-
mark designed to evaluate model’s instruction-following ability, with scoring conducted by GPT-4.
For our experiments, we utilized three teacher-student pairs: Phi-3-mini-4k-instruct (Abdin
et al., 2024) as teacher with TinyLlama (Zhang et al., 2024a) as student, Llama-2-7b-chat (Tou-
vron et al., 2023) as teacher with TinyLlama as student, and StableLM Zephyr 3B (Team, 2023)
as teacher with Pythia-410M (Pythia) (Biderman et al., 2023) as student. To evaluate the pure effec-
tiveness of our distillation method, we focused solely on distillation using instruction data, unlike
previous studies (Gu et al., 2024; Agarwal et al., 2024; Ko et al., 2024) that often perform supervised
fine-tuning (SFT) before distillation or include additional cross-entropy loss on pre-training corpora.
Furthermore, to simulate a more practical scenario, we used powerful teacher models trained on
in-house data with open weights for distillation to smaller student models. We compared TAID
against prior works, including KL divergence (Hinton et al., 2015), RKL (Wen et al., 2023), Total
Variation Distance (TVD) (Wen et al., 2023), Adaptive KL (Wu et al., 2024), as well as methods
utilizing SGOs such as Generalized KD (GKD) (Agarwal et al., 2024) and DistiLLM (Ko et al.,

1https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k
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Table 1: Evaluating distillation methods for LLM instruction tuning. The MT-Bench scores after
training are listed, where higher scores indicate better conversational performance. For each of the
three teacher-student pairs, different distillation algorithms, including the proposed TAID method,
are compared. The highest score in each column is highlighted in bold.

Teacher Phi-3-mini (3.8B) Llama-2 (6.7B) StableLM Zephyr (2.8B)
Method Student TinyLlama (1.1B) TinyLlama (1.1B) Pythia (0.4B)

SFT 2.00 3.94 2.57
KL (Hinton et al., 2015) 2.71 3.99 2.74
RKL (Wen et al., 2023; Gu et al., 2024) 3.48 3.92 2.53
TVD (Wen et al., 2023) 3.27 3.64 2.57
Adaptive KL (Wu et al., 2024) 3.27 3.77 2.64
GKD (Agarwal et al., 2024) 2.24 3.82 2.59
DistiLLM (Ko et al., 2024) 3.23 3.97 2.97
CTKD (Li et al., 2023b) 1.78 2.84 1.39
DKD (Zhao et al., 2022) 2.70 4.14 2.90
(Ours) TAID w/o adaptive update 3.44 4.18 2.88
(Ours) TAID 4.05 4.27 3.05

2024). Additionally, we included two methods originally proposed for image classification tasks:
CTKD (Li et al., 2023b) and DKD (Zhao et al., 2022), to assess their effectiveness in language model
distillation. We also included a supervised fine-tuning (SFT) baseline to demonstrate the benefits
of knowledge distillation. To isolate the impact of our adaptive update mechanism, we evaluated
TAID both with and without this feature, where TAID without adaptive update uses a linear increase
of the interpolation parameter with respect to the training steps. Detailed hyper-parameters and
implementation specifics for TAID and all baseline methods are provided in Appendix E.1.

Results. Table 1 presents the MT-Bench scores for all methods across the three different teacher-
student pairs. Our proposed TAID method consistently outperforms all baseline methods, including
those proposed for image classification (CTKD and DKD) and methods utilizing SGOs such as
GKD and DistiLLM. Notably, TAID achieves superior performance without relying on expensive
SGO sampling strategies, resulting in significantly faster training times—approximately 2 times
faster than DistiLLM and 10 times faster than GKD. This combination of superior performance and
computational efficiency, achieved without SGOs, makes TAID particularly attractive for real-world
applications where both model quality and training speed are crucial. An ablation study comparing
TAID with and without adaptive updates shows improvements ranging from 2.2% to 17.7% across
different teacher-student pairs, underlining the importance of our proposed adaptive mechanism.

To further validate the effectiveness of TAID in a large-scale setting, we conducted experiments on a
pre-training task in Appendix D.1.

6 Conclusion

We introduced Temporally Adaptive Interpolated Distillation (TAID), a novel knowledge distillation
approach that effectively addresses the challenges of compressing large language models. Our
experiments demonstrated TAID’s superior performance across various model sizes and architec-
tures, consistently outperforming state-of-the-art methods. The development of TAID-LLM-1.5B
and TAID-VLM-2B, achieving state-of-the-art performance in their categories, underscores TAID’s
practical impact. TAID’s dynamic bridge mechanism effectively mitigates mode-averaging and
mode-collapse problems, leading to more stable and efficient training. These advantages contribute
to more accessible deployment of advanced language technologies in resource-constrained environ-
ments. Future research directions include extending TAID to other distance metrics and exploring
non-linear extensions of the interpolated distribution. Adapting TAID for multi-teacher distillation
scenarios (Wan et al., 2024) and applying its framework to tasks beyond classification could further
enhance its versatility. Investigating TAID’s application in other modalities and conducting deeper
theoretical analysis of its properties also present promising avenues for research.
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A TAID training algorithm

Algorithm 1 provides a detailed description of the TAID training procedure, including the adaptive
update mechanism for the interpolation parameter t. The TAID algorithm utilizes several key

Algorithm 1 TAID training algorithm

1: Input: Learning rate η, learning rate of the interpolation parameter α, momentum coefficient β,
total iterations N , start value tstart, end value tend

2: Initialize student model parameters θ
3: Initialize t1 = tstart, m0 = 0, J (t0)

TAID =∞
4: for each training iteration n = 1 to N do
5: Compute linear increase value: tlinear = tstart + (tend − tstart) · n/N
6: Sample batch {(y<s

j , yj)}Bj=1 from dataset D
7: Compute ptn(ys|y<s) using Eq. (1)
8: Compute J

(tn)
TAID using Eq. (2)

9: Update θ: θ ← θ − η∇θJ
(tn)
TAID

10: δn = (J
(tn−1)
TAID − J

(tn)
TAID)/(J

(tn−1)
TAID + ϵ)

11: mn = βmn−1 + (1− β)δn
12: ∆t = α · sigmoid(mn)
13: tn+1 ← min(tend,max(tlinear, tn +∆t))
14: end for

hyperparameters that control the behavior of the interpolation parameter t and the adaptive update
mechanism. We discuss the effects of these parameters below:

• α (learning rate of t): This parameter controls the speed of the adaptive update for t. Figure 2
(Left) shows the behavior of t for different values of α, including a linear increase for comparison.
As α increases, we observe that t grows more rapidly in the early stages when the student model is
close to the initial interpolation distribution. This allows for more efficient learning when the task
is relatively easy for the student.

• β (momentum coefficient): This parameter controls the smoothness of the adaptive update. A
higher value of β results in more stable updates by reducing the impact of short-term fluctuations
in the objective function. In our experiments, we found that a β value around 0.99 worked well
across different scenarios.

• tstart (initial value of t): This parameter determines the starting point of the interpolation. It is
particularly useful for skipping the initial stages of learning when the task is very easy for the
student. The choice of tstart should be based on the intuitive gap between the initial student and
teacher models. In our experiments, we found that values between 0.2 and 0.4 often yield good
results, depending on the initial similarity between the student and teacher models.

• tend (maximum value of t): This parameter sets the upper limit for t, typically set to 1.0 to ensure
that the final distribution matches the teacher model.

The algorithm uses a linear increase schedule (tlinear) as a lower bound for t, ensuring that t increases
at least linearly over the course of training. This approach maintains the adaptive nature of TAID
while guaranteeing a minimum rate of progression towards the teacher distribution.

In our experiments, TAID demonstrated robust performance across various tasks with minimal hyper-
parameter tuning. We usually used β = 0.99 and α = 5e−4, with tstart typically ranging between 0.2
and 0.4, depending on the initial student-teacher similarity. While these default values often yield
good results, practitioners may achieve further improvements by fine-tuning these parameters for
their specific tasks and model architectures, particularly in cases that differ significantly from our
experimental settings.

B Theoretical analysis of mode collapse

In this section, we formally study the mode-collapse behavior of TAID.
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B.1 Analysis model

To study the collapse phenomenon, we leverage the analysis framework used by Mobahi et al. (2020).
We study the regression problem in the interpolation regime:2

f∗ := argmin
f∈F

R(f) s.t.
1

N

N∑
i=1

(f(xi)− yi)
2 ≤ ϵ, (3)

where D := {(xi, yi)}Ni=1 is a finite training set with d-dimensional covariates xi ∈ X ⊆ Rd and
one-dimensional outcome yi ∈ R, ϵ > 0 is a desired loss tolerance parameter, R(f) is a regularization
functional, and F ⊆ RX is a hypothesis space. Since we are interested in a large model regime, F is
reasonably assumed to be encompassing all measurable functions. The mean-squared loss is used
in (3) instead of the KL divergence, which is convenient to obtain analytical solutions later. The
regularizer in the following form is considered:

R(f) =

∫
u(x,x′)f(x)f(x′)dxdx′, (4)

where u is a symmetric kernel inducing R(f) ≥ 0 with equality only when f = 0. The interpolation
problem (3) may collapse depending on the teacher signals. Let us stack labels into a vector:

y := [y1 y2 . . . yN ]⊤ ∈ RN .

When ∥y∥2 ≤ Nϵ holds, the problem (3) has a trivial solution f = 0. Such a collapse may happen
particularly in the self-distillation paradigm because the teacher signals are (partially) given by our
hypothesis itself. Thus, it is crucial to investigate when and whether the non-collapse condition
∥y∥2 > Nϵ is satisfied to ensure that our hypothesis learns meaningful signals.

Variational problem. The Lagrangian variational problem of (3) is given as follows:

f∗
λ := argmin

f∈F

1

N

N∑
i=1

(f(xi)− yi)
2 + λ

∫
u(x,x′)f(x)f(x′)dxdx′,

where
1

N

N∑
i=1

(f∗
λ(xi)− yi)

2 − ϵ = 0,

(5)

and λ−1 > 0 is the Lagrange multiplier. The solution to the variational problem (5) can be analytically
written down. Let g be the Green function of the linear operator [Lf ](x) :=

∫
u(x,x′)f(x′)dx′

such that ∫
u(x,x′)g(x′,x0)dx

′ = δ(x− x0), (6)

where δ(x) is the Dirac delta. Let G ∈ RN×N and gx ∈ RN be

Gi,j :=
1

N
g(xi,xj) and gx,i :=

1

N
g(x,xi) for all i, j ∈ [N ].

Then, the analytical solution to (5) is given as follows (Mobahi et al., 2020, Proposition 1):

f∗
λ(x) = g⊤

x (λI+G)−1y. (7)
If we diagonalize G (which is positive definite) as G = V⊤DV, the prediction vector over the
training inputs x1, . . . ,xN is given as

f := [f∗
λ(x1) . . . f∗

λ(xN )]⊤ = V⊤D(λI+D)−1Vy. (8)
The solution (8) is essentially a nonlinear extension of the ridge estimator. Note that V ∈ RN×N is
an orthogonal matrix and D = diag(d1, . . . , dN ) has positive eigenvalues solely.

Importantly, (7) is the solution to the variational problem (5), which is parametrized by λ satisfying
1
N

∑
i(f

∗
λ(xi)− yi)

2 − ϵ = 0. Solving this in λ is hard because of its non-linearity, but Mobahi et al.
(2020, Eq. (24)) evaluate its upper and lower bound:

λ =
α
√
Nϵ

∥y∥ −
√
Nϵ

for some α ∈ [dmin, dmax], (9)

where dmax := maxi di and dmin := mini di. Thus, the analytical solution (7) with this range of λ is
a solution to the original interpolation problem (3), too.

2The interpolation regime must be distinguished from the time interpolation used in the proposed TAID.
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Remark on connection to language modeling. The interpolation formulation (3) is based on
the standard (one-dimensional) regression problem, which obviously deviates from the language
modeling problem introduced in (2). Nonetheless, we believe that this formulation is not only
beneficial for our transparent understanding owing to its simplicity but also has a connection to
multi-categorical distributions. In distributional modeling, a student model qθ outputs a probability
distribution over Y , and falls into mode collapse when qθ has only few numbers of non-zero
probabilities, that is, {c ∈ Y | qθ(y = c) > 0} ≪ |Y|. To deal with the multi-categorical outputs, we
can extend the one-dimensional problem (3) as follows:

∀c ∈ Y, f∗
c := argmin

fc∈F
R(fc) s.t.

1

N

N∑
i=1

(fc(xi)− yi,c)
2 ≤ ϵ,

where teacher signal yi,c is given in the one-hot format such that
∑

c∈Y yi,c = 1 and yi,c ∈ {0, 1}
for all c ∈ Y . We can follow the subsequent analysis straightforwardly. In this multi-categorical
problem, a model (fc)c∈Y is regarded as falling into mode collapse if fc = 0 for many c ∈ Y . This is
measured by the teacher signal condition ∥yc∥2 ≤ Nϵ for each c, where yc ∈ {0, 1}N is the stacked
labels for class c. Thus, studying (3) is directly relevant to mode collapse in language modeling.

B.2 Formal theoretical statement

To study TAID in a fashion of the interpolation problem (3), we consider the following learning
procedure listed in Algorithm 2. Here, the input signals y0 are deemed as the well-trained teacher—
we can deem y1 as the well-trained teacher, but the resulting distillation dynamics would not change
much.

Algorithm 2 TAID learning procedure for least-square regression

Require: T number of iterations, y0 ∈ RN input signals
1: t← 0
2: while t < T do
3: ỹt ← (1− t

T )yt +
t
T y0 ▷ Compose intermediate teacher

4: λt ← αt

√
Nϵ/(∥ỹt∥ −

√
Nϵ) ▷ Choose an appropriate λt by (9)

5: yt+1 ← V⊤D(λtI+D)−1Vỹt ▷ Solve the variational problem with teacher ỹt and λt

6: t← t+ 1
7: end while

Theorem B.1. Let κ := dmax/dmin(≥ 1) be the condition number of G. The prediction vector yt+1

does not collapse, namely yt+1 = 0 cannot be a solution to the interpolation problem (3), if for some
γ ∈ [0, 1], either of the following holds:

t < min

{
1

γ + κ
(r0 − γ) + o(1),

γ

r0
T

}
or

1

r0
T < t, (10)

where r0 := ∥y0∥/
√
Nϵ > 1 and o(1) is an asymptotic term in the large r0 limit.

To make the asymptotics in r0 work well, we need to ensure sufficiently strong initial signals ∥y0∥
and/or near-interpolation (small ϵ). The first bound in (10) is non-vacuous when T = Ω(r0). Though
it is a rather strong requirement, the asymptotic term becomes negligible numerically with a moderate
magnitude of r0 (like 5 to 10).

To see how TAID benefits from the intermediate teacher, compare the non-collapse condition (10)
with that of self-distillation (Mobahi et al., 2020, Proposition 4):

t ≤ r0 − 1

κ
. (11)

We have two observations. First, TAID is beneficial in the latter phase of recursion (namely, step t
closer to T ), where self-distillation can never escape from collapse eventually. This is an intuitive
feature of TAID because the intermediate teacher partly consists strong signals y0 that does not
depend on learned student predictors. Second, TAID is worse in the early phase of recursion (namely,
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step t closer to 1) than self-distillation by a constant factor. Specifically, TAID and self-distillation
have critical steps of collapse t = O(r0/(γ + κ)) and t = O(r0/κ), respectively. To ensure that
TAID learns meaningful features in the early phase, γ should be reasonably bounded away from 0,
leading to a worse critical point than self-distillation. This is a price that TAID has to pay for the
stabilization in the latter phase.

By setting γ = 1 in (10), we get a more interpretable corollary, which is the formal version of
Theorem 4.1.

Corollary B.1.1. If initialization ∥y0∥ satisfies

∥y0∥ = Ω

(
1 +

√
1 + 4T (1 + κ)

2

√
Nϵ

)
,

the prediction vector yt+1 does not collapse for any t.

B.3 Proof

Proof of Theorem B.1. Subsequently, we use the change-of-variable zt := Vyt, where the norm is
preserved ∥zt∥ = ∥yt∥. We also write z̃t := Vỹt and rt := ∥z̃t∥/

√
Nϵ for convenience. At each

time t, the non-collapse criterion is given by ∥z̃t∥2 > Nϵ(⇐⇒ rt > 1): if it holds, the next update
in Line 5 would not collapse. Let At := D(λtI+D)−1. We first show the second case, namely, the
prediction avoids collapse when 1

r0
T < t. Then, z̃t is recursively expanded.

z̃t =

(
1− t

T

)
zt +

t

T
z0

=

(
1− t

T

)
At−1z̃t−1 +

t

T
z0 (12)

=

(
1− t

T

)
At−1

[(
1− t− 1

T

)
zt−1 +

t− 1

T
z0

]
+

t

T
z0

=

(
1− t

T

)(
1− t− 1

T

)
At−1zt−1 +

[(
1− t

T

)
t− 1

T
At−1 +

t

T
I

]
z0

= . . .

=

[
t∏

τ=0

(
1− t− τ

T

)]
·

[
t−1∏
τ=0

Aτ

]
z0 +

t−1∑
τ=1

[
τ−1∏
s=0

(
1− t− s

T

)]
t− τ

T

[
τ∏

s=1

At−s

]
z0 +

t

T
z0

=

{
T !

T t+1 · (T − t− 1)!

[
t−1∏
τ=0

Aτ

]
+

t−1∑
τ=1

(t− τ) · (T − t+ τ − 1)!

T τ+1 · (T − t− 1)!

[
τ∏

s=1

At−s

]
+

t

T
I

}
z0

=: Atz0.

To evaluate At, we first look at Aτ for τ ∈ [0, t− 1]. Since Aτ is a diagonal matrix, its k-th element
of Aτ can be expressed as follows:

(Aτ )k =
dk

λτ + dk
=

(
ατ/dk

∥z̃τ∥/
√
Nϵ− 1

+ 1

)−1

≤
(

1/κ

∥z̃τ∥/
√
Nϵ−1

+ 1
)−1

≤ 1

≥
(

κ
∥z̃τ∥/

√
Nϵ−1

+ 1
)−1

≥ 0
, (13)
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where ατ is given in (9). The last inequalities can be formally shown by induction in τ ∈ [0, t− 1].
Thus, the minimum singular value of At is evaluated as follows:

σmin(At)

= σmin

(
T !

T t+1 · (T − t− 1)!

[
t−1∏
τ=0

Aτ

]
+

t−1∑
τ=1

(t− τ) · (T − t+ τ − 1)!

T τ+1 · (T − t− 1)!

[
τ∏

s=1

At−s

]
+

t

T
I

)

= σmin

(
T !

T t+1 · (T − t− 1)!

[
t−1∏
τ=0

Aτ

])
+ σmin

(
t−1∑
τ=1

(t− τ) · (T − t+ τ − 1)!

T τ+1 · (T − t− 1)!

[
τ∏

s=1

At−s

])

+ σmin

(
t

T
I

)
≥ σmin

(
t

T
I

)
=

t

T
,

where the second identity holds because all matrices evaluated are diagonal. This implies

∥z̃t∥ ≥ σmin(At)∥z0∥ ≥
t

T
∥z0∥ =

t

T
∥z̃0∥.

The last equality uses z0 = z̃0. Thus, the non-collapse criterion ∥z̃t∥ >
√
Nϵ holds as long as

t > (
√
Nϵ/∥z̃0∥)T = (

√
Nϵ/∥y0∥)T .

Next, supposing t is small enough such that t ≤ γ
r0
T with γ ∈ (0, 1), we show that the prediction

avoids collapse when t < ( 12 + o(1))(r0 − γ). To see the non-collapse criterion rt > 1, we first
derive a lower bound of rt:

rt
(12)
=

∥∥∥∥(1− t

T

)
At−1

z̃t−1√
Nϵ

+
t

T

z̃0√
Nϵ

∥∥∥∥
(a)
≥
(
1− t

T

)∥∥∥∥At−1
z̃t−1√
Nϵ

∥∥∥∥− t

T

∥∥∥∥ z̃0√
Nϵ

∥∥∥∥
≥
(
1− t

T

)
σmin(At−1)rt−1 −

t

T
r0

≥
(
1− γ

r0

)
σmin(At−1)rt−1 − γ

(13)
≥
(
1− γ

r0

)
rt−1
κ

rt−1−1 + 1
− γ

(b)
≥
(
1− γ

r0

)
(β0rt−1 − β1)− γ,

where (a) is due to the “reverse” triangle inequality and (b) is due to Mobahi et al. (2020, Eq. (137))
(which is essentially a linear lower bound of a convex function in r0) with

β0 :=
(r0 − 1)2 + κ(2r0 − 1)

(r0 − 1 + κ)2
and β1 :=

r20κ

(r0 − 1 + κ)2
.

By recursively lower bounding rt, we obtain the following bound:

rt ≥
[(

1− γ

r0

)
β0

]t
r0 −

(
1− γ

r0

)
β1

[(
1− γ

r0

)t
βt
0 − 1

]
(
1− γ

r0

)
β0 − 1

− γ =: β̄t
0r0 − β̄1

β̄t
0 − 1

β̄0 − 1
− γ =: rt,

where β̄0 :=
(
1− γ

r0

)
β0 and β̄1 :=

(
1− γ

r0

)
β1. To derive the non-collapse condition, we solve

rt = 1 to derive the critical t, which is equivalent to

t =
log
(

(1+γ)(1−β̄0)+β̄1

β̄1+r0(1−β̄0)

)
log β̄0

.
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By simple algebra,

t =

log

(
γ[r20+(κ−2)r0−(κ−1)]+(κr20+κ(κ−1)r0)

γ2[r0+2(κ−1)−κ−1
r0

]+γ(κ−1)(κ+2−r0− 1
r0

)+κ(κ−1+r20)

)
log
(

1
1− γ

r0

)
+ log

(
1

1− κ(κ−1)

(r0−1+κ)2

)

≥
1−

γ2[r0+2(κ−1)−κ−1
r0

]+γ(κ−1)(κ+2−r0− 1
r0

)+κ(κ−1+r20)

γ[r20+(κ−2)r0−(κ−1)]+(κr20+κ(κ−1)r0)[
1

1− γ
r0

− 1
]
+

[
1

1− κ(κ−1)

(r0−1+κ)2

− 1

]

=

κ(κ−1)(r0−1)+γ(r20+(2κ−3)r0−(κ−1)(κ+3)+κ−1
r0

)−γ2[r0+2(κ−1)−κ−1
r0

]

γ[r20+(κ−2)r0−(κ−1)]+[κr20+κ(κ−1)r0]

1
r0
γ −1

+ 1
(r0−1+κ)2

κ(κ−1)
−1

=

γr20+[2κ−3−γ+κ(κ−1)]r0−(κ−1)[κ+γ(κ+3+2γ)]+
γ(κ−1)(1+γ)

r0

(γ+κ)r20+[γ(κ−2)+(κ−1)]κr0−γ(κ−1)

γr20+(2γ+κ)(κ−1)r0−(κ+1)(κ−1)γ

(r0−γ)[r20+2(κ−1)r0−(κ−1)]

where the inequality is due to 1− 1
x ≤ log x ≤ x− 1. The last lower bound can be asymptotically

(in large r0) expressed as follows:

t ≥
γ+o(1)

γ+κ+o(1)

γ+o(1)
(r0−γ)(1+o(1))

=
1

γ + κ
(r0 − γ) + o(1).

Thus, the non-collapse condition in the second case is t < 1
γ+κ (r0 − γ) + o(1).

Proof of Corollary B.1.1. By the non-collapse criterion (10) with γ = 1,

1

1 + κ
(r0 − 1) + o(1) ≥ 1

r0
T

suffices for yt not being collapsed for any t. By solving this quadratic inequality, we can verify the
statement.

C Related works

Improving objective functions. To address the mode-averaging and mode-collapse issues that the
traditional KL divergence-based methods (Section 2) face, various alternative objective functions
have been applied to knowledge distillation. Wen et al. (2023) applied the Total Variation Distance
to this task: JTVD(p, qθ) :=

1
2

∑
y |p(y) − qθ(y)|. Agarwal et al. (2024) utilized the Generalized

Jensen–Shannon (JS) Divergence: JGJSD(p, qθ) := λJKD(p, r) + (1− λ)JRKD(p, r), where r(y) =
λp(y)+(1−λ)qθ(y) and λ ∈ [0, 1]. Additionally, Ko et al. (2024) employed the Skew KL Divergence:
JSKD(p, qθ) := JKL(p, r). They also defined the Skew Reverse KL Divergence as JSRKD(p, qθ) :=
JKL(qθ, r). These approaches aim to balance preserving teacher knowledge and allowing student
generalization. However, they typically use a fixed teacher distribution throughout distillation,
potentially hindering knowledge transfer when there is a significant capacity gap between teacher
and student. In contrast, our TAID method introduces a time-dependent intermediate distribution,
gradually transitioning from the student’s initial distribution to the teacher’s, mitigating the capacity
gap issue and enabling more stable learning. It is worth noting that while some methods, such as
Kim & Rush (2016) and TVD, operate at the sequence level, others including our TAID approach
work at the token level, which can be interpreted as being closer to the next token prediction nature
of language models. Interestingly, Skew KL divergence adopts an intermediate distribution similar
to TAID. However, the approach is significantly different because Skew KL divergence transfers
the teacher’s knowledge to the intermediate distribution, while TAID transfers the intermediate
distribution to the student. This TAID’s approach is more suitable for adaptive updates of the student
model when the interpolation parameter is made time-dependent.
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Utilizing student-generated outputs (SGOs). Recent research in KD for language models has
explored utilizing on-policy data sampled from teacher and student models during training (Gu
et al., 2024; Zhang et al., 2024b). Within this approach, some studies have specifically focused
on leveraging student-generated outputs (SGOs) (Agarwal et al., 2024; Ko et al., 2024). While
these methods show promise in improving distillation performance and addressing the distribution
mismatch between training and inference due to the autoregressive nature of LMs when training on
a fixed dataset (Pomerleau, 1991; Ross & Bagnell, 2010), they are computationally expensive for
large-scale models. TAID achieves superior performance without relying on on-policy data or SGOs,
offering improved computational efficiency for large-scale datasets and models (see Section 5.1).
Future work could explore combining TAID with on-policy approaches to potentially achieve better
performance.

KD methods from image classification. KD has been extensively studied in image classification
tasks, with some logit-based methods being applicable to language model distillation. Notable
examples include CTKD (Li et al., 2023b) and DKD (Zhao et al., 2022), which have shown remarkable
performance using standard KL divergence. CTKD shares a similar curriculum learning approach
with TAID, gradually increasing task difficulty. CTKD achieves this through a learnable temperature
parameter that modifies both student and teacher distributions. In contrast, TAID modifies only
the teacher distribution through interpolation, potentially preserving more of the student’s learned
information. DKD decomposes KL divergence into target and non-target class components, allowing
for better weight adjustment in tasks of varying difficulty. However, these image classification-based
methods are not sufficiently effective in language modeling due to the unique characteristics of the
language domain. We experimentally verified it in Section D.2. TAID addresses these challenges
through its adaptive interpolation, while remaining flexible enough to be combined with methods like
DKD for simpler tasks.

D Additional experiments

D.1 Pre-training

To further validate the effectiveness of TAID in a large-scale setting, we conducted experiments
on a pre-training task, which involves training on a pre-training corpus and evaluates with diverse
downstream tasks.

Experimental setup. Due to the limited resources, we performed continued pre-training, initializing
the student model with a pre-trained model and further refining it through additional pre-training
using distillation. We used the first 10% of the SmolLM-Corpus (Ben Allal et al., 2024) dataset,
amounting to approximately 20 billion tokens. We used Phi-3-medium-4k-instruct (Abdin
et al., 2024) as the teacher model and TinyLlama as the student model. Similar to our instruction
tuning experiments, we focused solely on distillation without additional supervised fine-tuning or
pre-training losses. Due to the computational cost associated with sampling from the student model
in large-scale pre-training and the absence of prompts as in instruction-following tasks, we adapted
the baseline methods to use only their objective functions without SGOs. We compared TAID against
these modified baselines, including KL divergence, TVD, Adaptive KL, GJS (used in GKD), and
Skew KL/RKL (used in DistiLLM). To evaluate the pre-trained models, we followed the Open LLM
Leaderboard (Beeching et al., 2023) methodology, which is commonly used to assess the underlying
capabilities of models through few-shot evaluation. This methodology includes six diverse tasks,
with evaluation settings and metrics adhering to the Open LLM Leaderboard standards. Detailed
hyperparameters and implementation specifics are provided in Appendix E.2.

Results. Table 2 presents the results of our pre-training experiments. Following the standard
practice in the LLM community, we reported the average scores across diverse tasks. TAID achieves
the highest average score across all six tasks, outperforming all baseline methods. This superior
average performance demonstrates TAID’s effectiveness in transferring knowledge from the teacher to
the student model across a diverse range of tasks. While TAID shows the best overall performance, it
is worth noting that it achieves the highest scores on two individual tasks (ARC and Winogrande) and
competitive performance on the others. The consistently strong performance across tasks, coupled
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Table 2: Evaluating distillation methods for LLM continued pre-training. The Open LLM
Leaderboard scores after training are listed, with higher scores indicating better performance. The
average score across the 6 tasks (Average column) is commonly used as an indicator of overall
language proficiency. The highest score in each column is highlighted in bold.

Method ARC HellaSwag MMLU TrustfulQA Winogrande GSM8K Average
SFT 41.38 63.66 25.89 35.64 61.25 1.21 38.17
KL (Hinton et al., 2015) 44.97 65.43 25.11 37.95 63.22 2.80 39.91
TVD (Wen et al., 2023) 43.52 64.50 25.95 36.38 63.14 2.96 39.41
Adaptive KL (Wu et al., 2024) 43.77 63.09 26.04 36.42 63.22 2.12 39.11
GJS (Agarwal et al., 2024) 44.71 65.67 25.27 37.76 62.12 3.34 39.81
Skew KL (Ko et al., 2024) 44.62 65.25 25.79 37.45 62.51 3.41 39.84
Skew RKL (Ko et al., 2024) 44.11 64.80 26.07 36.76 62.83 3.03 39.60
(Ours) TAID 45.48 65.43 25.43 37.92 63.38 2.96 40.10
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Figure 2: Analysis of TAID’s behavior and performance. (Left) Interpolation parameter t behavior:
Higher α values lead to faster initial growth compared to linear increase. (Middle) Objective value
comparison: TAID exhibits a more stable objective value with lower variance compared to standard
KL divergence throughout training. (Right) Performance across different teacher sizes: TAID shows
monotonic improvement and outperforms other methods as teacher size increases.

with the highest average score, underscores TAID’s robustness and effectiveness in knowledge
distillation for large language models.

D.2 Analysis

D.2.1 Analysis of interpolation parameter and training stability

We analyzed TAID’s interpolation parameter t and learning dynamics to validate its design. Figure 2
(Left) shows how different learning rates α affect t’s behavior over time under the setting of Sec-
tion 5.1. We can confirm that t is smoothly increasing thanks to our adaptive update mechanism.
Higher α values lead to faster initial growth of t, enabling more aggressive early knowledge transfer,
which is particularly beneficial when the capacity gap between student and teacher models is small.
Figure 2 (Middle) compares the objective value of TAID (using the interpolated distribution) with
the standard KL divergence between the teacher and student during training. TAID demonstrates
a constant value with low variance throughout the training process, in contrast to the higher and
more variable loss of standard KL. This stability in loss indicates that TAID’s adaptive interpolation
mechanism keeps the learning task at a consistent level of difficulty, aligning with the student’s
current capabilities. This controlled learning environment potentially leads to more efficient and
stable knowledge transfer throughout the training process.

D.2.2 Performance across various capacity gaps

TAID’s design, which gradually transfers knowledge from the teacher model, is expected to address
the curse of capacity gap described in Section 2. To evaluate this, we conducted an experiment using
a fixed-size student model (70m) trained with teachers of varying capacities (410M to 6.9B) from
the Pythia Suite (Biderman et al., 2023). Models were trained on a random 1B token subset of the
SmolLM-Corpus for 1 epoch, due to computational cost constraints. We chose the LAMBADA
dataset (Paperno et al., 2016) for evaluation, as it tests a model’s ability to predict the final word of
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a passage, directly assessing language modeling capability without relying on specific knowledge,
making it suitable for comparing models with small-scale training. Figure 2 (Right) shows that
TAID consistently outperforms both KL and RKL divergence methods across all teacher model sizes.
Notably, TAID exhibits a consistent upward trend in performance as the teacher model size increases
while KL and RKL methods show inconsistent performance trends. This inconsistency in KL and
RKL methods aligns with the curse of capacity gap, where larger teacher models do not always
lead to better student performance, described Section 2. TAID’s consistent improvement with larger
teachers indicates its robustness in handling varying capacity gaps, making it particularly suitable for
distilling knowledge from state-of-the-art large language models into more compact and deployable
student models.

D.2.3 Balancing mode averaging and mode collapse

To demonstrate TAID’s effectiveness in balancing mode-averaging and mode-collapse issues, we
analyzed the distributions of student models trained using KL divergence, RKL divergence, and TAID.
We used the trained models of the Phi-3-mini-4k-instruct (teacher) and TinyLlama (student)
pair in Section 5.1, with distributions calculated from the UltraChat 200k train set.

Table 3 presents a summary of our analysis, showing the probability mass distribution for the head and
tail of the vocabulary as ranked by the teacher model. We observe that TAID consistently maintains
probability masses between those of KL and RKL for both the head and tail of the distribution.

Table 3: Probability mass distri-
bution analysis. Head: sum of
probabilities for top-10 tokens. Tail:
sum of probabilities for tokens in
the 80–100th percentile.3

Method Head Tail

KL 0.216 40.2 ×10−7

RKL 0.227 8.1 ×10−7

TAID 0.218 39.0 ×10−7

In the head, TAID captures dominant vocabulary in the teacher’s
distribution more than KL, effectively avoiding the mode-
averaging issue. While RKL captures the dominant vocabulary
more than TAID, it significantly fails to capture low-frequent
vocabulary in the tail of the teacher distribution, which TAID
captures reasonably, preventing the mode-collapse issue. These
results indicate that TAID successfully navigates the trade-off
between mode averaging and mode collapse, achieving a more
balanced and faithful representation of the teacher’s distribution
across both common and rare tokens. This balanced approach
contributes to TAID’s superior performance in knowledge dis-
tillation tasks, as it more effectively captures the full spectrum
of the teacher’s knowledge while maintaining a focused distri-
bution.

D.2.4 Comparison with image classification tasks

ResNet-56 GPT-2
0

2

4

6

Entropy

ResNet-56 GPT-2
0.0

0.2

0.4

0.6

0.8

1.0
Target-class Probability

Figure 3: Comparison between im-
age classification and language mod-
eling tasks. LMs (GPT-2) exhibit sig-
nificantly higher entropy and lower tar-
get class probabilities on average com-
pared to image classification models
(ResNet-56).

Knowledge distillation in language modeling presents unique
challenges compared to image classification. Figure 3 illustrates
the key differences in output distributions between these tasks.
Language models exhibit significantly higher entropy and lower
target class probabilities, making knowledge transfer more chal-
lenging. The lower target class probabilities increase the risk of
mode collapse, requiring the student to capture a wider range
of tokens. The relatively higher entropy reflects a more com-
plex distribution, making it challenging for smaller models to
effectively learn from larger ones. TAID’s adaptive mechanism
is designed to address these complexities. Notably, methods
proposed for image classification (e.g., CTKD (Li et al., 2023b),
DKD (Zhao et al., 2022)) underperform on language tasks (Sec-
tion 5.1), which highlights the need for specialized approaches.
To assess TAID’s versatility, we evaluated it on image classi-
fication tasks (Appendix E.3). While showing modest gains
on CIFAR-100, TAID consistently outperformed CTKD and
DKD on ImageNet, a more complex task than CIFAR-100.
This suggests TAID’s effectiveness scales with task complex-
ity. These findings underscore the importance of distillation
methods tailored to language modeling’s unique challenges. TAID’s strong performance across
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domains, particularly in complex tasks, demonstrates its potential as a versatile and robust approach
to knowledge distillation.

E Experimental details

E.1 Instruction tuning experiments

For our instruction tuning experiments, we utilized the UltraChat 200k dataset. We preprocessed the
dataset by removing samples exceeding a maximum length of 2048 tokens, resulting in approximately
150k training samples and 2k validation samples.

All models were trained for 5 epochs using a batch size of 64. We employed the AdamW optimizer
with a learning rate of 1e−4 and a cosine learning rate scheduler. To select the best checkpoint for
evaluation, we calculated the ROUGE-L score on the validation set after each epoch and chose the
checkpoint with the highest score.

For our proposed TAID method, we used a momentum coefficient (β) of 0.99 across all experiments.
The learning rate of t (α) was set to 5e−4. The initial value of t (tstart) was set to 0.4 for the
Phi-3-mini-4k-instruct pair and 0.2 for the other two pairs. The final value of t (tend) was set
to 1.0 for all experiments.

Regarding baseline methods, we implemented GKD using Generalized Jensen-Shannon Divergence
(GJSD) with λ = 0.1 as the objective function and a student data fraction of 0.5. For DistiLLM,
we used Skew KL divergence with λ = 0.1 and an initial student data fraction of 0.0. We selected
the better performing skew divergence between Skew Forward KL and Skew Reverse KL based on
the best ROUGE-L score. Following the original DistiLLM paper, we calculated the validation loss
twice per epoch, totaling 10 times, to leverage the Adaptive SGO scheduler. For CTKD and DKD,
we followed their settings used in the training on ImageNet (Deng et al., 2009).

In terms of computational efficiency, we observed significant differences in training times among the
different methods. TAID completed its training in approximately 0.7 hours per epoch on our hardware
setup using 8 NVIDIA H100 GPUs. In comparison, DistiLLM required about 2 hours per epoch,
while GKD took approximately 9.8 hours per epoch under the same conditions. These differences in
training time are primarily attributed to the computational complexity of methods utilizing SGOs.
TAID’s ability to achieve competitive performance without relying on SGOs contributes to its faster
training times.

E.2 Pre-training experiments

For our pre-training experiments, we used the first 10% of the SmolLM-Corpus (Ben Allal et al.,
2024) dataset, which amounted to approximately 20 billion tokens.

The pre-training was conducted for 1 epoch using a distributed setup with 80 NVIDIA H100 GPUs,
each processing a batch size of 8, resulting in an effective batch size of 640. We used the AdamW
optimizer with a learning rate of 1e−4 and a cosine learning rate scheduler.

The TAID-specific parameters for the pre-training experiments were kept consistent with those
used in the Phi-3- mini-4k-instruct pair in the instruction tuning experiments. Also, the
baseline methods in the pre-training experiments were implemented similarly to the instruction
tuning experiments, with adjustments made to exclude SGOs due to the computational constraints of
large-scale pre-training. Specifically, for methods like DistiLLM, we only used the core divergence
components without the SGO-based additions.

E.3 Image classification results

To explore TAID’s applicability beyond language models, we conducted experiments on image
classification tasks using the CIFAR-100 and ImageNet datasets.
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Table 4: Top-1 accuracies (%) on the CIFAR-100 dataset. Results for different teacher-student
pairs are shown.

Teacher ResNet56 ResNet110 ResNet32×4 WRN-40-2 WRN-40-2 VGG13
Method Student ResNet20 ResNet32 ResNet8×4 WRN-16-2 WRN-40-1 VGG8

KL (Hinton et al., 2015) 70.66 73.08 73.33 74.92 73.54 72.93
CTKD (Li et al., 2023b) 71.19 73.52 73.39 75.45 73.93 73.52
DKD (Zhao et al., 2022) 71.97 74.11 76.32 76.24 74.81 74.68
MLKD (Jin et al., 2023) 72.19 74.11 77.08 76.63 75.35 75.18
(Ours) TAID 72.25 73.51 74.85 75.81 74.51 74.38

Table 5: Top-1 accuracies (%) on the ImageNet validation set. Results for different teacher-student
pairs are shown.

Teacher ResNet34 ResNet50
Method Student ResNet18 MN-V1

KD (Hinton et al., 2015) 71.03 70.50
CTKD (Li et al., 2023b) 71.38 71.16
DKD (Zhao et al., 2022) 71.70 72.05
MLKD (Jin et al., 2023) 71.90 73.01
(Ours) TAID 72.10 72.71

E.4 CIFAR-100 results

We evaluated TAID on the CIFAR-100 dataset, which consists of 100 classes. Table 4 presents the top-
1 accuracies achieved by TAID and other knowledge distillation methods on various teacher-student
model pairs.

As shown in Table 4, TAID performs competitively on CIFAR-100, consistently outperforming
KL divergence across all model pairs. However, the gains are modest compared to state-of-the-art
methods specifically designed for image classification, such as MLKD.

Interestingly, based on the analysis of DKD, we can interpret that for simpler tasks like CIFAR-100,
where the teacher’s target class probabilities are close to 1, the weight of the NCKD component in
DKD becomes small. This suggests that combining TAID with DKD could potentially lead to further
performance improvements, leveraging the strengths of both approaches in handling different aspects
of the distillation process.

E.5 ImageNet results

To assess TAID’s performance on a larger-scale image classification task, we conducted experiments
on the ImageNet dataset, which contains 1000 classes. Table 5 presents the top-1 accuracies achieved
by TAID and other methods on ImageNet.

On ImageNet, TAID shows more pronounced improvements, consistently outperforming CTKD and
DKD across both teacher-student pairs. For the ResNet34-ResNet18 pair, TAID achieves the highest
accuracy among all methods. For the ResNet50-MobileNet-V1 pair, TAID performs competitively,
outperforming CTKD and DKD, and achieving results close to MLKD.

These results on ImageNet demonstrate that TAID’s performance improves relative to other methods
as the task complexity increases. With its larger number of classes and more diverse images, ImageNet
presents a more challenging scenario where TAID’s adaptive interpolation mechanism shows more
significant gains. This aligns with our observations in the main text that TAID’s strengths are
particularly evident in tasks with higher complexity and entropy.
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Table 6: Performance of TAID-LLM-1.5B, our new state-of-the-art LLM for models under 2B
parameters.

Model MMLU TriviaQA ARC PIQA Hellaswag OBQA Winogrande Average
Qwen2-1.5B (Yang et al., 2024) 37.91 1.38 48.12 75.30 63.87 36.80 59.98 46.19
Qwen2.5-1.5B (Qwen Team, 2024) 41.15 0.68 58.41 76.01 66.40 40.00 59.35 48.86
Phi-1.5B (Li et al., 2023a) 35.92 6.06 60.53 75.62 60.72 46.00 67.88 50.39
StableLM-2-1.6B (Bellagente et al., 2024) 36.21 29.59 53.57 76.77 66.60 37.20 58.72 51.24
SmolLM-1.7B (Allal et al., 2024) 39.97 22.56 59.95 76.06 62.91 42.80 54.91 51.31
TAID-LLM-1.5B 39.96 22.96 58.14 77.37 67.15 41.40 58.88 52.27

Table 7: Performance of TAID-VLM-2B, our new state-of-the-art VLM for models up to 4B parame-
ters.

Model MMBench_V11 MMStar MMMU_VAL MathVista OCRBench AI2D HallusionBench MMVet Average
PaliGemma-3B-mix-448 (Beyer et al., 2024) 65.6 48.3 34.9 28.7 61.4 68.3 32.2 33.1 46.6
MiniCPM-V-2 (Yao et al., 2024) 65.8 39.1 38.2 39.8 60.5 62.9 36.1 41.0 47.9
Phi-3-Vision (Abdin et al., 2024) 65.2 47.7 46.1 44.6 63.7 78.4 39.0 44.1 53.6
InternVL2-2B (Chen et al., 2024) 69.6 49.8 36.3 46.0 78.1 74.1 38.0 39.7 54.0
TAID-VLM-2B 70.7 49.5 35.1 51.6 78.6 74.0 56.8 35.1 56.4

F Application to state-of-the-art model development

Building upon our systematic evaluation of TAID, we further demonstrate its effectiveness in devel-
oping state-of-the-art models. We introduce two models developed using TAID: TAID-LLM-1.5B
and TAID-VLM-2B. Both models have achieved state-of-the-art performance in their respective size
categories for large language models (LLMs) and vision-language models (VLMs), underscoring
TAID’s versatility and effectiveness in real-world applications.

F.1 TAID-LLM-1.5B

Experimental setup. We developed TAID-LLM-1.5B, a new 1.5B-parameter language model,
by distilling knowledge from Qwen-72B-Instruct (Yang et al., 2024) to Qwen-1.5B-Instruct
through continued pre-training using our TAID method. We utilized the full SmolLM-Corpus (Ben Al-
lal et al., 2024) dataset. The training process consisted of 2 epochs, employing the AdamW optimizer
with a cosine learning rate scheduler. We set the initial learning rate to 1e−5. For the TAID-specific
parameters, we used a momentum coefficient (β) of 0.99 and a learning rate of t (α) of 5e−5. The
initial value of t (tstart) was set to 0.4, and the final value (tend) was set to 1.0. To enhance training
efficiency, we pre-computed the probabilities from the teacher model. Furthermore, to manage storage
costs effectively, we only utilized the top 50 probabilities. This approach allowed us to balance
computational resources and model performance, enabling efficient knowledge transfer from the
large teacher model to the smaller student model.

Following the recent conventions in evaluating language models of this size (Allal et al., 2024),
we conducted evaluations using LightEval 4, a comprehensive benchmark suite for small language
models that includes seven zero-shot tasks.

Results. Table 6 presents a comparison of TAID-LLM-1.5B with other open compact language
models. Our model achieves the highest average score, setting a new state-of-the-art for models with
fewer than 2 billion parameters.

Also, TAID-LLM-1.5B achieves competitive or superior performance across all tasks, with particu-
larly strong results in PIQA and Hellaswag. This demonstrates the effectiveness of our distillation
approach in creating a compact model that maintains high performance across a diverse range of
language tasks.

F.2 TAID-VLM-2B

Experimental setup. To showcase TAID’s versatility, we extended our approach to vision-language
models, developing TAID-VLM-2B, a new 2B-parameter vision-language model. We distilled knowl-

3Typically, probabilities range from 10−1 to 10−2 for Head tokens and from 10−10 to 10−11 for Tail tokens.
4https://huggingface.co/blog/smollm
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edge from InternVL2-8B (Chen et al., 2024) to InternVL2-2B. We trained on the Mantis-Instruct
dataset (Jiang et al., 2024). The training process spanned 3 epochs, using the AdamW optimizer with
a cosine learning rate scheduler. The initial learning rate was set to 1e−6. In this vision-language
model distillation task, we employed InternVL2-8B (Chen et al., 2024) as the teacher model and
InternVL2-2B as the student model. The TAID-specific parameters remained largely consistent with
those used for TAID-LLM-1.5B, with a momentum coefficient (β) of 0.99 and tstart of 0.4. However,
we adjusted the learning rate of t to 5e−4 to accommodate the characteristics of vision-language
model training. The tend value was maintained at 1.0. We conducted the evaluation following the
protocol of Open VLM Leaderboard (OpenCompass Contributors, 2023)5.

Results. Table 7 presents a comparison of TAID-VLM-2B with other state-of-the-art vision-language
models up to 4B parameters. Our model achieves the highest average score across all tasks, signifi-
cantly outperforming previous SOTA models. Notably, TAID-VLM-2B surpasses the performance of
Phi-3-Vision (4.2B parameters), a model with more than twice the parameter count, demonstrating
the effectiveness of our distillation approach. This success highlights TAID’s capability in transfer-
ring multimodal knowledge, even when dealing with complex vision-language tasks and bridging
significant capacity gaps.

The remarkable performance of both TAID-LLM-1.5B and TAID-VLM-2B underscores the power
and versatility of our TAID method. By achieving state-of-the-art results in both language and
vision-language domains, we demonstrate that TAID is a robust and effective approach for knowledge
distillation across various model architectures and tasks.

5https://huggingface.co/spaces/opencompass/open_vlm_leaderboard
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