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Abstract
Large-scale neural network models combining001
text and images have made incredible progress002
in recent years. However, it remains an open003
question to what extent such models encode004
compositional representations of the concepts005
over which they operate, such as correctly iden-006
tifying red cube by reasoning over the con-007
stituents red and cube. In this work, we fo-008
cus on the ability of a large pretrained vision009
and language model (CLIP) to encode com-010
positional concepts and to bind variables in011
a structure-sensitive way (e.g., differentiating012
cube behind sphere from sphere behind cube).013
To inspect the performance of CLIP, we com-014
pare several architectures from research on015
compositional distributional semantics models016
(CDSMs), a line of research that attempts to017
implement traditional compositional linguistic018
structures within embedding spaces. We bench-019
mark them on three synthetic datasets – single-020
object, two-object, and relational – designed to021
test concept binding. We find that CLIP can022
compose concepts in a single-object setting, but023
in situations where concept binding is needed,024
performance drops dramatically. At the same025
time, CDSMs also perform poorly, with best026
performance at chance level.027

1 Introduction028

Good semantic representations are generally as-029

sumed to require, at a minimum, compositionality030

and groundedness. That is, meanings of sentences031

should be functions of the words they contain and032

the syntax via which those words are combined033

(Partee, 1995) (compositionality), and such mean-034

ings should be at least in part responsible for ref-035

erence to the real world, e.g., via truth conditions036

(groundedness). The current state-of-the-art of se-037

mantic representation consists of vectors extracted038

from very large neural networks trained either on039

text alone (Devlin et al., 2019; Brown et al., 2020;040

Touvron et al., 2023) or a mix of text and images041

(Radford et al., 2021; OpenAI, 2023). It remains042

a wide-open question whether such models consti- 043

tute good semantic representations (Pavlick, 2022), 044

with empirical evidence and in-principle arguments 045

simultaneously supporting claims that models are 046

and are not compositional (Marcus and Millière, 047

2023), and that they are and are not grounded (Pi- 048

antadosi and Hill, 2022; Bender and Koller, 2020; 049

Mollo and Millière, 2023). 050

In this paper, we focus on vision-and-language 051

models 1 (specifically CLIP and fine-tuned vari- 052

ants of CLIP), and seek to answer, in a controlled 053

setting, whether such models meet basic tests of 054

grounded compositionality. Specifically, we con- 055

sider three basic types of linguistic compositions: 056

combining a single adjective and noun (red cube), 057

combining two adjectives with respective nouns 058

(red cube and blue sphere), and relating two nouns 059

(cube behind sphere). All three of these settings re- 060

quire some degree of compositionality and ground- 061

edness, with the latter two exemplifying a more 062

abstract type of compositionality (pervasive in lan- 063

guage) which depends not only on recognizing a 064

conjunction of constituents but an ability to bind 065

meaning representations to abstract syntactic roles. 066

Recently, there has been a significant interest in the 067

community to benchmark the compositional capa- 068

bilities of CLIP and other VLMs (Ma et al., 2022; 069

Yuksekgonul et al., 2023; Thrush et al., 2022). 070

However, Hsieh et al. (2023a) shows that these 071

datasets are ‘hackable’ as the incorrect labels may 072

not be meaningful and do not require the image to 073

predict the correct label. For example, an image 074

of a horse eating the grass can have the distractor 075

the grass eating a horse. In contrast, we are less 076

1There is significant debate about whether text-only lan-
guage models can be considered “grounded”. It is often as-
sumed that models trained on multimodal data will circumvent
this debate, but this should not be taken for granted. Our find-
ings add to work which shows that VLMs don’t necessarily
learn a grounded semantics of the type traditionally sought
in linguistics; further work and debate is necessary to make
normative claims about the representations that VLMs learn.
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prone to such “hackable” artifacts as we include077

meaningful distractors that require both the image078

and the labels for the final prediction. We there-079

fore provide a controlled setting for benchmarking080

compositionality in CLIP.081

We situate our work within the tradition of re-082

search on compositional distributional semantics083

models (CDSMs) (Erk and Padó, 2008; Mitchell084

and Lapata, 2010; Baroni and Zamparelli, 2010;085

Coecke et al., 2010; Boleda, 2020), which seek to086

bridge the gap between distributional models and087

formal semantics by building architectures which088

operate over vectors yet still obey traditional the-089

ories of linguistic composition. We adapt several090

such models to the grounded language setting, and091

compare the performance of CLIP’s text encoder092

(tuned in various settings) to the performance of093

these explicitly compositional models. Overall, we094

see that on single adjective-noun compositions (red095

cube), CLIP performs better than any of the more096

explicitly compositional CDSMs. In the other set-097

tings, which rely on the ability to bind variables, we098

see that using CDSMs for the text encoder some-099

times improves performance, but not always, and100

that, across all models, performance is essentially101

at chance in the best case. These results suggest102

that CLIP’s representation of the visual world is103

poorly suited for compositional semantics, and sug-104

gest that future work on improving these representa-105

tions is a necessary next step in advancing work on106

grounded compositional distributional semantics.107

In summary, we make the following contribu-108

tions:109

• We provide a controlled analysis of the ability110

of CLIP and fine-tuned variants to perform111

compositional visual reasoning tasks.112

• We adapt a variety of traditional composi-113

tional distributional semantics (CDS) archi-114

tectures to the grounded language setting.115

• We show that all our models perform poorly116

on generalization settings that require abstract117

variable binding, suggesting major limitations118

in the way CLIP represents the visual world.119

2 Models120

In this work, we are interested in comparing con-121

temporary “end to end” methods for training neural122

networks with explicitly compositional models of123

the type developed in compositional distributional124

semantics (Erk and Padó, 2008; Mitchell and La- 125

pata, 2010; Baroni and Zamparelli, 2010; Coecke 126

et al., 2010; Boleda, 2020) (henceforth CDSMs for 127

“compositional distributional semantics models”). 128

Below, we describe the models we compare, in- 129

cluding baselines, explicitly compositional models, 130

and contemporary vision-and-language models. 131

2.1 Setup 132

We describe a unified setup that we use to repre- 133

sent compositions in CLIP-based models as well 134

as in CDSMs. For each compositional task, we are 135

given a dataset S = {(x, y)} where x is the image 136

and y ∈ Y is a phrase which correctly describes 137

the image where Y is the set of all phrases. We 138

use CLIP (Radford et al., 2021) to get image em- 139

beddings for all input images. Embeddings for the 140

phrases are generated either using the text encoder 141

in CLIP (possibly fine-tuned) or using CDSMs. 142

We train different CLIP variants and CDSMs 143

in order to encode each of the phrases. We 144

deal with two types of phrases, namely, adjective- 145

noun and subject-relation-object phrases. Let 146

A = {a1, . . . , an} be the adjectives and N = 147

{n1, . . . , nm} be the nouns in an adjective-noun 148

phrase. The models produce the adjective-noun 149

phrase embedding T (a, n) in the joint semantic 150

space where a ∈ A and n ∈ N. Letting R = 151

{R1, . . . ,Rn} be the relations, the model gener- 152

ates the relational phrase embedding T (s,R, o) 153

where the subject is s ∈ N, the relation is R ∈ R, 154

and the object is o ∈ N. All models, with the excep- 155

tion of frozen CLIP, are trained to update phrase 156

embeddings based on the training data. For the 157

compositional models, the word embeddings that 158

are composed to form the phrase embedding are 159

updated. For more details, see Section 4. 160

2.2 CLIP and Variants 161

We examine the performance of CLIP (Radford 162

et al., 2021), fine-tuned CLIP, and a compositional 163

variant (Nayak et al., 2023) on the tasks. 164

CLIP CLIP (Radford et al., 2021) is a pretrained 165

vision-and-language model trained with a con- 166

trastive loss objective on 400 million image-text 167

pairs. The architecture includes two key compo- 168

nents: an image encoder and a text encoder that pro- 169

duce vector representations for images and texts in 170

the joint semantic space. The text encoder accepts 171

prompts in natural language to produce zero-shot 172

classifiers. We get the final prediction by taking the 173
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cosine similarity between the image and the text174

vectors and choosing the text with the highest sim-175

ilarity score. This ability enables us to test CLIP176

out-of-the-box on compositional tasks. We set the177

following prompt templates for the adjective-noun178

and subject-relation-object setting:179

T (a, n) = ϕ(a photo of adj noun)180

T (s,R, o) = ϕ(a photo of sub rel obj)181

where ϕ is the CLIP pretrained text encoder, adj182

noun is replaced with the adjective and noun pairs,183

and sub rel obj is replaced with nouns and rela-184

tions from the dataset. We consider frozen CLIP185

and a fine-tuned variant CLIP-FT (Section 4).186

Compositional Soft Prompting CSP or compo-187

sitional soft prompting (Nayak et al., 2023) is a188

parameter-efficient learning technique designed to189

improve the compositionality of large-scale pre-190

trained models like CLIP. They focus on real-world191

adjective-noun datasets which contain images of192

a single object associated with an adjective. They193

fine-tune embeddings of tokens corresponding to194

adjective and object concepts on a set of seen195

classes while keeping other parameters of the text196

and the image encoders frozen. During inference,197

they recompose adjective and object tokens in new198

concatenations for zero-shot inference. In this199

work, we systematically evaluate CSP on different200

types of compositional tasks (Section 4). We set the201

following prompt templates for the adjective-noun202

and subject-relation-object setting:203

T (a, n) = ϕ(a photo of [adj] [noun])204

T (s,R, o) = ϕ(a photo of [sub] [rel] [obj])205

where ϕ is the pretrained text encoder in CLIP,206

[adj] [noun] are the fine-tuned token embed-207

dings for adjectives and nouns and [sub] [rel]208

[obj] are the fine-tuned token embeddings for209

nouns and relations in the dataset.210

2.3 Compositional Distributional Semantics211

Models (CDSMs)212

We consider a number of compositional distribu-213

tional semantics models, which have been pro-214

posed in past work but have not been applied to a215

grounded language setting. Each of these models216

trains embeddings (vectors, matrices, or tensors)217

for each word in the class, and then composes them218

together to produce a compositional phrase embed-219

ding. All models are trained to learn the phrase220

embeddings by aligning them with the frozen im- 221

age embeddings from CLIP. 222

Syntax Insensitive Models (Add, Mult, Conv) 223

We consider three simple compositional models 224

that are insensitive to order. The first two are 225

Add, consisting of combining word vectors by ad- 226

dition, and Mult, where word vectors are combined 227

by pointwise multiplication (Mitchell and Lapata, 228

2010; Grefenstette and Sadrzadeh, 2011). Lastly, 229

we use circular convolution (Conv) (Plate, 1995). 230

For a, b, c ∈ Rn, c = Conv(a, b) = a⊛ b means 231

that ci =
∑n−1

j=0 ajbi−j where i− j is interpreted 232

as modulo n. 233

Type-logical model (TL) Type-logical ap- 234

proaches to distributional semantics map 235

grammatical structure into vector space seman- 236

tics (Baroni and Zamparelli, 2010; Coecke et al., 237

2010). Concretely, we represent the nouns as vec- 238

tors, adjectives as matrices, and the composition of 239

an adjective and a noun is given by matrix-vector 240

multiplication. Following Kartsaklis et al. (2012), 241

we represent transitive verb or relation as a matrix, 242

and the composition of the noun-relation-noun is 243

given by matrix-vector multiplication followed by 244

pointwise vector multiplication, i.e.: 245

T (a, n) = A · n, T (s,R, o) = s⊙ (R · o) 246

where n, s, and a are learnable embeddings, A and 247

R are learnable weight matrices, · is matrix-vector 248

multiplication and ⊙ is pointwise multiplication . 249

Role-filler model (RF) Introduced in Smolensky 250

(1990), role-filler-based representations provide a 251

means of representing structure using vectors. A 252

symbolic structure can be represented as a collec- 253

tion of role-filler bindings, instantiated within a 254

vector space. Consider red cube which is rendered 255

as red ⊛ adj. + cube ⊛ noun where adj. and 256

noun are role vectors, red and cube are filler 257

vectors, and circular convolution ⊛ is a binding 258

operator (Plate, 1995). Formally, we learn an em- 259

bedding for each filler, of type noun, adjective, or 260

relation, and another set of embeddings for each 261

role: 262

T (a, n) = a⊛ ra + n⊛ rn 263

T (s,R, o) = s⊛ rs +R⊛ rR + o⊛ ro 264

where all of a, n, s, R, o, ra, rn, rs, rR, and 265

ro are learnable embeddings and ⊛ is the circular 266

convolution operation. 267
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(a) Single-object dataset. Example true
label and distractors are: {blue cube,
yellow sphere, gray cube, purple cylin-
der, cyan cylinder}

(b) Two-object dataset. Example true
label and distractors are: {yellow
sphere, yellow cube, red sphere, blue
cube, purple cylinder}. yellow cube
and red sphere are ‘hard’ distractors.

(c) Relational dataset. Example true
label and distractors are: {cylinder left
of cube, cube left of cylinder, cylinder
right of cube, sphere left of cube, cylin-
der left of sphere}.

Figure 1: Example images and label sets from each dataset. The texts in Green are the true classes and Red are the
distractors. Unlike the two-object and relational datasets, the single-object dataset does not require concept binding.

Train Validation Generalization

Dataset # Examples # Classes # Examples # Classes # Examples # Classes

Single-object 5598 14 799 2 3195 8
Two-object 20000 14 20000 2 20000 8
Relational 40000 20 20000 2 20000 2

Table 1: Summary of the statistics of the datasets in the concept binding benchmark.

3 Concept Binding Benchmark268

We introduce the concept binding benchmark to269

evaluate the compositional generalization capabil-270

ities of VLMs. In this benchmark, we introduce271

three datasets: single-object, two-object, and re-272

lational (see Figure 1). Following Johnson et al.273

(2017), we use Community (2018) to generate syn-274

thetic datasets with objects of simple shapes and275

colors. Each dataset contains train, validation, and276

generalization sets with no overlap in the true class277

labels. Class labels are of the form adjective-noun278

or subject-relation-object. All individual nouns,279

adjectives, and relations are included in the train-280

ing sets such that we can train models on the train-281

ing set and test for compositional generalization on282

held-out classes in the validation and generalization283

set. Unlike prior work that introduces datasets with284

a focus on concept binding (Yuksekgonul et al.,285

2023; Ma et al., 2022; Thrush et al., 2022), our286

synthetically generated datasets contain both se-287

mantically meaningful and hard labels and provide288

a controlled setting to evaluate the compositional289

capabilities of VLMs. Table 1 shows the statistics290

of the datasets.291

Single-object dataset The dataset consists of im-292

ages of exactly one object of a given shape and293

color (see Figure 1a). We consider the follow- 294

ing shapes and colors: cubes, spheres, and cylin- 295

ders and blue, gray, yellow, brown, green, purple, 296

red, and cyan with a total of 24 possible combina- 297

tions. The validation set includes brown cube and 298

green cylinder and the generalization set includes 299

green cube, purple cube, red cube, cyan cube, blue 300

cylinder, gray cylinder, yellow cylinder, and brown 301

cylinder. The remainder of the combinations are in- 302

cluded in the training set. The correct label for the 303

image is an adjective-noun label. Four distractors 304

are sampled from the other possible adjective-noun 305

combinations. 306

Two-object dataset The dataset contains images 307

with two objects of different shapes each associ- 308

ated with a different color (see Figure 1b). Fol- 309

lowing the single object experiments, we use the 310

same shape-color combinations in the train, val- 311

idation, and generalization split. A correct label 312

for a given image is again an adjective-noun label. 313

However, we manually choose “harder” distractors 314

by switching the adjective and object compositions. 315

For example, in Figure 1b we have two classes 316

red cube and yellow sphere. When red cube is the 317

positive label, we set two of the four distractors 318

to be red sphere and yellow cube. The other two 319
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distractors are randomly sampled from the pool of320

negative labels, say blue sphere and red cylinder.321

We follow the same procedure when yellow sphere322

is the positive example.323

Relational dataset This dataset contains im-324

ages with two objects. A correct label for325

an image is given by a phrase of the form326

subject relation object. We consider the following327

objects and relations: cube, sphere, and cylinder328

and left, right, front, and behind. This means there329

are 24 possible combinations of spatial relations of330

the form aRb where {a, b} are objects and a ̸= b331

and R is the relation. For each image, the distractor332

labels are constructed as {bRa, aSb, aRc, cRb}333

where c /∈ {a, b} is an object type other than a or b334

and S is the relation opposite to R. The validation335

set includes images of cubes in front of spheres336

(equivalently, spheres behind cubes), and the gen-337

eralization set includes images of cylinders in front338

of cubes (equivalently, cubes behind cylinders). All339

the other 20 image types are seen in the training340

set, and note that shapes can appear on either side341

of the image. Figure 1c shows an example from342

the training set with a cylinder behind cube.343

4 Experiments and Results344

To understand the compositional capabilities of345

CLIP, we benchmark CLIP and the compositional346

models from Section 2 on the three datasets de-347

scribed in Section 3. Detailed training setup and348

parameters are given in Appendix A. The code,349

included in the supplementary, will be released.2350

4.1 Single Adjective-Noun Composition351

We test the ability of our models to correctly clas-352

sify the composition of objects with properties (e.g.,353

“red cube”) in the single-object dataset.354

Results In Table 2, we see that frozen CLIP out-355

performs all the models. CLIP achieves 97.75% on356

the validation set and 92.39% on the generalization357

set. After fine-tuning, CLIP’s performance drops358

to 89.06% on the validation set and 78.54% on359

the generalization set. We observe a similar trend360

in CSP, i.e., the performance on the validation set361

reduces to 84.58% but achieves slightly better per-362

formance on the generalization set with 88.74%.363

We suspect this drop is because the model overfits364

to the true compositions in the training set.3 Out365

2anonymous github url
3Calibrating predictions on the validation set is a common

practice in zero-shot learning to reduce bias towards seen

Model Train Val Gen

CLIP 94.23 97.75 92.39

CLIP-FT 98.98 1.02 89.06 5.84 78.54 4.41

CSP 94.98 0.45 84.58 0.16 88.74 0.34

Add 99.77 0.03 44.98 1.32 85.16 0.96

Mult 43.27 13.9 4.48 4.08 5.38 2.66

Conv 41.10 14.3 7.33 2.90 4.11 1.53

TL 99.98 0.02 1.08 0.44 0.92 0.24

RF 98.87 0.11 59.52 6.12 80.64 1.36

Table 2: Results for all models on single adjective-noun
composition, training epoch chosen by performance on
validation set. We report the average accuracy for all
the methods on 5 random seeds and the standard error.

Model Adj Noun Both

CLIP 83.47 14.87 1.65

CLIP-FT 0.12 0.12 92.95 4.09 6.94 3.98

CSP 85.19 0.72 12.57 0.72 2.24 0.05

Add 94.85 0.51 1.13 0.22 4.02 0.43

Mult 33.47 3.17 14.70 2.62 51.84 5.75

Conv 29.59 3.19 13.12 1.84 57.29 4.25

TL 39.18 0.72 21.64 0.27 39.17 0.50

RF 64.01 2.70 10.99 1.08 24.99 2.50

Table 3: Percentages assigned to each type of error for
the single-object color task, generalization split. Here,
Adj means the model predicted the adjective incorrectly
but the noun correct; Noun means the opposite error;
and Both means the model predicted neither the adjec-
tive nor the noun correctly. We report the average error
proportions for all the methods on 5 random seeds and
the standard error.

of the CDSMs, Add and RF both perform well on 366

training and generalization sets, achieving 80.64% 367

and 85.16% on the generalization set respectively. 368

We see that Conv, Mult, and TL are unable to gen- 369

eralize to the validation and the generalization sets. 370

These three models can achieve high performance 371

(high 90s) on the training set after several epochs 372

but at the expense of performance on the validation 373

set (not included in Table 2 as we report accuracy 374

based on best performance on the validation set). 375

A breakdown of errors on the generalization set 376

classes. We find calibration improves CSP from 88.74% to
96.31% on the single-object setting. This shows fine-tuned
variants of CLIP can generalize better than frozen CLIP. How-
ever, calibration in the two-object setting does not improve
generalization accuracy suggesting this setting is harder as it
requires binding adjectives to objects. Details in Appendix C.
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Model Train Val Gen

CLIP 27.02 7.17 31.40

CLIP-FT 86.91 8.15 6.31 3.31 0.25 0.10

CSP 37.59 1.54 20.98 0.22 11.15 2.03

Add 32.46 0.11 15.38 0.89 21.37 0.60

Mult 86.65 8.93 4.66 1.35 0.13 0.03

Conv 46.26 0.53 7.11 2.18 0.28 0.14

TL 99.41 0.17 21.23 4.08 0.08 0.07

RF 25.23 1.08 25.13 3.99 20.36 1.36

Table 4: Results for all models on adjective-noun bind-
ing task, training epoch chosen by performance on val-
idation set. We report the average accuracy for all the
methods on 5 random seeds and the standard error.

Model Adj Noun Both

CLIP 53.08 45.40 1.51

CLIP-FT 47.63 0.26 46.89 1.20 5.48 1.01

CSP 49.22 0.54 48.25 0.72 2.53 0.17

Add 53.57 0.16 44.32 0.25 2.11 0.23

Mult 48.51 0.03 46.43 1.13 5.06 1.15

Conv 44.27 0.19 38.20 0.35 17.53 0.43

TL 48.76 0.03 47.85 0.12 3.39 0.15

RF 50.64 0.91 41.32 1.26 8.04 1.46

Table 5: Percentages assigned to each type of error for
the two-object setting. Here, Adj means the model pre-
dicted the adjective incorrectly but the noun correct;
Noun means the opposite error; and Both means the
model predicted neither the adjective nor the noun cor-
rectly. We report the average error proportions for all
the methods on 5 random seeds and the standard error.

is reported in Table 3. We see that CSP, Add, and377

RF have similar types of errors, i.e., these mod-378

els often predict the incorrect adjective but predict379

the correct noun. CLIP-FT, however, predicts the380

adjective (color) correctly but gets the noun wrong.381

4.2 Two-Object Adjective-Noun Binding382

In this task, we test whether CLIP can bind con-383

cepts together. Given two objects, can CLIP bind384

adjectives to correct objects as opposed to merely385

representing the image as a “bag of concepts”? For386

example, in Figure 1b, can CLIP predict that the im-387

age contains a red cube rather than a yellow cube?388

Results This task is more challenging for all mod-389

els (Table 4). Frozen CLIP performs at a level close390

to chance. After fine-tuning, we see that CLIP-FT391

overfits to the training set, achieving good train- 392

ing accuracy (86.91%), but falling much lower on 393

validation and generalization (6.31% and 0.25% 394

respectively). At the epoch with the best accuracy 395

on the validation set, CSP has a lower performance 396

on the training set and slightly higher on the vali- 397

dation and generalization sets compared to CLIP- 398

FT. However, as training progresses, we observe 399

that CSP also overfits to the training set (not re- 400

ported in the table). We see that Conv, Mult and 401

TL also exhibit the same pattern of overfitting to 402

the training data, with high training accuracy and 403

low validation and generalization accuracy. The 404

additive models, Add and RF, underfit the training 405

set and show random accuracy on validation and 406

generalization sets. 407

Table 5 shows that the errors are similar across 408

the models. For most models, the errors are evenly 409

split between the adjectives and the nouns while 410

only a small proportion of the errors get both in- 411

correct. However, we find that Conv incorrectly 412

predicts both the adjective and noun. For the best 413

performing models, Add and RF, there is a slight 414

bias towards getting the adjective wrong rather than 415

the noun. 416

4.3 Relational Composition 417

In this task, we test understanding of spatial re- 418

lationships between objects, i.e., can our models 419

bind objects to positions? This task requires the 420

models to encode an order or relation between 421

two arguments. For example, in Figure 1c, can 422

CLIP differentiate between cube behind cylinder 423

and cylinder behind cube, even though they have 424

the same words? 425

Results Frozen CLIP performs slightly better 426

than chance on the training set, but worse on the 427

validation and generalization sets, indicating that 428

these may be more difficult (Table 6). After fine- 429

tuning, CLIP-FT improves to around 50% on the 430

training set, but is completely unable to general- 431

ize. This pattern is also seen for CSP and TL. All 432

the other CDSMs perform slightly above chance. 433

This is to be expected for Add, Mult, and Conv 434

because they are commutative. Surprisingly, RF 435

is unable to perform better than chance in this set- 436

ting. We suspect that RF has a lower capacity as RF 437

only fine-tunes the role and filler parameters. Fine- 438

tuning the image encoder along with the role and 439

filler parameters will increase the complexity of the 440

model and potentially improve the performance on 441
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Model Train Val Gen

CLIP 26.80 14.99 0.00

CLIP-FT 49.59 0.44 0.00 0.00 0.00 0.00

CSP 30.40 0.11 0.12 0.01 0.03 0.00

Add 25.41 0.13 26.03 0.07 25.47 0.18

Mult 25.67 0.12 25.95 0.09 25.78 0.09

Conv 24.83 0.06 26.36 0.55 24.95 0.11

TL 67.19 0.26 0.00 0.00 0.00 0.00

RF 25.18 0.28 24.89 0.73 22.78 0.20

Table 6: Results for all models on relational composi-
tion. We report the average accuracy for all the methods
on 5 random seeds and the standard error.

Model bRa aSb aRc cRb

CLIP 50.00 50.00 0.00 0.00

CLIP-FT 37.54 7.60 45.97 2.41 12.19 7.78 4.30 1.94

CSP 49.75 0.01 49.77 0.01 0.40 0.01 0.08 0.00

Add 34.21 0.08 65.79 0.08 0.00 0.00 0.00 0.00

Mult 34.41 0.17 65.57 0.17 0.01 0.01 0.01 0.01

Conv 32.98 0.27 66.14 0.11 0.54 0.24 0.34 0.10

TL 49.06 0.55 49.44 0.33 1.07 0.64 0.44 0.27

RF 53.09 0.46 46.18 0.32 0.48 0.14 0.26 0.08

Table 7: Percentages assigned to each type of error for
the relational task. We report the average error propor-
tions for all the methods on 5 random seeds and the
standard error.

the various splits.442

Table 7 gives a breakdown of errors. Recall that443

the distractors have a specific structure: if a cor-444

rect caption for the image is aRb, then the given445

distractors are: bRa, aSb, aRc, cRb. We note446

that CLIP, CSP, and TL have a very similar pat-447

tern of errors: each model is able to distinguish448

objects perfectly, and almost all errors are split be-449

tween bRa and aSb - tuples that have been seen450

in training. The three commutative models, Add,451

Mult, and Conv, also have a distinctive error pat-452

tern. Errors are again focused on bRa and aSb,453

with approximately a 1:2 split. This indicates that454

the models select the relation R 50% of the time,455

and S the other 50%. When R is selected, the456

predictions are split again between aRb and bRa,457

since these cannot be distinguished by the commu-458

tative models. Although the overall performance459

of RF is similar to these models, the pattern of er-460

rors is more similar to that of CLIP, CSP, and TL.461

Finally, CLIP-FT has another different pattern of462

errors, in which more of the error is now on the463

objects, rather than the relation. We also note that 464

these errors are much noisier than for the CDSMs. 465

5 Discussion 466

Our work highlights the limitations of CLIP as a 467

basis for compositional language representations. 468

We show that CLIP is capable of disassociating 469

objects and adjectives, enabling it to behave com- 470

positionally in the single-object setting. However, 471

it appears to lack a richer structure necessary for 472

compositions that require more abstraction, such 473

as syntax-sensitive variable binding. We find that 474

fine-tuning CLIP or training composition-aware 475

models (CDSMs) does not help the model general- 476

ize better on the unseen classes for two-object and 477

relation settings. Our results show that among the 478

CLIP variants, CLIP-FT overfits to the training set 479

and achieves high training accuracy while hurting 480

the generalization accuracy. CSP can show im- 481

proved training accuracy over CLIP and sometimes 482

show increases in validation and generalization ac- 483

curacy but not always. Among the syntax insen- 484

sitive models, we see that Add, Mult, and Conv 485

improve on the training accuracy on the single- 486

object and the two-object settings but only Add 487

generalizes to held-out classes in the single-object 488

setting. As expected, these models cannot repre- 489

sent order and achieve accuracy close to chance on 490

the relational dataset. Our results with type-logical 491

models (TL) have high training accuracy but valida- 492

tion and generalization accuracy are usually close 493

to 0. Finally, RF can learn to generalize to classes 494

in the single-object dataset but achieves chance 495

on the two-object and the relational dataset. Our 496

experiments focus only on CLIP, and thus should 497

be interpreted conservatively. Newer visual en- 498

coders trained with different training objectives 499

may produce better results, even with the same text 500

encoders we use in the paper. Or, perhaps, progress 501

on compositionality both in visual and text encod- 502

ing will be necessary to alleviate the problems high- 503

lighted here. Overall, our results motivate the need 504

for pretraining methods in VLMs that account for 505

binding for better compositionality. 506

We also shed light on the benchmarking datasets 507

used in compositional zero-shot learning. Typi- 508

cal benchmarking datasets for this task are MIT- 509

States (Isola et al., 2015), UT-Zappos (Yu and Grau- 510

man, 2014), and C-GQA (Mancini et al., 2021). 511

CLIP and CSP show strong performance compared 512

to several existing methods on these datasets (see 513

7



Section 5 in Nayak et al. (2023)). However, these514

datasets do not explicitly test for binding of adjec-515

tives to nouns, i.e., they are restricted to a single-516

object setting. While this setting captures one im-517

portant aspect of composition, it does not require518

models to encode an abstract, order-aware syntax, a519

critical component of linguistic composition. In our520

experiments, we find that CLIP and CSP show high521

accuracy on the single-object dataset (Section 3)522

but the performance drops dramatically on the two-523

object dataset (Section 4.2) and relational dataset524

(Section 4.3). Challenging datasets like ARO (Yuk-525

sekgonul et al., 2023) show that fine-tuning CLIP526

with harder negative images and captions can im-527

prove CLIP’s accuracy on the relational split that528

accounts for the order of objects. Our training529

setup shares similarities as we include hard neg-530

ative captions for each image. However, we do531

not see improved performance after fine-tuning.532

Recent work (Hsieh et al., 2023b) shows that the533

ARO benchmark includes test examples that can534

be solved without the visual encoder which could535

explain the possible improvement in performance.536

These findings motivate the need for more realistic537

and challenging benchmarks that test for binding538

and order.539

6 Related Work540

Compositionality in Language Our work con-541

tributes to the extensive body of work in542

compositionality and language spanning several543

decades (Smolensky, 1990; Plate, 1995; Baroni544

and Zamparelli, 2010; Coecke et al., 2010; Socher545

et al., 2012; McCoy et al., 2019; Smolensky et al.,546

2022). Key models of composition used in lan-547

guage include simple elementwise composition548

(Mitchell and Lapata, 2010), neural models of com-549

position (Socher et al., 2012), type-logical models550

of composition (Baroni and Zamparelli, 2010; Co-551

ecke et al., 2010), and role-filler modes of composi-552

tion (Smolensky, 1990; Plate, 1995; McCoy et al.,553

2019). We focus on type-logical and role-filler554

models of composition. In the area of type-logical555

models, our work extends models from Maillard556

and Clark (2015); Wijnholds et al. (2020); Nagara-557

jan and Grauman (2018) to learn from both images558

and text and to handle a wider range of compo-559

sitions. Within the area of role-filler approaches,560

recent work has looked at approaches to reason-561

ing (Chen et al., 2020), mathematics (Russin et al.,562

2021), and whether recurrent neural networks can563

be emulated using role-filler approaches (McCoy 564

et al., 2019). In particular, McCoy et al. (2019) 565

use tensor product representations to show that sen- 566

tence encoders (Conneau et al., 2017; Kiros et al., 567

2015) can be well approximated by a “bag of words” 568

model. In this work, we show that CLIP image em- 569

beddings behave like a “bag of concepts”. 570

Compositionality in Vision There is a grow- 571

ing interest in compositionality and vision (Misra 572

et al., 2017; Nagarajan and Grauman, 2018; Naeem 573

et al., 2021; Mancini et al., 2021; Lovering and 574

Pavlick, 2022; Nayak et al., 2023; Yun et al., 575

2022; Tull et al., 2023). Several architectures 576

have been proposed to improve benchmark results 577

on compositional zero-shot learning datasets (Yu 578

and Grauman, 2014; Isola et al., 2015; Mancini 579

et al., 2021). However, these datasets are of- 580

ten restricted to an adjective-noun setting, ignor- 581

ing concept binding. Recently, datasets such as 582

CREPE (Ma et al., 2022), ARO (Yuksekgonul et al., 583

2023), and Winoground (Thrush et al., 2022) study 584

compositionality in VLMs including concept bind- 585

ing, but may not provide a faithful and controlled 586

environment benchmark (Hsieh et al., 2023b). In 587

contrast, we build a controlled setup without poten- 588

tial confounders that arise with real-world images 589

to carefully study compositional visual reasoning. 590

Concurrently, Clark and Jaini (2023) compared the 591

performance of frozen CLIP and Imagen, a text-to- 592

image model, on a task similar to our two-object 593

dataset. They find that Imagen, in some cases, per- 594

forms more strongly, suggesting that generative 595

models are better at binding concepts. 596

7 Conclusion 597

We investigate the ability of CLIP and variants 598

and CDSMs in a controlled environment to per- 599

form compositional visual reasoning tasks. Our 600

results show that CLIP performs well on the sin- 601

gle adjective-noun compositions but struggles on 602

compositional tasks that rely on the ability to bind 603

variables. Some of the CDSMs perform well on 604

single adjective-noun composition but show per- 605

formance closer to chance in the two-object and 606

relational tasks. Our work not only sheds light on 607

the limitations of CLIP but also suggests that the 608

pretraining of VLMs should account for binding 609

and order for better compositional generalization. 610
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8 Limitations and Risk611

8.1 Models612

We run our experiments on one major VLM (CLIP)613

and compare these results with a set of compo-614

sitional models. Results on the benchmarking615

datasets we propose may differ for other VLMs.616

The compositional models we test do not include617

some types of model such as Recursive Neural Net-618

works (Socher et al., 2012), but we do compare key619

types of model (type-logical and role-filler) from620

the compositional literature.621

8.2 Datasets622

The Concept Binding Benchmark that we pro-623

pose studies concept binding with artificially gen-624

erated shapes. While the simplicity of our datasets625

strengthens the findings, we suspect that the results626

may differ with more realistic images.627

8.3 Language628

The language we look at is limited to English. For629

the CLIP models that we use, we are limited to630

English, however, for the compositional models, it631

would be possible to use other languages, including632

alternative grammatical structures and word order-633

ings. The kind of language used in the labels is634

very simple, and further work could include more635

complicated descriptions of the images.636

8.4 Risk637

This research presents limited risk, due to the ab-638

stract nature of the datasets and the limited domain639

of investigation. All previously existing artefacts640

have been used within the limits of their original641

purpose.642

9 Ethical Considerations643

The abstract nature of the datasets we use means644

that ethical implications of the type of modeling645

done are minimal. We do use English as a lan-646

guage, however, the methods we propose for the647

CDSMs could be applied to other languages, as648

in Moortgat and Wijnholds (2017). The training649

methodology involves fine-tuning a VLM with a650

large number of parameters (see Table 8), however651

use of this model can be minimized by saving out652

frozen image embeddings and using these to train653

CDSMs.654
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A Training Details925

We provide the training details and hyperparame-926

ters used in the experiments. We build the training927

and evaluation pipeline in PyTorch (Paszke et al.,928

2019). The models are trained on a single NVIDIA929

RTX 3090, A40, or V100 GPU depending on their930

availability. The models are trained for 20 epochs931

which takes about 6-20 minutes per epoch depend-932

ing on the dataset. Table 8 shows the number of933

trainable parameters in all the models used in our934

experiment.935

We have three categories of models: CLIP, CLIP936

variants, and CDSMs (Add, Mult, Conv, TL, RF).937

All the models use pre-trained CLIP ViT-L/14 in938

the experiments 4. These methods except CLIP are939

trained with a cross entropy loss on the train split940

using an Adam optimizer. We use frozen CLIP to941

predict the classes for the images in the datasets.942

During training, we set the batch size of 32 and943

weight decay of 10−5. CLIP (FT) fine-tunes all944

the model parameters including the vision and text945

encoder with a learning rate of 10−7. In CSP, we946

initialize the token embeddings by averaging the947

embeddings of all the tokens in the English name948

of the adjective, noun, or relation to get one initial949

token embedding per concept. Then, we fine-tune950

them on the training split with a learning rate of951

10−6. In CDSMs, we randomly initialize the model952

parameters and train them with a learning rate of953

5 · 10−4. We train all our models on the train split954

and use the validation split to select the final model955

for testing based on accuracy.956

Dataset

Method Single/Two-object Relational

CLIP-FT 429M 429M
CSP 8,448 5,376
Add 8,448 5,376
Mult 8,448 5,376
Conv 8,448 5,376
RF 9,984 7,680
TL 4.7M 2.3M

Table 8: The number of trainable parameters in each
experiment.

4https://github.com/openai/CLIP/blob/main/model-
card.md.

B Training Algorithm 957

We describe the algorithm used to train the models. 958

Models are trained to align the caption vectors with 959

the image vectors. Algorithm 1 shows the training 960

algorithm for adjective-noun phrases. We follow a 961

similar procedure to train relational phrases. 962

Algorithm 1: Algorithm to train the model
on the adjective-noun compositions.

Input :Training dataset S, image encoder I,
composition encoder T , learnable
parameters θ, adjectives A, nouns N, λ
weight decay, number of distractors D,
number of epochs M

Output :The model parameters θ
1 for i← 1 to M do
2 foreach x, y = (a, n) ∈ S do
3 x← I(x); get the image vector
4 YD

neg ← sample D distractors from
Yneg = Y \ {y}

5 lpos ← x · T (a, n)
6 lneg ←

∑
yneg∈YD

neg
x · T (yneg)

7 pθ(y = (a, n)|x)← exp (lpos)

exp (lpos+lneg)

8 L ← − log pθ(y|x) + λ||θ||2; cross
entropy loss with weight decay

9 θ ← update all learnable parameters
10 end
11 end
12 return θ; the learned model parameters

C Calibrated Stacking 963

Calibrated stacking is a standard practice in zero- 964

shot learning (Chao et al., 2016; Nayak and Bach, 965

2022). Zero-shot models tend to be overconfident 966

or biased towards seen classes because they only 967

see the unseen classes as negatives or they are ex- 968

cluded from the training altogether. We can fix 969

this overconfidence by simply calibrating the pre- 970

dictions on validation data. Following prior work 971

in zero-shot learning, we add a calibration coef- 972

ficient to lower the cosine similarity score of the 973

seen classes. During testing, we use the calibration 974

coefficient and calculate the accuracy. 975

Setup To test whether calibrated stacking im- 976

proves generalization accuracy, we experiment 977

with CSP on the single object dataset but mod- 978

ify the train set. To find a calibration coefficient, 979

we need a validation set to include seen and un- 980

seen classes. Since our validation set contains only 981

unseen classes as the positive labels, we need a 982

additional validation set with seen classes. To fix 983

this issue, we randomly sample 10% of the train 984

set and use that as the seen validation set. We train 985
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our model on the remaining 90% of the data with986

the same training details (see Section 4). Next, we987

compute the cosine similarity scores for the seen988

and the unseen validation sets and search for the989

calibration coefficient. Next, we get the highest co-990

sine similarity lmax and vary the calibration −lmax991

to +lmax with a step size of lmax/100 and choose992

the coefficient with the highest harmonic mean of993

the seen and the unseen accuracy. Finally, we use994

the calibration coefficient on the generalization set995

and report the performance.996

Method Generalization

CLIP 92.39
CSP 88.74
CSP + calib. 96.31

Table 9: The results for single-object setting on the
generalization split. For CSP and CSP + calib., we
report the average accuracy on 5 random seeds.

Results Table 9 shows that CSP with calibra-997

tion improves by 8 points on the generalization998

split. We also see that CSP improves over CLIP999

by 4 points showing that the model has learned1000

to generalize to unseen adjective-noun composi-1001

tions. This shows that fine-tuned models, includ-1002

ing the CSDMs, could potentially generalize bet-1003

ter than frozen CLIP with calibration. These re-1004

sults are in line with the literature in composi-1005

tional zero-shot learning that calibrate the predic-1006

tions and show improved results on the adjective-1007

noun datasets (Purushwalkam et al., 2019; Ruis1008

et al., 2021). However, we find that calibrating1009

the predictions in the two-object setting does not1010

improve the generalization performance the same1011

way. This may be due to the construction of the two-1012

object dataset. In the validation split we have the1013

classes brown cube and green sphere. The “hard1014

distractors” for these classes are brown sphere and1015

green cube. However, these hard distractors come1016

from the generalization set, i.e., they are unseen1017

classes. This means the calibration does not de-1018

crease the cosine similarity of the hard distractors,1019

making it difficult to calibrate the validation set.1020

Finally, calibration is not applicable to the rela-1021

tional dataset because we consider only two classes1022

in the generalization split, cube behind cylinder1023

and cylinder behind cube, that are equivalent. This1024

means, we only see one class at a time and simply1025

setting the probability of the distractors to 0, we1026

can get 100% accuracy on the generalization set. 1027

For this reason, we do not calibrate on the relational 1028

dataset and leave the experiment for future. 1029

D License 1030

All the code including the models and the datasets 1031

used in this work are released under open-source 1032

licenses. Blender is released under the GNU GPL 1033

License, CLIP is released under the MIT license, 1034

and CSP is released under the BSD-3 license. Upon 1035

acceptance, we will release the concept binding 1036

benchmark dataset under the Apache 2 license. 1037
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