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Abstract

Inspired by the superior language abilities of
large language models (LLM), large vision-
language models (LVLM) have been recently
proposed by integrating powerful LLMs for
improving the performance on complex multi-
modal tasks. Despite the promising progress
on LVLMSs, we find that they suffer from ob-
ject hallucinations, i.e., they tend to generate
objects inconsistent with the target images in
the descriptions. To investigate it, this work
presents the first systematic study on object
hallucination of LVLMs. We conduct the eval-
uation experiments on several representative
LVLMs, and show that they mostly suffer from
severe object hallucination issues. We further
discuss that the visual instructions may influ-
ence the hallucination, and find that: objects
that frequently appear in the visual instructions
or co-occur with the image objects are obvi-
ously prone to be hallucinated by LVLMs. Be-
sides, we further design a polling-based query
method called POPE for better evaluation of
object hallucination. Experiment results show
that our POPE can evaluate object hallucination
in a more stable and flexible way.

1 Introduction

Large language models (LLMs) (Zhao et al., 2023)
have shown remarkable abilities to solve various
complex tasks by following human instructions in
a zero-shot manner. The success of LLLMs drives
the researchers to devise more powerful multi-
modal models based on the superior capacity of
LLMs, to enhance the understanding of visual se-
mantics (Alayrac et al., 2022; Li et al., 2023b). As
an exemplified work, GPT-4 (OpenAl, 2023) has
exhibited the exciting performance of LLMs on
multimodal tasks and scenarios.

Following this line of research, a surge of stud-
ies (Zhu et al., 2023; Gao et al., 2023; Li et al.,
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2023a) have been proposed to enhance the vision-
language pre-trained model (VLPM) (Gan et al.,
2022) by incorporating powerful LLMs (Touvron
et al., 2023; Chiang et al., 2023), which are called
large vision-language model (LVLM). Typically, ex-
isting work reuses the visual encoder in VLPMs to
handle image data, while replacing the original lan-
guage encoder with LLMs. After vision-language
pre-training (Alayrac et al., 2022; Li et al., 2022b)
and visual instruction tuning (Liu et al., 2023),
LVLMs can fulfill complex tasks according to hu-
man instructions, demonstrating strong capacities
in solving various vision-language tasks, e.g., im-
age captioning (Ordonez et al., 2011; Hodosh et al.,
2015; Sharma et al., 2018; Agrawal et al., 2019)
and visual question answering (Antol et al., 2015a;
Zhang et al., 2016; Goyal et al., 2017).

Despite the success of LVLMs, previous work
has revealed that their main components, i.e.,
LLMs and VLPMs, both suffer from hallucination.
Especially, LLMs tend to hallucinate unintended
text (Huang et al., 2021; Bang et al., 2023), and
VLPMs might generate nonexistent objects in the
image (Biten et al., 2022) (termed as object hal-
lucination). It is generally believed that the hal-
lucination would degrade the model performance
and greatly harm the user experiences in real-world
applications (MacLeod et al., 2017; Ji et al., 2022).
Therefore, it is natural to ask the question: does
hallucination still exist in LVLMs? In this paper, we
systematically evaluate the issue of object halluci-
nation in existing LVLMs, which refers to generat-
ing contents that are inconsistent with ground-truth
objects in the given image.

To conduct our study, we first use the CHAIR
(Caption Hallucination Assessment with Image Rel-
evance) metric (Rohrbach et al., 2018), and ex-
amine the hallucination degree of several repre-
sentative LVLMs on the MSCOCO dataset. Our
preliminary experiments (Table 1) show that most
of LVLMs severely suffer from object hallucina-
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Figure 1: Cases of object hallucination in LVLMs. Bold objects are ground-truth objects in the annotations and
red objects are hallucinated objects by LVLMs. The left case is from the traditional instruction-based evaluation

method, and the right cases are from three variants of POPE.

tion, and are even more prone to hallucinate than
small vision-language models. Besides, we find
that the existing object hallucination evaluation
method may not be best suited for LVLMs and
further propose a Polling-based Object Probing
Evaluation (POPE) method. The basic idea is to
convert the evaluation of hallucination into a bi-
nary classification task by prompting LVLMs with
simple Yes-or-No short questions about the prob-
ing objects (e.g., Is there a car in the image?). We
show that such a method is more stable and flexible.
Besides, by using different object sampling strate-
gies, we validate that existing LVLMs are prone
to hallucinate objects which frequently appear or
co-occur in the visual instruction dataset.

Our main contributions are as follows: (1) We
conduct an empirical study on object hallucination
for several representative LVLMs and find that they
are highly affected by object hallucination. (2) We
discuss the potential reasons behind this promblem,
e.g., LVLMs tend to generate frequently appearing
or co-occurring objects in the instruction corpora.
(3) We propose an object hallucination evaluation
approach called POPE, which is more stable and
can be easily extended to unannotated datasets.

2 Background

2.1 Large Vision-Language Model

Since LLMs have been shown to be general task
solvers in a zero-shot/few-shot manner, a number
of studies are devoted to improving VLPM by inte-
grating powerful LLMs for more accurate language
understanding and generation (Zhu et al., 2023; Liu
et al., 2023; Dai et al., 2023a). In this paper, we re-

fer to the enhanced VLPMs with the integration of
LLMs as Large Vision-Language Models (LVLM).

Generally speaking, an LVLM consists of a vi-
sion encoder, a language encoder (i.e., an LLM),
and a cross-modal alignment network. The training
of LVLMs is generally composed of three major
steps. First, a vision encoder and a language en-
coder are pre-trained on large-scale unimodal data
(i.e., image and text data, respectively). Second,
these two encoders are aligned through image-text
alignment pre-training, which enables the LLM
to generate a meaningful caption for a given im-
age. Third, the aligned model is further fine-tuned
on image-text instructions, so that it can generate
satisfactory answers w.r.¢. to a natural language
question regarding a specific image. Note that in
the second and third steps, we can optionally fine-
tune different components instead of performing
full-parameter fine-tuning.

Once the visual encoder and the LLM are well
aligned, the derived LVLM can demonstrate a su-
perior visual understanding ability. It can not only
grasp the visual semantics of objects in the image,
but also deeply understand the linguistic seman-
tics for these objects by leveraging the parametric
knowledge in the LLM. Further, the LVLM can per-
form complex reasoning over the related concepts
about these objects, thus achieving an improved
performance on a variety of multimodal tasks, e.g.,
visual question answering (VQA).

2.2 Object Hallucination

Although LVLMs are powerful in solving vision-
language tasks, they also suffer from the issue of
object hallucination as VLPMs. In the literature



of computer vision field (Rohrbach et al., 2018;
Biten et al., 2022), object hallucination refers that
the model generating descriptions or captions that
contain objects which are inconsistent with or even
absent from the target image. In general, object
hallucination can be defined at different seman-
tic levels. The most straightforward way is to
define it over the object level, while more fine-
grained definitions might be concerned with the
attributes or characteristics of objects. In this work,
we focus on coarse-grained object hallucinations
in the model-generated captions and leave fine-
grained object hallucinations such as the number,
attributes, and positions of the object for future
work. We present an example of object halluci-
nation in Figure 1, where the hallucinated object
“meat bowl”,“bottle”, “beverage”, “condiment”
are generated by the underlying LVLMs.

The hallucination phenomenon hinders the safe
use of LVLMs in real-world deployment, as it may
result in unexpected consequences caused by these
hallucinated objects (MacLeod et al., 2017). For
example, due to an incorrect understanding of the
external environment, an autonomous driving sys-
tem would make wrong decisions when encounter-
ing unexpected events, which might lead to serious
safety issues. In order to mitigate these issues, this
work aims to study how object hallucination exists
in LVLMs from an evaluation perspective.

3 Object Hallucination in LVLMs

In this section, we evaluate the object hallucina-
tion problem in popular LVLMs using an existing
method. We first introduce the evaluation settings
and then analyze the experimental results.

3.1 Evaluation Settings

Caption Hallucination Assessment with Image Rel-
evance (CHAIR) (Rohrbach et al., 2018) is a pop-
ular metric for evaluating object hallucination in
image captioning tasks. Given the ground truth
objects in the image, CHAIR calculates the propor-
tion of objects that appear in the caption but not
the image. Existing work commonly adopts its two
variants, i.e., CHAIR; and CHAIR g, which evalu-
ate the hallucination degree at the object instance
level and sentence level respectively. They can be
formulated as:

|{hallucinated objects}|

CHAIR; =
"™ |{all mentioned objects}|’

1)

|{captions with hallucinated objects}|

CHAIRs =
s |{all captions}|

(@3]

I  Model CHAIR; CHAIRg Len
OSCAR e 7.1 13.0 -
VinVL_arge 5.5 10.5 -

" OFALuge 4.7 8.9 -
BLIPage 4.7 8.8 -
mPLUG-Owl 14.8 254 35.8
LLaVA 10.5 32.7 64.3

Ii  MultiModal-GPT 11.1 15.0 11.6
MiniGPT-4 6.7 9.5 24.7
InstructBLIP 2.6 3.7 8.5
mPLUG-Owl 30.2 76.8 98.5
LLaVA 18.8 62.7 90.7

I>  MultiModal-GPT 18.2 36.2 45.7
MiniGPT-4 9.2 315 1162
InstructBLIP 2.5 34 7.5

Table 1: Results of CHAIR on VLPMs and LVLMs. I
denotes “Generate a short caption of the image” and I
denotes “Provide a brief description of the given image”.
Len refers to the average length of generated captions.
The results of VLPMs (OSCAR, VinVL, BLIP, and
OFA) are collected from Dai et al. (2023b). The best
results in each block are denoted in bold.

We select five recently released LVLMs, i.e.,
mPLUG-Owl (Ye et al., 2023), LLaVA (Liu
et al., 2023), Multimodal-GPT (Gong et al.,
2023), MiniGPT-4 (Zhu et al., 2023) and Instruct-
BLIP (Dai et al., 2023a) and prompt them with
following instructions to generate captions about
images in MSCOCO (Lin et al., 2014):

e [1: Generate a short caption of the image.

e [5: Provide a brief description of the given
image.

Then, we calculate CHAIR on these captions.
We leave more details about the introduction to the
dataset and evaluated models in Appendix A.

3.2 Evaluation Results

Severity of Hallucinations. As the evaluation re-
sults illustrated in Table 1, most instruction-tuned
LVLMs suffer from the object hallucination prob-
lem, even more serious than small models, e.g.,
LLaVA (32.7) v.s. OSCARpgse (13.0) on CHAIRg
using Instruction 1. It indicates that object hallu-
cination is an important problem for LVLMs and
deserves to be concerned about. As a comparison,
InstructBLIP hallucinates less than other LVLMs.
A possible reason is that its visual instructions are
collected from a wide variety of publicly avail-
able datasets, which are relatively short. In con-
trast, other LVLMs mostly employ the visual in-
structions generated by unimodal LLMs (Liu et al.,
2023). Such synthetic visual instructions are gener-
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Figure 2: Hallucination times of frequently appearing/co-occurring objects in MSCOCO.

ally longer and more informative, but may involve
unexpected descriptive information (hallucination
inherent from LLMs) that is inconsistent with the
image, which could mislead LVLMs.

Disadvantages of CHAIR. As Table 1 shows,
the evaluation results can be affected by other fac-
tors, e.g., instruction designs and the length of cap-
tions. Specifically, although the adopted two in-
structions have similar semantic meanings, LVLMs
prompted by Instruction 2 can even result in dou-
bled values of CHAIR metrics compared with those
prompted by Instruction 1, and the performance
order of some LVLMs also changes (e.g., CHAIRy
values of LLaVA and MultiModal-GPT). It indi-
cates the instability of the CHAIR metric when
different instructions are employed. Besides, as
CHAIR requires to examine whether the mentioned
objects are hallucinated in the generated caption, it
needs complex human-crafted parsing rules to per-
form exact matching, which has not been adapted
to the special generation styles of LVLMs and may
lead to misclassification errors.

Thus, it is necessary to consider a more suitable
method that can stably and conveniently evaluate
the object hallucination problem in LVLMs.

4 Influence of Instruction Data on Object
Hallucination

Considering their impressive performance on com-
plex vision-language tasks (Chen et al., 2023; Bai
et al., 2023; Li et al., 2023a), it is counter-intuitive
that the hallucination problem of LVLMs is so
severe. Since smaller VLPMs suffer less from
object hallucination, it is possible that the visual
instruction-tuning process of LVLMs exacerbates
object hallucination. In this section, we investigate
the influence of the visual instruction data. We
first make two basic hypotheses in Section 4.1 and
then conduct qualitative and quantitative analysis
to verify them in Section 4.2 and Section 4.3.

4.1 Hypotheses

As the visual instruction datasets of these LVLMs
are mostly constructed based on MSCOCO (Lin
et al., 2014), they generally share a similar unbal-
anced object distribution where top frequent ob-
jects occupy a major part of the dataset. After be-
ing fine-tuned on them, LVLMs may also be prone
to generate (or hallucinate) frequently appearing
objects in MSCOCO. Additionally, the presence
of frequently co-occurring object groups (e.g., lap-
top, mouse and keyboard) may also contribute to



HR 4 HRo(dining table)
Model
@10 @20 @30 @10 @20 @30
mPLUG-Owl 0.5455 0.6591 0.7533 0.6608 0.7926 0.8253
LLaVA 0.4620 0.5911 0.6796 0.5628 0.7329 0.8595
MultiModal-GPT 0.4152 0.5399 0.6743 0.5742 0.7849 0.8961
MiniGPT-4 0.4610 0.5758 0.7207 0.5600 0.6980 0.9145

Table 2: Results on MSCOCO that quantify the correlations between the appearing/co-occurring frequency of

objects and the hallucination times of LVLMs.

object hallucination. LVLMs can be elicited by the
existing objects in the image to hallucinate other
objects that frequently co-occur with them. There-
fore, we hypothesize that (1) LVLMs are prone to
hallucinate frequently appearing objects in the vi-
sual instruction datasets; (2) LVLMs are prone to
hallucinate objects that frequently co-occur with
ground-truth objects in the image. We conduct qual-
itative and quantitative analyses in the following
parts to verify them.

4.2 Qualitative Analysis

We first qualitatively analyze the correlation be-
tween the appearance frequency and hallucination.
For the first hypothesis, we plot a bar chart be-
tween the top ten frequently appearing objects in
MSCOCO and their hallucination times in the vali-
dation set of MSCOCO; for the second hypothesis,
we select the top ten frequently co-occurring ob-
jects with “dining table” and also plot a bar chart
to show their hallucination times across images that
really contain “dining table”. We show the re-
sults of MiniGPT-4, LLaVA, MultiModal-GPT and
mPLUG-Owl in Figure 2. Obviously, with the
decreasing of the occurrence frequency of objects
(from right to left), there is a notable decrease in the
hallucination times for all four LVLMs. It reveals
that the frequently appearing and co-occurring ob-
jects in the visual instruction dataset are indeed
more likely to be hallucinated by LVLMs. To bet-
ter support our results, we also list the full statistics
of all 80 COCO objects in Appendix B.

4.3

To further consolidate the above findings, we em-
ploy the top-£ hit ratio (HR@Fk) to measure the
consistency between the appearance frequency and
hallucination times of objects, which is defined as:

1 n
HR @k = — E
n
i=1

Quantitative Analysis

Hit@k (i)

_— 3
Hallucinated(z)’ ©)

1 i Hit@k(i, o)

HR S Wt A
c@k(0) m 4 Hallucinated(7)’

“

=1

where HR4 and HR¢ quantify the correlations
between hallucination times and appearing and
co-occurring frequency respectively. n is the to-
tal number of images, Hallucinated(7) denotes the
number of hallucinated objects in the i-th example,
Hit@F% (i) denotes the number of top-k frequently
appearing MSCOCO objects in Hallucinated (i),
and Hit@£ (i, o) denotes the number of top-k fre-
quently co-occurring objects with the probing ob-
ject o in Hallucinated(z). Therefore, HR@Fk can
reflect the proportion of top-k frequently appearing
or co-occurring objects in all hallucinated objects.

We present the HR 4 and HR(dining table)
of top 30 objects in Table 2 and leave
HRc@(chair) and HRc@(car) in Appendix C.
The HR 4 @10 and HRc@10(dining table) of
all LVLMs are near 0.5 and 0.6, respectively. It
indicates that, on average, approximately half of
the hallucinated objects in each image belong to the
top 10 frequently appearing COCO objects, while
more than half are among the top 10 frequently co-
occurring objects with the objects already present
in the image. When we broaden our observation
to the top 30 objects, this proportion continues to
increase. These findings further verify that LVLMs
mostly hallucinate common objects in the visual
instruction data and inspire us to design three sam-
pling strategies in our evaluation pipeline.

5 POPE

In this section, we devise Polling-based Object
Probing Evaluation (POPE), a simple yet effective
approach for evaluating hallucination in LVLMs.
We first provide an overview of POPE, and then
evaluate the representative LVLMs with POPE. Fi-
nally, we discuss the stability and scalability of our
method, and also analyze the impact of hallucina-



Ground-truth objects Nonexistent objects

Human annotation

{ Random: dog, apple, ...

person, chair, umbrella, | Negative -
. . X [ Popular: table, knife, ...
Automatic annotation sand, sea, ... sampling —
Adversarial: surfboard, ...

------------ Fo?li?t(g:q-ue-st?ot_ts- TTTTTTTTTTTTR
0 5 3 5 1
Q: Is there a person in the image? } [ Q: Is there a dog in the image? } |
S Segmentation A Yes. A: No. !
EEM g4> Q: Is there a chair in the image? } { Q: Is there a table in the image? } 1
A: Yes. A: No. :
Q: Is there an umbrella in the image? [ Q: Is there a surfboard in the image? |,
A: Yes. A:No. |

Figure 3: Overview of the POPE pipeline. Given an input image, POPE first extracts ground-truth objects in
the image either from human annotations or with the help of automatic segmentation tools like SEEM. Then,
POPE conducts negative sampling for nonexistent objects in the image under Random/Popular/Adversarial settings.
Finally, the ground-truth objects and nonexistent objects are formulated into question templates to poll LVLMs.

tion on VQA task.

5.1 Overview of POPE

In the empirical results of Section 3, we have re-
vealed the severity of the object hallucination prob-
lem in LVLMs and highlighted the limitations of
the existing evaluation method, e.g., sensitive to
instructions and biased to short captions. Besides,
existing methods mostly rely on parsing the gener-
ated captions to extract the predicted objects, which
usually require human-crafted complex rules and
are still inevitable to omit or misclassify objects.
Therefore, we consider devising a more suitable
method for the stable, fair and flexible object hal-
lucination evaluation of LVLMs, namely polling-
based object probing evaluation (POPE). Specif-
ically, POPE formulates the evaluation of object
hallucination as a binary classification task that
prompts LVLMs to output “Yes” or “No”, e.g., “Is
there a chair in the image?”. In this way, by sam-
pling objects that LVLMs are prone to hallucinate,
we can construct a set of hard questions to poll
LVLMs. As standard answers to these questions
are just “Yes” or “No”, we can easily identify them
without complex parsing rules, and avoid the influ-
ence of instruction designs and caption length, thus
guaranteeing stability, fairness and flexibility.

Definition. Given an image caption dataset,
POPE focuses on constructing a set of triples, each
of which consists of an image, multiple questions
and their answers (“Yes” or “No”"). The formulated
definition of a triple can be described as:

<$’{Q(Oi)7ai}é:1>7 )

where x denotes the image, ¢(o;) is the question
probing o; based on a template “Is there a/an
<object> in the image?”, o; is the i-th object to be
probed, a; is the answer to the question (“Yes” or
“No”) and [ denotes the number of polling questions
per image. o; can be obtained either from annota-
tions or the results of automatic segmentation tools
like SEEM (Zou et al., 2023). We set the ratio be-
tween ground-truth and nonexistent objects as 1:1
for label balance. After constructing the evaluation
triples, we can directly poll LVLMs with them and
collect the predicted answers.

Pipeline. The whole POPE pipeline is presented
in Figure 3. After obtaining objects in the image,
we can start to building polling questions. Ques-
tions whose answers are “Yes” can be directly built
using ground-truth objects, while questions with
the answer “No” can be built by sampling from
negative objects. Therefore, by devising differ-
ent sampling strategies, we can validate whether
LVLMs are prone to hallucinate specific objects,
e.g., frequently appearing or co-occurring objects
discussed in Section 4. Thus, we devise the follow-
ing three sampling strategies:

e Random Sampling: we randomly sample the
objects that do not exist in the image.

o Popular Sampling: we select the top-k most
frequent objects in the whole image dastaset that
do not exist in the current image, where k = é

e Adversarial Sampling: we first rank all ob-
jects according to their co-occurring frequencies
with the ground-truth objects, and then select the
top-k frequent ones that do not exist in the image.



Dataset POPE Model Accuracy Precision Recall | F1 Score ‘ Yes (%)
mPLUG-Owl 53.30 51.71 99.53 68.06 96.23

LLaVA 54.43 52.32 99.80 68.65 95.37

Random MultiModal-GPT 50.03 50.02 100.00 | 66.68 99.97
MiniGPT-4 77.83 75.38 82.67 78.86 54.83

InstructBLIP 88.73 85.08 93.93 89.29 55.20

mPLUG-Owl 50.63 50.32 99.27 66.79 98.63

LLaVA 5243 51.25 99.80 67.72 97.37

MSCOCO Popular MultiModal-GPT 50.00 50.00 100.00 | 66.67 100.00
MiniGPT-4 68.30 64.27 82.40 72.21 64.10

InstructBLIP 81.37 75.07 93.93 83.45 62.57

mPLUG-Owl 50.67 50.34 99.33 66.82 98.67

LLaVA 50.77 50.39 99.87 66.98 99.10

Adversarial MultiModal-GPT 50.00 50.00 100.00 | 66.67 100.00
MiniGPT-4 66.60 62.45 83.27 71.37 66.67

InstructBLIP 74.37 67.67 93.33 78.45 68.97

Table 3: Results of LVLMs under three evaluation settings of POPE on the validation set of MSCOCO. Yes denotes
the proportion of answering “Yes” to the given question. The best results in each block are denoted in bold.

Under the above three settings, we can build the
evaluation questions of different difficulty levels.
We evaluate previously mentioned LVLMs on them
with the following metrics.

Metrics. We adopt Accuracy, Precision, Recall
and F1 score as the evaluation metrics. Accuracy
reflects the proportion of correctly answered ques-
tions. Precision and Recall reflect the ratios of
correctly answering questions whose answers are
“Yes” or “No”, respectively. F1 score combines
the results of Precision and Recall and we select
it as the major metric for evaluation. Besides, we
also report the ratio that LVLMs answer “Yes” as a
reference to analyze the model behaviors.

5.2 Evaluation on MSCOCO

We evaluate all the LVLMs with POPE built on
the validation set of MSCOCO (Lin et al., 2014).
We randomly select 500 images with more than
3 ground-truth objects in the annotations and con-
struct 6 questions for each image (i.e., [ = 6).

The results are presented in Table 3, where
we can obtain a similar conclusion as in Table 1
that InstructBLIP performs the best, while LLaVA,
MultiModal-GPT and mPLUG-Ow]1 suffer more se-
vere hallucination problem, whose F1 Score are be-
low 70. It indicates that POPE can well estimate the
degree of the hallucination problem in LVLMs. Be-
sides, we find that LLaVA, MultiModal-GPT and

mPLUG-OwI are extremely prone to answer “Yes”
(near 99%). It reveals that these three LVLMs are
over confident, leading to lower accuracy on ques-
tions with the answer “No”. Furthermore, the per-
formance of LVLMs consistently decreases, from
random settings, to popular and adversarial. It is
consistent with our findings in Section 4, as LVLMs
are prone to hallucinate the frequently appearing
and co-occurring objects.

5.3 Advantages of POPE

As previously stated, the current approach for eval-
uating object hallucination in LVLMs like CHAIR
is instruction-based, which is hindered by LVLMs’
sensitivity to prompts and requires object annota-
tions and manually designed rules for evaluation.
In contrast, POPE is more stable to prompt forms
and can be easily extended to unannotated datasets.
Its probing result is also highly consistent with
model’s caption.

Stability. Regardless of the variations in prompt
templates, POPE requires LVLMs to answer sim-
ple closed-ended questions, which is less likely to
introduce ambiguity compared to instruction-based
methods. Such characteristic contributes to its sta-
bility. To validate it, we evaluate LLaVA using both
POPE and CHAIR; with four different prompts for
each. The evaluation results are presented in Ta-
ble 4. It can be observed that the standard deviation



POPE CHAIR
Prompt F1 Score Prompt CHAIR;
Is there a <object> in the image? 68.65 Generate a short caption of the image. 10.50
Does the image contain a <object>? 66.83 Provide a brief description of the image. 18.80
Have you noticed a <object> in the image? 66.67 Generate a concise description for the image. 14.60
Can you see a <object> in the image? 67.58 Create a short textual summary for the image. 11.60
Avg+Std. 67.431+0.78 13.88+3.22

Table 4: Evaluation results of LLaVA on POPE and CHAIR with different prompt templates.

Dataset POPE Model Accuracy  Precision  Recall ‘ F1 Score  F1 Score (Truth) ‘ Yes (%)
LLaVA 50.47 50.24 99.67 66.80 68.65 99.20

Random MiniGPT-4 73.77 79.25 64.40 71.06 78.86 40.63

InstructBLIP 86.60 80.74 96.13 89.29 89.27 59.53

LLaVA 50.00 50.00 99.27 66.50 67.72 99.27

MSCOCO  Popular MiniGPT-4 67.80 68.80 65.13 66.92 72.21 47.33
InstructBLIP 71.27 64.20 96.13 76.99 83.45 74.87

LLaVA 49.77 49.88 99.20 66.38 66.98 99.43

Adversarial ~ MiniGPT-4 61.93 61.46 64.00 62.70 71.37 52.07
InstructBLIP 62.53 57.50 96.13 71.96 78.45 83.60

Table 5: SEEM-based POPE results of LVLM on MSCOCO. F1 Score (Truth) are the results of POPE using
ground-truth annotations, which are copied from Table 3. The best results in each block are denoted in bold.

of the F1 score is significantly lower than CHAIR,
which confirms that POPE exhibits higher stability
when faced with different prompts.

Scalability. As mentioned before, with the as-
sistance of automatic segmentation tools, POPE
can be easily extended to datasets without annota-
tions. To validate it, we adopt SEEM (Zou et al.,
2023) to annotate images from three datasets (i.e.,
MSCOCO, A-OKVQA (Schwenk et al., 2022) and
GQA (Hudson and Manning, 2019)) and build
POPE based on the segmentation results. We evalu-
ate InstructBLIP, MiniGPT-4 and LLaVA on them
and report the results in Table 5 and Table 11 (pre-
sented in Appendix D). In Table 5, the perfor-
mances of all LVLMs mostly follow the same trend
as annotation-based POPE in Table 3, i.e., Ran-
dom > Popular > Adversarial, and InstructBLIP >
MiniGPT-4 > LLaVA. Such consistency indicates
the reliability of the SEEM-based POPE. Whereas,
we also notice the performance gap between the
two settings, e.g., F1 Score 71.37 v.s. 62.70 for
MiniGPT-4 under the Adversarial setting. This
phenomenon can be attributed to the finer gran-
ularity of the segmentation results generated by
SEEM, which makes the POPE more challenging.
In summary, when combined with automated seg-
mentation tools, POPE can be easily extended to
unannotated datasets and conduct effective evalua-

tions on them.

Consistency. A potential concern for POPE is
whether the Yes/No responses of LVLMs genuinely
reflect their perception of objects. To validate this,
we measure the consistency between the POPE re-
sponses and captions generated by LVLMs. Specif-
ically, we examine if objects that receive "No"
responses seldom appear in the captions, and if
objects frequently mentioned in captions usually
receive "Yes" answers. We collect data from In-
structBLIP and MiniGPT-4, given their relatively
balanced yes/no distributions. Our findings reveal
that out of the 1303 and 1445 objects that are given
"No" responses by InstructBLIP and MiniGPT-4,
merely 0 and 5 of those objects were referenced
in captions. Moreover, out of the 664 and 1034
objects mentioned in the captions by these models,
664 and 961 respectively received a "Yes" verdict.
Such results underscore a robust correlation be-
tween objects’ presence in captions and Yes/No
responses in POPE questions about them, validat-
ing the reliability of the POPE assessment.

5.4 Impact of Hallucination on Vision Tasks

Although existing LVLMs do suffer from signifi-
cant object hallucination issues, it remains an open
question whether these hallucinations have a strong
impact on other vision tasks. Therefore, we com-
pare their performance on POPE with VQA and



Dataset Model POPET VQAT
InstructBLIP 87.20 59.68

A-OKVQA MiniGPT-4 72.47 38.69
LLaVA 66.64 50.51

InstructBLIP 85.32 62.12

GQA MiniGPT-4 67.13 42.24
LLaVA 66.56 47.60

Table 6: Evaluation results of LVLMs on POPE and
VQA. For VQA tasks, we report the VQA score on A-
OKVQA and Accuracy on GQA. For POPE, we copy
the result under the random setting from Table 11.

image captioning tasks. For VQA tasks, we eval-
uate the SEEM-based POPE and VQA scores of
LVLMs on A-OKVQA and GQA datasets. Since
LVLMs are prone to generate answers in an open-
ended manner, we utilize ChatGPT to help parse
the generated results to better evaluate the VQA
performance. The details of evaluation settings
are presented in Appendix E. For image caption-
ing tasks, we evaluate the captions of 500 images
in POPE with traditional metrics. The evaluation
results are left in Appendix F.

The evaluation results are shown in Table 6. In-
structBLIP performs the best under all settings,
highlighting the importance of instruction-tuning
on large visual instruction corpora. Note that since
InstructBLIP has been trained on A-OKVQA, the
result should be considered with caution. Further-
more, despite MiniGPT-4 achieving a higher F1
score compared to LLaVA, its performance on
VQA tasks is relatively poor. A possible reason
is that the instruction dataset of MiniGPT-4 only
derives from image caption data, while LLaVA uses
158K visual instructions data involving complex
visual questions. The results imply that the degree
of hallucination may not be always consistent with
the VQA performance and these two evaluation as-
pects are both important and should be considered
in real-world applications.

6 Conclusion

In this work, we conducted evaluation experiments
on several LVLMs and examined how they suffer
from the object hallucination issue. By investigat-
ing the reasons for object hallucination, we empir-
ically revealed that the object distributions of the
visual instructions would affect the object halluci-
nation of LVLMs. Besides, we also found that the
existing hallucination evaluation methods might be
affected by the input instructions and the generated

text of LVLMs, thus leading to less reliable evalua-
tion results. To address this issue, we proposed a
polling-based query method called POPE, to pro-
vide an improved evaluation approach for the object
hallucination of LVLMs. Experimental results have
shown that our proposed POPE can better evaluate
the object hallucination issue of LVLMs.

7 Limitations

Despite that we have made extensive explorations,
this work still has several limitations. First, we
only focus on the object hallucination problem in
LVLMs, while do not consider other aspects that
can reflect the capacities of LVLMs. It means that
the current evaluation task cannot measure the over-
all performance of LVLMs. In other words, if
some model got a higher score in our evaluation
setting, it does not necessarily indicate a stronger
overall capacity than the one with a lower score.
Second, due to the limitation of computation re-
sources, we have to evaluate all models on a part
of the validation set for each dataset. The reported
results might be affected by the corresponding data
distribution, though we have carefully set up the
experiments. Third, our proposed POPE utilizes
a matching-based method to determine whether
LVLMs answer “Yes” or “No”, while empirically,
LVLMs may occasionally fail to provide answers
explicitly containing these words, which may lead
to inaccurate evaluation results. Fourth, when com-
bined with the automatic segmentation tool, the
objects would be annotated based on the label set
by the tool, which may be inconsistent with the
collected human annotations, leading to a diver-
gence in evaluation results. Finally, this work has
only compared a small number of LVLMs, without
including some recently released or closed-source
ones. We leave the evaluation of more LVLMs as
our future work.

Although we have extensively discussed the hal-
Iucination issues of LVLMs, it does not indicate
that we hold an negative opinion on their progress.
Instead, it will be a very promising direction to
develop LVLMs by leveraging the powerful LLM:s.
These models that were evaluated in this work
have been excellent demonstrations for this direc-
tion. While, we do hope that our work can bring
new ideas or insights to develop more reliable and
human-aligned LVLMs.
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A Details of Evaluation Settings

Dataset. MSCOCO (Lin et al., 2014) is a large-
scale image recognition, segmentation, and caption-
ing dataset. Here, we randomly sample 2,000 im-
ages with annotations about contained objects and
human-labeled captions from its validation set as
our evaluation dataset. For computing the CHAIR
metric on MSCOCO, we follow the settings in
Rohrbach et al. (2018) which only considers 80
objects appearing in the MSCOCO segmentation
challenge.

Models. The evaluated LVLMs basically con-
sist of three parts: a visual encoder, an alignment
model, and a large language model. All the above
models have been tuned on collected visual in-
struction data. A detailed comparison (e.g., back-
bones and trainable components) of these LVLMs
is shown in Table 7. We also collect the evaluation
results of smaller VLPMs, i.e., OSCAR (Li et al.,
2020), VinVL (Zhang et al., 2021), BLIP (Li et al.,
2022b) and OFA (Wang et al., 2022) from Dai et al.
(2023b) as baseline results.

B Additional Qualitative Analysis Results

To better validate our hypotheses, We expand the
analysis scope to all 80 objects in MSCOCO and
present the result in this part.

For hypothesis (1), we present the cumulative
proportions of the hallucination times of all 80
COCO objects in Table 8. The table demonstrates
that, across all models, the top 30 objects comprise
approximately 70% of all hallucinated objects. For
hypothesis (2), we present the cumulative propor-
tions of the hallucination times of all COCO objects
that co-occur with dining table in Table 9. We
also arrange these objects by their co-occurrence
frequency. Similarly, the top 20 objects comprise
about 80% of all hallucinated objects.

C Additional Quantitative Analysis
Results

We present the HR ¢ results of two other common
objects, i.e., chair and car in Table 10, which
show a similar trend with Table 2.

D Results of SEEM-based POPE on
A-OKVQA and GQA

We adopt SEEM (Zou et al., 2023) to annotate im-
ages from A-OKVQA and GQA and build POPE
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Pre-training Fine-tuning

Model VE AN LLM
VE AN LLM VE AN LLM
mPLUG-Owl VITL/14 Atenion LLaMA;z ® & % & & &
LLaVA VITL/4 Linear LLaMAzg © & % & & &
MultModal-GPT ~ ViTL/I4  Atention LLaMA,g ~© & & & & 4
MiniGPT-4 VITG/14 Linear  Vimazg © & % # & &
InstructBLIP ViT-G/14  Q-Former  Vicunaj3pg #® " & & ‘ &

Table 7: Comparison of the evaluated LVLMs. VE, AN, LLM stand for Visual Encoder, Alignment Network and

Large Language Model, respectively. % denotes frozen and & denotes trainable. The fine-tuning of LLM in
MultiModal-GPT and mPLUG-Ow]1 is implemented by LoRA.

Accumulative proportions (sorted by appearance frequency)

Model

Top10 Top20 Top30 Top40 TopS50 Top60 Top70 Top 80
mPLUG-Owl 56.89 67.75 77.34 79.93 90.41 95.33 98.75 100.00
LLaVA 48.47 60.29 69.74 72.80 81.46 90.26 96.69  100.00
Multimodal-GPT 43.07 56.12 68.85 72.78 81.59 90.07 97.07  100.00
MiniGPT-4 44.96 55.19 70.68 78.12 84.36 93.23 97.59  100.00

Table 8: The accumulated proportions of the hallucination times of all 80 COCO objects. We arrange all objects by

their frequency of occurrence.

Accumulative proportions (sorted by co-occurrence frequency)

Model

Top10 Top20 Top30 Top40 Top S0 >Top 60
mPLUG-Owl 71.78 82.82 86.81 92.94 99.08 100.00
LLaVA 60.69 73.79 85.52 93.10 97.24 100.00
Multimodal-GPT 53.50 75.16 85.99 96.82 98.09 100.00
MiniGPT-4 64.00 80.00 92.00 94.00 96.00 100.00

Table 9: The accumulated proportions of the hallucination times all objects that co-occur with dining table. We
arrange all objects by their co-occurrence frequency with dining table.

based on segmentation results. We evaluate In-
structBLIP, MiniGPT-4 and LLaVA. We also eval-
uate a full-data supervised-tuned smaller model,
BLIP (Li et al., 2022b) to better reflect the degree
of hallucination. The evaluation results are pre-
sented in Table 11.

E ChatGPT-assisted VQA Evaluation.

We employ the VQA score (Antol et al., 2015b)
to assess VQA tasks with the help of ChatGPT.
Considering that LVLMs generally produce open-
ended responses, we enlist ChatGPT to assess
whether the model’s reply aligns with potential
answers. The prompt we provide to ChatGPT is as
follows:

e “You are an examiner who can judge whether
a student’s answer matches the correct answers.
Next, I will provide you with 10 correct answers in
the form of a list and a student’s answer. Please

Jjudge whether the student’s answer matches one of
the 10 correct answers. If it matches, please output
the correct answer directly (must be an element
in the list, if it matches multiple correct answers,
please output the most frequent occurrence in the
list); if not, please output <NAN> directly. Do
NOT output anything else!

correct answers:

student answer:”

F Results of Image Captioning

The MSCOCO captioning results of LVLMs are
showcased in Table 12. Generally, their captioning
performance aligns with the POPE assessments,
suggesting that object hallucination influences the
efficacy of LVLMs in other vision tasks.



HRc(chair) HRc(car)

Model
@10 @20 @30 @10 @20 @30
mPLUG-Owl 0.5926 0.7186 0.8201 0.7587 0.9136 0.9707
LLaVA 0.5206 0.6830 0.8152 0.6870 0.8886 0.9188
MultiModal-GPT  0.5732 0.7576  0.8811 0.6031 0.8482 0.8623
MiniGPT-4 0.5701 0.7746  0.8581 0.6444 0.8278 0.9417
Table 10: The HR( result of chair and car.
Dataset POPE Model Accuracy  Precision Recall | F1 Score | Yes (%)
BLIP 91.00 92.24 89.53 ‘ 90.87 ‘ 48.53
Random LLaVA 50.16 50.08 99.53 66.64 99.37
MiniGPT-4 74.47 78.63 67.20 72.47 42.73
InstructBLIP 85.77 79.21 97.00 87.20 61.23
BLIP 88.40 87.55 89.53 ‘ 88.53 ‘ 51.13
A-OKVQA  pyoular LLaVA 50.03 50.02 99.67 66.61 99.63
P MiniGPT-4 69.93 70.40 68.80 69.59 48.87
InstructBLIP 75.03 67.39 97.00 79.53 71.97
BLIP 82.37 78.31 89.53 ‘ 83.55 ‘ 57.17
Adversarial LLaVA 50.13 50.07 99.67 66.65 99.53
MiniGPT-4 64.33 63.62 66.93 65.24 52.60
InstructBLIP 65.46 59.48 97.00 73.75 81.53
BLIP 89.93 91.08 88.53 ‘ 89.79 ‘ 48.60
Random LLaVA 50.17 50.08 99.20 66.56 99.03
MiniGPT-4 71.33 78.67 58.53 67.13 37.20
InstructBLIP 83.90 78.39 93.60 85.32 59.70
BLIP 86.63 85.34 88.47 ‘ 86.87 ‘ 51.83
GQA Popular LLaVA 50.03 50.02 99.47 66.56 99.43
P MiniGPT-4 68.26 72.99 58.00 64.64 39.73
InstructBLIP 71.87 65.24 93.60 76.89 71.73
BLIP 82.40 78.89 88.47 ‘ 83.41 ‘ 56.07
Adversarial LLaVA 49.77 49.88 99.20 66.38 99.43
MiniGPT-4 64.23 66.29 57.93 61.83 43.70
InstructBLIP 64.30 59.02 93.60 72.39 79.30

Table 11: SEEM-based POPE results of LVLMs and BLIP on A-OKVQA and GQA. The probing objects are
selected from the segmentation results of SEEM on these datasets. The best results in each block except BLIP are
denoted in bold. We employ the BLIP fine-tuned on VQAv2 from LAVIS (Li et al., 2022a).

Model POPE BLEU-1 BLEU-2 METEOR ROUGE-L
InstructBLIP ~ 89.29 59.5 45.2 22.6 423
LLaVA 68.65 22.0 13.9 19.8 22.4
MiniGPT-4 78.86 41.1 28.8 25.6 44.7

Table 12: MSCOCO caption results.



