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Abstract

The connection between inconsistent databases and Dung’s
abstract argumentation framework has recently drawn grow-
ing interest. Specifically, an inconsistent database, involving
certain types of integrity constraints such as functional and
inclusion dependencies, can be viewed as an argumentation
framework in Dung’s setting. Nevertheless, no prior work has
explored the exact expressive power of Dung’s theory of ar-
gumentation when compared to inconsistent databases and
integrity constraints. In this paper, we close this gap by ar-
guing that an argumentation framework can also be viewed
as an inconsistent database. We first establish a connection
between subset-repairs for databases and extensions for AFs
considering conflict-free, naive, admissible and preferred se-
mantics. Further, we define a new family of attribute-based
repairs based on the principle of maximal content preserva-
tion. The effectiveness of these repairs is then highlighted
by connecting them to stable, semi-stable, and stage seman-
tics. Our main contributions include translating an argumen-
tation framework into a database together with integrity con-
straints. Moreover, this translation can be achieved in poly-
nomial time, which is essential in transferring complexity re-
sults between the two formalisms.

Introduction

Formal argumentation serves as a widely applied framework
for modeling and evaluating arguments and their reasoning,
finding application in various contexts. In particular, Dung’s
abstract argumentation framework (Dung 1995) has been
specifically designed to model conflict relationships among
arguments. An abstract argumentation framework (AF) rep-
resents arguments and their conflicts through directed graphs
and allows for a convenient exploration of the conflicts at an
abstract level. The semantics for AFs is described in terms
of sets of arguments (called extensions) that can be simulta-
neously accepted in a given framework.

A related yet distinct domain, with its primary fo-
cus on addressing inconsistent information, involves re-
pairing knowledge bases and consistent query answering
(CQA) (Arenas, Bertossi, and Chomicki 1999a; Chomicki
2007; Leopoldo and Bertossi 2011; Bienvenu and Rosati
2013). The goal there is to identify and repair inconsis-
tencies in the data and obtain a consistent knowledge base
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(KB) that satisfies the imposed constraints. The current re-
search on repairs and the theory of argumentation exhibit
some overlaps. Indeed, both (CQA for inconsistent KBs and
instantiated argumentation theory) address reasoning under
inconsistent information (Croitoru and Vesic 2013).

While the connection between AFs and inconsistent
databases has gained significant attention, no prior work has
investigated the precise expressive power of Dung’s theory
of argumentation in terms of integrity constraints (ICs). In
this paper, we take on this challenge and resolve the exact
expressive power of Dung’s AFs. This is achieved by ex-
pressing AFs in terms of inconsistent databases where ICs
include functional (FDs) and inclusion dependencies (IDs).
As extensions in an AF are subsets of arguments satisfying
a semantics, the association with relational databases is clar-
ified through subset-repairs (Chomicki and Marcinkowski
2005). Precisely, arguments are seen as database tuples,
which together with ICs model the arguments interaction.

We complete the mutual relationship between inconsis-
tent databases and argumentation frameworks in Dung’s set-
ting, thereby strengthening the connection between the two
formalisms as anticipated earlier (Mahmood et al. 2024).
Then, the conflict relationship between arguments closely
resembles the semantics of functional dependencies, while
the defense/support relation mirrors that of inclusion depen-
dencies. We establish that AF's can be seen as inconsistent
databases, as so far only the converse has already been es-
tablished (Bienvenu and Bourgaux 2020; Mahmood et al.
2024). This strong connection offers a tabular representa-
tion of the graphical AFs and demonstrates that FDs and
IDs alone suffice to encode argument interactions in an AF.

In relational databases, the prominent notions of repairs
include set-based repairs (Arenas, Bertossi, and Chomicki
1999b; Chomicki and Marcinkowski 2005; ten Cate,
Fontaine, and Kolaitis 2012), attribute-based repairs (Wi-
jsen 2002), and cardinality-based repairs (Lopatenko and
Bertossi 2007). Here, we focus on subset-repairs. A subset-
repair of an inconsistent database is obtained by removing
tuples from the original database such that integrity con-
straints are no longer violated. It is known (Chomicki and
Marcinkowski 2005) that for large classes of constraints
(FDs and denial constraints), the restriction to deletions suf-
fices to remove integrity violations. Subset-maximality is
employed in this setting to assure minimal tuple removals.
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Figure 1: Hierarchy of ICs and syntactic form for most com-
monly studied constraints (Arming, Pichler, and Sallinger
2016). Formulas ¢ and ¢; are conjunctions of database
atoms and f is a formula using only (in)equality symbols.

Finally, we introduce a new family of (attribute-based)
database repairs based on a pre-existing principle of max-
imal content preservation. The prior research on attribute-
based repairs focuses on updating attribute values (Wijsen
2002; Flesca, Furfaro, and Parisi 2005; Bertossi et al. 2008)
and does not consider the setting of subset-repairs. We de-
fine the notion of covering repairs that maximally (fully)
preserve the attribute values in a database. In other words,
repairs that encompass a larger set of values for their at-
tributes are preferred among all subset-repairs. We propose
this novel family of repairs as a topic of independent inter-
est. The relevance and practical implications of these repairs
are underlined by connecting them to various AF semantics.

Contributions. Proof details (marked with x) are available
online (Mahmood, Hecher, and Ngomo 2024). In details, we
establish the following (see Table 1 for an overview).

* We present a database view for Dung’s theory of argu-
mentation and prove that an AF can be seen as an in-
consistent database in the presence of functional and in-
clusion dependencies. This also establishes the exact ex-
pressive power of AFs in terms of integrity constraints.

* We prove that the extensions of an AF correspond pre-
cisely to the subset-repairs of the resulting database for
conflict-free, admissible, naive and preferred semantics.

* We propose a new family of subset-repairs based on max-
imal content preservation. While being of independent
interest, they further tighten the connection of AFs to
databases for stable, semi-stable and stage semantics.

Naturally, an AF (A, R) can be seen as a database with
a unary relation A (arguments) and a binary relation R (at-
tacks). Our main contributions indicate that AFs are as low
in expressive power as DBs with only FDs and IDs. Both
types of constraints are located at the lower ends of ICs hi-
erarchy in terms of expressive power as highlighted in Fig-
ure 1. Interestingly, while the attack relation fully charac-
terizes an AF, FDs alone can only capture this as a conflict.
Fundamentally, FDs are less expressive than the attack rela-
tion and require additional support. We provide this support
by IDs, which can represent the defense relation between
arguments but not the conflicts. Our reductions broaden
the applicability of systems based on evaluating DBs with
ICs, e.g., (Dixit and Kolaitis 2019; Kolaitis, Pema, and Tan
2013). Since conjunctive queries offer a powerful tool for

analyzing databases, a DB perspective on AFs enables fine-
grained reasoning. This enables queries beyond extension
existence or credulous/skeptical reasoning, a topic which has
been motivated earlier (Dvorak, Szeider, and Woltran 2012).

Resolving the expressivity of argumentation frameworks
also has a wider impact. In the argumentation community,
extensions and generalizations for AFs are actively proposed
and researched, such as acceptance conditions in terms of
constraints (Coste-Marquis et al. 2006, Alfano et al. 2021)
or abstract dialectical frameworks (Brewka and Woltran
2010). Our results, indicating that AFs have limited expres-
sive power, underline the importance of this research area.
Moreover, as we will show, stable, semi-stable, and stage
semantics maximize certain aspects (range) of accepted ar-
guments. This allows to define repairs maximizing certain
attribute values for databases. Such repairs introduce a set-
level preference between repairs (based on data coverage),
which has not been considered before.

Related Works. AFs have been explored extensively for
reasoning with inconsistent KBs (Cayrol 1995; Vesic and
van der Torre 2012; Arioua, Croitoru, and Vesic 2017;
Yun, Vesic, and Croitoru 2020; Bienvenu and Bourgaux
2020) and explaining query answers (Arioua et al. 2014;
Arioua, Tamani, and Croitoru 2015; Hecham et al. 2017).
The common goal involves formally establishing a connec-
tion between KBs and AFs, thus proving the equivalence
of extensions to the repairs for a KB. This yields an ar-
gumentative view of the inconsistent KBs and allows im-
plementing the CQA-semantics via AFs. FDs and IDs are
two most commonly studied ICs in databases (Chomicki
and Marcinkowski 2005; Livshits, Kimelfeld, and Roy
2020). The translation from DBs to AFs are known, prov-
ing that subset-repairs for an inconsistent database with
FDs and IDs align with preferred extensions in the re-
sulting AF (Mahmood et al. 2024). Finally, Konig, Rap-
berger, and Ulbricht (2022) provided several translations be-
tween Assumption Based Argumentation (Bondarenko et al.
1997), Claim-Augmented Frameworks (Dvorak and Woltran
2020a), and Argumentation Frameworks with Collective At-
tacks (Nielsen and Parsons 2006). We contribute to this line
of research by providing translations from AFs to DBs.

Preliminaries
In the following, we briefly recall the relevant definitions.

Abstract Argumentation. We use Dung’s argumentation
framework (Dung 1995) and consider non-empty finite sets
of arguments A. An (argumentation) framework (AF) is a
directed graph F = (A, R), where A is a set of argu-
ments and the relation R C A x A represents direct at-
tacks between arguments. Let S C A, an argument a € A
is defended by S in F, if for every (b,a) € R there ex-
ists ¢ € S such that (¢,b) € R. For a,b € A such that
(b,a) € R, we denote by defy(a) := {c | (¢,b) € R} the
set of arguments defending a against the attack by b. The
characteristic function D£(S): 24 — 24 of F defined as
Dx(S) :== {a | a € A,aisdefended by S in F} assigns
each set the arguments it defends. The degree of an argument



o Repairs  Maximality ICs Table Size FDs/IDs Size Refs.
conf  repairs — FDs  |A| x (JA|+1) |A| Thm. 5/8
naive m-repairs Subset FDs |A| x (|A|+1) |Al Thm. 5/8
adm  repairs — FDs+IDs |A| x 3(|A| +

pref  m-repairs Subset

stag mc-repairs Max-covering FDs+ID |A| x (2|4] +

FDs+IDs |A| x 3(|A| +

|A[/(JA| + 1) Thm. 16/17
|A|/(JA] + 1) Thm. 16/17

|Al/l  Thm.21/22

1)
1)
stab  fc-repairs Full-covering FDs+ID |A| x (2|4] + 3) |A|/1 Thm. 21/22
3)
1)

semi-st mc-repairs Max-covering FDs+IDs |A| x 3(|4] +

Al/(JA] + 1) Thm.21/17

Table 1: Overview of our main contributions. The AF-semantics o (column-I) corresponds to repairs (column-II) with the type
of maximality imposed (column-III), followed by integrity constraints needed to simulate AF-semantics (column-IV), the size
of the resulting database tables (column-V) and the size of sets of ICs (column-VI), and references to the proofs (column-VII).
The size of the database is represented as the (number of rows) x (number of columns) for number of arguments | A| in the AF.

Figure 2: Argumentation framework from Example 1.

a € Ais the number of arguments attacking a or attacked by
a. The degree of F is the maximum degree of any a € A.
In abstract argumentation one is interested in computing
extensions, which are subsets S C A of the arguments that
have certain properties. The set S of arguments is called
conflict-free in F if (S x S) N R = (). Let S be conflict-
free, then S is naive in F if no S’ D S is conflict-free in
F; admissible in F if every a € S is defended by S in F.
Further, let S, := SU{a | (b,a) € R,b € S} and S be
admissible. Then, S is complete in F if Dx(S) = S; pre-
ferred in F,if no S’ D S is admissible in F;, semi-stable in
F if no admissible set S C A in F with S}, ¢ (S')}, ex-
ists; and stable in F if every b € A\ S is attacked by some
a € S. Finally, a conflict-free set S is stage in F if there is
no conflict-free S’ C A in F with S}, C (S')%. For each
semantic o € {naive, adm, comp, pref, semi-st, stab, stag},
o (F) denotes the set of all extensions of semantics o in F.

Example 1. Consider F = (A, R) depicted in Fig. 2. Then,
o(F) = {{b,d},{a}} for o € {pref,stab,comp}. Further,
conf(F) = pref(F) U {{z} | « € A} U {0}, naive(F) =
pref(F) U {{c}}, and adm(F) = {{b, d}, {b},{a},0}.

Databases and Repairs. For our setting, an instance of a
database (DB) is a single table denoted as 7T since it suf-
fices to prove the connection to AFs. Each entry in the table
is called a fuple which is associated with a unique identifier
(depicted in boldface t € T'). Formally, a table corresponds
to a relational schema denoted as T'(x1, . . ., 2, ), where T is
the relation name and x4, ..., x, are distinct attributes. We
denote individual attributes by small letter (e.g., x,y) and
reserve capital letters (X, Y') for sequences of attributes. For
an attribute z and tuple s € T, s[x] denotes the value taken
by s for the attribute x and for a sequence X = (z1, ..., zk),
s[X] denotes the sequence (s[x1],...,s[x]). For an in-
stance T', dom(T") denotes the active domain of T, i.e., the
collection of all values occurring in any tuple in 7'. The size
of a table T" with m tuples and n attributes is m X n.

Let T'(z1,...,2,) be a schema and T be a database. In

the following, we employ commonly used definitions for
FDs and IDs. A functional dependency (FD) over T is an
expression of the form X — Y for sequences X,Y of at-
tributes in 7. A database T satisfies X — Y, denoted as
T E (X = Y)ifforall s,t € T:if s[X] = t[X] then
s[Y] = t[Y]. That is, every pair of tuples from T that agree
on their values for attributes in X also agree on their val-
ues for Y. Moreover, an inclusion dependency (ID) is an
expression of the form X C Y for two sequences X and
Y of attributes with same length. Then, 7" satisfies X C Y
(T = X CY)ifforeachs € T, there is some t € T
such that s[X]| = t[Y]. Leti := X CY € I be an ID and
s € T, we say that a tuple t € T supports s for the ID i if
s[X] = t[Y]. We denote by sup,(s) := {t | t[Y] = s[X]}
the collection of tuples supporting s for 7.

Let T be a database and B be a collection of FDs and
IDs. T is consistent with respect to B, denoted as T' = B,
if T |= b for each b € B. Further, T is inconsistent with re-
spect to B if there is some b € B such that T' [~ b. A subset-
repair of T' with respect to B is a subset P C T which is
consistent with respect to B. Moreover, P is a maximal re-
pair if there is no set P’ C T such that P’ is also consistent
with respect to B and P C P’. Note that our relaxed def-
inition clarifies the link to AF-semantics without requiring
maximality although one can substitute (our) repairs with
sub-repairs to reserve repairs for subset-maximal repairs.
We speak of a repair when we intend to mean a subset-
repair. Let D = (T, D) where T is a database and D is a
set of dependencies, then repairs(D) (resp., m-repairs(D))
denotes the set of all (maximal) repairs for D. Slightly abus-
ing the notation, we call a table 7" and an instance (T, D), a
database.

Example 2. Consider D = (T, D) with database T = {s; |
i < 6} as depicted in Table 2, FD f := Tutor, Time —
Room, and ID Advisor C Tutor. D is inconsistent since
{s1,s2} W~ f,{ss,sa} £~ f and there is nos; € T with
sgladvisor| = s;[tutor]. A subset containing exactly
one tuple from each set {s1,s2}, {s3,84} and {s5} is a max-
imal repair for D. Further, {s1}, {s4}, {s1,s3} are repairs
but not maximal.

A DB View of Abstract Argumentation

In this section, we connect inconsistent databases and ab-
stract argumentation frameworks. This is established by



T Tutor Time Room Course Advisor

s; Alice TS-1 Al10 Logic-I Alice
sy Alice TS-1 B20 Algorithms  Carol
s3 Bob TS-2 B20 Statistics Alice
s, Bob TS-2 (C30 Calculus Bob
s5; Carol TS-3 C30 Calculus Bob
s¢ Carol TS-3 B20 Algorithms Dave

Table 2: An inconsistent database.

proving that an AF F can be seen as an instance Dr of
inconsistent database such that the acceptable sets of argu-
ments in F correspond precisely to (maximal) repairs for
D. Intuitively, our construction relies on the fact that the at-
tack relation between arguments in J can be simulated via
a database together with FDs, and defending arguments can
be seen as another database with IDs. Then, combining the
two databases and dependencies, we obtain an AF — seen as
an inconsistent database. For convenience, an argument “a”
seen as a tuple in the database is denoted by “a” to highlight
that a depicts a tabular representation of a.

We first simulate the conflicts between arguments in an
AF F via FDs, resulting in a conflict database. Then, we
establish that the idea of defending arguments can be sim-
ulated by a defense database and IDs. Finally, we combine
the two databases thereby proving that in AFs, the semantics
o € {conf,naive,adm, pref} can be simulated via (maxi-
mal) repairs for inconsistent databases with FDs and IDs.
In addition, we establish the size and the time complex-
ity associated with the construction of the aforementioned
databases. For simplicity, we first assume AFs without self-
attacking arguments. At the end, we highlight the changes
required to allow self-attacking arguments in AFs.

Conflict DBs via Functional Dependencies

Let F = (A, R) be an AF with a set A of arguments and at-
tacks R. Then, we construct a conflict database Cr = (T, F')
where each argument a € A is seen as the tuple a (the unique
identifier to the tuple representing the argument a) and a col-
lection F' = {f; | r; € R} of FDs. A tuple a € T encodes
the conflicts between a € A and other arguments in F. In-
tuitively, C is constructed in such a way that {a, b} [~ f; for
the attack r; = (a,b) € R.

Notice that, {a,b} = {b,a} is true for any a,b € T, al-
though the attacks (a,b) and (b, a) are not the same. As a
consequence, the conflict database for an AF will be sym-
metric by design. That is, both attacks (a,b), (b,a) € R
are encoded in the conflict database in the same way by re-
quiring that {a,b} F~ f for some f € F. It is worth re-
marking that functional dependencies can only simulate the
symmetric attacks. In particular, the input AF may contain
non-symmetric attacks though our translation (for the con-
flict database) will treat them as symmetric ones. This is un-
problematic in this particular setting, since only conflict-free
(naive) extensions correspond to repairs (maximal repairs)
with FDs. Further, we will expound on this situation later
that one can (perhaps) not simulate directed attacks by FDs
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Figure 3: The AF F (left) from Ex. 4 and a conflict database
(right) modeling F.

alone, and requires IDs for that purpose.

In the following, each attack r € {(a,b),(b,a)} is de-
picted as a set r := {a, b}.
Definition 3 (Conflict Database). Let F = (A, R) be an
AF with arguments A and attacks R. Then, Cr = (T, F)
defines the conflict database for F, specified as follows.

* The attributes of T are {x;,n | r; € R} and we call n
the name attribute.

o F:={x; - n|r; € R} is the collection of FDs and
each f € F corresponds o an attack r € R.

» T:={a|a€ A}. Further, (1) a[n] = a for each a € A,
(2) for r; = {a,b}: alz;] = r; = blz;], and (2) for
c € T and attributes x; not already assigned (when all
the attacks have been considered): c|x;] = c.

The following example presents the conflict database for
the AF F = (A, R) from our running example (Ex. 1).

Example 4. For brevity, we rename each attack in F as de-
picted in Fig. 3. As discussed, the attacks (a,b),(b,a) € R
are modeled as one conflict m1 = {a,b}. The conflict
database for F is Cx = (T, F), where F = {z; — n |
i <5} and T as specified in Figure 3.

Let S C A, then by ST C T we denote the set of tuples
corresponding to arguments in .S, defined as S := {a | a €
T,a € S}. The following theorem establishes the relation
between the extensions and repairs of the conflict database.

Theorem 5 (x). Let F be an AF without self-attacking argu-
ments and Cx be its corresponding conflict database. Then,
for every S C A, S is conflict-free (resp., naive) in F iff
St C T is a repair (maximal) for Cr.

Notice that the above construction fails in general when F
contains self-attacking arguments. That is, if (a,a) € R, the
only argument participating in a conflict is a but the database
consisting of a singleton tuple {a} satisfies each FD trivially.
We will see that this issue can be resolved by allowing an ID
since a singleton tuple can also fail IDs (see Ex. 2).

Observe that the construction of conflict database from an
AF includes an individual attribute x,» modeling r € R. We
argue that fewer attributes and FDs suffice because they can
be reused, as depicted in the example below.

Example 6. Table 3 depicts a compact representation of the
conflict database from Example 4 with only three attributes
{z1,x9,25} and FDs {x; — n | i < 3}.

The following lemma establishes that the size of FDs can
be determined by the maximum degree of the input AF.

Lemma 7 (x). Let F be an AF of degree . Then, there is a
conflict database Cx := (T, F') for F such that |F| < v+1.
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Table 3: A compact representation of the conflict DB (Ex. 6)

As a consequence of Lemma 7, the following claim holds.

Theorem 8 (x). Let F be an AF without self-attacking argu-
ments. Then, its corresponding conflict database Cx can be
constructed in polynomial time in the size of F. Additionally,
Cx has a table of size |A| x (|A] + 1), and uses |A|-many
FDs at most, for an AF with | A| arguments.

Defense DBs via Inclusion Dependencies

Assume an AF F = (A, R) with arguments A and attacks
R. We construct a defense database Dy = (T, 1) for F.
Intuitively, the defense database 7" contains the information
about incoming and outgoing attacks for each argument a €
A. The attributes of T" are {uq,v, | @ € A}, further T' :=
{a | a € A} and the tuple a € T encodes the neighborhood
of the argument a € A. Formally, T is defined as follows.

Definition 9 (Defense database). Let F = (A, R) be an AF
with arguments A and attacks R. Then Dy := (T, I) defines
the defense database for F, specified in the following.

e The attributes of T are {uq,v, | a € A}.
o [:={uys Cv, | a€ A} is the collection of IDs.
o T:={a|ae€ A}, where (1) for each r = (a,b) € R:

alup) =b, a[vy] =0, blus] =a, blv,]=0.

(2) for each t € T and variables ug, vq not yet assigned:

t[ud] =0, t[vd} =0.

Intuitively, for each a € T a[uv] encodes whether the
argument a attacks b, by setting a[vy] = b when (a,b) € R.
Moreover, afup] aims at encoding whether a interacts with
(either attacks, or attacked by) b. This is achieved by setting
afup) = bif (b,a) € R or (a,b) € R. The intuition is to
simulate attacks from an argument @ via an ID u, C v,. The
idea is that if an argument b is attacked by a, then b interacts
with a and hence b[u,] = a. Now, there are two ways b can
be defended against the attack by a: either b defends itself
by attacking a (in which case b[vy] = a, hence {b} = u, C
vg), or there is an argument ¢ ¢ {a, b} attacking a (therefore
c[vy] = a, and {b,c} E u, C v, as clu,] = clv,] = a).

The following example demonstrates the defense database
for the AF F = (A, R) from our running example (Ex. 1).

Example 10. The defense database for F from Example 1
is Dp = (T,I), where I = {us Cvs | s € A} and T is
specified in Table 4.

Observe that the active domain of 7" consists of the ar-
guments in F, as well as, an auxiliary element 0 to serve
the purpose of missing values in the database (i.e., when a
value is missing, we prefer writing 0 rather than leaving it
blank). Moreover, repeating the argument names instead of

T ‘ Uy Vg Uy, Vp Ue Ve Ug Vg
a0 o0 b b ¢ ¢ d d
bla a 0 0 c c 0 0
cla 0 b 0 0 0 d d
dia 0 O O ¢ ¢ 0 O

Table 4: The defense database for the AF F in Example 10.

0 as for the case of the conflict database has an undesired ef-
fect. Consider Example 10, if we set a[u,] = av,] = a
instead of 0, then a € sup,(d) and a € sup;(c) where
1 = u, C v,. However, the argument a does not defend c or
d in F against the attack by a € A. Indeed, we aim at prov-
ing that the support relation between tuples in DBs for IDs
is essentially the same as the defense relation between argu-
ments. This connection is clarified in the following lemma.

Lemma 11 (x). Let a,b € A be two arguments such that
(a,b) € R. Then, for b € T (the tuple corresponding to b)
and i = ug C v, € I, we have def,(b) = sup,(b).

Let S C A be a set of arguments and S C T be the cor-
responding set of tuples. The defense database has the prop-
erty that St = u, C v, iff each argument in S is defended
against the argument a € A. We prove that aset S C A
defends itself in F iff Sp C T satisfies every ID in [.

Lemma 12 (x). Let F be an AF and Dx denotes its corre-
sponding defense database. Then, for every S C A, S de-
fends itself in F iff St C T is a repair for Dg.

Note that repairs for a defense database do not yield
conflict-free sets. In fact, we will prove later that one can not
model conflict-freeness via inclusion dependencies alone.

Example 13. Consider the AF F and its defense database
Dy from Example 10. Then, {a},{b} € repairs(Dr) and
each set defends itself whereas {c},{d} & repairs(Dx) and
do not defend themselves. Further, {a,b,c} € repairs(Dr)
and defends itself, although it is not conflict-free in F.

The following theorem establishes the size and the time
bounds to construct a of defense database for a given AF.

Theorem 14 (x). Let F be an AF without self-attacking ar-
guments. Then, its corresponding defense database Dr can
be constructed in polynomial time in the size of F. Addition-
ally, Dy has a table of size |A| x 2|A| and uses | A|-many
IDS, for an AF with | A| arguments.

Inconsistent Databases for AFs

We combine the (conflict and defense) databases from the
previous two subsections and establish that a collection of
FDs and IDs suffices to encode the entire AF. Let F =
(A, R) be an AF. We construct an AF-database as the in-
stance Ax = (T, D), where T is the database obtained
by combining the conflict and defense databases, and D =
F U I consists of a collection of FDs and IDs. Specifically,
A has the following components.

e Fi={a; »n|r,€ Ryand I := {u, Cv, | a € A}.

T :={a | a € A} is a database over attributes {x; |
r; € R}U{n} U {u,,v, | @ € A}. The tuples of T are



T |21 ® 23 n|ua V4 Uy Uy U Vo Ug Vg
alr, rs ro al| 0 0 b b c c d d
b|rn 73 b b a a 0 0 c c 0 0
clry 13 1 c¢| a 0 b 0 0 0 d d
d|ry, 5 d d]| a 0 0 0 c c 0 0

Table 5: The inconsistent database for the AF F in Ex. 15.

specified as before. That is, (1) foreach a € T', a[n] = q,
(2) foreach r; = (a,b) € R:  alx;] =r;, blz;]=r

a[ub] =b, a[vb] =b, b[ua} =a, b[va] =0,

and (3) for each ¢ € T and variables x;, uq, vy not al-
ready assigned: c[x;] = ¢, c[ug] = 0, and c[vg] = 0.

Although for better presentation we used an attribute and FD
for each r € R, Lemma 7 is still applicable and allows us
to utilize v + 1 many FDs when F has degree ~. Further,
the encoding of conflicts via FDs is still symmetric, i.e., an
attack of the form r; = {a, b} is considered for assigning at-
tribute values for z;’s. The following example demonstrates
the inconsistent database from our running example (Ex. 1).

Example 15. The AF-database for F is Ar = (T, D),
where D = FUI with F = {x; - n | i < 3} and
I ={us Cuvs|se€ A}, and T is specified in Table 5.

Self-attacking arguments. A self-attacking argument can
not belong to any extension. We add a single ID ¢4 := ugs C
v, over fresh attributes {us, vs} to encode self-attacking ar-
guments. To this aim, for each a € A such that (a,a) € R:
we set a[us] = a and afvs] = O for the tuple a € T'. Since
there is no tuple b € T with b[vs] = a, the tuples corre-
sponding to self-attacking arguments do not belong to any
repair due to is. Henceforth, we assume that AF-databases
include the attributes {us,vs} and the ID us C v, for
self-attacking arguments. The equivalence between repairs
of the conflict database and conflict-free (naive) extensions
(Thm. 5) does not require the ID i, as the conflict-free ex-
tensions in an AF F and those in the AF F’ obtained from
F by removing self-attacking arguments, coincide.

We are ready to prove that admissible and preferred ex-
tensions for F coincide with repairs (max. repairs) for A r.

Theorem 16 (x). Let F be an AF and Ax denotes its cor-
responding AF-database. Then, for every S C A, S is ad-
missible (resp., preferred) in F iff S C T is a repair (max.
repair) for Ax.

Regarding the size of the AF-database and the time to con-
struct it for a given AF, we have the following result.

Theorem 17 (x). Let F = (A, R) be an AF. Then, its cor-
responding AF-database Ar can be constructed in polyno-
mial time in the size of F. Additionally, Ax has a table of
size and |A| x 3(|A| 4+ 1) and uses (at most) |A|-many FDs
and (|A| + 1) IDs, for an AF with |A| arguments.

For symmetric AFs (Coste-Marquis, Devred, and Marquis
2005) (i.e., (a,b) € Riff (b,a) € R for every a,b € A), the
stable, preferred and naive extensions coincide. As a result,
one only needs the conflict database and FDs to establish the
equivalence between repairs and extensions.

Corollary 18. Let F be a symmetric AF and Cx its conflict
database. Then, for S C A and o € {naive,stab, pref},
S € o(F) iff St C T is a subset-maximal repair for Cr.

We conclude this section by observing that one can not
simulate AFs via inconsistent databases using only one type
of dependencies (FDs or IDs) under the complexity theoretic
assumption that the class P is different from NP. This holds
because the problem to decide the existence of a non-empty
repair for a database instance comprising only FDs or IDs is
in P (Mahmood et al. 2024), whereas the problem to decide
whether an AF has a non-empty admissible-extension is NP-
complete. The stated claim holds due to Theorem 16.

Attribute-Based Repairs & Other Semantics

Besides subset maximality, we introduce maximal repairs
following the principle of content preservation (Wijsen
2002). The motivation behind these attribute-based repairs
is to adjust subset-maximality by retaining maximum pos-
sible values from dom(T") for certain attributes of T'. Let
D = (T, D) where T is a database with values dom(7T") and
D is a set of dependencies. Let X be a sequence of attributes
inT and P C T, then P[X] denotes the database obtained
from P by restricting the attributes to X and dom(P[X]) de-
notes the set of values in P[X]. Given D and a sequence X
of attributes, we say that P C T'is a maximally covering re-
pair for D with respect to X if P € repairs(D) and there is
no P’ € repairs(D) such that dom(P’'[X]) D dom(P[X]).
Moreover, we say that P is a fully covering repair for D
with respect to X if dom(P[X]) = dom(T[X]). In other
words, a maximal covering repair retains maximum possi-
ble values from dom(7'[X]), whereas a fully covering repair
takes all the values from dom(7T'[X]). If X contains all the
attributes in 7" then we simply speak of maximally (fully)
covering repair for D without specifying X. For a database
instance D and attributes X, by mc-repairs(D, X) (resp.,
fc-repairs(D, X)) we denote the set of all maximally (fully)
covering repairs for D with respect to X .

Example 19. In the database from Example 2, {s1,s3,S5}
and {s2,s3,85} are both subset-maximal as well as max-
imally covering repairs for D considering all attributes.
Moreover, {s1,S4,85} is subset-maximal but not maximally
covering (since {s1,S3,S5} covers more values). Notice
that there is no fully covering repair for D. Nevertheless,
{s1,s3,85} is a fully covering repair for D with respect
to attributes { Tut or, Time, Room} whereas {sz2, 3,85} is
not. Further, there is no fully covering repair for D w.rt
{Course} or {Advisor}.

A maximally covering repair is also subset-maximal for
any instance D, whereas, the reverse is not true in general.
Moreover, a fully covering repair is also maximally cover-
ing, though it may not always exist. Observe that, certain at-
tribute may not be fully covered in any repair and requiring
the repairs to fully cover the domain with respect to all the
attributes may not always be achievable. This motivates the
need to focus on specific attributes in a database and include
repairs fully covering the values in those attributes.



Stable, Semi-stable, and Stage Semantics

We prove that stable, semi-stable and stage extensions in
AFs can also be seen as subset-repairs of the inconsistent
DBs. This is achieved by dropping subset-maximality and
utilizing the covering semantics for repairs. Notice that, the
three semantics require maximality for the range S for a set
S of arguments. Recall that the attributes {v, | * € A} in
the defense database encode arguments attacking = € A. To-
gether with the name attribute (n) from the conflict database,
we can encode the range of a set .S of arguments via an AF-
database. Let X, := {v, | z € A} U {n} denote the range
attributes. The following lemma proves the relation between
values taken by a set St of tuples under attributes X, and
the range ST for a set S C A of arguments.

Lemma 20 (x). Let F be an AF and Ax denote its AF-
database. Then, for every set S C A of arguments and cor-
responding set ST C T of tuples, ST = dom(Sr[X,])\{0}.

Now, we consider the AF-database for an AF F with
range attributes X,. to determine values in dom(7T") covered
by any repair. Since stable and stage semantics only require
conflict-freeness, we drop the admissibility and hence the set
of IDs, except for the ID (75) for self-attacking arguments.

Theorem 21 (x). Let F be an AF and Ax denotes its cor-
responding AF-database where Ay = (T, F U I). More-
over, let i be the ID for self-attacking arguments, Cr =
(T,F U{is}), and let X, = {v, | x € A} U {n}. Then, for
every S C A and corresponding St C T,

» S € stab(F) iff St € fc-repairs(Cr, X,),
» S € stag(F) iff St € mc-repairs(Cx, X,.)
» S € semi-st(F) iff St € mc-repairs(Ar, X,)

For stable and stage semantics, the size of the database
can be reduced since there are no IDs involved (except 7).

Corollary 22 (x). Let F = (A, R) be an AF. Then, its cor-
responding AF-database Cx for stable and stage semantics
has a table of size |A| x (2| A| + 3), and uses | A|-many FDs
with a single ID.

Discussion, Conclusion, and Future Work

We presented a database view of Dung’s theory of abstract
argumentation. While our results tighten the connection be-
tween two domains by simulating Dung’s argumentation
frameworks by inconsistent databases, they also provide the
exact expressivity of AFs via integrity constraints. Roughly
speaking: Dung’s argumentation frameworks can be equiva-
lently seen as inconsistent databases where ICs include func-
tional and inclusion dependencies. This strong connection
allows us to transfer further ideas from one domain to an-
other. As already pointed out, a repairing semantics based
on the idea of maximizing range from AFs yields maximal
(full) content preservation across certain attributes. We pro-
pose this new family of repairs as a topic of interest.

Complete and Grounded Semantics. We note that the
complete and grounded semantics may not have a natural
counterpart in the subset-repairs setting for databases when
FDs and IDs are employed. Although, we can introduce a
notion of closed repairs utilizing the connection between

defending arguments and supporting tuples (Lemma 11) to
simulate the closure properties required by these semantics,
this may not correspond to a natural definition for repairs in
the databases. Then the question arises: are there classes of
ICs that can express these two semantics for AFs?

Research Directions. Our work is in line with the ex-
isting literature connecting the two domains; seeing tu-
ples in the database as arguments (Bienvenu and Bourgaux
2020; Mahmood et al. 2024) or constructing arguments from
KBs (Vesic and van der Torre 2012; Croitoru and Vesic
2013). By inspecting the expressivity of AFs to integrity
constraints, we believe to have opened a new research di-
mension within argumentation. This study can be extended
by exploring the expressivity of extensions and generaliza-
tions of AFs, e.g., dialectical frameworks (ADFs) of Brewka
and Woltran (2010), set-based AFs (Nielsen and Parsons
2006) and claim-centric AFs (Dvorak and Woltran 2020b)
to name a few. Moreover, in claim-centric AFs, the so-called
claim-level semantics requires maximizing accepted sets of
claims rather than arguments — which can be covered by
maximally covering repairs for suitable attributes. Further,
the connection between probabilistic (Li, Oren, and Norman
2011) and preference-based (Kaci, van der Torre, and Villata
2018) AFs and their database-counterpart (Lian, Chen, and
Song 2010; Staworko, Chomicki, and Marcinkowski 2012)
also seems promising.

The well-known reasoning problems in AFs include cred-
ulous (resp., skeptical) reasoning, asking whether an argu-
ment belongs to some (every) extension. However, the nat-
ural reasoning problem for databases includes consistent
query answering (CQA) under brave or cautious seman-
tics. A (Boolean) query is entailed bravely (resp., cautiously)
from an inconsistent database if it holds in some (every) re-
pair. It is interesting to explore DB-variants of credulous and
skeptic reasoning. That is, given an argument @ in an AF F
and semantics o, construct a query ¢ such that a is credu-
lously (skeptically) accepted in F under semantics o iff the
query g% is entailed bravely (cautiously) from the database
D for F under appropriate repairing semantics p,. Yet an-
other interesting direction for future work is to utilize re-
cently developed (so-called) decomposition-guided (Fichte
et al. 2021, 2023; Hecher et al. 2024) reductions for reason-
ing in DBs. These reductions would allow to establish tight
runtime bounds for CQA via the known bounds for reason-
ing in AFs. Exploring these directions is left for future work.

Finally, a complexity analysis for repairs involving max-
imally or fully covering semantics is on our agenda. Some
complexity lower bounds for the decision problems (involv-
ing FDs and IDs) already follow from the results in this pa-
per. We next aim to target the complexity of repair check-
ing and CQA involving not only FDs and IDs, but also more
general types of constraints such as equality and fuple gener-
ating dependencies. It is noteworthy that these definitions for
repairs introduce a preference on sets of tuples, distinguish-
ing them from research on prioritized databases (Staworko,
Chomicki, and Marcinkowski 2012; Kimelfeld, Livshits,
and Peterfreund 2017; Bienvenu and Bourgaux 2020), which
typically involves tuple preferences.
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