
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

PhaseEvo: Towards Unified Long-Context Prompt Optimization
for Large Language Models

Anonymous Authors1

Abstract
Crafting an ideal prompt for Large Language
Models (LLMs) is a challenging task that de-
mands significant resources and expert human
input. Existing work treats the optimization of
prompt instruction and in-context learning exam-
ples as distinct problems, leading to sub-optimal
prompt performance. This research addresses this
limitation by establishing a unified long-context
prompt optimization framework, which aims to
achieve joint optimization of the prompt instruc-
tion and examples. However, formulating such
optimization in the discrete and high-dimensional
natural language space introduces challenges in
terms of convergence and computational effi-
ciency. To overcome these issues, we present
PHASEEVO, an efficient automatic prompt opti-
mization framework that combines the generative
capability of LLMs with the global search profi-
ciency of evolution algorithms. Our framework
features a multi-phase design incorporating inno-
vative LLM-based mutation operators to enhance
search efficiency and accelerate convergence. We
conduct an extensive evaluation of our approach
across 35 benchmark tasks. The results demon-
strate that PHASEEVO significantly outperforms
the state-of-the-art baseline methods by a large
margin whilst maintaining good efficiency.

1. Introduction
Automating prompt optimization is a non-trivial task that
involves discrete variables and complex high-dimensional
spaces (Zhou et al., 2023). To avoid optimizing discrete
long prompts, existing research treats the optimization of
instruction and examples as separate tasks: one line of re-
search (Pryzant et al., 2023; Chen et al., 2023; Yang et al.,

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Under review by the Workshop on Long-Context Foundation Mod-
els (LCFM) at ICML 2024. Do not distribute.

Local

GlobalLocal

Global

PhaseEvo

Does the provided text contain hate
speech? Return a Boolean value of
True or False

Your task is to evaluate whether the
provided input includes any
offensive language...

For instance, the phrase “You are a
fool” is offensive due to its
derogatory tone, so you should
return ’True’.

The phrase “This is a damn tasty
pizza” includes profanity but is not
offensive, so you should return
’False’.

Is the following text hate
speech? Output Format
True or False

Better Instruction and Examples

Better instruction onlyTask description

Unified In-Context
Prompt Optimization

Figure 1: An illustrative example of the unified long-context
prompt optimization problem.

2023; Guo et al., 2023) takes the zero-shot prompting ap-
proach (Kojima et al., 2022) to focus on optimizing a short
instruction that comprises one or few sentences; while the
other line of work (Liu et al., 2021; Lu et al., 2021; 2022;
Zhang et al., 2022b; An et al., 2023) emphasizes more the
importance of few-shot examples (Brown et al., 2020) and
seeks to selecting the best set of examples from a pre-defined
dataset given a fixed instruction. Although such treatment
effectively reduces the optimization complexity, it overlooks
the significance of the interplay between instruction and ex-
emplification, resulting in sub-optimal performance (Hsieh
et al., 2023).

In this work, we explore the joint optimization of instruc-
tion and examples. However, such formulation results in a
complex combinatorial optimization problem that naturally
brings two challenges: (1) how to design an optimization
framework that efficiently navigates the high-dimensional
joint space of instructions and examples, steering clear of
local minima to ensure continuous performance enhance-
ment? (2) what strategies can be employed to improve the
efficiency of the algorithm, enabling fast convergence with
a reasonable level of computational complexity?

To address these challenges, we propose PHASEEVO, a uni-
fied in-context prompt optimization framework that simul-
taneously optimizes the prompt instruction and examples.
As illustrated in Figure 1, in contrast to most previous in-

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Submission and Formatting Instructions for ICML 2024

struction optimization strategies (Zhou et al., 2023; Pryzant
et al., 2023; Chen et al., 2023; Guo et al., 2023; Fernando
et al., 2023), our formulation does not impose any restric-
tions or assumptions on the format of the optimized prompt,
thereby unlocking the full potential of prompt optimiza-
tion. Notably, our approach not only explores innovative
instructions but is also capable of producing novel examples
to further improve the generalizability of LLMs. Conse-
quently, the generated prompt from PHASEEVO is highly
adaptive and can take any form from a simple zero-shot
instruction-only prompt to an elaborative few-shot prompt
with detailed examples, depending on the specific task at
hand. Our experiments additionally highlight cases where
PHASEEVO actively diminishes the length of the prompt
(Fig. 5) during optimization, resulting in shorter yet more
effective prompts. This challenges the prevailing notion
that prompt engineering typically yields longer prompts that
compromise efficiency for performance.

We conduct an extensive evaluation on a total number of
35 benchmark tasks to compare our method with the six
latest LLM-based prompt optimization approaches. Our
findings indicate that PHASEEVO demonstrates substantial
improvements compared to state-of-the-art methods on the
8 Big Bench Hard benchmark (Suzgun et al., 2022a).

2. Problem Formulation
Considering the task T specified by a dataset D = (Q,A) of
input/output pairs, the LLM L produces the corresponding
output A via prompting with the concatenation of prompt P
and a given input Q, i.e., [P;Q]. The objective of prompt
optimization is to design the best natural language prompt
P∗ that maximizes the performance of L on T .

Typically, an ideal prompt P consists of instruction, denoted
by I and examples denoted by E as in-context learning
(ICL) demonstrations. Our goal of joint prompt optimization
is to search for the optimal prompt P∗

(I,E) given L that
maximizes the performance towards a performance metric
function F (e.g., accuracy). This can be formally defined as
the following optimization problem:

P∗
(I,E) = argmax

P(I,E)∈X
E(Q,A)

[
F(P(I,E);Q,A) | L

]
, (1)

where X denotes the sample space for a natural language
prompt, a discrete and intractable space of arbitrarily large
dimension, which makes the optimization problem in Eq.
(1) extremely difficult.

3. Methodology
We propose to design a unified in-context prompt optimiza-
tion framework that subsumes both zero-shot and few-shot
prompting strategies by jointly optimizing the instruction

and examples. To achieve optimal performance while main-
taining good efficiency, PHASEEVO employs and alternates
between two distinct optimization strategies: (1) Explo-
ration, where evolution operators are leveraged for a global
search to broadly explore the entire solution space and pre-
vent entrapment in locally optimal solutions; (2) Exploita-
tion, involving the use of feedback gradient mutation for
local search to expedite convergence and improve efficiency.
Instead of depending on specific strategies, PHASEEVO
aims to organize multiple mutation operators in a unified
and organic manner. The selection of the optimal mutation
operator at each phase of the optimization process ultimately
leads to the maximum performance of the resulting prompt.

3.1. Mutation Operator

Following the insight of leveraging global search and local
search, we introduce five mutation operators that can be
categorized as global operators and local operators. The
three global operators are:

• Lamarckian Mutation is a reverse-engineering oper-
ator OL that provides instructional prompt by learn-
ing from illustrative question-answer pairs (Q,A) =
[(Q1, A1), ..., (Qm, Am)] so that OL(Qi,L) = Ai, i =
1, ...,m given the base LLM L.

• Estimation of Distribution Mutation (EDA) is a
function operator OE that generate a new prompt
OE(P,L) = p′ based on a list of parents P = [p1, ..., pk].
Items in P satisfy d(pi, pj) < t, where d is a distance
metric and t is a threshold. If the items in P are ordered
based on certain criteria, we refer to it as EDA + Index
(EDA+I).

• Crossover Operator(CR) is a function operator OC

that performs OC(p1, p2,L) = p′ where p1, p2 are
two parents selected from a population set P where
P = [p1..., pm]. If p2 = argminp∈P d(p1, pi) is used to
select p2, we refer to it as Crossover + Distinct (CR + D).

The two local operators are:

• Feedback Mutation is a function operator OF utilizes a
batch of data to create “gradients” δ that provide feedback
of the current prompt p. A new prompt p′ is generated
by editing the current prompt p in the opposite semantic
direction of the gradient, e.g., p′ = OF (p,−δ,L).

• Semantic Mutation is a function operator OS that per-
forms paraphrasing OS(p,L) = p′ where p′ is the new
prompt that shares the same semantic meaning as p.

3.2. PHASEEVO Framework
3.2.1. PHASE 0: GLOBAL INITIALIZATION

Our objective is to create diverse candidates as the initial
population to explore the vast joint space of instruction and
example. We provide two types of initialization based on

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Submission and Formatting Instructions for ICML 2024

Phase 1: Feedback Mutation

Phase 2: Evolution MutationPhase 3: Semantic Mutation

Phase 0: Initialization

Global Optima Local Optima In-Context Prompt

Global Local

GlobalLocal

Figure 2: Illustration of PHASEEVO framework.

the availability of data (input output pair) and human expert
knowledge (prompt examples).

• Reverse Engineer from input/output pairs. Given a
set of input/output pairs S = {(Q1, A1), ..., (Qm, Am)}
from the training set Dtrain for the task T , we define an
LLM agent to apply Lamarckian Operator OL to reverse
engineer the prompt from provided demonstrating pairs.

• Human expert prompt example. This way allows hu-
mans to jump-start the evolution process by incorporating
prior knowledge. We also perform the semantic operator
OS to enhance the diversity of the initial population.

3.2.2. PHASE 1: LOCAL FEEDBACK MUTATION

While an initial phase (Phase 0) may result in a diverse pop-
ulation, each candidate could still be distant from its local
optimal solution. To address this, we employ the Feedback
Mutation Operator OF to expedite each candidate’s conver-
gence towards their local minimums, leveraging the “gradi-
ent" information. This involves the introduction of an LLM
Examiner, which scrutinizes instances where the current
candidate falls short, and subsequently offers improvement
guidance. Such information is taken as the feedback gradi-
ent and is further utilized by an LLM Improver, to generate
new candidates by local exploitation. These new candi-
dates contain global information inherited from the previous
phase and can thus be regarded as better initialization for
the next optimization phase.

3.2.3. PHASE 2: GLOBAL EVOLUTION MUTATION

Phase 1 provides a more refined set of candidates, while
some of them might be stuck in local optima. To address this
issue, we prioritize exploration rather than exploitation in
Phase 2, which helps to escape from these restricted locali-

ties by conducting a global search. We leverage LLM agents
that employ EDA (EDA-I) operators OE and CR (CR-D)
operators OC to facilitate the increased interaction of ge-
netic information among candidates on a larger global scale.
Rather than employing cosine similarity as distance metrics,
we adopt the Hamming distance (see more discussions in
Section A) for calculating similarity on performance-based
vectors such that Phase 2 can promote greater diversity in
the evolving generations.

3.2.4. PHASE 3: LOCAL SEMANTIC MUTATION

Upon completing Phase 2’s exploration, Phase 3 employs
local exploitation to hasten the “last mile” of convergence.
As the concluding phase of PHASEEVO, the fitness score
of the population is notably optimized at this stage relative
to earlier phases. Consequently, the Semantic Mutation
operator OS is selected to expedite a more cost-effective
exploitation of the candidates. Finally, we identify the best
candidate as our ultimate optimal prompt and assess its
performance on the testing dataset Dtest. The workflow of
PHASEEVO framework is shown in Algorithm 1.

4. Experiments
4.1. Experimental Setup

Tasks and Datasets. We curate 35 benchmark tasks from
three domains for thorough experiments: 8 Big Bench Hard
(BBH) (Suzgun et al., 2022a); 3 NLP detection tasks, in-
cluding Ethos (Mollas et al., 2021), Liar (Wang, 2017), and
Sarcasm (Farha & Magdy, 2020); 24 instruction induction
tasks (Honovich et al., 2022). The task and dataset details
are in Appendix I.

Implementation Details. We utilized GPT-3.5 to develop
LLM agents capable of performing various mutation opera-
tors. We set up training, development, and testing datasets,
select the prompt with the highest score on the dev set, and
report its score on the testing set. We run all the experi-
ments by setting 3 random seeds and the standard deviation
is provided. More details are provided in Appendix I.

4.2. Main Results

BBH Tasks. Following the practice of AELP (Hsieh et al.,
2023), we conduct 8 BBH tasks to evaluate the performance
of PHASEEVO holistically. We consider two initialization
schemes PHASEEVO-pair and PHASEEVO-example and re-
port the final results in Table 1. PHASEEVO demonstrates
substantial improvements compared to state-of-the-art meth-
ods, achieving an average improvement of over AELP
(46.0%↑), EvoPromopt (20.3%↑), and OPRO (23.5%↑).

Fig. 4 depicts the iterative history of prompt evolution, em-
phasizing the score variations for the best candidate, worst
candidate, and the population’s average across iterations. It

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Submission and Formatting Instructions for ICML 2024

Table 1: Testing performance of the optimal prompt on 8 representative tasks from BBH.

Method Causal
Judgement

Dis
-ambiguation

Dyck
Languages

Formal
Fallacies Hyperbaton Logical

Five
Color
Reasoning

Salient
Translation

OPRO (Yang et al., 2023) 71.94 71.53 36.73 49.51 75.92 50.00 65.55 43.88
EvoPrompt (Guo et al., 2023) 67.24 53.70 47.96 50.81 74.79 61.40 60.90 47.58
AELP (Hsieh et al., 2023) 76.47 62.69 10.27 57.95 52.64 72.59 67.74 38.93

PHASEEVO-pair 69.97(2.45) 69.90(3.53) 7.06(1.23) 58.49(0.41) 84.36(2.24) 45.49(2.73) 58.13 (2.36) 48.38(0.81)

PHASEEVO-example 84.85(5.45) 68.01(0.4) 35.48(12.18) 53.06(4.95) 81.58(9.89) 73.56(8.99) 77.15(4.13) 47.01(0.88)

Over AELP 10.95% ↑ 11.50% ↑ 245.18% ↑ 0.93% ↑ 60.24% ↑ 1.34% ↑ 13.89% ↑ 24.27% ↑
Over EvoPrompt 32.36% ↑ 30.17% ↑ -2.48% ↑ 15.73% ↑ 16.99% ↑ 34.36% ↑ 32.35% ↑ 3.19% ↑
Over OPRO 23.84% ↑ 0.84% ↑ 27.33% ↑ 18.91% ↑ 16.79% ↑ 65.04% ↑ 23.02% ↑ 12.31% ↑

0.0

0.5

1.0
Antonyms

APE (zero-shot) APE (few-shot) PromptBreeder (few-shot) PhaseEvo (zero/few-shot)

0.0

0.5

1.0
Taxonomy Animal

0.0

0.5

1.0
Negation

0.0

0.5

1.0
Second Word Letter

0.0

0.5

1.0
 Sentence Similarity

0.0

0.5

1.0
Synonym

0.0

0.5

1.0
Trans En Es

0.0

0.5

1.0
Word in Context

Figure 3: Test accuracy of PHASEEVO on the instruction induction tasks.

has been observed that Feedback Mutation yields a perfor-
mance boost within a single iteration and rarely introduces
continual improvements. Global operators such as EDA
and Crossover aid in escaping local minima and offering
additional performance leaps (refer to Hyperbaton). This
observation aligns with our initial operator analysis. The
success of PHASEEVO lies in the organic organization of
these mutation operators, effectively harnessing their advan-
tages to maximum performance.

Detection Tasks. To present a more expansive compari-
son, we adopted the configuration outlined in APO (Pryzant
et al., 2023) and conducted a comparative analysis against it
across three tasks. It should be noted that data for the fourth
task mentioned in the original paper is unavailable. Ac-
cording to Table 2, PHASEEVO exhibits marginally superior
performance to APO in relatively simple tasks such as Ethos
(by 1%) and Sarcasm (by 4.7%). However, for more com-
plex tasks such as Liar, PHASEEVOdemonstrates a signifi-
cant improvement of 19.6% compared to APO. Moreover,
we have also provided results for PHASEEVO using GPT-4,
which demonstrated performance comparable to those of
PHASEEVO employing GPT-3.5.

Table 2: Testing performance on 3 detect tasks from APO.

Method Ethos Liar Sarcasm

APO (Pryzant et al., 2023) 0.95 0.51 0.85
PHASEEVO (GPT-3.5) 0.96(0.96) 0.61(3.85) 0.87(1.25)

PHASEEVO (GPT-4) 0.96 0.69 0.89

Instruction Induction Tasks. To compare PHASEEVO-
generated prompts with manually added few-shot exam-
ples, we evaluated the optimized prompt from PHASEEVO
against the best prompts from APE-fewshot (Zhou et al.,
2023) and PromptBreeder-fewshot (Fernando et al., 2023)
on APE’s 24 instruction induction tasks. The results show
that PHASEEVO outperforms APE in 17 out of 24 tasks
and PromptBreeder in 18 out of 24 tasks. The Appendix
J.1 provides complete experimental results. Fig. 3 shows
that few-shot methods do not always outperform zero-shot
methods, highlighting the need for a joint in-context prompt
search. Moreover, we observed that the prompts generated
by PHASEEVO are easier to interpret and align better with
the task description. Appendix J.3 provides more detail on
prompt quality.

5. Conclusion
In this work, we propose a unified in-context prompt opti-
mization framework that enables the joint optimization of
prompt instruction and few-shot examples. Benefiting from
the global-local phased optimization schedule and the de-
sign of novel LLM-based mutation operations, PHASEEVO
achieves state-of-the-art performance over a wide range of
benchmark tasks. Despite having achieved the lowest com-
putational requirements among all baselines, PHASEEVO
still needs around 12 iterations and 4, 000 API calls, which
might be insufficient for supporting large-scale online appli-
cations.

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Submission and Formatting Instructions for ICML 2024

References
Aarohi, S. and bench authors, B. Beyond the imitation

game: Quantifying and extrapolating the capabilities of
language models. Transactions on Machine Learning
Research, 2023. ISSN 2835-8856. URL https://
openreview.net/forum?id=uyTL5Bvosj.

An, S., Zhou, B., Lin, Z., Fu, Q., Chen, B., Zheng, N., Chen,
W., and Lou, J.-G. Skill-based few-shot selection for
in-context learning. arXiv preprint arXiv:2305.14210,
2023.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J.,
Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S.,
Radford, A., Sutskever, I., and Amodei, D. “language
models are few-shot learners". 2020.

Chen, L., Chen, J., Goldstein, T., Huang, H., and Zhou,
T. Instructzero: Efficient instruction optimization for
black-box large language models. 2023.

Deng, M., Wang, J., Hsieh, C.-P., Wang, Y., Guo, H., Shu, T.,
Song, M., Xing, E. P., and Hu, Z. Rlprompt: Optimizing
discrete text prompts with reinforcement learning. arXiv
preprint arXiv:2205.12548, 2022.

Diao, S., Huang, Z., Xu, R., Li, X., Lin, Y., Zhou, X., and
Zhang, T. Black-box prompt learning for pre-trained lan-
guage models. arXiv preprint arXiv:2201.08531, 2022.

Farha, I. A. and Magdy, W. From arabic sentiment analysis
to sarcasm detection: The arsarcasm dataset. n Proceed-
ings of the 4th Workshop on Open-Source Arabic Corpora
and Processing Tools, with a Shared Task on Offensive
Language Detection,, pp. 32–39, 2020.

Fernando, C., Banarse, D., Michalewski, H., Osindero, H.,
and Rocktaschel, T. Promptbreeder:self-referential self-
improvement via prompt evolution. 2023.

Guo, Q., Wang, R. W., Guo, J. G., Li, B., Song, K., Tan,
X., Liu, G., Bian, J., and Yang, Y. “connecting large lan-
guage models with evolutionary algorithms yields power-
ful prompt optimizers". 2023.

Hauschild, M. and Pelikan, M. An introduction and sur-
vey of estimation of distribution algorithms. Swarm and
evolutionary computation, 1(3):111–128, 2011.

Holland, J. H. Adaptation in natural and artificial systems:
an introductory analysis with applications to biology,
control, and artificial intelligence. MIT press, 1992.

Honovich, O., Shaham, U., Bowman, S. R., and Levy, O.
Instruction induction: From few examples to natural lan-
guage task descriptions. 2022.

Hou, B., O’connor, J., Andreas, J., Chang, S., and Zhang,
Y. Promptboosting: Black-box text classification with ten
forward passes. In International Conference on Machine
Learning, pp. 13309–13324. PMLR, 2023.

Hsieh, C.-J., Si, S., Yu, F. X., and Dhillon, I. S. “automatic
engineering of long prompts". 2023.

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa,
Y. Large language models are zero-shot reasoners. Ad-
vances in neural information processing systems, 35:
22199–22213, 2022.

Li, X. L. and Liang, P. Prefix-tuning: Optimizing continuous
prompts for generation. arXiv preprint arXiv:2101.00190,
2021.

Liu, F. N., Lin, K., Hewitt, J., Paranjape, A., Bevilacqua,
M., Petroni, F., and Liang, P. Lost in the middle: How
language models use long contexts. 2023.

Liu, J., Shen, D., Zhang, Y., Dolan, B., Carin, L., and Chen,
W. What makes good in-context examples for gpt-3?
arXiv preprint arXiv:2101.06804, 2021.

Lu, P., Qiu, L., Chang, K.-W., Wu, Y. N., Zhu, S.-C., Ra-
jpurohit, T., Clark, P., and Kalyan, A. Dynamic prompt
learning via policy gradient for semi-structured math-
ematical reasoning. arXiv preprint arXiv:2209.14610,
2022.

Lu, Y., Bartolo, M., Moore, A., Riedel, S., and Stenetorp,
P. Fantastically ordered prompts and where to find them:
Overcoming few-shot prompt order sensitivity. arXiv
preprint arXiv:2104.08786, 2021.

Mollas, I., Chrysopoulou, Z., Karlos, S., and Tsoumakas, G.
Ethos: An online hate speech detection dataset. 2021.

Pitis, S., Zhang, M. R., Wang, A., and Ba, J. Boosted prompt
ensembles for large language models. arXiv preprint
arXiv:2304.05970, 2023.

Prasad, A., Hase, P., Zhou, X., and Bansal, M. Grips:
Gradient-free, edit-based instruction search for prompting
large language models. arXiv preprint arXiv:2203.07281,
2022.

Pryzant, R., Iter, D., Li, J., Lee, Y. T., Chenguang, Z., and
Zeng, M. Automatic prompt optimization with “gradient
descent” and beam search. 2023.

Shin, T., Razeghi, Y., Logan IV, R. L., Wallace, E., and
Singh, S. Autoprompt: Eliciting knowledge from lan-
guage models with automatically generated prompts.
arXiv preprint arXiv:2010.15980, 2020.

5

https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Submission and Formatting Instructions for ICML 2024

Storn, R. and Price, K. Differential evolution–a simple and
efficient heuristic for global optimization over continu-
ous spaces. Journal of global optimization, 11:341–359,
1997.

Sun, H., Hüyük, A., and van der Schaar, M. Query-
dependent prompt evaluation and optimization with of-
fline inverse rl. arXiv e-prints, pp. arXiv–2309, 2023.

Sun, T., He, Z., Qian, H., Zhou, Y., Huang, X.-J., and
Qiu, X. Bbtv2: towards a gradient-free future with large
language models. In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Processing,
pp. 3916–3930, 2022a.

Sun, T., Shao, Y., Qian, H., Huang, X., and Qiu, X. Black-
box tuning for language-model-as-a-service. In Inter-
national Conference on Machine Learning, pp. 20841–
20855. PMLR, 2022b.

Suzgun, M., Scales, N., Schärli, N., Gehrmann, S., Tay,
Y., Chung, H. W., Chowdhery, A., Le, Q. V., Chi,
E. H., Zhou, D., et al. Challenging big-bench tasks and
whether chain-of-thought can solve them. arXiv preprint
arXiv:2210.09261, 2022a.

Suzgun, M., Scales, N., Schärli, N., Gehrmann, S., Tay, Y.,
Chung, H. W., Chowdhery, A., Le, Q. V., Chi, E. H., Zhou,
D., and Wei, J. “large language models as optimizers.
2022b.

Wang, W. Y. “liar, liar pants on fire”: A new benchmark
dataset for fake news detection. 2017.

Wang, X., Li, C., Wang, Z., Bai, F., Luo, H., Zhang, J., Jojic,
N., Xing, E. P., and Hu, Z. Promptagent: Strategic plan-
ning with language models enables expert-level prompt
optimization. arXiv preprint arXiv:2310.16427, 2023.

Xu, W., Banburski-Fahey, A., and Jojic, N. Reprompting:
Automated chain-of-thought prompt inference through
gibbs sampling. arXiv preprint arXiv:2305.09993, 2023.

Yang, C., Wang, X., Lu, Y., Liu, H., Le, Q. V., Zhou, D.,
and Chen, X. “challenging big-bench tasks and whether
chain-of-thought can solve them". 2023.

Zhang, N., Li, L., Chen, X., Deng, S., Bi, Z., Tan, C., Huang,
F., and Chen, H. Differentiable prompt makes pre-trained
language models better few-shot learners. arXiv preprint
arXiv:2108.13161, 2021.

Zhang, T., Wang, X., Zhou, D., Schuurmans, D., and Gonza-
lez, J. E. Tempera: Test-time prompting via reinforcement
learning. arXiv preprint arXiv:2211.11890, 2022a.

Zhang, Y., Feng, S., and Tan, C. Active example selection
for in-context learning. arXiv preprint arXiv:2211.04486,
2022b.

Zhou, Y., Muresanu, A. I., Han, Z., Paster, K., Pitis, S.,
Chan, H., and Ba, J. Large language models are human-
level prompt engineers. 2023.

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Submission and Formatting Instructions for ICML 2024

A. PHASEEVO Design
Within our PHASEEVO framework, we propose two novel design schemes to improve performance and efficiency.

Design 1: Performance vector with Hamming distance. Evolution operators like EDA and Crossover function optimally
when parents exhibit distinct attributes. In terms of evaluating similarity scores, we adhere to the principle that similarity
should be gauged based on the performance of the prompts rather than their linguistic or semantic similarities. Inspired by
this intuition, we propose to construct candidate vectors based on individual performance on the evaluation dataset, named
“performance vectors”. To exemplify, in an evaluation dataset comprising five elements, a candidate answering the first three
queries correctly and the final two incorrectly would feature a vector representation of [1, 1, 1, 0, 0].

Rather than calculating the cosine similarity of embedding space, we propose to compute candidate similarity scores by
Hamming distance, which calculates the distance between two vectors of equal length by examining the number of positions
at which the corresponding symbols are different. This way ensures that one candidate is more likely to be paired with a
candidate that does not contain the same mistakes, and thereby generates a diverse population with a more diverse set of
genetic information.

Design 2: Adaptive Phase Stop Criteria. Each evolution phase is fully conducted before we transition to the next. The
decision to proceed to the following phase is influenced by two primary criteria.

• Performance Gain. If no performance gain manifests after implementing the operators in a particular phase, it’s indicative
that the candidate has been thoroughly optimized by the operator. Consequently, we transition to the next phase.

• Operator-specific Tolerance. As operators inherently vary, more localized operators, such as Feedback Mutation, which
have high improvement probabilities, could imply readiness for progress when no performance gain is perceived. However,
global operators, e.g., evolution operators, might have low initial improvement probabilities but are capable of accessing
broader branches worth exploration. Therefore, we assign greater tolerance and run them for a pre-defined time when a
global operator does not introduce improvement. More details about the stop criteria can be found in Appendix G.2.

B. Algorithm details

Algorithm 1 Unified In-Context Prompt Optimization: PHASEEVO

1: requirements: size of population n, a dev set Ddev, score function F on the base LLM L, phase improvement t and threshold t∗ and
minimum run time for phases Ki, designed evolution operators OL, OF , OE , OC and OS

2: initialization: generate diverse initial prompts P0 = {p01, ..., p0n} by Ol with input/output pairs or Os with existing prompt, and
evaluate initial scores S0 ← {s0i = F(p0i ,Ddev)} //Phase 0: Global Exploration

3: while t < t∗ or k ≤ K1 do //Phase 1: Local Exploitation
4: Local Feedback Mutation: generate new prompts by feedback gradient descent, Pt ← Of (P0),

evaluate St ← F(P0,Ddev)), and update the population set P1 ← {Pt,P0}, and score set S1 ← {St,S0}
5: while t < t∗ or k ≤ K2 do //Phase 2: Global Exploration
6: Global Evolution Mutation: select parent prompts from current population, {pr1 , ..., prk} ∈ P

1, generate a new
prompt by performing EDA operators pt ← Oe(pr1 , ..., prk) or crossover operators pt ← Oc(pr1 , ..., prk), evaluate
on Ddev, st ← F(pt,Ddev), and update P2 ← {P1, pt} and S2 ← {S1, st}

7: while t < t∗ or k ≤ K3 do //Phase 3: Local Exploitation
8: Local Semantic Mutation: generate new prompts by the semantic operator P∗

t ← Os(P2),
evaluate S∗

t ← F(P2,Ddev)), and update P3 ← {P∗
t ,P2}, and S3 ← {S∗

t ,S2}
9: return the optimal in-context prompt p∗, from the final population P3: p∗ ← argmaxp∈P3 F(p,Ddev)

C. Baseline Methods
We evaluate PHASEEVO against a variety of LLM-based approaches that have achieved state-of-the-art performance in
prompt optimization:

• APE (Zhou et al., 2023) and APO (Pryzant et al., 2023): APE utilizes an iterative Monte Carlo Search strategy that
emphasizes exploration, while APO emphasizes exploitation, which harnesses incorrect instances as feedback gradient to
refine the original prompt.

• OPRO (Yang et al., 2023): OPRO leverages LLM as optimizers to generate better instruction via meta-prompt, solution-
score pairs, and task descriptions.

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Submission and Formatting Instructions for ICML 2024

• PromptBreeder (Fernando et al., 2023), EvoPrompt (Guo et al., 2023) and AELP (Hsieh et al., 2023): these methods
connect LLMs with evolution algorithms (EAs) to tackle prompt optimization tasks. Specifically, EvoPrompt implements
EAs using genetic algorithm (Holland, 1992) and differential evolution (Storn & Price, 1997), while PromptBreeder
introduces multiple mutation operators inspired by thinking styles. AELP focuses on long prompt optimization by
mutating on a sentence level with a history-guided search.

D. Additional Analysis

La
m

a
Fe

ed
CR

+D CR
ED

A+
I

ED
A CR ED
A

CR
+D

ED
A+

I
CR CR CR

Se
m

a

Iteration (operator)

0.40

0.45

0.50

0.55

0.60

0.65

Sc
or

e
va

lu
e

Salient Translation

High Avg Low
La

m
a

Fe
ed CR

CR
+D ED

A
ED

A+
I

CR
+D

CR
+D

ED
A+

I
CR

ED
A+

I
ED

A+
I

ED
A+

I
ED

A+
I

Se
m

a

Iteration (operator)

0.4

0.5

0.6

0.7

Sc
or

e
va

lu
e

Causal Judgement

High Avg Low

La
m

a
Fe

ed CR ED
A

ED
A+

I
ED

A+
I

ED
A+

I
CR

+D
ED

A+
I

CR
+D ED

A
Se

m
a

Se
m

a
Se

m
a

Se
m

a

Iteration (operator)

0.6

0.7

0.8

0.9

Sc
or

e
va

lu
e

Hyperbaton

High Avg Low

Figure 4: Iteration history of score values with different mutation operators during optimization.

Table 3: Comparison of our phase evolution with traditional random evolution.

Method Causal Judgement Disambiguation Hyperbaton Salient Translation
Average score High score Average score High score Average score High score Average score High score

Random Evo 67.70(0.75) 70.28(0.56) 58.22(2.47) 61.3(3.17) 83.00(0.15) 87.8(0.00) 52.00(2.35) 56.80(1.60)

PHASEEVO 69.88(2.17) 72.00(3.09) 60.32(2.73) 62.9(2.56) 83.52(0.71) 87.8(0.00) 53.06(0.80) 56.80(0.80)

Table 4: Performance comparison of hamming distance and cosine similarity.

Method Causal Judgement Disambiguation Hyperbaton Salient Translation
Average score High score Average score High score Average score High score Average score High score

Cosine distance 64.70(2.31) 67.86(2.47) 58.96(1.47) 63.30(0.00) 74.70(1.60) 85.7(0.00) 49.56(1.07) 58.80(0.00)

Hamming distance 65.74(2.87) 69.60(2.97) 64.11(1.28) 66.94(2.88) 79.30(4.48) 86.78(2.15) 50.33(2.32) 58.80(0.00)

Phase Evolution vs Random Evolution. To compare our PHASEEVO method with the random evolution strategy, we
conducted additional experiments on four tasks from BBH. Using the same initial population and six iterations, we presented
the average score and highest score of the population in Table 3. Significantly, PHASEEVO outperformed random evolution
in both average and highest scores for all tasks. Such effectiveness is attributed to the advantages of our well-organized
operators through the employment of the dual exploration-exploitation strategy.

Effect of Hamming Distance. An ablation study has been conducted to examine the impact of hamming distance on the
performance-based vectors in comparison to the traditional cosine distance for similarity calculation. The study encompasses
both distance calculations carried out in 4 iterations using the same initial population. Table 4 displays the outcomes of the
hamming distance evaluation on four BBH tasks. The results indicate that the hamming distance outperforms the cosine
distance, demonstrating higher average and maximum scores, particularly for Disambiguation (+5.2) and Hyperbaton (+4.6)
tasks.

Effect of Initialization Strategy. The PHASEEVO can accommodate two types of inputs: input output pair and prompt
examples, each bringing its own benefits. When using the input output pair approach, the initialization occurs solely based
on LLM’s proposal, resulting in greater diversity in the initial population. On the other hand, initialization in prompt
examples draws upon provided example prompts, consequently lacking the diversity that input output pair offers. Even so,
prompt examples empowers users to introduce prior knowledge without leaning on LLM interpretation, and consequently, it
performs better in more complex tasks such as Dyck Languages, Logical Five, and Color Reasoning, as illustrated in Table
1.

Effect of Operators on Prompt Length. Our method aims to explore the entirety of the prompt space, spanning both
zero-shot and few-shot scenarios. Understanding the variation in prompt length and the impact of the operator on this

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Submission and Formatting Instructions for ICML 2024

fluctuation is crucial. Fig. 5 provides a visual representation of the average prompt token length throughout the iterations.
Interestingly, the length can either increase, decrease, or oscillate, which aligns with the “unfettered” expectations of global
search. Specifically, we observed the initialization phase had a significant impact on prompt length. This observation is
in agreement with our analysis of the Lamarckian and Feedback operators, which hold the power to both add and remove
examples.

La
m

a
Fe

ed ED
A

CR
+D CR CR

CR
+D

ED
A+

I
CR CR CR

Se
m

a

0

200

400

600

Av
g

to
ke

n
le

ng
th Antonym

La
m

a
Fe

ed
Fe

ed
CR

+D
ED

A+
I

CR
+D

CR
+D ED

A
ED

A
ED

A CR ED
A

CR
+D

Se
m

a

0

1000

2000

3000 Hyperbaton

La
m

a
Fe

ed ED
A

CR
+D CR CR

CR
+D

ED
A+

I
CR CR CR

Se
m

a

Iteration (operator)

0

200

400

Av
g

to
ke

n
le

ng
th

Trans EN-ES

La
m

a
Fe

ed
Fe

ed
Fe

ed
ED

A+
I

CR
CR

+D CR
CR

+D
CR

+D
ED

A+
I

CR
+D

Se
m

a

Iteration (operator)

250

500

750

1000

Orthography

Figure 5: Variation of prompt length during optimization.

Synthetic Few-shot Examples. We observe that in certain cases PHASEEVO would generate novel synthetic few-shot
examples instead of selecting from existing ones. To verify their veracity, we conduct a manual evaluation of the accuracy of
the few-shot examples generated by PHASEEVO on a total of 24 instruction deduction tasks. We find that 90 out of the
92 examples evaluated (97.8%) are accurate. Among them, 24 out of the 92 (24.09%) are aligned with samples present in
the training set. There are two cases where the synthetic example is inaccurate: the sentiment of "A non-mystery mystery"
is identified as "neutral" where the ground truth is "negative", and "Little more than a well-mounted history lesson" is
identified as "neutral" where the ground truth is "negative". In both cases, we empirically validate that such a level of
inaccuracy does not influence prompt performance (score remained 94% regardless of the labels).

Computational Cost. We monitor the computational cost of PHASEEVO based on the number of model API calls
consumed by evaluation and operator application, and the number of iterations. As shown in Fig. 6, PHASEEVO is the most
cost-effective method that significantly reduces multiple orders of magnitude compared to evolution strategies, such as
PromptBreeder. PHASEEVO also performs competitively in terms of iterations compared to the gradient descent approach,
e.g., APO.

104 105 106

Evaluation (lower is better)

101

102

Ite
ra

tio
n

(lo
we

r i
s b

et
te

r)

APO
APE
PromptBreeder
EvoPrompt
OPRO
AELP
PhaseEvo(ours)

Figure 6: Comparison of computational cost.

E. Related Work
In-context prompting is an efficient approach for communicating LLMs but the performance is strongly affected by the
design of the prompt in specifized tasks. Prompt optimization has thus obtained broader attention. One research direction
is the continuous prompt approaches that tune embeddings of input tokens to generate better prompts (Li & Liang, 2021;
Zhang et al., 2021; Sun et al., 2022b;a; Chen et al., 2023). However, the optimized “soft” prompts from this paradigm often

9

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Submission and Formatting Instructions for ICML 2024

fall short of interpretability and are inaccessible for blackbox APIs. Discrete prompt approaches (Diao et al., 2022; Prasad
et al., 2022), operating discrete tokens directly, offer an interactive interface to humans with better interpretability and show
promising performance in various NLP tasks. Various methods have been proposed via gradient-based search (Shin et al.,
2020), reinforcement learning (Zhang et al., 2022a; Deng et al., 2022; Sun et al., 2023) and ensemble methods (Hou et al.,
2023; Pitis et al., 2023) while these methods encounter concerns in terms of scalability, reliability and efficiency (Wang
et al., 2023).

More recent advancements rely on iterative sampling, scoring, and selection of exceptionally promising prompts, generating
diverse possibilities for prompt optimization. Fernando et al. (2023); Guo et al. (2023); Hsieh et al. (2023) proposed
leveraging LLMs to implement evolution strategies in prompt searches. Yang et al. (2023) demonstrates the capability of
LLM as optimizers in prompt design. Pryzant et al. (2023); Zhou et al. (2023) utilizes natural language feedback to refine
prompt instructions. However, these prompt evolution/refinement strategies largely focus on prompt instructions, typically
short sentences or paragraphs. Our research reformulates the problem by permitting unrestrained evolution of a unified
in-context prompt, incorporating both instructions and examples, offering more avenues for improvement, yet it also poses
new challenges with regard to navigating the high-dimensional joint space, while retaining high efficiency. While previous
search and sampling algorithms have been investigated, such as Monte Carlo search (Zhou et al., 2023), Gibbs sampling
(Xu et al., 2023), or Beam search (Pryzant et al., 2023), we introduce a novel dual exploration-exploitation strategy that
leverages the in-depth traits of each operator, utilizing an intuitive blend of global-local search, conducive to enhancing
interactive dynamics during optimization.

F. Operator Definition
Operators are used to generate new candidates. Seven types of operators, broadly categorized into five classes are used by
PHASEEVO. The idea is to provide a diverse set of operators so that a broad cognitive space of linguistics is covered.

F.1. Lamarckian Mutation

Lamarckian Mutation follows the principles proposed in APE and Prompt Breeder (Zhou et al., 2023; Fernando et al., 2023).
Given a set of input-output pairs for the task, an LLM agent is used to reverse-engineer the prompt from the provided
demonstrating pairs. This type of mutation allows a diverse set of prompt candidates to be generated with no prior knowledge
of the task. Any prompt candidate will have to be induced from the demonstrating pairs. The prompt used by the LLM agent
is in Table 9.
Definition F.1. (Lamarckian Mutation) Given a set of input/output pairs (Q,A) = [(Q1, A1), ..., (Qm, Am)] and a base
LLM L, Lamarckian Mutation is to reverse engineer the instruction OL so that OL(Qi) = Ai, i = 1, ...,m.

F.2. Feedback Mutation

As evolution algorithms can take a while to converge, inspired by the concept of Gradient Descent in machine learning
model training, we introduce an LLM agent that works as an examiner which examines the cases where the current task
prompt fails and provides improvement guidance. Such guidance will be treated as gradient and be used by another LLM
Agent as an improver to generate a new candidate. Though similar to what is proposed in APO (Pryzant et al., 2023), instead
of only using gradient descent repeatedly, which has a higher probability of arriving at a local minimum, we take advantage
of its fast converge rate to local minimum and combine it with an evolutionary algorithm to target global minimum. When
applying Feedback Mutation, it will be applied to every candidate in the current generation. The prompt can be found in
Table 10 - 11.
Definition F.2. (Feedback Mutation) Feedback Mutation generates a new prompt p′ based on the existing prompt p ∈ P ,
and where p made mistakes for a task. The feedback operator OF first looks at the cases where the current p failed to
generate a list of advice G, and then asks LLM L to apply such advice G to existing prompt p for generating the new prompt
p′.

F.3. ESTIMATION OF DISTRIBUTION MUTATION

The next class of operators takes a set of parents as input to generate a mutated candidate for the next generation.

Estimation of Distribution Mutation (EDA): Following the principles proposed by (Hauschild & Pelikan, 2011) and work
in (Fernando et al., 2023), we use a LLM agent that is fed with a subset of the current population to generate new candidate.

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Submission and Formatting Instructions for ICML 2024

To ensure the diversity and quality of the subset, we first rank the candidates in the current population by their fitness score
in descending order. Then starting from the first item in the ordered candidates, we only add the candidate to the subset if it
does not have a similarity score over a threshold with any other candidate that is already in the subset. This way candidates
with higher fitness scores are more prone to be added to the subset and the diversity of the subset is achieved. More details
on how similarity is calculated can be found in section A. The subset will be randomized before feeding into the LLM agent
so the candidate’s fitness score does not dictate its order. The prompt can be found in Table 12.

EDA and Index Mutation: This is a variant of the EDA mutation above. Based on the observations that LLM is more
prone to use examples that appear late in the in-context learning (Liu et al., 2023; Fernando et al., 2023), after generating the
subset following procedures of EDA, the subset is ordered by their fitness score in ascending order. To further balance
exploitation and exploration and avoid being too biased over the candidate with the highest fitness score (Fernando et al.,
2023), we instructed LLM that the candidates are ranked by their fitness score in descending order so that the low health
score candidates are taken into consideration during mutation. The prompt can be found in Table 13.

Definition F.3. (Estimation of Distribution Mutation - EDA) EDA generates a new candidate based on a list of parents.
It is a function operator OE that performs OE(P,L) = p′. Given a list of prompts P = [p1, ..., pm] and an LLM L, EDA
provides a new prompt p′. Items in P satisfy the restriction that d(pi, pj) < t, where d is a function that calculates similarity,
and t is a predefined threshold. If the items in P are ordered based on certain criteria, we call it EDA + Index (EDA+I).

F.4. Crossover Operator

This class of operators takes two parents as input to generate a crossover candidate for the next generation. The prompt can
be found in Table 14.

Crossover Operator(CR): Following the concept of crossover in the evolution algorithm, we introduce an LLM agent to
function as a crossover operator that takes two parents and generates a crossover candidate. It takes the best two candidates
in the current population, namely the top two candidates with the highest fitness scores, and performs linguistic crossover.

Crossover with Diversity Operator(CR+D): This is a variance of the Crossover Operator. To provoke exploration, we
follow a similar process in EDA where diversity in parents is considered. Thus it takes the best candidate and the most
distinct individual to it as two parents for crossover operation. The distinctness between two candidates is measured by a
similarity score. More details on how the similarity score is calculated can be found in section A.

Definition F.4. (Crossover Mutation - CR) Crossover generates a new candidate based on two parents. It is a function
operator OC that performs OC(p1, p2,L) = p′ where p1, p2 are two prompts selected from a prompt population set P
where P = [p1..., pm], p′ is the generated prompt that hold features from both p1 and p2. If p2 = argminp∈P d(p1, pi) is
applied for choosing p2, we call it Crossover + Distinct (CR + D).

F.5. Semantic Mutation

This class of operators takes a candidate and uses an LLM agent to compose a new candidate that shares its semantic
meaning. When applying Semantic Mutation, it will be applied to every candidate in the current generation. The prompt can
be found in Table 15.

Definition F.5. (Semantic Mutation) Semantic Mutation is a function operator OS that performs OS(p,L) = p′ where p′ is
the generated prompt that shares the same semantic meaning as p.

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Submission and Formatting Instructions for ICML 2024

G. Operator Analysis
G.1. Few-Shot Additional / Removal Analysis

The ability to add and remove few-shot examples is crucial in dictating whether it is possible to traverse the full in-context
prompt space. Thus we conduct the few-shot addition/ removal analysis to gauge each operator’s capabilities. Below are
examples of how operators add or remove few-shot examples.

Table 5: Lamarckian Operator Add Few-shot Example

Operator In-
put

I gave a friend an instruction and some examples The friend read the instruction and wrote an
output for every one of the inputs.
Here are the input-output pairs:

Example
Input : 92 24
Output : [’68’]

The instruction was:

Operator
Output

Subtract the second number from the first number and write the result. If the result is negative,
write the absolute value of the result.

Here are the input-output pairs:

Input: 10 5
Output: [’5’]

Input: 50 75
Output: [’25’]

Input: 100 100
Output: [’0’]

Input: 7 20
Output: [’13’]

Input: 0 5
Output: [’5’]

Input: -10 5
Output: [’15’]

Input: 92 24
Output: [’68’]

Input: 50 -75
Output: [’125’]

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Submission and Formatting Instructions for ICML 2024

Table 6: Feedback Operator Add Few-shot Example: In this operation, few-shot examples are added based on the feedback.
Individual feedback and their corresponding changes are colorcoded.

Original
Prompt

For each word, find its antonym and write it as the output.

Generated
Feedback

1. Clarify the definition of "antonym" to ensure that the prompt is asking for the opposite
meaning of the word, rather than just a different word that is related in some way.

2. Provide more specific instructions for determining the antonym, such as indicating
whether the opposite meaning should be an adjective or a noun.

3. Add a list of common antonyms for each word to help users who may not be fa-
miliar with all possible opposites.

4. Provide a context or sentence for each word to help users determine the appropri-
ate antonym.

Generated
Prompt

For each word, find its antonym, which is a word that has the opposite meaning, and write it
as the output. The antonym should be a word that is commonly used to express the opposite
meaning of the given word, and it should be of the same part of speech (e.g. noun, verb,
adjective, adverb).

To help you identify the antonym, we have provided a list of common antonyms for
each word. Additionally, we have included a context or sentence for each word to help you
determine the appropriate antonym.

Example:
Word: Hot
Antonym: Cold
Context: The soup is too hot to eat.

Please note that some words may have multiple antonyms depending on the context, so use
your best judgment to determine the most appropriate one.

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Submission and Formatting Instructions for ICML 2024

Table 7: Feedback Operator Remove Few-shot Example: In this operation, few-shot examples are removed based on the
feedback. Individual feedback and their corresponding changes are colorcoded.

Original
Prompt

For each word, remove the prefix or suffix that indicates a negative or opposite meaning, and
write the resulting word as the output.

For example, for the input "destabilize," remove the prefix "de-" which indicates a
negative meaning, and the resulting word is "stabilize

Generated
Feedback

1.Clarify the prompt to specify that it only applies to words with a negative or opposite prefix
or suffix. This will prevent confusion and mistakes when dealing with words that do not have
such affixes.

2. Provide examples of common negative or opposite prefixes and suffixes, such as
"un-" or "-less," to help users identify them more easily.

3. Include a check to ensure that the resulting word is a valid English word, to avoid
outputs like "ane" or "direct" that are not actual words. This could be done by cross-referenc-
ing the output with a dictionary or word list.

4. Consider adding an option to retain the original word if no negative or opposite
prefix or suffix is present. This would eliminate confusion when dealing with words like
"linear" that do not have such affixes.

Generated
Prompt

For each word that contains a negative or opposite prefix or suffix, remove the affix and write
the resulting word as the output. Common negative or opposite prefixes and suffixes include
"un-," "dis-," "in-," "-less," and "-ful." Please note that this prompt only applies to words with
these specific affixes.

To ensure that the resulting word is a valid English word, we will cross-reference
the output with a dictionary or word list. If the resulting word is not a valid English word, it
will be excluded from the output.

If the original word does not contain a negative or opposite prefix or suffix, you may
choose to retain the original word or exclude it from the output. Please specify your preference
in the input.

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Submission and Formatting Instructions for ICML 2024

Table 8: Semantic Operator Remove Few-shot Example

Operator In-
put

Order adjectives correctly in English sentences.

Q: Which sentence has the correct adjective order:
Options:
(A) rubber terrible ship
(B) terrible rubber ship
A: Let’s think step by step.
When there is more than one adjective before a noun, the adjectives need to respect the
following order before a noun: "[1. opinion] [2. size] [3. age] [4. shape] [5. color] [6.
origin] [7. material] [8. purpose] noun". Option (A): "rubber terrible ship". (1) rubber"
falls into the material category. (2) "terrible" falls into the opinion category. Option (A)
has the following adjective order: [7. material] [1. opinion] (or, in numeric terms, 7 1).
Because 7 < 1 is not correct, (A) does not have the correct ordering. Option (B): "terrible
rubber ship". Option (B) has the following adjective order: [1. opinion] [7. material] (or, in
numeric terms, 1 7). Because 1 < 7 is correct, (B) has the correct ordering. So the answer is (B).

Q: Which sentence has the correct adjective order:
Options:
(A) repulsive small Brazilian exercise ship
(B) Brazilian repulsive exercise small ship
A: Let’s think step by step.
When there is more than one adjective before a noun, the adjectives need to respect the
following order before a noun: "[1. opinion] [2. size] [3. age] [4. shape] [5. color] [6. origin]
[7. material] [8. purpose] noun". Option (A): "repulsive small Brazilian exercise ship".
(1) "repulsive" falls into the opinion category. (2) "small" falls into the size category. (3)
"Brazilian" falls into the origin category. (4) "exercise" falls into the purpose category. Option
(A) has the following adjective order: [1. opinion] [2. size] [6. origin] [8. purpose] (or, in
numeric terms, 1 2 6 8). Because 1 < 2 < 6 < 8 is correct, (A) has the correct ordering. Option
(B): "Brazilian repulsive exercise small ship". Option (B) has the following adjective order: [6.
origin] [1. opinion] [8. purpose] [2. size] (or, in numeric terms, 6 1 8 2). Because 6 < 1 < 8 <
2 is not correct, (B) does not have the correct ordering. So the answer is (A).

Q: Which sentence has the correct adjective order:
Options:
(A) blue gold wonderful square shoe
(B) wonderful square blue gold shoe
A: Let’s think step by step.
When there is more than one adjective before a noun, the adjectives need to respect the
following order before a noun: "[1. opinion] [2. size] [3. age] [4. shape] [5. color] [6. origin]
[7. material] [8. purpose] noun". Option (A): "blue gold wonderful square shoe". (1) "blue"
falls into the color category. (2) "gold" falls into the material category. (3) "wonderful" falls
into the opinion category. (4) "square" falls into the shape category. The adjective order that
Option (A) has is [5. color] [7. material] [1. opinion] [4. shape] (or, in numeric terms, 5 7 1
4). Because 5 < 7 < 1 < 4 is not correct, (A) does not have the correct ordering. Option (B):
"wonderful square blue gold shoe". Option (B) has the following adjective order: [1. opinion]
[4. shape] [5. color] [7. material] (or, in numeric terms, 1 4 5 7). Because 1 < 4 < 5 < 7 is
correct, (B) has the correct ordering. So the answer is (B).

Operator
Output

Rearrange the adjectives in the given sentence in the correct order.

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Submission and Formatting Instructions for ICML 2024

G.2. Operator Feature Analysis

To study the features of each operator we conduct a preliminary experiment where we study four operators: EDA Mutation,
Crossover, Feedback Mutation, and Semantic Mutation.

Initialization: As the initialized points have a tremendous impact on optimization problems. We randomly use four
different seeds to create four initial populations for four different tasks: Causal Judgement, Salient Translation Error
Detection, Disambiguation QA, and Hyperbaton. The idea is to provide various initialization points so that the performance
of operators can be averaged to rule out the influence of initialization.

Operator Applications: For each initialization, we apply the following procedure for all four operators.

• For one round, starting with the initial population, we consecutively apply the operator 5 times. This is to study the
value of applying the operator consecutively.

– For EDA and CrossOver, as they require multiple parents, we keep a population size of 5 for each generation after
applying the operator. Performance gain is defined as whether the average health of the population is improved.

– For Feedback Mutation and Semantic Mutation, as they only need one parent, we apply them to a random
candidate from the initial population and use the new candidate as the base for the next mutation. Performance
gain is defined as whether the new candidate has a higher fitness score than its parent.

• To reduce the impact of randomness during mutation, we run this process 5 rounds for each operator.

Thus for each operator, it will be run a total of 4 tasks * 5 rounds * 5 application = 100 times.

EDA Crossover Feedback Semantic
0

10

20

30

40

50

60

70

80

Co
un

t

Figure 7: Operator Improvement Count

Analysis: There are two aspects we are particularly interested in. The first is what the likelihood of performance gain
when applying an operator is (Probability of Improvement), and the second is how fast each operator can continously
bring improvement (Convergence Speed).

• Probability Of Improvement: Figure 7 shows the number of times performance is improved by each operator.
Crossover and EDA Mutation introduces improvements in more steps with Semantic Mutation ranking third. Feedback
Mutation introduces the least number of improvements. This result helps populate the Prob column in table ??.

• Convergence Speed: Figure 8 shows that for each operator, as they are applied in 5 consecutive steps, the number of
times improvement is introduced for each step. Figure 9 shows the average percentage of performance gain operators
brought in each step.

– For EDA Mutation and Crossover, each 5 step has a similar number of contributions for performance gains as
shown in figure 8. From figure 9 we can also observe the first step brings the most improvement and the first 4
steps bring a similar improvement ratio.

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Submission and Formatting Instructions for ICML 2024

– For Feedback Mutation and Semantic Mutation, the first step has a significantly higher chance of introducing
improvement as shown in figure 8. This is especially true for Feedback Mutation where step 1 accounts for over
34% of the total improvement counts. As for the improvement ratio, the first step for both Feedback Mutation and
Semantic Mutation introduces significantly more improvements than the rest of the steps shown in figure 9.

Based on the tests, we learned that the value gained for applying Feedback Mutation and Semantic Mutation is
significantly reduced after the 1st application. We interpret it as Feedback Mutation and Semantic Mutation can
jump to the local minimum pretty fast, namely in 1 step, thus leading to less possibility of improvement for steps
2 - 5. Whereas for EDA Mutation and Crossover, as they are merging genetic information between candidates, the
likelihood of improvement is relatively randomized. So even if the first round of applying them renders no improvement,
there is still a chance of performance gain in the following run. In other words, we should be more patient with EDA
Mutation and Crossover. Thus the operator tolerance (described in section A-design 2) for EDA and Crossover is set
to 4 and for Feedback Mutation and Semantic Mutation is 1. These learnings help populate the Speed column in table
??.

EDA Crossover Feedback Semantic
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Co
un

t

Step 1
Step 2
Step 3
Step 4
Step 5

Figure 8: Operator Improvement Pattern: EDA Mutation and Crossover have similar improvement counts for each step
whereas for Feedback Mutation and Semantic Mutation, the first step introduced significantly more times of improvement
compared to the others.

EDA Crossover
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Im
pr

ov
em

en
t P

er
ce

nt
ag

e

Feedback Mutation Semantic
0

20

40

60

80

100

120

140

Im
pr

ov
em

en
t P

er
ce

nt
ag

e

Step 1
Step 2
Step 3
Step 4
Step 5

Figure 9: Improvement Ratio: On the left, for EDA and Crossover, we observe an almost equal improvement ratio for the
first four steps. Improvement Ratio is defined as the relative percentage of improvement in the average fitness score for the
entire population. On the right, for Feedback and Semantic Mutation, we observe the first round contributes significantly
more improvement compared to the others. As Feedback and Semantic Mutation take one input candidate, Improvement
Ratio is defined as the relative performance improvement percentage for the candidate after mutation.

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Submission and Formatting Instructions for ICML 2024

H. Operator Prompts
Operator Implementation: The state-of-art frameworks such as APO, EVOPROMPT, and AELP have already im-
plemented operators such as feedback operator, crossover operator, and semantic operator with LLM. However, these
implementations inflict restrictions on LLM with prompts. For example, in APO when implementing the feedback operator,
the prompt specifically identified the use case to be zero-shot. (Pryzant et al., 2023) In EVOPROMPT-DE, when applying
crossover operators, the focus is to only mutate the parts that two parents differentiate from each other. (Guo et al., 2023) In
AELP, when applying semantic operators, it is restricted to a sentence level, not the whole prompt. (Hsieh et al., 2023). In
PHASEEVO, we pay special attention not to apply any restrictions in our mutation prompt, realizing the full potential of
LLMs.

Table 9: Lamarckian Mutation Prompt

I gave a friend an instruction and some inputs. The friend read the instruction and wrote an output
for every one of the inputs. Here are the input-output pairs:

Example
{input output pairs}

The instruction was:

Table 10: Gradient Descent Generation Prompt: Unlike APO which is also using gradient descent, we are NOT adding
restrictions such as "zero-shot classifier prompt.", nor providing any differentiation between instructions and examples.
Instead, we specifically ask LLM to output multiple feedback in one go. Also as are passing in the existing prompt as a
whole, thus feedback should be on the paragraph/prompt level instead of the sentence/instruction level. We highlight the
design that helps us achieve this below.

You are a quick improver. Given an existing prompt and a series of cases where it made mistakes.
Look through each case carefully and identify what is causing the mistakes. Based on these
observations, output ways to improve the prompts based on the mistakes.

Existing Prompt
{existing prompt}

Cases where it gets wrong:##
{wrong cases}

ways to improve the existing prompt based on observations of the mistakes in the cases above are:

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Submission and Formatting Instructions for ICML 2024

Table 11: Gradient Descent Application Prompt: Following the principle of optimizing prompt as a whole, our operator
prompts take input and output on the entire prompt level

You are a quick improver. Given an existing prompt and feedback on how it should improve. Create
an improved version based on the feedback.

Existing Prompt
{existing prompt}

Feedback##
{feedback}

Improved Prompt##

Table 12: EDA Prompt

You are a mutator. Given a series of prompts, your task is to generate another prompt with the same
semantic meaning and intentions.

Existing Prompts
{existing prompt}

The newly mutated prompt is:

Table 13: EDA+Index Prompt: The difference between EDA + Index and EDA is that EDA + Index takes advantage of the
in-context learning technique and informs the order of the passed-in prompts

You are a mutator. Given a series of prompts, your task is to generate another prompt with the
same semantic meaning and intentions. The series of prompts are ranked by their quality from
best to worst.

Existing Prompts
{existing prompt}

The newly mutated prompt is:

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Submission and Formatting Instructions for ICML 2024

Table 14: Cross Over Prompt

You are a mutator who is familiar with the concept of cross-over in genetic algorithm, namely
combining the genetic information of two parents to generate new offspring. Given two parent
prompts, you will perform a cross-over to generate an offspring prompt that covers the same
semantic meaning as both parents.

Example
Parent prompt 1: Now you are a categorizer, your mission is to ascertain the sentiment of the
provided text, either favorable or unfavorable

Parent prompt 2: Assign a sentiment label to the given sentence from [’negative’, ’posi-
tive’] and return only the label without any other text.

Offspring prompt: Your mission is to ascertain the sentiment of the provided text and as-
sign a sentiment label from [’negative’, ’positive’].

Given
Parent prompt 1: {prompt 1}
Parent prompt 2: {prompt 2}
Offspring prompt:

Table 15: Semantic Mutation Prompt: To provoke LLM’s creativity, we do not restrict to the semantic level but expand that
to intentions, allowing LLM to not stick to a sentence-by-sentence mutation.

You are a mutator. Given a prompt, your task is to generate another prompt with the same semantic
meaning and intentions.

Example:
current prompt: Your mission is to ascertain the sentiment of the provided text and assign a
sentiment label from [’negative’, ’positive’].
mutated prompt: Determine the sentiment of the given sentence and assign a label from [’negative’,
’positive’].

Given:
current prompt: {existing prompt}
mutated prompt::

20

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Submission and Formatting Instructions for ICML 2024

I. Details of Experiments
I.1. Baselines

• APE (Zhou et al., 2023) uses LLM agent for instruction induction tasks. It proposes forward mode generation and reverse
mode generation and uses log probability to generate and evaluate candidates. As it reports the best candidate, we are
using the best candidate to compare.

• APO (Pryzant et al., 2023) uses feedback provided by LLM as gradients to approach prompt optimization. It uses beam
search to find the best candidate. As it reports averaged performance, we are using the averaged performance to compare.

• PromptBreeder (Fernando et al., 2023) uses the evolution algorithm to tackle prompt optimization tasks and utilizes
thinking styles, and mutation prompts to surface the best task prompt. As it reports the best candidate, we are using the
best candidate to compare.

• AELP (Hsieh et al., 2023) uses existing prompts (Suzgun et al., 2022b) to target long prompt optimization and improves
them by mutating on a sentence level with history-guided search. As it reports averaged performance, we are using the
averaged performance to compare.

• EVOPROMPT (Guo et al., 2023) uses crossover mutation and semantic mutation with an evolution algorithm to find the
best prompt. As it reports the best candidate, we are using the best candidate to compare.

• OPRO (Yang et al., 2023) uses meta prompt, solution-score pairs, and task descriptions to generate candidates. As it
reports the best candidate, we are using the best candidate to compare.

I.2. Benchmark tasks

• 24 Instruction Induction Tasks: These 24 instruction tasks (Honovich et al., 2022) span many facets of language
understanding, from simple phrase structure to similarity and causality identification. Both training and testing data are
provided for these tasks and we create our training and evaluation data set from the available training data and use the
provided testing data set as is. Depending on the task, we use up to 50 training data and up to 50 evaluation data. We use
input output pair format for these tasks.

• Ethos: Ethos (Mollas et al., 2021) is an online English hate speech detection data set with 997 online comments and hate
speech labels. We select 50 for training, 50 for evaluation, and 150 for testing. We use prompt examples format for this
data set following the practice of APO (Pryzant et al., 2023).

• Liar: Liar (Wang, 2017) is an English fake news detection data set with 4000 statements, context, and lie labels. We
select 50 for training, 50 for evaluation, and 150 for testing. We use prompt examples format for this data set following
the practice of APO (Pryzant et al., 2023).

• Sarcasm: Sarcasm (Farha & Magdy, 2020) is an Arabic sarcasm detection data set with 10,000 online comments and
sarcasm labels. We select 50 for training, 50 for evaluation, and 150 for testing. We use prompt examples format for this
data set following the practice of APO (Pryzant et al., 2023).

• BBH: BBH (Aarohi & bench authors, 2023) is a collaborative benchmark that aims to quantitatively measure the
capabilities and limitations of language models. We followed the same practice in the AELP paper with the same tasks
and randomly selected 50 for training, 50 for evaluation, and 125 for test. (Hsieh et al., 2023)

I.3. PHASEEVO Setting

• Population Size: In the experiments, for phase 0: Global initialization we set the population size to be 15. For the rest
phases, we set the population to be 5.

• Operator Tolerance: Based on operator analysis in section G.2, the tolerance for Feedback Mutation and Semantic
Mutation is set to 1. The tolerance for EDA Mutation and Crossover is set to 4. Thus the minimum number of times
mutation will be applied in phase 2: global evolution mutation is 8.

• Model Configuration: For operators, we set the temperature to 0.5 to tap into LLM’s creativity. For evaluations, we set
the temperature to 0.

21

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

Submission and Formatting Instructions for ICML 2024

• Performance Gain in Stop Criteria: To improve efficiency, when evaluating performance gain to decide whether we
should move to the next phase, we are only looking at the best candidate in the current population.

• New Generation Selection: To improve efficiency, after getting new candidates, we combine them with the current
generation and use a greedy algorithm to select the top performer to be the new generation.

J. Additional Experiment Results
J.1. 24 Instruction Induction Tasks

Table 16 shows the comparison between APE, PromptBreeder, and PHASEEVO evaluated by the best prompt on 24
instruction induction tasks. PHASEEVO outperforms 21/24 tasks over APE zero shot, 17 / 24 tasks over APE few shot and
18 / 24 tasks on Prompt Breeder. PHASEEVO generated few-shot prompts for 20 / 24 tasks and zero-shot examples for 4 / 24
tasks. For the full set of generated prompts please refer to table 25.

Table 16: 24 Instruction Induction Task in APE

Task APE (zero-
shot)

APE (few-
shot)

PromptBreeder
(few-shot)

PHASEEVO-
3.5

PHASEEVO-
4

Antonyms 0.83 0.86 0.87 0.89 0.91

Cause Effect 0.84 1 1 0.96 1

Common
Concept 0.27 0.32 0 0.23 0.28

Diff 1 1 1 1 1

First Word
Letter 1 1 1 1 1

Informal For-
mal 0.65 0.70 0.07 0.6 0.67

Large Ani-
mal 0.97 0.97 0.97 0.96 0.94

Letters List 0.99 1 0.99 1 1

Taxonomy
Animal 0.66 0.79 1 0.96 1

Negation 0.83 0.9 0.9 0.94 0.88

Num Verb 1 1 1 1 1

Active Pas-
sive 1 1 1 1 1

Singular Plu-
ral 1 1 1 1 1

Rhymes 1 0.61 1 1 1

Second Word
Letter 0.87 0.69 0.95 1 1

Sentence Sim-
ilarity 0.36 0.43 0.56 0.38 0.55

Sentiment 0.94 0.93 0.93 0.94 0.94
Continuation of Table 16

22

1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

Submission and Formatting Instructions for ICML 2024

Continuation of Table 16

Orthography
Starts 0.68 0.69 0.71 0.72 0.94

Sum 1 1 1 1 1

Synonym 0.22 0.14 0.43 0.46 0.38

Trans En De 0.72 0.86 0.87 0.83 0.96

Trans En Es 0.86 0.91 0.91 0.92 0.94

Trans En Fr 0.78 0.9 0.91 0.88 0.93

Word in Con-
text 0.62 0.63 0.65 0.66 0.7

J.2. BBH Model Comparison

We compare the best prompt obtained from PHASEEVO with gpt-3.5 and gpt-4. For gpt-3.5 we run 3 times and for gpt-4
we run once. PHASEEVO-4 outperforms PHASEEVO-3.5 in all tasks when the inputs are in the same format. However for
more difficult tasks, because of the possibility of human-introduced prior knowledge, PHASEEVO-3.5-example outperforms
PHASEEVO-4-pair.

Table 17: BBH Model Comparison

Task PHASEEVO-3.5-pair PHASEEVO-3.5-
example PHASEEVO-4-pair

Casual Judgement 72.13 89.09 75.4

Disambiguation QA 72.13 68,47 84

Dyck Language 8.05 46.77 36.29

Formal Fallacies 58.87 58.65 75.31

Hyperbaton 86.02 87.5 88.67

Logical Five 48.19 82.62 67.22

Color Reasoning 60.5 80.64 90.32

Salient Translation 49.19 47.59 70.24

J.3. Generated Prompt Comparison

We notice that the prompts generated by PHASEEVO are easier to understand by humans. Below is a comparison
between prompts generated for task Rhymes. The task description is: "Write a word that rhymes with the input word."

The prompt generated by APE and Instruct Zero does not fit the task. The prompt generated by Prompt Breeder is not easy
to understand how it relates to rhyme. The prompt generated by PHASEEVO is easy to understand with few shot examples
added.

Table 18: Generated Prompt Comparison for task "Rhymes"

Framework Generated Prompt

APE write a function that takes in a string and outputs the string with the first letter capitalized.
Continuation of Table 18

23

1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

Submission and Formatting Instructions for ICML 2024

Continuation of Table 18

Instruct Zero Write a function that takes a word as input and returns the output word.

Prompt
Breeder

Prompt 0: If the last letter of the input is ’e’, remove it.
Prompt 1: remove the last two lett of the input and add the letters 293mote294.
Contexts
Context 0:
Q. pea
A. If the last letter of the input is ’e’, remove it.
A. If the last letter of the input is ’s’, remove it.
A. If the last letter of the input is ’y’, remove it.
A. If the last letter of the input is
remove the last two letters of the input and add the letters 2 x93mote294.
Therefore, the correct answer is (a) pea.
Context 1:
Q. night
A. If the last letter of the input is ’e’, remove it.
A. If the last letter of the input is ’t’, remove it.
A. If the last letter of the input is ’h’, remove it.
A. If the last letter of the input is
remove the last two letters of the input and add the letters 2 x93mote294.
Therefore, the correct answer is (The answer is night.
Context 2:
Q. add
A. If the last letter of the input is ’e’, remove it.
A. If the last letter of the input is ’d’, remove it.
A. If the last letter of the input is ’a’, remove it.
A. If the last letter of the input is
remove the last two letters of the input and add the letters 2 x93mote294.
Therefore, the correct answer is (The answer is add.

Continuation of Table 18

24

1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374

Submission and Formatting Instructions for ICML 2024

Continuation of Table 18

PHASEEVO

Create a list of words that rhyme with the given word. To ensure that your rhymes are
accurate, make sure that the words have the same vowel sound and ending consonant sound.
For example, "cat" rhymes with "bat" and "hat," but not with "dog" or "mat."

To get started, here are some examples of words that rhyme with the given word:

- Love: dove, glove, above, shove, of
- Time: rhyme, chime, climb, mime, prime

To find more rhyming words, you can use a rhyming dictionary, online resources, or
brainstorm with friends. Be creative and try to use a variety of different rhyming words
instead of repeating the same one multiple times.

To avoid common pitfalls, make sure to double-check your spelling and pronuncia-
tion of the words. Also, avoid using words that only partially rhyme or have a different stress
pattern.

After you’ve created your list, ask for feedback on the quality of your rhymes. This
can help you to improve and refine your skills.

For an added challenge, consider generating rhyming words that fit a particular theme or
context. This can help you to focus your creativity and generate more interesting and relevant
rhymes.

25

1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429

Submission and Formatting Instructions for ICML 2024

K. Few-shot Add/ Removal Examples
Below are cases listing examples where few-shot examples are added or removed with PHASEEVO.

K.1. Zero-shot to Few-shot

Table 19: Add Few-shot Example: added examples are highlighted.

Task Ethos

Input
Prompt

Is the following text hate speech?Output Format True or False

Output
Prompt

Your task is to evaluate whether the provided input includes any offensive language. This
could be language that is sexist, racist, discriminatory, or advocates violence or harm.
Offensive language can also be identified by an aggressive or belittling tone. However,
remember that the mere presence of profanity does not necessarily make a statement offensive.
The context and intention behind the statement should also be taken into account. If none of
these conditions are fulfilled, return ’False’.

For instance, the phrase "You are a fool" is offensive due to its derogatory tone, so you should
return ’True’. On the other hand, the phrase "This is a damn tasty pizza" includes profanity but
is not offensive, so you should return ’False’. Similarly, a phrase like "All people of X race are
lazy" is offensive because of its racist undertones, so you should return ’True’. In contrast, a
phrase like "I dislike the color yellow" is not offensive, so you should return ’False’.

K.2. Zero-shot to Zero-shot

Table 20: Zero-shot to Zero-shot

Task Ethos

Input
Prompt

Is the following text hate speech?Output Format True or False

Output
Prompt

Classify the given text as hate speech or not and generate a binary output of 1 for Yes and 0
for No.

K.3. Few-shot to Zero-shot

Table 21: Few-shot to Zero-shot

Task Hyperbaton
Continuation of Table 21

26

1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484

Submission and Formatting Instructions for ICML 2024

Continuation of Table 21

Input
Prompt

Order adjectives correctly in English sentences.

Q: Which sentence has the correct adjective order:
Options:
(A) rubber terrible ship
(B) terrible rubber ship
A: Let’s think step by step.
When there is more than one adjective before a noun, the adjectives need to respect the
following order before a noun: "[1. opinion] [2. size] [3. age] [4. shape] [5. color] [6. origin]
[7. material] [8. purpose] noun".
Option (A): "rubber terrible ship". (1) rubber" falls into the material category. (2) "terrible"
falls into the opinion category. Option (A) has the following adjective order: [7. material]
[1. opinion] (or, in numeric terms, 7 1). Because 7 < 1 is not correct, (A) does not have the
correct ordering.
Option (B): "terrible rubber ship". Option (B) has the following adjective order: [1. opinion]
[7. material] (or, in numeric terms, 1 7). Because 1 < 7 is correct, (B) has the correct ordering.
So the answer is (B).

Q: Which sentence has the correct adjective order:
Options:
(A) repulsive small Brazilian exercise ship
(B) Brazilian repulsive exercise small ship
A: Let’s think step by step.
When there is more than one adjective before a noun, the adjectives need to respect the
following order before a noun: "[1. opinion] [2. size] [3. age] [4. shape] [5. color] [6. origin]
[7. material] [8. purpose] noun".
Option (A): "repulsive small Brazilian exercise ship". (1) "repulsive" falls into the opinion
category. (2) "small" falls into the size category. (3) "Brazilian" falls into the origin category.
(4) "exercise" falls into the purpose category. Option (A) has the following adjective order: [1.
opinion] [2. size] [6. origin] [8. purpose] (or, in numeric terms, 1 2 6 8). Because 1 < 2 < 6 <
8 is correct, (A) has the correct ordering.
Option (B): "Brazilian repulsive exercise small ship". Option (B) has the following adjective
order: [6. origin] [1. opinion] [8. purpose] [2. size] (or, in numeric terms, 6 1 8 2). Because 6
< 1 < 8 < 2 is not correct, (B) does not have the correct ordering. So the answer is (A).
...

Output
Prompt

Identify the sentence with the correct order of adjectives: opinion, size, age, shape, color,
origin, material, purpose.

Table 22: Few-shot to Few-shot

Task Hyperbaton
Continuation of Table 22

27

1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539

Submission and Formatting Instructions for ICML 2024

Continuation of Table 22

Input
Prompt

Order adjectives correctly in English sentences.

Q: Which sentence has the correct adjective order:
Options:
(A) rubber terrible ship
(B) terrible rubber ship
A: Let’s think step by step.
When there is more than one adjective before a noun, the adjectives need to respect the
following order before a noun: "[1. opinion] [2. size] [3. age] [4. shape] [5. color] [6. origin]
[7. material] [8. purpose] noun".
Option (A): "rubber terrible ship". (1) rubber" falls into the material category. (2) "terrible"
falls into the opinion category. Option (A) has the following adjective order: [7. material]
[1. opinion] (or, in numeric terms, 7 1). Because 7 < 1 is not correct, (A) does not have the
correct ordering.
Option (B): "terrible rubber ship". Option (B) has the following adjective order: [1. opinion]
[7. material] (or, in numeric terms, 1 7). Because 1 < 7 is correct, (B) has the correct ordering.
So the answer is (B).

Q: Which sentence has the correct adjective order:
Options:
(A) repulsive small Brazilian exercise ship
(B) Brazilian repulsive exercise small ship
A: Let’s think step by step.
When there is more than one adjective before a noun, the adjectives need to respect the
following order before a noun: "[1. opinion] [2. size] [3. age] [4. shape] [5. color] [6. origin]
[7. material] [8. purpose] noun".
Option (A): "repulsive small Brazilian exercise ship". (1) "repulsive" falls into the opinion
category. (2) "small" falls into the size category. (3) "Brazilian" falls into the origin category.
(4) "exercise" falls into the purpose category. Option (A) has the following adjective order: [1.
opinion] [2. size] [6. origin] [8. purpose] (or, in numeric terms, 1 2 6 8). Because 1 < 2 < 6 <
8 is correct, (A) has the correct ordering.
Option (B): "Brazilian repulsive exercise small ship". Option (B) has the following adjective
order: [6. origin] [1. opinion] [8. purpose] [2. size] (or, in numeric terms, 6 1 8 2). Because 6
< 1 < 8 < 2 is not correct, (B) does not have the correct ordering. So the answer is (A).
...

Continuation of Table 22

28

1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594

Submission and Formatting Instructions for ICML 2024

Continuation of Table 22

Output
Prompt

Adjective Order Practice:

In English grammar, the order of adjectives is important to convey accurate and ef-
fective descriptions. Here are two examples of sentences with adjectives. Determine which
sentence has the correct adjective order.

Example 1:
a) The big, red, round ball bounced down the street.
b) The round, red, big ball bounced down the street.

Example 2:
a) The delicious, homemade, chocolate cake was devoured by the guests.
b) The chocolate, homemade, delicious cake was devoured by the guests.

Choose the letter of the sentence with the correct adjective order as your answer.

Note: Adjective order generally follows the pattern of opinion, size, age, shape,
color, origin, material, and purpose. If the adjectives do not fit into this pattern, the order is
determined by the speaker’s preference.

If you choose the incorrect sentence, we will explain why it is wrong to help you
learn from your mistakes. Good luck!

29

1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649

Submission and Formatting Instructions for ICML 2024

L. Generated Prompts
In this section, we list the prompts generated by PHASEEVO with the best performance for each task. All prompts are
generated by gpt-3.5. We observe a mix of few-shot prompts and zero-shot prompts for different tasks. This indicates both
LLM’s ability to perform in-context prompt optimization and PHASEEVO’s ability to traverse the whole problem space to
find optimal solutions.

We also notice that the few-shot examples in the final prompts are largely generated by LLM instead of copied from example
instruction or training sets. Thus it serves as further proof of LLM’s capability of in-context prompt optimization and
PHASEEVO’s credibility in this problem space.

Table 23: BBH Prompts

Causal Judg-
ment

Provide reactions to intentional actions in diverse scenarios, while also considering
causation and its complexities. To assist with determining causation, provide specific
guidelines and examples for each scenario. To avoid any confusion or misinterpretation,
precise language and definitions will be used throughout the prompt. Additionally,
feedback from experts and individuals with relevant experience in the field of causation
will be incorporated to ensure accuracy and relevance. To challenge users’ critical
thinking skills, include diverse and complex scenarios that require creative problem-
solving and a deeper understanding of causation in various areas of life.

Dyke Lan-
guages

Correctly close all brackets, including nested brackets, in the provided sequence in
the proper order from innermost to outermost. Mistakes such as forgetting to close
a bracket or closing brackets in the wrong order can result in an error. If an error is
made, a clear and concise message will indicate which bracket is not properly closed
and suggest how to correct it. A visual representation of the correct sequence of closed
brackets is provided below:
[([()])]

Examples of valid and invalid inputs:

Valid input: [()]
Valid input: [([])]
Invalid input: [([)]
Warning message: The bracket at position 8 is not properly closed. Please close the
bracket to ensure proper syntax.
Suggested correction: [([])]

Invalid input: [([])]
Warning message: The bracket at position 8 is not properly closed. Please close the
bracket to ensure proper syntax.
Suggested correction: [([])]

Formal Falla-
cies

Read the given argument carefully and determine whether it is deductively valid or
invalid based on the explicitly stated premises. Provide a justification for your answer.

Dis-
ambiguation
QA

For each sentence with a gender-neutral pronoun, determine the antecedent or state
if it is ambiguous. Use (A) for the first option, (B) for the second option, or (C) for
ambiguous. Additionally, provide an explanation of the antecedent (the person or thing
the pronoun refers to) for each sentence.

Continuation of Table 23

30

1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704

Submission and Formatting Instructions for ICML 2024

Continuation of Table 23

Hyperbaton

Test your knowledge of adjective order in English sentences with interactive exercises
and quizzes. Learn the rule of opinion-size-age-shape-color-origin-material-purpose
noun and apply it to different types of nouns such as animals, objects, and people.
Practice constructing your own sentences and receive feedback on incorrect answers
to improve your skills. By the end of this exercise, you’ll be able to confidently order
adjectives and communicate accurately in English.

Continuation of Table 23

31

1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759

Submission and Formatting Instructions for ICML 2024

Continuation of Table 23

Logical
Deduction
Five

On a plate, there are three fruits: a red apple, a yellow banana, and a green pear. The
banana is positioned to the immediate left of the apple, meaning there are no other
fruits between them. The pear is the rightmost fruit, meaning it comes last in the order.

Which of the following statements is true?

(A) The red apple is the leftmost fruit.
(B) The yellow banana is the leftmost fruit.
(C) The green pear is the leftmost fruit.

Explanation:
To solve this prompt, pay attention to the precise language used to describe the
relationships between the fruits and their positions in the order. The banana is to the
immediate left of the apple, meaning it is directly adjacent to it and there are no other
fruits between them. The pear is the rightmost fruit, meaning it comes last in the order.

Therefore, the correct answer is (B) The yellow banana is the leftmost fruit.

To further practice this concept, here are some additional examples:

1. On a plate, there are three different colored balls: a blue ball, a red ball,
and a green ball. The red ball is directly to the left of the blue ball, meaning there are
no other balls between them. The green ball is the rightmost. Which of the following
statements is true?
(A) The blue ball is the leftmost ball.
(B) The red ball is the leftmost ball.
(C) The green ball is the leftmost ball.

2. In a row of three houses, there is a blue house, a yellow house, and a
green house. The blue house is in the middle, and the yellow house is directly to the
left of the green house, meaning there are no other houses between them. Which of the
following statements is true? (A) The blue house is the leftmost house.
(B) The yellow house is the leftmost house.
(C) The green house is the leftmost house.

Feedback:
If you selected the wrong answer, here’s why:
(A) The red apple is not the leftmost fruit. The yellow banana is directly to its left.
(C) The green pear is not the leftmost fruit. The banana and the apple come before it in
the order.

To avoid confusion, use precise language to describe the relationships between objects
and their positions in the order. Avoid using vague terms like "newer" or "older"
without specifying their exact relationship to other objects in the order. Provide more
context or details to help clarify any ambiguities in the prompt. Make sure the order of
the objects is clearly defined and consistent throughout the prompt.

Continuation of Table 23

32

1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814

Submission and Formatting Instructions for ICML 2024

Continuation of Table 23

Reasoning
Colored
Objects

Identify the color of objects arranged in a row on a surface.
Q: On the desk, there is a black stapler, a green highlighter, a yellow ruler, a blue pen,
and a purple marker. What color is the pen?
Options:
(A) red
(B) orange
(C) yellow
(D) green
(E) blue
(F) brown
(G) magenta
(H) fuchsia
(I) mauve
(J) teal
(K) turquoise
(L) burgundy
(M) silver
(N) gold
(O) black
(P) grey
(Q) purple
(R) pink
A: Let’s think step by step.
According to this question, the objects are arranged in a row, from left to right, as
follows: (1) a black stapler, (2) a green highlighter, (3) a yellow ruler, (4) a blue pen,
and (5) a purple marker.
The pen is the fourth item on the list, namely (4). The color of the pen is blue. So the
answer is (E).

Salient Trans-
lation Error
Detection

Read the following translations from German to English and identify the type of error
present in each one. The error can be one of the following types: Named Entities,
Numerical Values, Modifiers or Adjectives, Negation or Antonyms, Facts, or Dropped
Content. Write the corresponding letter for each error type in the options provided.

For example:
Source: Der Hund ist braun.
Translation: The cat is brown.
The translation contains an error pertaining to:
Options:
(A) Modifiers or Adjectives
(B) Numerical Values
(C) Negation or Antonyms
(D) Named Entities
(E) Dropped Content
(F) Facts

Output: (D)

Continuation of Table 23

33

1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869

Submission and Formatting Instructions for ICML 2024

Continuation of Table 23

Causal Judg-
ment

Provide reactions to intentional actions in diverse scenarios, while also considering
causation and its complexities. To assist with determining causation, provide specific
guidelines and examples for each scenario. To avoid any confusion or misinterpretation,
precise language and definitions will be used throughout the prompt. Additionally,
feedback from experts and individuals with relevant experience in the field of causation
will be incorporated to ensure accuracy and relevance. To challenge users’ critical
thinking skills, include diverse and complex scenarios that require creative problem-
solving and a deeper understanding of causation in various areas of life.

Dyke Lan-
guages

Correctly close all brackets, including nested brackets, in the provided sequence in
the proper order from innermost to outermost. Mistakes such as forgetting to close
a bracket or closing brackets in the wrong order can result in an error. If an error is
made, a clear and concise message will indicate which bracket is not properly closed
and suggest how to correct it. A visual representation of the correct sequence of closed
brackets is provided below:
[([()])]

Examples of valid and invalid inputs:

Valid input: [()]
Valid input: [([])]
Invalid input: [([)]
Warning message: The bracket at position 8 is not properly closed. Please close the
bracket to ensure proper syntax.
Suggested correction: [([])]

Invalid input: [([])]
Warning message: The bracket at position 8 is not properly closed. Please close the
bracket to ensure proper syntax.
Suggested correction: [([])]

Formal Falla-
cies

Read the given argument carefully and determine whether it is deductively valid or
invalid b5rased on the explicitly stated premises. Provide a justification for your answer.

Dis-
ambiguation
QA

For each sentence with a gender-neutral pronoun, determine the antecedent or state
if it is ambiguous. Use (A) for the first option, (B) for the second option, or (C) for
ambiguous. Additionally, provide an explanation of the antecedent (the person or thing
the pronoun refers to) for each sentence.

Hyperbaton

Test your knowledge of adjective order in English sentences with interactive exercises
and quizzes. Learn the rule of opinion-size-age-shape-color-origin-material-purpose
noun and apply it to different types of nouns such as animals, objects, and people.
Practice constructing your own sentences and receive feedback on incorrect answers
to improve your skills. By the end of this exercise, you’ll be able to confidently order
adjectives and communicate accurately in English.

Continuation of Table 23

34

1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924

Submission and Formatting Instructions for ICML 2024

Continuation of Table 23

Logical
Deduction
Five

On a plate, there are three fruits: a red apple, a yellow banana, and a green pear. The
banana is positioned to the immediate left of the apple, meaning there are no other
fruits between them. The pear is the rightmost fruit, meaning it comes last in the order.

Which of the following statements is true?

(A) The red apple is the leftmost fruit.
(B) The yellow banana is the leftmost fruit.
(C) The green pear is the leftmost fruit.

Explanation:
To solve this prompt, pay attention to the precise language used to describe the
relationships between the fruits and their positions in the order. The banana is to the
immediate left of the apple, meaning it is directly adjacent to it and there are no other
fruits between them. The pear is the rightmost fruit, meaning it comes last in the order.

Therefore, the correct answer is (B) The yellow banana is the leftmost fruit.

To further practice this concept, here are some additional examples:

1. On a plate, there are three different colored balls: a blue ball, a red ball,
and a green ball. The red ball is directly to the left of the blue ball, meaning there are
no other balls between them. The green ball is the rightmost. Which of the following
statements is true?
(A) The blue ball is the leftmost ball.
(B) The red ball is the leftmost ball.
(C) The green ball is the leftmost ball.

2. In a row of three houses, there is a blue house, a yellow house, and a
green house. The blue house is in the middle, and the yellow house is directly to the
left of the green house, meaning there are no other houses between them. Which of the
following statements is true? (A) The blue house is the leftmost house.
(B) The yellow house is the leftmost house.
(C) The green house is the leftmost house.

Feedback:
If you selected the wrong answer, here’s why:
(A) The red apple is not the leftmost fruit. The yellow banana is directly to its left.
(C) The green pear is not the leftmost fruit. The banana and the apple come before it in
the order.

To avoid confusion, use precise language to describe the relationships between objects
and their positions in the order. Avoid using vague terms like "newer" or "older"
without specifying their exact relationship to other objects in the order. Provide more
context or details to help clarify any ambiguities in the prompt. Make sure the order of
the objects is clearly defined and consistent throughout the prompt.

Continuation of Table 23

35

1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979

Submission and Formatting Instructions for ICML 2024

Continuation of Table 23

Reasoning
Colored
Objects

Identify the color of objects arranged in a row on a surface.

Q: On the desk, there is a black stapler, a green highlighter, a yellow ruler, a
blue pen, and a purple marker. What color is the pen?

Options:
(A) red
(B) orange
(C) yellow
(D) green
(E) blue
(F) brown
(G) magenta
(H) fuchsia
(I) mauve
(J) teal
(K) turquoise
(L) burgundy
(M) silver
(N) gold
(O) black
(P) grey
(Q) purple
(R) pink

A: Let’s think step by step.
According to this question, the objects are arranged in a row, from left to right, as
follows: (1) a black stapler, (2) a green highlighter, (3) a yellow ruler, (4) a blue pen,
and (5) a purple marker.
The pen is the fourth item on the list, namely (4). The color of the pen is blue. So the
answer is (E).

Continuation of Table 23

36

1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034

Submission and Formatting Instructions for ICML 2024

Continuation of Table 23

Salient Trans-
lation Error
Detection

Read the following translations from German to English and identify the type of error
present in each one. The error can be one of the following types: Named Entities,
Numerical Values, Modifiers or Adjectives, Negation or Antonyms, Facts, or Dropped
Content. Write the corresponding letter for each error type in the options provided.

For example:
Source: Der Hund ist braun.
Translation: The cat is brown.
The translation contains an error pertaining to:

Options:
(A) Modifiers or Adjectives
(B) Numerical Values
(C) Negation or Antonyms
(D) Named Entities
(E) Dropped Content
(F) Facts

Output: (D)

37

2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089

Submission and Formatting Instructions for ICML 2024

Table 24: APO Prompts

Ethos Does the provided text contain hate speech? Return a boolean value of True or False.

Liar

Analyze the context and other information provided to determine the truthfulness of the
statement. To do so, consider the following guidelines:

1. Identify key sources of information, such as reputable news outlets or government
reports, and consider the credibility of the sources. Look for corroborating evidence and
consider any potential biases or conflicts of interest.

2. Conduct additional research or seek out expert opinions when necessary to deter-
mine the truthfulness of a statement. Use resources or links to relevant information provided,
and consider consulting with subject matter experts or fact-checking organizations.

3. Note that the determination of truthfulness may not always be possible based on
the information provided, and that additional research or analysis may be required. Use your
best judgment and be transparent about any uncertainties or limitations in your analysis.

4. Consider specific examples or scenarios to help you apply the prompt in different
contexts. For instance, you might analyze a political statement, a scientific claim, or a news
article. Be aware of common pitfalls or errors, such as relying on unreliable sources or failing
to consider alternative explanations.

Output Format: Assign 0 for true and 1 for false. Note that this determination is
based on the information provided and may not be definitive.

Sarcasm

Determine if the input contains any language that could be considered derogatory or discrim-
inatory towards a particular group based on their race, ethnicity, gender, sexual orientation,
religion, or any other protected characteristic. If such language is found, output True. If not,
output False. The prompt should be trained on a diverse dataset to improve its accuracy and
reduce errors.

38

2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144

Submission and Formatting Instructions for ICML 2024

Table 25: APE Prompts

Antonyms

"Provide a list of adjectival antonyms for each of these words, keeping in mind the given
context:"

Input : hot (in the context of weather)
Output : [’cold’, ’cool’, ’chilly’]

Input : happy (in the context of emotions)
Output : [’sad’, ’unhappy’, ’depressed’, ’miserable’]

Input : big (in the context of size)
Output : [’small’, ’tiny’, ’little’, ’miniature’]

Input : fast (in the context of speed)
Output : [’slow’, ’sluggish’, ’leisurely’, ’gradual’]

Input : old (in the context of age)
Output : [’young’, ’new’, ’fresh’, ’modern’]

Cause Effect

Determine the sentence that is the cause in each pair. Remember to thoroughly comprehend
the meaning of each sentence before selecting the cause. Additionally, verify your output to
ensure that you only include the sentence that is the cause. To aid in identifying cause and
effect relationships, consider using keywords or phrases that indicate causality, analyzing the
context of each sentence, and practicing with feedback and interactive activities.

Common
Concept

For each input, come up with a category or characteristic that they have in common and write
it as the output. Use your knowledge and experience to make educated guesses and be creative
in your thinking. Also, try to keep the output concise and clear.

Diff Subtract the second number from the first number and give me the result. Make sure to double
check your calculations and write the answer as a string in a list format.

Continued next page for Table 25

39

2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199

Submission and Formatting Instructions for ICML 2024

Continuation of Table 25

First Word
Letter

Write a program that takes in a word and returns a list containing the first letter of the word as
a string. The program will be used to label items in a game.

Make sure to handle cases where the input word is empty or only contains whites-
pace. You can use the string method ‘strip()‘ to remove any leading or trailing whitespace. If
the input is empty or contains only whitespace, return an empty list.

To ensure that your program works correctly, test it with the following examples:

Example 1:
Input: "apple"
Output: ["a"]

Example 2:
Input: " banana"
Output: ["b"]

Example 3:
Input: ""
Output: []

Example 4:
Input: " "
Output: []

Informal For-
mal

Reword the following sentences using more formal language, but also provide alternative
rewordings that are more appropriate for different contexts:

1. "Regrettably, I am unable to attend the meeting tomorrow." (formal)
Alternative: "Unfortunately, I won’t be able to make it to the meeting tomorrow." (casual)

2. "I must depart now, farewell!" (overly formal)
Alternative: "I have to go now, see you later!" (casual)

3. "I apologize, but I am unable to assist you with that matter." (formal)
Alternative: "I’m sorry, but I can’t help you with that." (casual)

4. "Thank you for the invitation, however, I am unable to attend." (formal)
Alternative: "Thanks for inviting me, but I can’t make it." (casual)

5. "In my opinion, this is the optimal choice." (formal)
Alternative: "I think this is the best option." (casual)

Continued next page for Table 25

40

2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254

Submission and Formatting Instructions for ICML 2024

Continuation of Table 25

Large Ani-
mal

Choose one animal as the output based on its size. For example, if the input pair is "elephant,
mouse", choose "elephant" as the output. If the input pair is "giraffe, lion", choose "giraffe" as
the output. Use the following criteria to choose the output:

- If one animal is significantly larger than the other, choose the larger animal as the
output.
- If the animals are similar in size, choose the animal with the name that comes first
alphabetically as the output.

Here are some examples of correct outputs:

- "whale, dolphin" -> choose "whale" as the output
- "panda, koala" -> choose "panda" as the output
- "tiger, zebra" -> choose "tiger" as the output

Choose the output carefully to avoid confusion and errors.

Letters List

Please write a program that takes in a word as input and outputs a list of its letters separated
by spaces. The output should be a list with one element containing the separated letters in the
same order as the input word.

To ensure the program works correctly, please follow these guidelines:

1. Input validation: Check that the input is a non-empty string containing only al-
phabetic characters. If the input is invalid, print an error message and exit the program.

2. Separating the letters: Use the ‘split()‘ method to separate the letters of the input
word.

3. Expected output format: The output should be a list with one element containing
the separated letters in the same order as the input word.

Here are some examples of valid and invalid input:

Valid input: "hello"
Expected output: ["h", "e", "l", "l", "o"]

Invalid input: "hello world"
Expected output: "Error: Input must be a non-empty string containing only alphabetic
characters."

Invalid input: "123"
Expected output: "Error: Input must be a non-empty string containing only alphabetic
characters."

Continued next page for Table 25

41

2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309

Submission and Formatting Instructions for ICML 2024

Continuation of Table 25

Taxonomy
Animal

"List all the animals from the given inputs."

Input : apple, banana, orange, kiwi, grape
Output : []

Input : dog, cat, fish, bird, hamster
Output : [’dog’, ’cat’, ’fish’, ’bird’, ’hamster’]

Input : elephant, giraffe, lion, tiger, zebra
Output : [’elephant’, ’giraffe’, ’lion’, ’tiger’, ’zebra’]

Input : pencil, eraser, notebook, ruler, pen
Output : []

Input : turtle, snake, lizard, frog, salamander
Output : [’turtle’, ’snake’, ’lizard’, ’frog’, ’salamander’]

Negation

For each input, negate the specified part of the statement and write it as an output.

1. Negate the part about using the gold color: "We will use gold as the primary
color for our new logo." Output: "We will not use gold as the primary color for our new logo."

2. Negate the part about Gary Kubiak participating as a player: "Gary Kubiak will
play as a quarterback in the upcoming game." Output: "Gary Kubiak will not play as a
quarterback in the upcoming game."

Note: When negating statements with proper nouns or names, simply negate the
verb or action associated with the noun or name.

Num Verbal

Convert a given number into its English word representation, including commas for thousands
and negative sign if applicable.

Input 1 : 1234
Output 1 : [’one thousand two hundred and thirty-four’]

Input 2 : 987654321
Output 2 : [’nine hundred and eighty-seven million six hundred and fifty-four thousand three
hundred and twenty-one’]

Input 3 : 0
Output 3 : [’zero’]

Input 4 : -42
Output 4 : [’negative forty-two’]

Input 5 : 999999999
Output 5 : [’nine hundred and ninety-nine million nine hundred and ninety-nine thousand nine
hundred and ninety-nine’]

Continued next page for Table 25

42

2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364

Submission and Formatting Instructions for ICML 2024

Continuation of Table 25

Active Pas-
sive

Passive Voice Practice:
In passive voice, the subject of the sentence receives the action instead of performing it.
Rewrite each sentence in passive voice.

Example: The dog chased the cat.
Passive voice: The cat was chased by the dog

1. The teacher graded the exams.
2. The company launched a new product.
3. The chef cooked a delicious meal.
4. The team won the championship.
5. The doctor prescribed medication for the patient.

Instructions:
- Rewrite each sentence in passive voice.
- Make sure the subject of the sentence receives the action instead of performing it.
- Use the examples provided to guide you.
- Check your work for accuracy and clarity.

Feedback:
- If you have any questions or need clarification, please ask.
- Practice makes perfect! Keep practicing to improve your writing skills.
- If you make any mistakes, don’t worry! Learn from them and try again

Continued next page for Table 25

43

2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419

Submission and Formatting Instructions for ICML 2024

Continuation of Table 25

Singular Plu-
ral

Add an "s" or the correct plural form to the end of the input word, depending on the following
rules:

1. If the word ends in "y" with a consonant before it, change the "y" to "ies" instead
of just adding an "s".
2. If the word ends in "f" or "fe", change the "f" or "fe" to "ves" instead of just adding an "s".
3. If the word is already plural, return the input word as is instead of adding an "s".
4. If the word has an irregular plural form, return the correct plural form instead of just adding
an "s".

Examples:

- Input: cat
Output: cats

- Input: book
Output: books

- Input: car
Output: cars

- Input: tree
Output: trees

- Input: computer
Output: computers

- Input: story
Output: stories

- Input: half
Output: halves

- Input: aircraft
Output: aircraft

- Input: century
Output: centuries

Continued next page for Table 25

44

2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474

Submission and Formatting Instructions for ICML 2024

Continuation of Table 25

Rhymes

Create a list of words that rhyme with the given word. To ensure that your rhymes are
accurate, make sure that the words have the same vowel sound and ending consonant sound.
For example, "cat" rhymes with "bat" and "hat," but not with "dog" or "mat."

To get started, here are some examples of words that rhyme with the given word:

- Love: dove, glove, above, shove, of
- Time: rhyme, chime, climb, mime, prime

To find more rhyming words, you can use a rhyming dictionary, online resources, or
brainstorm with friends. Be creative and try to use a variety of different rhyming words
instead of repeating the same one multiple times.

To avoid common pitfalls, make sure to double-check your spelling and pronuncia-
tion of the words. Also, avoid using words that only partially rhyme or have a different stress
pattern.

After you’ve created your list, ask for feedback on the quality of your rhymes. This
can help you to improve and refine your skills.

For an added challenge, consider generating rhyming words that fit a particular theme or
context. This can help you to focus your creativity and generate more interesting and relevant
rhymes.

Second Word
Letter

For each input word with at least two letters, identify and output the second letter. Please
ensure that the input is a valid word in the specified language or dialect to prevent errors. The
prompt is case-insensitive, so it will work for both uppercase and lowercase letters.

Examples:
- Input: "hello" Output: "e"
- Input: "apple" Output: "p"
- Input: "book" Output: "o"

Please note that the language or dialect of the input should be specified to avoid
confusion with words that have different spellings or pronunciations in different regions.

Continued next page for Table 25

45

2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529

Submission and Formatting Instructions for ICML 2024

Continuation of Table 25

Sentence Sim-
ilarity

Rate the similarity of two given sentences on a scale of 1 to 5, where 1 indicates a significant
difference in meaning and 5 indicates almost identical meaning. Please consider the following
factors when rating:

- The overall message and purpose of the sentences
- The structure and syntax of the sentences
- The use of key words and phrases

Provide a brief explanation for your rating, taking into account any minor differ-
ences in wording or details that may affect the similarity rating. Additionally, please provide
context for the sentences being compared, such as the intended audience or purpose.

For reference, here are some examples of sentences that fall into each category:

Highly similar: "The cat sat on the mat" and "The mat was sat on by the cat"
Moderately similar: "I enjoy playing soccer" and "Soccer is a fun sport to play"
Not similar at all: "The sky is blue" and "I am going to the beach tomorrow"

Thank you for your evaluation and explanation.

Sentiment

Please analyze the following statements and determine their overall sentiment as either
[’negative’, ’neutral’, ’positive’]. Keep in mind the context and any figurative language used.

1. The sun is shining and the birds are singing.
Output: [’positive’]

2. I failed my exam and now I have to retake the class.
Output: [’negative’]

3. My best friend surprised me with a thoughtful gift.
Output: [’positive’]

4. The traffic on the highway was backed up for miles.
Output: [’negative’]

5. I received a promotion at work and a raise in salary.
Output: [’positive’]

6. A non-mystery mystery.
Output: [’neutral’]

7. Little more than a well-mounted history lesson.
Output: [’neutral’]

8. Too daft by half ... but supremely good natured.
Output: [’positive’]

Note: This prompt uses more sophisticated language analysis techniques to better
understand the sentiment of the input. However, providing more context for the input is still
important for accurate sentiment analysis.

Continued next page for Table 25

46

2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584

Submission and Formatting Instructions for ICML 2024

Continuation of Table 25

Orthography
Starts With

SIdentify the first word or phrase that starts with the letter given in the input. The identified
word or phrase should not contain any punctuation or special characters, and should be
case-insensitive. If there are no words or phrases starting with the given letter, return an empty
list.

Here are the input-output pairs:

Input: She sang a beautiful song to the audience. [b]
Output: [’beautiful’]

Input: The cat chased the mouse. [c]
Output: [’cat’]

Input: It is important to always be kind to others. [i]
Output: [’important’]

Input: The dog barked loudly, frightening the neighbors. [l]
Output: [’loudly’]

Input: The book is on the shelf. [s]
Output: [’shelf’]

Input: The baby cried all night. [n]
Output: []

Input: The teacher gave a long lecture on the history of art. [l]
Output: [’lecture’]

Input: The car drove down the street, passing by many shops. [s]
Output: [’street’]

Input: To the boy’s delight, he received a new toy for his birthday. [t]
Output: [’toy’]

Note: If there are multiple words or phrases starting with the given letter, the prompt will
return the first one encountered. If the input contains multiple sentences or clauses, the prompt
will identify the first word or phrase that starts with the given letter in the entire input text.
The output will be in lowercase

Sum

"Write a program that takes two numbers as input and returns their sum as a string in a list.
Make sure to test your program with different inputs to ensure it works correctly. Remember
to convert the input numbers to integers before adding them together, and then convert the
sum back to a string before putting it in a list. Also, make sure to use the correct syntax for
creating a list with one element (i.e. use square brackets around the string). Good luck!"

Continued next page for Table 25

47

2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639

Submission and Formatting Instructions for ICML 2024

Continuation of Table 25

Synonym

Please provide a list of synonyms for the given words that convey a similar meaning and are
commonly used in everyday language. Be sure to double-check your spelling and grammar
before submitting.

For example, if the word is "happy," acceptable synonyms could be "joyful," "pleased," or
"content."

Please use gender-neutral language and avoid using words with different connota-
tions or meanings. If you notice any incorrect synonyms, please flag them and provide
feedback for improvement.

Words to avoid using as synonyms include those with different connotations or meanings,
such as "ecstatic" for "happy" or "depressed" for "sad."

Trans En De

Translate the following English words into German.

Input : happy
Output : [’glücklich’]
Input : love
Output : [’Liebe’]
Input : cat
Output : [’Katze’]
Input : dog
Output : [’Hund’]
Input : house
Output : [’Haus’]
Input : tree
Output : [’Baum’]
Input : water
Output : [’Wasser’]
Input : sun Output : [’Sonne’]
Input : moon
Output : [’Mond’]
Input : star
Output : [’Stern’]

Trans En Es

Convert these English terms into their corresponding Spanish translations.

Input : happy
Output : [’feliz’]
Input : beach
Output : [’playa’]
Input : computer
Output : [’computadora’]
Input : book
Output : [’libro’]
Input : music
Output : [’música’]

Continued next page for Table 25

48

2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694

Submission and Formatting Instructions for ICML 2024

Continuation of Table 25

Trans En Fr

Translate the following English words into French.

Input : happy
Output : [’heureux’]
Input : love
Output : [’amour’]
Input : family
Output : [’famille’]
Input : friend
Output : [’ami’]
Input : music
Output : [’musique’]
Input : beach
Output : [’plage’]
Input : book
Output : [’livre’]
Input : movie
Output : [’film’]
Input : food
Output : [’nourriture’]
Input : travel
Output : [’voyage’]

Word In Con-
text

Compare the usage of a given word in two different sentences and determine if they have the
same or different meanings based on the context of the sentences. Write "same" or "not the
same" as the output.

To avoid ambiguity and ensure clarity, please provide sufficient context for the sen-
tences. If the word has multiple meanings depending on the context, please indicate all correct
answers.

For example, consider the word "bank." In the sentence "I need to deposit my pay-
check at the bank," and "I sat on the bank of the river and watched the sunset," the word
"bank" has different meanings. Therefore, the correct answer would be "not the same."

Please note that the comparison should be based on the context of the sentences, not
just the isolated word

49

