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Abstract

Normalization layers (e.g., Batch Normalization, Layer Normalization) were intro-
duced to help with optimization difficulties in very deep nets, but they clearly also
help generalization, even in not-so-deep nets. Motivated by the long-held belief
that flatter minima lead to better generalization, this paper gives mathematical
analysis and supporting experiments suggesting that normalization (together with
accompanying weight-decay) encourages GD to reduce the sharpness of loss sur-
face. Here “sharpness” is carefully defined given that the loss is scale-invariant, a
known consequence of normalization. Specifically, for a fairly broad class of neural
nets with normalization, our theory explains how GD with a finite learning rate
enters the so-called Edge of Stability (EoS) regime, and characterizes the trajectory
of GD in this regime via a continuous sharpness-reduction flow.

1 Introduction

Training modern deep neural nets crucially relies on normalization layers to make the training process
less sensitive to hyperparameters and initialization. The two of the most popular normalization layers
are Batch Normalization (BN) [55] for vision tasks and Layer Normalization (LN) [9] for language
tasks. Recent works also proposed other normalization layers aiming for better performance, most no-
tably including Group Normalization (GN) [120], Weight Normalization (WN) [102], Scaled Weight
Standardization (SWS) [97, 53, 14], etc. Most normalization layers amount to a reparametrization of
the neural net so that the loss becomes invariant to the scale of most parameters, and with a minor
change, to all parameters: L(cw) = L(w) for all scalings ¢ > 0 [55, 7, 77]. The current paper
assumes this scale-invariance for all parameters and analyzes the trajectory of gradient descent with
weight decay (WD):

wip1 — (1= AN w, — HVL(wy). ey
The use of WD is a common practice that has been adopted in training state-of-the-art neural nets,
such as ResNets [46, 47] and Transformers [29, 15]. Previous ablation studies showed that adding
WD to normalized nets indeed leads to better generalization [126, 72, 125]. More notably, Liu
et al. [83] conducted experiments of training ResNets initialized from global minima with poor test
accuracy, and showed that SGD with WD escapes from those bad global minima and attains good
test accuracy. In contrast, training with vanilla SGD yields significant generalization degradation.

In the traditional view, WD regularizes the model by penalizing the parameter norm, but this
may appear nonsensical for scale-invariant loss because one can scale down the norm arbitrarily
without changing the loss value. However, the scale of the parameter does matter in backward
propagation, and thus WD can affect the training dynamics. In particular, simple calculus shows
VLW) = fp; VE(RT) * e d VL) = gV LIRTE) o . so WD is in effect
trying to enlarge the gradient and Hessian in training. This makes the training dynamics very different
from unnormalized nets and requires revisiting classical convergence analyses [77, 78, 84, 80].
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Figure 1: Experiment on overparameterized matrix completion with Batch Normalization. Given 800
(32%) entries Q of a rank-2 matrix M € R5°%°, use GD+WD to optimize the loss L(U,V) :=
\Tlll Zuyj)eQ(BN([UVT]i,j) — M; ;)?, where U, V' € R%°%5 (thus no explicit constraint on rank). Starting
from step ~ 2k, spherical sharpness drops significantly (b), which encourages low-rank (d) and causes the test
loss (MSE of all entries) to decrease from 1.12 to 0.013 (a). See also Appendix P.1.
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Figure 2: In training a smooth and scale-invariant VGG-11 on CIFAR-10 with (full-batch) GD+WD, the
spherical sharpness keeps decreasing and the test accuracy keeps increasing. BN is added after every linear
layer to ensure scale-invariance. 100% training accuracy is achieved after ~ 680 steps (dotted line), but as the
training continues for ~ 47k steps, the spherical sharpness keeps decreasing (b) and the test accuracy increases
from 69.1% to 72.0% (a). Then the training exhibits destabilization but the test accuracy is further boosted to
84.3%. Removing either of BN or WD eliminates this phenomenon; see Appendices P.4 and P.5.

The current paper aims to improve mathematical understanding of how normalization improves
generalization. While this may arise from many places, we focus on studying the dynamics of (full-
batch) GD (1), which is a necessary first step towards understanding SGD. We show that the interplay
between normalization and WD provably induces an implicit bias to persistently reduce the sharpness
of the local loss landscape during the training process, which we call the sharpness-reduction bias.

It is long believed that flatter minima generalize better [50, 63, 95], but the notion of sharpness/flatness
makes sense only if it is carefully defined in consideration of various symmetries in neural nets. One
of the most straightforward measures of sharpness is the maximum eigenvalue of Hessian, namely
A1 (V2L(w;)). But for normalized nets, this sharpness measure is vulnerable to weight rescaling,
because one can scale the weight norm to make a minimizer arbitrarily flat [31]. Also, this sharpness
measure may not decrease with the number of training steps: an empirical study by Cohen et al. [24]
shows that for various neural nets (including normalized nets), GD has an overwhelming tendency
to persistently increase A (V2L (w;)) until it reaches the Edge of Stability (EoS) regime, a regime
where A1 (V2L (w;)) stays around 2/7 (7 is the learning rate). See also Section 6 and Figure 2c.

1.1 Our Contributions

The sharpness measure we use in this paper takes care of the scale-invariance in normalized nets.
We are motivated by our experiments on matrix completion (with BN) and CIFAR-10, where our
sharpness measure decreases as the training proceeds, and the generalization improves accordingly;
see Figures 1 and 2. We note that techniques from previous works [92, 95, 37] can be easily adopted
here to establish a PAC-Bayes bound on the test error, where our sharpness measure appears as an
additive term (see Appendix C).



Definition 1.1 (Spherical Sharpness). For a scale-invariant loss £(w) (i.e., L(cw) = L(w) for all
¢ > 0), the spherical sharpness at w € R” is defined by \; (V2£(-%—)), the maximum eigenvalue

[wll
of the Hessian matrix after projecting w onto the unit sphere.

Based on Definition 1.1, we study the aforementioned sharpness-reduction bias in training normalized
nets with GD+WD (defined in (1)). For constant learning rate 7 and weight decay )\, we can rewrite
this rule equivalently as Projected Gradient Descent (PGD) on the unit sphere with adaptive learning
rates, 0;11 < I1(0; — 77 VL(0;)), where 0; := H;"ﬁ is the direction of wy, and 7; is the “effective”
learning rate at step ¢ (see Lemma 3.1). We call 7, adaptive because it can be shown to resemble the
behaviors of adaptive gradient methods (e.g., RMSprop [49]): 7, increases when gradient is small
and decreases when gradient is large (Figure 3). Our main contributions are as follows:

1. After 6; reaches a point near the manifold of minimizers of £, we theoretically show that the
effective learning rate 7j; increases until GD enters a regime where 2/7j; roughly equals to the
spherical sharpness (or equivalently 2/9 ~ A1 (V2L (w;))), namely the EoS regime (Section 4.1).

2. In the EoS regime, we show that for GD with a small (but finite) learning rate, 8, oscillates
around the manifold and moves approximately along a sharpness-reduction flow, which is a
gradient flow for minimizing spherical sharpness on the manifold (with gradient-dependent
learning rate) (Section 4.2).

3. As an application of our theory, we show that for linear regression with BN, GD+WD finds
the minimizer that corresponds to the linear model with minimum weight norm, which looks
surprisingly the same as the conventional effect of WD but is achieved through the completely
different sharpness-reduction mechanism (Section 5).

4. We experimentally verified the sharpness-reduction phenomenon predicted by our theorem and
its benefits to generalization on CIFAR-10 with VGG-11 and ResNet-20, as well as matrix
completion with BN (Appendix P).

5. We generalize our theoretical results of sharpness-reduction bias to a broader class of adaptive
gradient methods, most notably a variant of RMSprop with scalar learning rate (Appendix B).

Technical Contribution. Our proof technique is novel and may have independent interest to the
ML community. The main challenge is that we need to analyze the implicit bias of GD in the EoS
regime which crucially relies on step size being finite — this is in sharp contrast to many previous
works on implicit bias of GD [107, 106, 87, 59, 43, 42,76, 100, 4, 22, 79, 88, 101, 108, 38] where the
same bias exists at infinitesimal LR. Our analysis is inspired by a previous line of works [13, 25, 81]
showing that label noise can drive SGD to move on the minimizer manifold along the direction of
minimizing the trace of Hessian. We borrow a few lemmas from those analyses, but the overall proof
strategy is very different because our setting does not even have any stochastic gradient noise. Instead,
we connect the dynamics in the EoS regime to power methods and show that GD oscillates around
the minimizer manifold. This oscillation then becomes a driving power that pushes the parameter
to move on the manifold. Finally, we analyze the speed of this movement by modeling two key
parameters of the dynamics as a 1-dimensional Hamiltonian system (Figure 6). To the best of our
knowledge, we are the first to provide theoretical proof for a sharpness measure to decrease during
the standard GD training, without any additional regularization (e.g., label noise [13, 25, 81]) and
without involving uncommon variants of GD (e.g., normalized GD or non-smooth wrappings on the
loss function [8]).

2 Related Works

Sharpness and Generalization. It has been long believed that flat minima generalize better [50].
Several empirical studies [63, 74, 117, 57] verified the positive correlation between flatness and
generalization. Neyshabur et al. [95] justified this via PAC-Bayes theory [92]. Several other theoretical
papers explored the generalization properties of flat minima specifically for two-layer nets [13, 94, 44,
81, 30] and deep linear nets [93]. Jiang et al. [60] conducted extensive experiments for all existing
generalization measures to evaluate their correlation and causal relationships with generalization
error, concluding that sharpness-based measures perform the best overall. In light of this, Foret et al.
[37] proposed SAM algorithm to improve the generalization by minimizing the sharpness. Despite
so many positive results on sharpness-based measures, a common issue of many works is that the
measures may suffer from sensitivity to rescaling of parameters in deep nets [31]. Another issue is
that the minima could lie in asymmetric valleys that are flat on one side and sharp on the other [45].



Understanding Normalization Layers. The benefits of normalization layers can be shown in
various aspects. A series of works studied the forward propagation of deep nets at random ini-
tialization, showing that normalization layers stabilize the growth of intermediate layer outputs
with depth [14, 10, 28], provably avoid rank collapse [26] and orthogonalize representations [27].
Although these works mainly focused on BN [55], Lubana et al. [85], Labatie et al. [67] provided
thorough discussions on the applicability of these arguments to other normalization layers. It is also
believed that BN has a unique regularization effect through the noise in batch statistics [86, 111, 104].
Several other works argued that normalization layers lead to a smoothening or preconditioning effect
of the loss landscape [103, 12, 39, 61, 82, 68], which may help optimization. By analyzing the
training dynamics, Arora et al. [7] rigorously proved that normalization yields an auto-tuning effect of
the effective learning rate 7j;, which makes the asymptotic speed of optimization much less sensitive
to the learning rate and initialization. In linear regression settings, Cai et al. [16], Kohler et al. [65]

showed that training with BN leads to a faster convergence rate; Wu et al. [119] studied the implicit
regularization effect of WN [102]. For two-layer nets with normalization, Ma and Ying [90] derived
a mean-field formulation of the training dynamics; Dukler et al. [33] proved a convergence rate via
NTK-based analysis. The current paper focuses on the interplay between normalization and WD
during training, whereas all the above works either do not analyze the dynamics or assume no WD.

Interplay Between Normalization and WD. A common feature of normalization layers (including
but not limited to BN, WN, LN, GN, SWYS) is that they make the loss invariant to the scale of layer
weights. In presence of both scale-invariance and WD, training dynamics can go out of the scope
of the classical optimization theory, e.g., one can train the net to small loss even with learning rates
exponentially increasing [77]. A series of works investigated into the interplay between normalization
and WD and argued that the training dynamic with SGD eventually reaches an “equilibrium” state,
where the parameter norm [78, 113, 21] and the size of angular update [114] become stable. Li et al.
[78], Wang and Wang [115] provided empirical and theoretical evidence that the function represented
by the net also equilibrates to a stationary distribution that is independent of initialization. This
could be related to Liu et al. [83]’s experiments on the ability of SGD with WD to escape from bad
initialization, but it remains unclear why the generalization should be good at the equilibrium state. In
this paper, we focus on (full-batch) GD, which is the most basic and important special case of SGD.

3 Preliminaries

Let SP~1:= {0 c RP : |9, = 1; be the unit sphere equipped with subspace topology. We say
a loss function £(w) defined on R” \ {0} is scale-invariant if L(cw) = L(w) for all ¢ > 0. In
other words, the loss value does not change with the parameter norm. For a differentiable scale-
invariant function £(w), the gradient is (—1)-homogeneous and it is always perpendicular to w, i.e.,
VL(cw) = ¢ VL(w) forall ¢ > 0 and (VL(w), w) = 0 (see Lemma D.1).

The focus of this paper is the dynamics of GD+WD on scale-invariant loss. (1) gives the update rule
for learning rate (LR) 7 and weight decay (WD) A. We use 0; := H;"—:”Q to denote the projection of

w; onto SP~1 at step t. We write GD+WD on scale-invariant loss as a specific kind of Projected
Gradient Descent (PGD) and define the effective learning rate to be the LR 7; := m that
- e

appears in the update rule of PGD. This notion is slightly different from the effective learning rate

W defined in previous works [113, 52, 7], but ours is more convenient for our analysis.
tll2

Lemma 3.1. When the parameters w; are updated as (1), 0, satisfies the following equation:
011 =11(0; — 1:VL(6:)), 2

is called the effective learning rate at step t, and I1 : w — —%— is the

where 1; =
Nt Tl

./
o (A=AMllwell3 )
projection operator that projects any vector onto the unit sphere.

4 GD+WD on Scale-Invariant Loss Functions

This section analyzes GD+WD (1) on a scale-invariant loss £(w), in particular what happens after
approaching a manifold of local minimizers. Section 4.1 analyzes the dynamics in the stable regime,
where loss is guaranteed to decrease monotonically, and Theorem 4.2 suggests w, can get close to a
local minimizer at some time to. We show that the effective LR keeps increasing after ¢(, causing



GD+WD to eventually leave this stable regime and enter a new regime which we call the Edge of
Stability (EoS). In Section 4.2, we establish our main theorem, which connects the dynamics of w;
in the EoS regime to a sharpness-reduction flow.

4.1 GD+WD Eventually Leaves the Stable Regime

A standard step of analyzing optimization methods is to do Taylor expansion locally for the loss
function, and show that how the optimization method decreases the loss using a descent lemma. In
our case of scale-invariant loss functions, we use H (w) := V2L (w) € RP*P to denote the Hessian
matrix of £ at w € R, and AI(w) := \; (H(w)) to denote the top eigenvalue of H (w).

Lemma 4.1 (Descent Lemma). For scale-invariant loss L(w), at step t of GD+WD we have
L(Or41) < L(6:) — (1 — M Dh/2) IV L(O:) 5-
where Aty := SUPqc(0,7,] {\I'(0: — aV L(6,))} is an upper bound of spherical sharpness locally.

This descent lemma shows that the training loss £(6;) keeps decreasing as long as the effective LR
7 is smaller than 2/ A, We call the regime of 7; < 2/ Ay as the stable regime of GD+WD. If
e~ 2/ )\Eflzm with a small difference, then we call it as the Edge of Stability (EoS) regime. We remark
that this condition for EoS regime is essentially the same as 7 ~ 2/A(w) in Cohen et al. [24]s
definition because 7 - )\ggx ~ 7 - M (w); see Appendix G.3.

Fix an initial point wy € R? \ {0}. Now we aim to characterize the dynamics of GD+WD when LR
7 and WD ) are small enough. The convergence rate of GD+WD has been analyzed by Li et al. [80].
Here we present a variant of their theorem that bounds both the gradient and effective LR.

Theorem 4.2 (Variant of Theorem D.2, Li et al. [80]). Ler L(w) be a scale-invariant loss function
and py := sup{||V2L(w)||2 : w € SP~1} be the smoothness constant of L restricted on the unit

~ 2
sphere. For GD+WD (1) with i\ < 1/2 and 7y < m, let Ty := [27%\ In !;Silﬂ steps, there

must exist 0 < t < Ty such that | VL(6,)|2 < 87*p3Aij and 7j, < WO
™ 2 —

Theorem 4.2 shows that for some to < Tp, |[VL(0y,)]12 < O(M)) and 7, < W21p2 < ,722’ which
means 6, is an approximate first-order stationary point of £ on the unit sphere. This does not
guarantee that 6, is close to any global minimizer, but in practice the training loss rarely gets stuck
at a non-optimal value when the model is overparameterized [70, 96, 71, 125]. We are thus motivated
to study the case where @, not only has small gradient | V£(8;,)||2 < O(A7) but also is close to a
local minimizer 8* € SP~1 of £ in the sense that ||6;, — 8* |2 < O((\})*/?) (assuming smoothness,
the latter implies the former).

As the gradient is small near the local minimizer 8*, start-
ing from step ¢, the norm of w; decreases due to the effect
of WD. See Figure 3a. Since the effective LR is inversely
proportional to w3, this leads to the effective LR to
increase. Then Theorem 4.4 will show that the GD+WD
dynamic eventually leaves the stable regime at some time

t; > to, and enters the EoS regime where 7; ~ 2/ )\ffl)ax.

(a) (b)

To establish Theorem 4.4, we need to assume that £ satis-

fies Polyak-t.ojasiewicz (PL) condition locally, which is a Flgqre 3 The norm of w, decreases when
standard regularity condition in the optimization literature ~gradientis small and increases when gradient
to ease theoretical analysis around a minimizer. Intuitively, ' large.

PL condition guarantees that the gradient grows faster than a quadratic function as we move a
parameter 6 away from 6*. Note that PL condition is strictly weaker than convexity as the function
can still be non-convex under PL condition (see, e.g., [62]).

Definition 4.3 (Polyak-t.ojasiewicz Condition). For a scale-invariant loss £(w) and p > 0, we say
that L satisfies pu-Polyak-t.ojasiewicz condition (or p-PL) locally around a local minimizer 8* on
SP~1 if for some neighborhood U C SP~1of 0*,V0 € U : 1||VL(O)||3 > n- (L(0) — L(6%)).



Theorem 4.4. Let L(w) be a C*-smooth scale-invariant loss that satisfies u-PL around a local
minimizer 0* on the unit sphere, and py := sup{||V2L(w)||2 : w € SP~1}. For GD+WD on
L(w) with learning rate 7 and weight decay ), if at some step to, |0y, — 0*|2 < O((A))*/?)
and 1, < Z

< p% < 3oy and if 5\77 is small enough, then there exists a time t; > to such that
1

16, — 612 = O((AN)/2) and iy, = sy + O((Ai)"/2).

4.2 Dynamics at the Edge of Stability

From the analysis in the previous subsection, we know
that 6 can get close to a local minimizer 8* and enter the
EoS regime at some step t1. But what happens after ¢, ?

Figure 4 gives a warm-up example on a 3D scale-invariant
loss £ : R3\ {0} — R, where the black line is a mani-
fold I consisting of all the minimizers. In training with
GD+WD, 6, first goes close to a local minimizer ¢y, then
Theorem 4.4 suggests that WD causes the effective LR to
steadily increase until the dynamic enters the EoS regime.
Now something interesting happens — 6; moves a bit
away from ¢, and starts to oscillate around the manifold
I'. This oscillation is not completely perpendicular to I’
but actually forms a small angle that pushes 8; to move
downward persistently until 8; approaches the minimizer
¢« denoted in the plot.

For a general scale-invariant loss £ : RP \ {0} — R,
which minimizer does 8; move towards? In this work, we
consider the setting where there is a manifold " consisting
only of local minimizers (but not necessarily all of them).
We show that 6; always Qscillates around the manifold points in the black line are minimizers (sce
once it approaches the manifold and enters the EoS regime, A ppendix F). In the end, 8; approaches the
and meanwhile 6, keeps moving in a direction of reducing  flatest one (red star).

spherical sharpness.

Figure 4: The trajectory of 6; on a 3D
scale-invariant loss function. Darker color
means lower loss on the unit sphere, and

4.2.1 Assumptions

Now we formally introduce our main assumption on the local minimizer manifold I

Assumption 4.5. The loss function £ : RP \ {0} — R is C*-smooth and scale-invariant. I is a
C2-smooth, (Dr — 1)-dimensional submanifold of SP=1 for some 0 < Dr < D, where every @ € I'
is a local minimizer of £ on SP~! and rank(H (0)) = D — Dr.

Scale-invariance has become a standard assumption in studying neural nets with normalization
layers [77, 78, 84]. For VGG and ResNet, the scale-invariance can be ensured after making minor
changes to the architectures (see Appendix Q.1). The training loss £ may not be smooth if the
activation is ReL.U, but lately it has become clear that differentiable activations such as Swish [98],
GeLU [48] can perform equally well. Swish is indeed used in our VGG-11 experiments (Figure 2), but
ResNet with ReLU activation also exhibits a sharpness-reduction bias empirically (see Appendix P.2).

For any local minimizer @ € I', the eigenvalues A (6) must be non-negative. And A\ (6) = 0 for
all D — Dr < k < D, since I' is of dimension D — 1. The condition rank(H (0)) = D — Dr
ensures that the Hessian is maximally non-degenerate on I', which also appears as a key assumption
in previous works [81, 8, 35]. This condition simplifies the calculus on I" in our analysis as it ensures
that the null space of the matrix H (0) equals to the tangent space of I" at @ € I'. It is also closely
related to PL condition (Definition 4.3) as Assumption 4.5 implies that £(8) satisfies -PL (for some
> 0) locally around every 8 € I on the unit sphere (Arora et al. [8], Lemma B.3).

To ease our analysis, we also need the following regularity condition to ensure that the largest
eigenvalue is unique. In our experiments, sharpness reduction happens even when the multiplicity of
the top eigenvalue is more than 1, but we leave the analysis of that case to future work.

Assumption 4.6. For all § € I', \I1(8) > A\1(9). That is, the top eigenvalue of H (0) is unique.



4.2.2 Main Theorem

First, we define 7y, := 775\ as the intrinsic learning rate (name from Li et al. [78]) for convenience. As
suggested in Theorems 4.2 and 4.4, 6; can get close to a local minimizer and be in the EoS regime at
some step t1: if ¢ is the local minimizer, then ||0;, — {ol2 = O(niln/Q) and 7, = % + O(niln/z).
1

In our main theorem, we start our analysis from step ¢; while setting ¢t; = 0 WLOG (otherwise we
can shift the step numbers). We connect GD+WD in the EoS regime to the following gradient flow (3)
on the manifold I" minimizing spherical sharpness (with gradient-dependent learning rate), and show
that one step of GD+WD tracks a time interval of length 7, in the gradient flow.

- d, . 2VrlogAE(¢()
CO=Gel ) = = e A Cr )

3)

Here we use the notation VrR(0) for any R : RP — R to denote the projection of VR(8) onto
the tangent space To(I") at @ € I'. {(7) reduces sharpness as it moves in direction of the negative
gradient of log AY1(¢ (7)) on I". A simple chain rule shows how fast the spherical sharpness decreases:

d

S log A(¢(r) =

 2Vrlog (I [~ Velog M(C(T)I3  for small gradient
4+ |[Vrlog NE(C(T)2 ™ | -2 for large gradient.

Note that it is not enough to just assume that 6y is close to (. If 8y = {; holds exactly, then the

subsequent dynamic of wy; is described by w; = (1 — ﬁ;\)two with direction unchanged. There are
also some other bad initial directions of w that may not lead to the sharpness-reduction bias. This
motivates us to do a smoothed analysis for the initial direction: the initial direction is ¢ with tiny

random perturbation, where the perturbation scale is allowed to vary from exp(—ni;o(l)) to 7711n/ 2_0(1),
and we show that a good initial direction is met with high probability as 1, — 0.' Alternatively,
one can regard it as a modeling of the tiny random noise in GD+WD due to the precision errors in

floating-point operations. See Figure 5b; the training loss can never be exactly zero in practice.

Initialization Scheme. Given a local minimizer { € I', we initialize wy € RP \ {0} as follows:
draw & ~ N(0,021/D) from Gaussian and set the direction of wy to ﬁ where o can take

any value in [eXP(*ni;”(”), 77111]/2—0(1)
1/2—0(1)

: ~ 2
satisfies ’no — m’ < N

|; then set the parameter norm ||wy||2 to be any value that

, where 79 := is the effective LR for the first step.

]
(1=9A)[lwo 3
Theorem 4.7. Under Assumptions 4.5 and 4.6, for GD+WD (1) with sufficiently small intrinsic
learning rate 1y, = 775\ if we follow the above initialization scheme for some {y € I, then with
probability 1 — 0(771/ 270(1)), the trajectory of 0; = Twils approximately tracks a sharpness-

reduction flow ¢ : [0, T] — I that starts from o and evolves as the ODE (3) up to time T (if solution
exists), in the sense that ||0; — ¢ (tnin)||2 = O(nilrl/470(1))f0r all0 <t <T/min.
Remark 4.8 (Magnitude of Oscillation). As suggested by Figure 4, 8; actually oscillates around the

manifold. But according to our analysis, the magnitude of oscillation is as small as O(niln/ 2_0(1)), SO

it is absorbed into our final bound O(niln/ 470(1)) for the distance between 8, and ¢ (t7;y ).

4.2.3 Proof Idea

Throughout our proof, we view GD+WD for w; as a PGD for 6, with effective LR 7}; (Lemma 3.1).
To track 0; with { (¢, ), for each step ¢, we construct a local minimizer ¢p; € I' that serves as
the “projection” of 8; onto the manifold I, in the sense that the displacement x; := 0, — ¢ is
approximately perpendicular to the tangent space of I" at ¢»;. Our entire proof works through induction.
1/2—0(1)

According to the initial conditions, the dynamic is initially in the EoS regime: ||z¢|2 < 7

and |7, — 2/ M ()| < 771/ 27°() at t = 0. In our induction, we maintain the induction hypothesis

in

that these two EoS conditions continue to hold for all ¢ > 0.

"Here 771;0(1) can be constant, O(log(1/min)), or O(polylog(1/mnin)), but not 7, ° if € > 0 is a constant.

As mentioned later, this need for random initialization is very similar to the one needed in power method for
computing eigenvalues.



Al < [l

—— test loss spherical sharpness —— Iy (¢ is even)
|0y — @2 —— train loss 2 / effective LR hy (t is odd)
1.00
1074+ 4.8 1 0.02 4
0.75 A
1077 A 4.6 1 -““w UMAMMM»«
&
0.50 \ 4
5 \\ o mn ».\\‘ 0.00
0.25 ] ™.
S | 107y 42 S || -0.021
0.00 b —— i W T R 1
0 10k 20k 30k 40k 1k 2k 3k 4k 1k 2k 3k 4k 5k 1k 2k 3k 4k 5k
steps steps steps steps

(a)

(b)

(¢)

(d)

Figure 5: Illustration of the oscillation and periodic behaviors of GD+WD on linear regression with BN (see
Sections 4.2.3 and 5). The training loss decreases to = 10~ ** in the first 1k steps and achieves test loss 0.26.
Starting from step ~ 1k, the dynamic enters the EoS regime. (a). The test loss decreases to 0.16 as a distance
measure to the flattest solution (M) decreases towards O; (b). The training loss oscillates around ~ 10~ in
the EoS regime; (c). 2/7;: switches back and forth between being smaller and larger than /\I{I(qbt); (d). The
parameter oscillates around the minimizer manifold along the top eigenvector direction, and the magnitude of
oscillation |h¢| rises and falls periodically.

Period-Two Oscillation. A key insight in our proof is that after a few initial steps, 6; is oscillating
around ¢; along the +vi(0) directions, where v}'(0) is a unit top eigenvector of H () and is
chosen in a way that v}1(8) is continuous on I'. More specifically, x; = hyvt(¢;) + O(||x¢||3) for
hy == (x4, v} (¢¢)). The oscillation is of period 2: h; > 0 when ¢ is even and h; < 0 when ¢ is odd.
See Figure 5d for an example.

This oscillation can be connected to a power method for the matrix I — 7}, H (¢;). In the EoS regime,
we can approximate 6,1 (When x; is small) as 0,1 = I1(0;, — 7, VL(0,)) ~ 11(0; — i, H (¢ )xy) =~
0; — 71, H (¢, )z by Taylor expansions of V£ and IT : RP \ {0} — SP~1. We can further show that
@411 =~ ¢ due to our choice of projections. Then the connection to power method is shown below:

Ti1 ~ O — Gy ~ (I — i H ()i
By simple linear algebra, vil(¢,) is an eigenvector of I — 7j, H(¢;), associated with eigenvalue
1 — A (@) ~ —1. The remaining eigenvalues are {1 — 7 A (¢p,)} 2 ,, where A (¢,) is the i-th
largest eigenvalue of H (6,), and they lie in the range (—1, 1] since A (¢;) € [0, \}(¢;)). Using a

similar analysis to power method, we show that x; quickly aligns to the direction of +v!!(¢,) after a
few initial steps, as the corresponding eigenvalue has approximately the largest absolute value.”

To formally establish the above result, we need a tiny initial alignment between o and v (¢), just
as the initial condition in power method. This is where we need the initial random perturbation.

Oscillation Drives ¢, to Move. This period-two oscillation is the driving power to push ¢; to
move on the manifold. The main idea here is to realize that the oscillation direction deviates slightly
from the direction of £v}!(¢,;) by using a higher-order approximation. We specifically use the
Taylor approximation to show that this deviation leads ¢; to move slightly on I": after each cycle of

oscillation, ¢ 4o ~ ¢y — 4h?Vr log A () + 0(7741 '5_0(1)), which resembles two steps of gradient

m
descent on I" to minimize the logarithm of spherical sharpness with learning rate 2h?,

Periodic Behavior of /; and 7;. It remains to analyze the dynamics of h; so that we can know
how fast the sharpness reduction is. Our analysis is inspired by an empirical study from Lobacheva
et al. [84], which reveals a periodic behavior of gradients and effective learning rates in training
normalized nets with weight decay. In our theoretical setting, we capture this periodic behavior by
showing that h; and 7; do evolve periodically. See Figures 5c and 5d for an example.

The key is that 7; changes as an adaptive gradient method: 7); increases when gradient is small and
decreases when gradient is large (due to the effect of WD; see Figures 3a and 3b), and in our case the
gradient norm scales as |h;| since VL(0;) ~ hi A\ (¢p;)vi (). By the power method approximation,

2Qur construction of ¢, ensures that a; only has a small overlap with the 1-eigenspace of I — 7 H (¢b;), s0
x; can only align to iv?(zﬁt).



hiyo = (1= M (py))%he, so || decreases when 7, < 2/A1(¢p;). But || cannot decrease forever,
since 7); increases when |h;| is sufficiently small. When 7}, rises to over 2/A{ (¢¢), |h¢| changes from
decreasing to increasing according to our approximation. But h; cannot increase indefinitely either,
since 7j; decreases when | k| is sufficiently large. A period finishes when 7j; < 2/A!(¢;) holds again.

In our theoretical analysis, we connect this periodic behavior with a 1-dimensional Hamiltonian
system (see Appendix H.2), and show that 2h? in each step can be approximated by its average value
in the period without incurring a large error. Further calculations show that this average value is

approximately ; Tor lo;/@;‘( R the learning rate in the flow (3) multiplied with 7;,,. We can

therefore conclude that each step of ¢, (or 8;) tracks a time interval of 7;, in the flow.

Extensions. We note that this periodic behavior is not limited to GD+WD on scale-invariant loss,
since the above intuitive argument holds as long as the effective LR changes adaptively with respect
to gradient change. Based on this intuition, an important notion called Quasi-RMSprop scheduler
is proposed. For a PGD method, a learning rate scheduler is a rule for changing the effective LR
in each step, and Quasi-RMSprop is a specific class of schedulers we define, including the way
that the effective LR changes in GD+WD on scale-invariant loss (if viewed as PGD). Our proof
is done in a unified way that works as long as the effective LR changes in each step according to
a Quasi-RMSprop scheduler. As a by-product, a similar theorem can be proved for GD (without
projection) on non-scale-invariant loss if the LR changes as a Quasi-RMSprop in each step. For
example, we can extend our analysis to RMSprop with a scalar learning rate. See Appendix B.

5 Case Study: Linear Regression with Batch Normalization

In this section, we analyze the GD+WD dynamics on linear regression with Batch Normalization
(BN), as a simple application of our theory. Let {(x;,y;)}", be a dataset, where x; € R? and
y; € R are inputs and regression targets. We study the over-parameterized case where d > n, and
we assume that the regression targets are generated by an unknown linear model.

A classic linear model is parameterized by (w, b) € R? x R and outputs w ' « + b given input x,
but now we add a BN to the output. More specifically, we consider a batch-normalized linear model

O(x;w,y,0) =7 %;‘“ + B, where y1, o1 are the mean and standard deviation of {w " z;}1_,
over the whole dataset®, and the bias term b is cancelled out due to BN. Note that ®(z; w, v, 3) is

still a linear function with respect to x. Let uy € R4 and X, € R%*? be the mean and covariance of
the input data {x;}?_;. Then ®(x;w,, §) can be rewritten as:

O(x;w,y, ) = w'x+ b, where W :="%/|w|x,, bi=L8—w' py. )

No matter how w is set, the output mean and variance of ® are always 3 and 2. To simplify our
analysis, we fix /3,y to be non-trainable constants so that the mean and variance of ®’s output match
with those of {y; }7—,, that is, we set § = u, and v = oy, to be the mean and standard deviation of y;
over the whole dataset. Then the training loss is £(w) := X Dicm)(P(@iw, v, B) — vi)?.

Theorem 5.1. In our setting of linear regression with BN, the sharpness-reduction flow ¢ defined in
(3) converges to the solution w* € S~ that minimizes sharpness \{'(w*) on I, regardless of the

initialization. Moreover, the coefficients (W, 5) associated with w* (defined in (4)) are the optimal
solution of the following constrained optimization problem (M):

min |w|3 st w'xz; +b=1vy,;, Vi€ n. (M)

At first sight the result may appear trivial because the intent of WD is to regularize L?-norm. But
this is deceptive because in scale-invariant nets the regularization effect of WD is not explicit. This
result also challenges conventional view of optimization. GD is usually viewed as a discretization
of its continuous counterpart, gradient flow (GF), and theoretical insight for the discrete update
including convergence rate and implicit bias is achieved by analyzing the continuous counterpart (See
Appendix A for a list). However, GF does not have the same sharpness-reduction bias as GD. As
discussed in [77], adding WD only performs a time-rescaling on the GF trajectory on scale-invariant
loss, but does not change the point that GF converge to if we project the trajectory onto the unit
sphere. One can easily show that GF may converge to any zero-loss solution, but no matter how small

*Note that the batch size is n here as we are running full-batch GD



LR is, GD exhibits the sharpness-reduction bias towards the optimal solution of (M). To our best
knowledge, this result is the first concrete example where even with arbitrarily small LR, GD can still
generalize better than GF under natural settings.

6 Discussion

Experimental Verification of Sharpness Reduction. Besides Figures 1 and 2, Appendix P.1
provides additional matrix completion experiments with different data size, and Appendix P.2
provides CIFAR-10 experiments with ResNet-20. In all these experiments, we observed that GD
continues to improve the test accuracy even after fitting the training set, and this phenomenon is
correlated with the decreasing trend of spherical sharpness. See also Appendix P.3 for the validation
for the periodic behavior we analyze in theory.

Ablation Studies on Normalization and Weight Decay. Our theoretical analysis crucially relies
on the interplay between normalization and WD to establish the sharpness-reduction flow. We also
conducted ablation studies on normalization and WD to highlight the importance of this interplay.
First, if normalization is removed, the spherical sharpness becomes undefined, and we do not know if
GD implicitly minimizes any sharpness measure. But even if a similar measure does exist, it cannot
be strongly related to generalization, because we can verify that the test accuracy becomes very
bad without normalization (56.8% on CIFAR-10, Figure 14), and continuing training after fitting
the training set no longer improves test accuracy. Second, if WD is removed, the analysis in Arora
et al. [7] guarantees convergence in the stable regime, and we can verify that the spherical sharpness
and test accuracy stop changing when the loss is small. The final test accuracy is stuck at 66.4%
(Figure 15), whereas training with WD leads to 84.3%.

Explaining the Progressive Sharpening and EoS Phenomena. Cohen et al. [24] conducted ex-
tensive empirical studies on the dynamics of GD in deep learning (without weight decay), formally
wyy1 < wy — HV.L(w;). They observed the progressive sharpening phenomenon: \; (V2L (wy))
tends to increase so long as it is less than 2/7). Then they observed that the training typically enters
the EoS regime, which they define as a regime that (1) A\; (V2L (w,)) hovers right at, or just above
2/1; and (2) the training loss ﬁ(wt) goes up and down over short timescales, yet still decreases in
the long-term run. A recent research trend focuses on explaining the progressive sharpening and
EoS phenomena [1, 91, 8, 18]. Our work corresponds to an important special case where ﬁ(w) is

a scale-invariant loss with L?-regularization, namely £(w) + 3 ||w||3. By analyzing the interplay
between normalization and WD, the first part of our results (Section 4.1) attributes progressive
sharpening to norm change, and the second part (Section 4.2) justifies in theory that the training can
make progress in the EoS regime. See Appendix G.3 for more discussion.

7 Conclusions and Future Work

We exhibited settings where gradient descent has an implicit bias to reduce spherical sharpness in
training neural nets with normalization layers and weight decay, and we verified experimentally this
sharpness-reduction bias predicted by our theorem as well as its generalization benefit on CIFAR-10.

Our theoretical analysis applies to dynamics around a minimizer manifold and requires a small (but
finite) learning rate so that we can show that the parameter oscillates locally and approximately tracks
a sharpness-reduction flow. We note that in practice a decrease in spherical sharpness is observed
even with moderate LR and even before getting close to a minimizer manifold. Explaining these
phenomena is left for future work. Now we list some other future directions. The first is to generalize
our results to SGD, where the sharpness measure may not be the spherical sharpness and could
depend on the structure of gradient noise. Second, to understand the benefit of reducing spherical
sharpness on specific tasks, e.g., why does reducing spherical sharpness encourage low-rank on matrix
completion with BN (Figure 1)? Third, to study sharpness-reduction bias for neural net architectures
that are not scale-invariant on all parameters (e.g., with certain unnormalized layers).
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