
LoRA vs Full Fine-tuning: An Illusion of Equivalence

Reece Shuttleworth Jacob Andreas Antonio Torralba Pratyusha Sharma
MIT CSAIL

{rshuttle, jda, torralba, pratyusha}@mit.edu

Abstract

Fine-tuning is a crucial paradigm for adapting pre-trained large language models
to downstream tasks. Recently, methods like Low-Rank Adaptation (LoRA) have
been shown to effectively fine-tune LLMs with an extreme reduction in trainable
parameters. But, are their learned solutions really equivalent? We study how
LoRA and full-finetuning change pre-trained models by analyzing the model’s
weight matrices through the lens of their spectral properties. We find that LoRA and
full fine-tuning yield weight matrices whose singular value decompositions exhibit
very different structure: weight matrices trained with LoRA have new, high-ranking
singular vectors, which we call intruder dimensions, while those trained with full
fine-tuning do not. Further, we extend the finding that LoRA forgets less than full
fine-tuning and find its forgetting is vastly localized to the intruder dimension –
by causally intervening on the intruder dimensions by changing their associated
singular values post-fine-tuning, we show that they cause forgetting. Moreover,
scaling them down significantly improves modeling of the pre-training distribution
with a minimal drop in downstream task performance. Given this, we should expect
accumulating intruder dimensions to be harmful and lead to more forgetting. This
will be amplified during continual learning because of sequentially fine-tuning,
and we show that LoRA models do accumulate intruder dimensions here tend to
perform worse in this setting, emphasizing the practicality of our findings.

1 Introduction

Figure 1: LoRA and full fine-tuning update the pa-
rameter space differently. Similarity matricies of pre-
and post-fine-tuning singular vectors for LLaMA2-7B
that characterize the spectral differences introduced dur-
ing fine-tuning. Full fine-tuning retains most of the
pre-training structure, while LoRA has a diagonal shift.
Color shows cosine similarity.

Adapting large, pre-trained models to down-
stream tasks via fine-tuning is a computation-
and data-efficient way to create domain-specific
models for a variety of tasks. The simplest ap-
proach is to fine-tune all parameters of the pre-
trained model on downstream task data [Devlin
et al., 2019, Ouyang et al., 2022]. However, as
pre-trained models grow larger, full fine-tuning
becomes increasingly challenging and expen-
sive. Recently, parameter-efficient fine-tuning
(PEFT) methods, especially low-rank adaptation
(LoRA; Hu et al., 2021), have been shown to
enable fine-tuning with only a fraction of the
trainable parameters. While LoRA can match
full fine-tuning performance, are the solu-
tions learned by the two methods similar?

While full fine-tuning treats every parameter as
trainable, LoRA treats the learned update to a weight matrix as the product of two low-rank matrices
[Hu et al., 2021]. While this parameterization is empirically effective, a principled explanation of

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



Figure 2: Characterizing structural differences between solutions learnt by LoRA & Full Fine-tuning. a)
We measure the changes to the SVD of the pre-trained weights made during fine-tuning. We observe intruder
dimensions introduced by LoRA in top ranking singular vectors but not by full fine-tuning. b) Comparing a
matrix fine-tuned with full fine-tuning or LoRA. c) The intruder dimension shows near-zero absolute cosine
similarity with all pre-trained singular vectors, in contrast to other singular vectors of the finetuned matrix.

the mechanism by which it matches the full fine-tuning performance has remained elusive. One
explanation is offered by the intrinsic dimension hypothesis [Li et al., 2018, Aghajanyan et al., 2021],
which posits that the update learned via fine-tuning has a low intrinsic rank, suggesting that LoRA
might recover an approximately equivalent solution to full fine-tuning. However, prior work has
observed differences in the ability of LoRA and full fine-tuning to independently change the angle
and magnitude with which a neuron transforms its input [Liu et al., 2024]. Moreover, other work
has also observed that LoRA has difficulty matching the performance of full fine-tuning on difficult
tasks like code generation [Biderman et al., 2024, Zhuo et al., 2024] and long-form text generation
[Ivison et al., 2023]. Therefore, it is unclear if these findings indicate a limit in LoRA’s ability to fit
to a specific downstream task, or if these methods learn inherently different solutions.

In this paper, we show that full fine-tuning and LoRA learn different solutions with characteristic
differences in their spectral properties (as shown in Fig. 1 for LLaMA2-7B [Touvron et al., 2023b])
and that these spectral differences are causally related to different model behaviors. We observe:

1. LoRA and full fine-tuning produce structurally different parameter updates, characterized
by the existence of intruder dimensions in weight matrices tuned by LoRA. Intruder dimensions
are singular vectors with large associated singular values that are very dissimilar to the singular
vectors in the pre-trained weight matrix. In contrast, fully fine-tuned models remain spectrally similar
to the pre-trained model and do not contain intruder dimensions.

2. LoRA forgets less than full fine-tuning...but not always. We extend the findings of Biderman
et al. [2024] that LoRA forgets less to the case even when there is equal fine-tuning performance
between LoRA and full fine-tuning, showing that a difference in fit is not simply the cause of this
finding but rather is inherent to these methods. However, this is not always the case: despite nearly
identical fine-tuning task accuracies, we show that different selections of LoRA alpha and learning
rate lead to starkly different generalization behaviors, even leading to LoRA forgetting more than full
fine-tuning. We also find that models with the best generalization for each of these hyperparameter
settings have the fewest intruder dimensions.

3. Intruder dimensions cause forgetting of the pre-training distribution. Scaling down the
associated singular values of high-ranking intruder dimensions leads to a large drop in loss on the
pre-training distribution (forgetting) but only a minimal drop in test performance. The drop in
forgetting we observe when scaling down singular vectors is unique to intruder dimensions and
indicates that they interfere with the pre-trained language modeling ability of these models. Given
this finding, we should expect accumulating intruder dimensions to be harmful and lead to more
forgetting. To amplify this accumulation and examine its effect, we fine-tune in a continual learning

2



setting (sequentially fine-tuning on many tasks) and show that LoRA models do indeed tend to forget
more on previously learned tasks in this setting, providing additional support for our findings.

2 Background & Related Work

Methods for fine-tuning. Pre-trained language models offer a foundation for downstream appli-
cations, eliminating the need to train from scratch [Ouyang et al., 2022, Devlin et al., 2019]. Full
fine-tuning, in which every parameter of a pre-trained model is updated, is commonly used [Devlin
et al., 2019, Liu et al., 2019]. Low Rank Adaptation (LoRA; Hu et al., 2021), which represents
the update to the weights as a product of two low-rank matrices, reduces computation and memory
requirements relative to full fine-tuning. Past work has shown that LoRA matches full fine-tuning
performance for tasks like sequence classification [Hu et al., 2021], instruction tuning [Dettmers
et al., 2023, Ghosh et al., 2024], and chat [Dettmers et al., 2023]. Other work has shown a gap in
performance on harder tasks like code generation [Biderman et al., 2024, Zhuo et al., 2024]. We
focus our investigation on both cases to ensure our findings generalize to all use cases.

LoRA, formally. Given a pre-trained weight matrix W0 ∈ Rm×n, full fine-tuning treats the learned
matrix update as ∆W ∈ Rm×n. Instead, LoRA decomposes ∆W into a product of two matrices such
that ∆W = BA, where B ∈ Rm×r, A ∈ Rr×n, and where the rank r is generally r ≪ min(m,n).
During prediction,

Y = WtunedX = (W0 +
α

r
BA)X .

B is initialized to zero, and A sampled from an isotropic Gaussian. All parameters in B and A are
trained. From this we can see that while full fine-tuning has mn trainable parameters per weight
matrix, LoRA only has mr + rn. See Appendix F for derivation of LoRA adapter gradients.

LoRA Variants. Many variations of LoRA exist. Methods improve LoRA’s performance or memory-
efficiency by initializing with the principal [Meng et al., 2024] or minor [Wang et al., 2024] compo-
nents of the underlying weight matrix, training with quantization [Dettmers et al., 2023], adaptively
allocating different ranks [Zhang et al., 2023], or sequentially training multiple LoRAs [Xia et al.,
2024]. Other methods propose similar but alternative architectures [Liu et al., 2024, Kopiczko et al.,
2024, Koohpayegani et al., 2024]. Other work has also proposed low rank manipulations to the
activations instead of the weights [Wu et al., 2024]. Although the primary focus of our study is on
the original LoRA setup [Hu et al., 2021], we also study a few LoRA variants (Appendix P). While
we leave a rigorous analysis of all possible variants to future work, our preliminary experiments show
that our findings generalize to several variants. Additionally, we also demonstrate the robustness of
our findings across a range of LoRA hyperparameter settings (Appendices B.4, N, O).

Analysis of Solutions. The intrinsic dimension measure [Li et al., 2018] was used by Aghajanyan
et al. [2021] to argue that the fine-tuning update for a pre-trained LLM has low intrinsic rank,
explaining why only a small number of trainable parameters are necessary to reach 90% of full
fine-tuning performance. This finding motivated Hu et al. [2021] to hypothesize that LoRA works
because solutions of low intrinsic rank exist. But to our knowledge, no past work has compared
the rank (or other properties of weight matrices) between LoRA and full-fine tuning on tasks where
they are matched in performance. While Liu et al. [2024] showed that LoRA has difficulty changing
directional and magnitude components of a neuron independently, it is unclear if this difference is
due to an inability of LoRA to fit as well as full fine-tuning to the adaptation task.

Relation to Biderman et al. [2024]. Recent work comparing LoRA to full fine-tuning has found
that LoRA forgets less when fine-tuned on math and code [Biderman et al., 2024] and more closely
resembles the pre-trained model [Ghosh et al., 2024]. We extend the findings of Biderman et al.
[2024] to the case when there is equal fine-tuning performance between LoRA and full fine-tuning,
showing that a difference in fit to the fine-tuning task is not simply the cause of this finding but rather
is inherent to these methods.

Singular Value Decomposition. The SVD decomposes a matrix M ∈ Rm×n such that M = UΣV T ,
where U ∈ Rm×m and V ∈ Rn×n have orthonormal columns representing the singular vectors of
M and Σ ∈ Rm×n is a diagonal matrix containing the singular values of M . U and V T represent
rotations that matrix M performs, while Σ represents scaling along those axes. Singular vectors,
ordered by singular values, reveal a matrix’s most important axes of transformation.

3



3 Structural Differences

Figure 3: LoRA and full fine-tuning learn distinct
structural solutions. LoRA introduces intruder dimen-
sions (represented by outlined columns).

Inspired by Sharma et al. [2024]’s finding that
the singular value decomposition (SVD, Klema
and Laub, 1980) can be used to selectively prune
singular vectors to improve model performance,
this paper adopts the SVD of neural network pa-
rameters as a lens for understanding the changes
that fine-tuning makes to pre-trained weights.
Understanding how these dimensions change
can give us insight into how a particular fine-
tuning method changes the pre-trained model.
In particular, we study how well singular vec-
tors in weight matrices fine-tuned with LoRA
or full fine-tuning map to singular vectors in the
pre-trained weights (using cosine similarity).

Visually, we observe in Fig. 2(b) that LoRA and full fine-tuning’s singular vectors have very different
similarities to the pre-trained singular vectors: singular vectors of models fine-tuned with LoRA
appear to have, on average, much lower cosine similarity to pre-trained singular vectors in comparison
to full fine-tuning. Interestingly, in LoRA fine-tuned models, we also observe the presence of high
ranking singular vectors with very low cosine similarity to any pre-trained singular vector.1 In
Fig. 2(c), we show the difference between these vectors with low cosine similarity to the pre-trained
singular vectors and normal singular vectors from the fine-tuned weights. This “new” dimension can
be seen in Fig. 2(b) as the lone red dot in the bottom left corner. We name these “new” dimensions
intruder dimensions, which we define formally as follows:
Definition 3.1. A singular vector yj from the fine-tuned weight matrix Wtuned is an intruder
dimension if and only if maxi(cos(yj , xi)) < ϵ, where ϵ is a similarity threshold and xi are the
singular vectors of W0.

Algorithm 1 Finding intruder dimensions.

Require: Pre-trained weights W0, fine-tuned
weights Wt, cosine similarity threshold ϵ, #
of fine-tuned singular vectors to examine k.

1: [U0,Σ0, V
⊤
0 ]← SVD(W0)

2: [Ut,Σt, V
⊤
t ]← SVD(Wtuned)

3: n_intruders← 0
4: n← # of pre-trained singular vectors
5: for j ← 1 to k do
6: if ∀i ≤ n : cos

(
U0[i], Ut[j]

)
< ϵ then

7: n_intruders← n_intruders + 1
8: end if
9: end for

10: return n_intruders

Examples of intruder dimensions may be seen
in Fig. 3. Here, we plot the similarity matrix
between the top 10 singular vectors (ranked by
singular value) in the pre-trained and fine-tuned
matrices. While full fine-tuning appears to have
a clear one-to-one mapping, LoRA appears to
have its mapping shifted by “blank” columns
(outlined in magenta): these are intruder dimen-
sions, with low cosine similarity to every pre-
trained singular vector. A zoomed out version of
this plot can be seen in Fig. 1, in which we see
an off diagonal shift due to intruder dimensions.

It is important to note that in the case of full
fine-tuning, the singular vectors that map to a
pre-trained singular vector with high cosine sim-
ilarity also have similar singular values. From
these initial measurements, it appears that LoRA
and full fine-tuning have structural differences in the changes they make to the pre-trained weights:
while full fine-tuning appears to make small changes to the existing singular vectors and singular
values, LoRA introduces new singular vectors that have a large contribution to the norm of the
updated parameter matrix.

Our Models. We study LLaMA2-7B [Touvron et al., 2023b] and RoBERTa-base [Liu et al., 2019].
RoBERTa-base is a pre-trained encoder-only language model and we fine-tune it on six different
sequence classification tasks. See Appendix C.3 for fine-tuning details. LLaMA2-7B is a pre-trained
decoder-only language model, and we study it when fine-tuned on either code or math. These
checkpoints are provided by Biderman et al. [2024]. We also study LLaMA-7B [Touvron et al.,

1Recall that in high dimensions, a vector can have low cosine similarity to a set of orthogonal vectors that
span a space; see Appendix E for discussion.

4



(a) LLaMA-7B fine-tuned
on Alpaca.

(b) LLaMA2-7B fine-tuned on
MetaMathQA.

(c) LLaMA2-7B fine-tuned on
Magicoder-Evol-Instruct.

(d) Number of intruder dimensions in RoBERTa models fine-tuned on 6 different tasks.

Figure 4: LoRA has intruder dimensions, whereas full fine-tuning does not. Here, we set k = 10 and
measure the impact of ϵ on the number of intruder dimensions measured. LoRA introduces many intruder
dimensions in the top 10 ranked singular vectors, while full fine-tuning does not. Numbers are reported are the
sums across the entire model.

Figure 5: Evolution of an intruder dimension across training steps. (Left) Intruder dimensions, and their
rank, in a LoRA fine-tuned weight matrix during fine-tuning. (Middle) Their associated singular values, which
shows that the singular value associated with the intruder dimension increases. (Right) Test accuracy across
training steps.

2023a] models fine-tuned on instruction following. See Appendix L for more details about these
models. Importantly, these LLaMA models span math, code, and chat, which are considerably harder
than sequence classification tasks. This ensures wide coverage of LoRA use cases.

Our Method. To calculate the number of intruder dimensions in a specific weight matrix, we use
Algorithm. 1. In it, we first compute the SVD of both the pre-trained and resulting LoRA and full
fine-tuned weights. Then, for each of the top k highest-ranking singular vectors, we measure its
maximum cosine similarity with all of the pre-trained singular vectors. If this maximum cosine
similarity is less than some threshold ϵ, we classify this singular vector as an intruder dimension.
Note that both k, the number of fine-tuned singular vectors to examine, and ϵ, the cosine similarity
threshold, are hyperparameters; we verify the robustness of our findings for a wide range of ϵ and
k values in Fig. 4 and Fig. 15 respectively. To determine the number of intruder dimensions in a
specific model, we run this algorithm for each weight matrix in the model and sum the total.

LoRA fine-tuned models contain high-ranking intruder dimensions while fully fine-tuned
models do not. To characterize the differences in fine-tuning methods, we first evaluate the differences
in the total number of intruder dimensions in the top 10 highest-ranking singular vectors (k = 10). We
repeat this procedure for a range of ϵ values, our cosine similarity threshold. The results are presented
in Fig. 4. For LLaMA2-7B, we find that models trained with LoRA contain intruder dimensions for
ranks at least as high as r ≤ 256. For RoBERTa, we consistently observe intruder dimensions for
rank r ≤ 16, even for low values of ϵ. Interestingly, we observe that fully fine-tuned models, for
all model sizes, almost never contain intruder dimensions in their top 10 singular vectors, even for
epsilon values of about 0.6 to 0.9. This means that full fine-tuning makes smaller changes to the same

5



set of high contribution pre-trained singular vectors, rather than introducing new singular vectors
like LoRA. Importantly, the number of intruder dimensions appears to drop as rank increases past a
certain threshold, suggesting that the low-rank nature, as well as the update rule of LoRA, induces
them to occur. This is underscored by the r = 2048 case of LLaMA2-7B fine-tuned on math (Fig 4b),
which does not have intruder dimensions and instead has a very similar curve to full fine-tuning. As
rank increases past a threshold and LoRA begins to resemble a high rank update, intruder dimensions
begin to disappear.

LoRA variants have intruder dimensions. We examine 4 other LoRA variants to ensure that our
findings do not only apply to vanilla LoRA. We examine AdaLoRA [Zhang et al., 2023], LoRA+
[Hayou et al., 2024], PiSSA [Meng et al., 2024], and VeRA [Kopiczko et al., 2024]. In all of these
cases, we find intruder dimensions with similar characteristics to vanilla LoRA (see Fig. 23). This
shows our findings hold to other variants. For more discussion about these methods, see Appendix P.

Intruder dimensions are distributed across both high and low singular values. We examine
the extent to which intruder dimensions exist throughout the entire weight matrix and how they are
distributed. To do this, we hold ϵ fixed and measure the number of intruder dimensions while varying
the proportion of the fine-tuned singular vectors that we examine (Appendix J, Fig. 15). Here, we can
see that LoRA consistently has more intruder dimensions than full fine-tuning, regardless of what
fraction of the singular values we examine. See Appendix J for more discussion.

Intruder dimensions increase in magnitude and change in direction as fine-tuning progresses.
To further understand how a particular intruder dimension is introduced during fine-tuning with
LoRA, we measure the maximum cosine similarity between the top individual fine-tuned singular
vectors and all the pre-trained singular vectors across many intermediate steps in the fine-tuning
process, as seen in Fig. 5 (left). In parallel, we track changes in their associated singular values
as seen in Fig. 5 (middle). As is evident from the graphs, intruder dimensions appear to gradually
increase their “rank" (left) as their singular value is increased (middle) while simultaneously changing
in direction too as training progresses.

Additional empirical observations. 1. We find that the random seed used by LoRA to initialize
its adapters plays no role in the resulting structure (see Appendix O). 2. We observe that the total
number of intruder dimensions increases linearly with respect to the size of the fine-tuning dataset up
to a certain point before saturating (Appendix K). 3. We study the effective rank of these fine-tuning
updates (Appendix I). However, we find that this measure does not suffice to explain the behavioral
differences we observe in LoRA and full fine-tuning. Also, it is important to note that even if it had,
its global nature would prevent the precise examinations we conduct in future sections, like in Fig. 8.

Experimental and theoretical justification for why intruder dimensions occur. It is important
to note that intruder dimensions are an empirical observation of LoRA. We find that a variety of
factors play a role in the introduction of intruder dimensions. In the next section, we present results
that suggest that learning rate and LoRA’s α contribute to intruder dimensions. In the appendix, we
present findings that suggest that tuning the B matrix only leads to fewer intruder dimensions (B.5),
and demonstrate how the addition of orthogonal vectors to the pre-trained weight matrix models the
introduction of intruder dimensions well (B.2).

4 Model Differences: Forgetting and Out-of-Distribution Generalization

LoRA forgets less. We measure the change in out of distribution performance (forgetting) induced by
fine-tuning. For LLaMA2-7B, we follow Biderman et al. [2024] and measure forgetting as the average
score on Hellaswag [Zellers et al., 2019], WinoGrande [Sakaguchi et al., 2021], Arc-Challenge [Clark
et al., 2018]. For RoBERTa-base, we measure its “pseudo-loss”, which is analogous to language
modelling loss for encoder-only models, as described by Salazar et al. [2020] on a sample of its
pre-training dataset (as described by Liu et al. [2019]). Going forward, we refer to these values
as “forgetting” and report them in Fig. 6. We observe that across all tasks, full fine-tuning forgets
more of its pre-training language modeling ability in comparison to LoRA. Importantly, all our
RoBERTa-base models fine-tune to equivalent accuracy on the downstream task (Table 2). This
extends the finding that LoRA forgets less [Biderman et al., 2024] to the case where LoRA and full
fine-tuning have equal fit, showing that LoRA forgetting less is not simply a function of it underfitting
the fine-tuning task in comparison to full fine-tuning (like in Biderman et al. [2024]), but rather a
characteristic of LoRA itself.

6



(a) LLaMA2-7B. (b) RoBERTa-base.

Figure 6: LoRA forgets less, even with same fit to fine-tuning task. For LLaMA2-7B, forgetting is measured
on unrelated tasks, as described in Biderman et al. [2024]. For RoBERTa, Pseudo loss on a sample of its
pre-training distribution measured as described by Salazar et al. [2020]. In both, LoRA forgets less than full
fine-tuning.

Figure 7: As training progresses, models with growing amount of intruder dimensions continue to forget
more, despite non-increasing test performance. We also measure a strong correlation(ρ = 0.971, p-value
≪ 0.001) between number of intruder dimensions and pre-training pseudo loss. Bigger learning rates lead to
more intruder dimensions and forgetting.

LoRA α impacts generalization and intruder dimensions. For our experiments, we use the
commonly used α = 2r [Biderman et al., 2024] as well as α = 8 [Hu et al., 2021]. For both settings
of α, models obtain equivalent performance on the target task (Tables 1 & 2). However, when α = 8,
all ranks of LoRA—even very large ones—exhibit intruder dimensions (Fig. 19a), have a much
smaller effective rank than when α = 2r (Appendix I), and have much worse generalization (more
forgetting, Fig. 20). Models trained with α = 2r have fewer intruder dimensions and generalize
better. This provides additional evidence highlighting the importance of using α = 2r [Kalajdzievski,
2023, Biderman et al., 2024], particularly for higher ranks of LoRA.

An increase in intruder dimensions leads to an increase in forgetting. We do a learning rate sweep
for RoBERTa-base with LoRA r = 8 on MNLI to observe its impact. Across epochs, we measure
the number of intruder dimensions, test accuracy, and forgetting (pre-training loss). We report the
results of these models and our baseline full fine-tuning model in Fig. 7. We observe that across
and within training runs, as the number of intruder dimensions increase, forgetting (meaning worse
generalization) also increases. Test accuracy has no such relation. Separately, we see that for large
learning rates with many intruder dimensions, LoRA models forget more than full fine-tuning. This
shows that while LoRA in general does forget less than full fine-tuning, it is not a guarantee.

Intruder dimensions strongly correlate with forgetting. When we measure the Spearman correla-
tion between the number of intruder dimensions with forgetting in Fig. 7, we find an extremely strong
fit(ρ = 0.971, p-value≪ 0.001). When measuring the same for our LLaMA2-7B models across
training epochs (Fig. 11), we still find a strong and still statistically significant relationship (ρ = 0.59,
p-value = 0.0006). In contrast, when measuring the correlation between intruder dimensions and test
accuracy, we find no statistically significant relationship: for RoBERTa, we measure ρ = −0.3381 &
p-value = 0.218. For LLaMA2-7B, we measure ρ = −0.3178 & p-value = 0.0869. See Appendix G
for more information. These results suggest that intruder dimensions are clearly linked with forgetting
but are not necessary for performance. We examine this claim and whether this relationship is causal
in the next section.

7



(a) LLaMA2-7B
on code with r=16.

(b) LLaMA2-7B
on math with r=16.

(c) RoBERTa-base
on MNLI with r=8.

(d) RoBERTa-base
on QQP with r=8.

Figure 8: Scaling down intruder dimensions in fine-tuned models reduces forgetting but not performance.
We scale the top intruder dimension in each matrix such that W = W0+∆W +(λ−1)uiσiv

T
i . Lines represent

forgetting (red) and learning (green). Dotted lines represent pre-trained baselines. Axis Labels: Green: Test
Accuracy (%). Red: Pre-training Loss (Forgetting).

5 Intruder Dimensions Cause Forgetting

Previously, we observed that the number of intruder dimensions correlates strongly with forgetting.
Do intruder dimensions cause this forgetting?

Scaling the magnitude of intruder dimensions. To test if intruder dimensions cause increased
forgetting, we must intervene on intruder dimensions and see the impact. We do this by finding the
highest ranked (by singular value) intruder dimension in each weight matrix and scale its contribution
such that the new weight matrix is W = W0 +∆W + (λ− 1)uiσiv

T
i , where i is the index of the

top intruder dimension (λ = 0 is removal and λ = 1 is no change). We sweep λ′s between 0 and 1,
scale the intruder dimensions, and measure test accuracy and pre-training loss. For a comparison
baseline, we select the neighbor of the intruder dimension to separately scale. See Fig. 8 for results
(and Figs. 12& 13 for full results.)

Scaling down intruder dimensions reduces forgetting. In Fig. 8, we show that when we scale down
the top intruder dimension of each weight matrix, we measure a significant reduction in forgetting
(pre-training loss) while incurring a minimal drop in test accuracy. For all examples in Fig. 8, we
observe that when using λ = 0.7 or 0.9, there is almost no impact on fine-tuning performance, while
there is a large percentage drop in forgetting (See Tables 3&4). In one example for LLaMA2-7B
fine-tuned on MetaMath with LoRA r = 256, we observe that scaling the top intruder dimension in
each matrix with λ = 0.3 leads to a 0.1% drop in test accuracy and a 33.3% drop in the forgetting
induced by fine-tuning. In another for RoBERTa-base fine-tuned on QQP, using λ = 0.7 leads to
equivalent in test accuracy and a 33.2% reduction in the forgetting induced by fine-tuning. In certain
scenarios, we even see test accuracy improve along with a drop in forgetting. If we instead increase
their contribution (λ > 1), we observe more forgetting. Across the board, scaling down intruder
dimensions seems to have little impact on test accuracy but a major impact on forgetting. This
pattern is exclusive to intruder dimensions (Fig. 12): if we instead intervene on pre-trained singular
vectors that have a similar singular value to the intruder dimension (ensuring similar contributions to
matrix) and scale their magnitude down, we see that forgetting goes up. These results indicate that
the forgetting observed in LoRA is caused by intruder dimensions interfering with the pre-trained
language modeling capabilities. Moreover, the scale (singular value) of these intruder dimensions is
not essential for the fine-tuning task performance. See Appendix H for further discussion.

Continual Learning Setup. To examine a practical example of how accumulating intruder dimen-
sions, which cause forgetting, may impact performance, we study continual learning, since it requires
learning and remembering across a range of tasks. To do this, we train RoBERTa sequentially on
multiple tasks and measure performance as new tasks are learned. We use the same training recipe
and datasets as before but now sequentially in the following dataset order: MNLI, QQP, SST-2,
SIQA, WinoGrande, FEVER. After training on a certain dataset in the sequence, we merge the LoRA
weights into the model and reinitialize the LoRA adapter before training on the next task. After
training on a specific task, we test on all tasks by, for each task, separately retraining its classification
head before testing on its test set. Results are shown in Fig. 9a.

Accumulating intruder dimensions hurts LoRA models during continual learning. In Fig. 9a,
initially both LoRA and full fine-tuning train to equal performance (MNLI), which is consistent with

8



(a) Continual learning results.

(b) Similarity matrices for LoRA r=8 during continual learning.

(c) Similarity matrices for full fine-tuning during continual learning.

Figure 9: Full fine-tuning is better than LoRA at continual learning because of accumulating intruder
dimensions. When sequentially training on six tasks, full fine-tuning retains performance better than LoRA. in
Fig. 9a, horizontal dotted line indicates baseline pre-trained performance. Vertical solid line indicates when a
specific dataset is fine-tuned on. Gray region represents performance before the model has been trained on that
task. See Appendix M, Fig. 17 for more. In Figs. 9b&9c, we see that LoRA accumulates intruder dimensions
across tasks and contributes to its degrading performance, whereas full fine-tuning does not.

our previous observations. However, we observe that all ranks of LoRA degrade much more rapidly
than full fine-tuning. Low ranks of LoRA, which have the most intruder dimensions, degrade the
most. We attribute this divergence from earlier results—where LoRA appeared to forget less—to the
accumulation of intruder dimensions during continual learning, which drive forgetting. To show this,
we visualize how intruders are added across tasks in Fig. 9b. Here, we see that each task adds its own
intruder dimensions leading to a large amount of intruder dimensions upon the completion of the
six task continual learning experiment. In contrast, in Fig. 9c, we see that full fine-tuning retains the
pre-trained structure well justifying why full fine-tuning forgets less during continual learning.

Implications and prescriptions in fine-tuning. These findings suggest several implications and
prescriptions during LoRA fine-tuning. We have shown that intruder dimensions drive forgetting, and
therefore should be avoided when possible. Interestingly, this presents a data free model evaluation
method to examine which model is most overfit to the fine-tuning task (forgotten the most): given
two equally performing models on downstream test sets, you should select the one with fewer
intruder dimensions. Intruder dimensions appear to be a necessary part of fine-tuning, but they can
be mitigated. Further, these results show the danger of using LoRA during continual learning and
justifies using many different adapters without combining them, like advocated in Sheng et al. [2024].

6 Conclusion

This paper describes the finding that LoRA and full fine-tuning update different parts of the parameter
space resulting in distinct spectral properties: LoRA often introduces intruder dimensions—high-
ranking singular vectors dissimilar to those in pre-trained weights. These structural differences persist
across a series of ablations. Next, we find that models with fewer intruder dimensions exhibit better
out-of-distribution generalization and forget less of the pretraining distribution. Last, we show that
intruder dimensions cause increased forgetting: We show that reducing the magnitude of high ranking
intruder dimensions leads to minimal changes in test performance but a large drop in pretraining
loss. We show that this is particularly relevant during continual training: even though LoRA forgets
less than full fine-tuning after training on one task, sequentially training leads to an accumulation of
intruder dimensions that causes more forgetting than full-finetuning.

9



Acknowledgements

We would like to thank Jacob Portes and Dan Biderman for corresponding with us and releasing
their LLaMA-2 7B checkpoints for us to use. This enabled us to study a more comprehensive range
of models. We would also like to thank Leshem Chosen, Lucas Hennigen, Han Guo, Vighnesh
Subramaniam, Valerio Pepe, and the entire Language & Intelligence lab for their helpful feedback
on this work. This research was supported in part by the National Science Foundation under grant
IIS-2238240.

References
Armen Aghajanyan, Sonal Gupta, and Luke Zettlemoyer. Intrinsic Dimensionality Explains the

Effectiveness of Language Model Fine-Tuning. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers). Association for Computational Linguistics, August
2021. URL https://aclanthology.org/2021.acl-long.568.

Loubna Ben Allal, Niklas Muennighoff, Logesh Kumar Umapathi, Ben Lipkin, and Leandro von
Werra. A framework for the evaluation of code generation models. https://github.com/
bigcode-project/bigcode-evaluation-harness, 2022.

Dan Biderman, Jose Gonzalez Ortiz, Jacob Portes, Mansheej Paul, Philip Greengard, Connor Jen-
nings, Daniel King, Sam Havens, Vitaliy Chiley, Jonathan Frankle, Cody Blakeney, and John P.
Cunningham. LoRA Learns Less and Forgets Less. Transactions on Machine Learning Research,
2024. URL https://arxiv.org/abs/2405.09673.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code, 2021. URL https://arxiv.org/abs/2107.03374.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge,
2018. URL https://arxiv.org/abs/1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.org/
abs/2110.14168.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. QLoRA: Efficient Finetuning
of Quantized LLMs. In Advances in Neural Information Processing Systems, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics. Association for
Computational Linguistics, June 2019. URL https://aclanthology.org/N19-1423.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model evaluation
harness, 07 2024. URL https://zenodo.org/records/12608602.

10

https://aclanthology.org/2021.acl-long.568
https://github.com/bigcode-project/bigcode-evaluation-harness
https://github.com/bigcode-project/bigcode-evaluation-harness
https://arxiv.org/abs/2405.09673
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://aclanthology.org/N19-1423
https://zenodo.org/records/12608602


Sreyan Ghosh, Chandra Kiran Reddy Evuru, Sonal Kumar, Ramaneswaran S, Deepali Aneja, Zeyu
Jin, Ramani Duraiswami, and Dinesh Manocha. A Closer Look at the Limitations of Instruction
Tuning. In Proceedings of the 41st International Conference on Machine Learning. International
Conference on Machine Learning, 2024. URL https://arxiv.org/abs/2402.05119.

Aaron Gokaslan and Vanya Cohen. OpenWebText Corpus. http://Skylion007.github.io/
OpenWebTextCorpus, 2019.

Felix Hamborg, Norman Meuschke, Corinna Breitinger, and Bela Gipp. news-please: A Generic
News Crawler and Extractor. In Proceedings of the 15th International Symposium of Information
Science, pages 218–223, March 2017. doi: 10.5281/zenodo.4120316.

Yongchang Hao, Yanshuai Cao, and Lili Mou. Flora: Low-Rank Adapters Are Secretly Gradient Com-
pressors. In Proceedings of the 41st International Conference on Machine Learning. International
Conference on Machine Learning, 2024. URL https://arxiv.org/abs/2402.03293.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. LoRA+: Efficient Low Rank Adaptation of Large
Models, 2024. URL https://arxiv.org/abs/2402.12354.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-Rank Adaptation of Large Language Models. International
Conference on Learning Representations, 2021.

Hamish Ivison, Yizhong Wang, Valentina Pyatkin, Nathan Lambert, Matthew Peters, Pradeep Dasigi,
Joel Jang, David Wadden, Noah A. Smith, Iz Beltagy, and Hannaneh Hajishirzi. Camels in a
Changing Climate: Enhancing LM Adaptation with Tulu 2, 2023. URL https://arxiv.org/
abs/2311.10702.

Damjan Kalajdzievski. A Rank Stabilization Scaling Factor for Fine-Tuning with LoRA, 2023. URL
https://arxiv.org/abs/2312.03732.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
https://arxiv.org/abs/1412.6980.

V. Klema and A. Laub. The singular value decomposition: Its computation and some applications.
IEEE Transactions on Automatic Control, 25(2):164–176, 1980. doi: 10.1109/TAC.1980.1102314.

Soroush Abbasi Koohpayegani, KL Navaneet, Parsa Nooralinejad, Soheil Kolouri, and Hamed
Pirsiavash. NOLA: Compressing LoRA using Linear Combination of Random Basis. International
Conference on Learning Representations, 2024. URL https://arxiv.org/abs/2310.02556.

Dawid J. Kopiczko, Tijmen Blankevoort, and Yuki M. Asano. VeRA: Vector-based Random Matrix
Adaptation. International Conference on Learning Representations, 2024. URL https://arxiv.
org/abs/2310.11454.

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the Intrinsic Dimension
of Objective Landscapes. International Conference on Learning Representations, 2018. URL
https://arxiv.org/abs/1804.08838.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue
Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, João Monteiro,
Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee, Logesh Kumar
Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra Murthy, Jason
Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey, Zhihan Zhang,
Nour Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo Villegas,
Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee, Nadav Timor, Jennifer Ding, Claire
Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex Gu, Jennifer Robinson,
Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva Reddy, Daniel Fried,
Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean Hughes, Thomas Wolf, Arjun
Guha, Leandro von Werra, and Harm de Vries. Starcoder: may the source be with you!, 2023.
URL https://arxiv.org/abs/2305.06161.

11

https://arxiv.org/abs/2402.05119
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://arxiv.org/abs/2402.03293
https://arxiv.org/abs/2402.12354
https://arxiv.org/abs/2311.10702
https://arxiv.org/abs/2311.10702
https://arxiv.org/abs/2312.03732
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2310.02556
https://arxiv.org/abs/2310.11454
https://arxiv.org/abs/2310.11454
https://arxiv.org/abs/1804.08838
https://arxiv.org/abs/2305.06161


Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-Ting
Cheng, and Min-Hung Chen. DoRA: Weight-Decomposed Low-Rank Adaptation. In Proceedings
of the 41st International Conference on Machine Learning. International Conference on Machine
Learning, 2024. URL https://arxiv.org/abs/2402.09353.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A Robustly Optimized BERT Pretraining
Approach, 2019. URL https://arxiv.org/abs/1907.11692.

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and Benjamin
Bossan. PEFT: State-of-the-art Parameter-Efficient Fine-Tuning methods. https://github.
com/huggingface/peft, 2022.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. PiSSA: Principal Singular Values and Singular
Vectors Adaptation of Large Language Models, 2024. URL https://arxiv.org/abs/2404.
02948.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F Christiano, Jan Leike, and
Ryan Lowe. Training language models to follow instructions with human feedback. In Advances
in Neural Information Processing Systems, volume 35, 2022.

Keiran Paster, Marco Dos Santos, Zhangir Azerbayev, and Jimmy Ba. Openwebmath: An open dataset
of high-quality mathematical web text, 2023. URL https://arxiv.org/abs/2310.06786.

Olivier Roy and Martin Vetterli. The effective rank: A measure of effective dimensionality. In 2007
15th European Signal Processing Conference, pages 606–610, 2007.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. WinoGrande: an
adversarial winograd schema challenge at scale. Commun. ACM, 64(9):99–106, August 2021.
ISSN 0001-0782. doi: 10.1145/3474381. URL https://doi.org/10.1145/3474381.

Julian Salazar, Davis Liang, Toan Q. Nguyen, and Katrin Kirchhoff. Masked Language Model Scoring.
In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.
Association for Computational Linguistics, 2020. doi: 10.18653/v1/2020.acl-main.240. URL
http://dx.doi.org/10.18653/v1/2020.acl-main.240.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. Social IQa: Common-
sense Reasoning about Social Interactions. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun
Wan, editors, Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pages 4463–4473, Hong Kong, China, November 2019. Association for Computational
Linguistics. doi: 10.18653/v1/D19-1454. URL https://aclanthology.org/D19-1454.

Pratyusha Sharma, Jordan T. Ash, and Dipendra Misra. The Truth is in There: Improving Reasoning in
Language Models with Layer-Selective Rank Reduction. In The Twelfth International Conference
on Learning Representations, 2024. URL https://openreview.net/forum?id=ozX92bu8VA.

Ying Sheng, Shiyi Cao, Dacheng Li, Coleman Hooper, Nicholas Lee, Shuo Yang, Christopher Chou,
Banghua Zhu, Lianmin Zheng, Kurt Keutzer, Joseph E. Gonzalez, and Ion Stoica. S-lora: Serving
thousands of concurrent lora adapters, 2024. URL https://arxiv.org/abs/2311.03285.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng,
and Christopher Potts. Recursive Deep Models for Semantic Compositionality Over a Sentiment
Treebank. In David Yarowsky, Timothy Baldwin, Anna Korhonen, Karen Livescu, and Steven
Bethard, editors, Proceedings of the 2013 Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1631–1642, Seattle, Washington, USA, October 2013. Association for
Computational Linguistics. URL https://aclanthology.org/D13-1170.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford Alpaca: An Instruction-following LLaMA model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

12

https://arxiv.org/abs/2402.09353
https://arxiv.org/abs/1907.11692
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://arxiv.org/abs/2404.02948
https://arxiv.org/abs/2404.02948
https://arxiv.org/abs/2310.06786
https://doi.org/10.1145/3474381
http://dx.doi.org/10.18653/v1/2020.acl-main.240
https://aclanthology.org/D19-1454
https://openreview.net/forum?id=ozX92bu8VA
https://arxiv.org/abs/2311.03285
https://aclanthology.org/D13-1170
https://github.com/tatsu-lab/stanford_alpaca


James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal. FEVER: a Large-
scale Dataset for Fact Extraction and VERification. In Marilyn Walker, Heng Ji, and Amanda Stent,
editors, Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages
809–819, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi:
10.18653/v1/N18-1074. URL https://aclanthology.org/N18-1074.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. LLaMA: Open and Efficient Foundation Language
Models, 2023a. URL https://arxiv.org/abs/2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open Foundation and Fine-Tuned Chat Models,
2023b. URL https://arxiv.org/abs/2307.09288.

Trieu H. Trinh and Quoc V. Le. A Simple Method for Commonsense Reasoning, 2019. URL
https://arxiv.org/abs/1806.02847.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding. In
International Conference on Learning Representations, 2019. URL https://openreview.net/
forum?id=rJ4km2R5t7.

Hanqing Wang, Yixia Li, Shuo Wang, Guanhua Chen, and Yun Chen. Milora: Harnessing minor
singular components for parameter-efficient llm finetuning, 2024. URL https://arxiv.org/
abs/2406.09044.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Empowering
Code Generation with OSS-Instruct. In Proceedings of the 41st International Conference on
Machine Learning. International Conference on Machine Learning, 2024. URL https://arxiv.
org/abs/2312.02120.

Adina Williams, Nikita Nangia, and Samuel Bowman. A Broad-Coverage Challenge Corpus for
Sentence Understanding through Inference. In Marilyn Walker, Heng Ji, and Amanda Stent,
editors, Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages
1112–1122, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi:
10.18653/v1/N18-1101. URL https://aclanthology.org/N18-1101.

Zhengxuan Wu, Aryaman Arora, Zheng Wang, Atticus Geiger, Dan Jurafsky, Christopher D. Manning,
and Christopher Potts. ReFT: Representation Finetuning for Language Models, 2024. URL
https://arxiv.org/abs/2404.03592.

Wenhan Xia, Chengwei Qin, and Elad Hazan. Chain of LoRA: Efficient Fine-tuning of Language
Models via Residual Learning. In Proceedings of the 41st International Conference on Machine
Learning. International Conference on Machine Learning, 2024. URL https://arxiv.org/
abs/2401.04151.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng YU, Zhengying Liu, Yu Zhang, James Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. MetaMath: Bootstrap Your Own Mathematical Questions for
Large Language Models. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=N8N0hgNDRt.

13

https://aclanthology.org/N18-1074
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/1806.02847
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://arxiv.org/abs/2406.09044
https://arxiv.org/abs/2406.09044
https://arxiv.org/abs/2312.02120
https://arxiv.org/abs/2312.02120
https://aclanthology.org/N18-1101
https://arxiv.org/abs/2404.03592
https://arxiv.org/abs/2401.04151
https://arxiv.org/abs/2401.04151
https://openreview.net/forum?id=N8N0hgNDRt


Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence?, 2019. URL https://arxiv.org/abs/1905.07830.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.net/
forum?id=lq62uWRJjiY.

Jiacheng Zhu, Kristjan Greenewald, Kimia Nadjahi, Haitz Sáez de Ocáriz Borde, Rickard Brüel
Gabrielsson, Leshem Choshen, Marzyeh Ghassemi, Mikhail Yurochkin, and Justin Solomon.
Asymmetry in Low-Rank Adapters of Foundation Models. In ICLR 2024 Workshop on Mathe-
matical and Empirical Understanding of Foundation Models, 2024. URL https://openreview.
net/forum?id=PHrrbfrMEl.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and
Sanja Fidler. Aligning Books and Movies: Towards Story-Like Visual Explanations by Watching
Movies and Reading Books. In The IEEE International Conference on Computer Vision (ICCV),
December 2015.

Terry Yue Zhuo, Armel Zebaze, Nitchakarn Suppattarachai, Leandro von Werra, Harm de Vries,
Qian Liu, and Niklas Muennighoff. Astraios: Parameter-Efficient Instruction Tuning Code Large
Language Models, 2024. URL https://arxiv.org/abs/2401.00788.

14

https://arxiv.org/abs/1905.07830
https://openreview.net/forum?id=lq62uWRJjiY
https://openreview.net/forum?id=lq62uWRJjiY
https://openreview.net/forum?id=PHrrbfrMEl
https://openreview.net/forum?id=PHrrbfrMEl
https://arxiv.org/abs/2401.00788


A Limitations

While we gather a diverse set of model (across sizes and types) and task types, it is always possible
for findings to fail to hold for even larger models or in different scenarios. However, we have no
reason to believe this is the case. Further, we point out that we lack the compute required to be able
to fine-tune larger models.

B Why do intruder dimensions exist & can we alleviate them?

Here, we discuss possible causes of intruder dimensions.

B.1 What do intruder dimensions do?

Conjecture: Intruder dimensions, as high-ranking singular vectors, contribute significantly to
the norm and stability of the parameter matrix. In contrast to pre-trained singular vectors that are
learned from large pre-training corpora, LoRA introduces intruder dimensions learned solely from
the smaller dataset of the fine-tuning task, which overpower the pre-trained vectors, as seen in the
experiments so far. This suggests that these intruder dimensions are very task specific. On the other
hand, full fine-tuning, while adapting just as effectively to the fine-tuning task, retains the spectral
properties of the pre-trained model effectively. Our experiments that scale down intruder dimensions
provide evidence for the claim that intruder dimensions are specialized to the fine-tuning task, since
we observe that increasing the norm of an intruder dimension (using λ > 1) leads to little change in
adaptation task performance but leads to a significant increase in forgetting (pre-training loss).

B.2 Adding a random vector

Adding an random vector to a pre-trained matrix introduces an intruder dimension: To help
provide intuition about how new singular vectors in the SVD can be added by LoRA, we examine
mathematical conditions that lead to their creation. Certainly, when comparing SVD(W + λvvT )
and SVD(W ), where W are the pre-trained weights in Rn×n, v is a randomly sampled vector in Rn,
and λ is a scalar value greater than the largest singular value of W , we expect this update to create an
intruder dimension (as v is nearly orthogonal to the existing singular vectors w.h.p.).

B.3 Differences in update rule

As described in Appendix F, LoRA and full fine-tuning have characteristically different update rules,
even for the same training examples. We highlight that LoRA has gradients projected into a low-rank
space [Hao et al., 2024], leading to conditions similar to the toy example in section B.2 above.

B.4 Impact of learning rate on intruder dimensions.

We study the impact learning rate has on intruder dimensions by sweeping a range of learning rates
while keeping all other hyperparameters fixed for LoRA r = 8 and fine-tune on MNLI. Across
training epochs, we report the number of intruder dimensions, test accuracy, and pre-training loss
(Fig. 7). Across models, we see they have similar test accuracies after 5 epochs but very different
numbers of intruder dimensions. We note that small learning rates do not converge as fast as the ones
we tested and have difficulty reaching the maximum performance that larger learning rates are able to
reach. We see that as we increase learning rate, the number of intruder dimensions also increases
(left, Fig. 7). This illustrates a tradeoff in the selection of learning rate of LoRA: picking a larger
learning rate may lead to faster convergence and potentially better test accuracy with more intruder
dimensions and drift in overall language modeling performance, while smaller learning rates may
lead to less drift but potentially lower test accuracy.

Because of this experiment, one may dispute our findings with the claim that they are due to
our specific selection of hyperparameters. Therefore, we find it important to note that we adopt
hyperparameters from prior literature [Hu et al., 2021], default settings in common machine learning

15



Figure 10: Impact of only tuning B on the number of intruder dimensions. We randomly initialize
A such that it has singular values of 1, freeze it, and only train B. When we do this, we see a sharp
reduction in high ranking intruder dimensions in comparison to those in normal LoRA (reported in
Fig. 4d). Graphs for a specific dataset have the same range as Fig. 4d for easy comparison.

libraries2, and also study externally trained open-sourced models. This means that our findings are a
reflection of common practices and not due to a selection bias by us. Learning rates used by prior
work were likely determined based on a variety of factors like speed of convergence and best resulting
test accuracy and therefore selected large learning rates that still converge well but coincidentally
result in intruder dimensions.

B.5 Matrix product parameterization of LoRA

Multiplying matrices together amplifies their spectral differences (their singular values) and in most
cases leads to a lower effective rank. To test the impact of the product BA on the introduction of
intruder dimensions, we randomly initialize A such that all its singular values are 1 and freeze it. We
only tune B and keep the rest of our fine-tuning recipe the same. Comparing this with vanilla LoRA is
fair because Zhu et al. [2024] found that tuning B is more impactful and important for generalization
in comparison to A and Hao et al. [2024] showed that only tuning B effectively approximates LoRA.
As we can see in Fig. 10, we see a sharp drop in the number of high ranking intruder dimensions
when only tuning B in comparison to the vanilla LoRA case where we train A and B separately, as
reported in Fig. 4. This suggests that the matrix product of LoRA is an important component in the
introduction of intruder dimensions because of how it amplifies the spectral differences of B and A.

C Implementation Details

C.1 Evaluation details

We follow the precedence of Biderman et al. [2024] when evaluating LLaMA2-7B: When fine-tuned
on code, we evaluate on HumanEval [Chen et al., 2021] using the bigcode-eval-harness [Ben Allal
et al., 2022]. When fine-tuned on math, we evaluate on GSM8K [Cobbe et al., 2021] using the
lm-eval-harness [Gao et al., 2024]. On both, we evaluate task forgetting by evaluating on Hellaswag,
WinoGrande, and Arc-Challenge using the lm-eval-harness [Gao et al., 2024].

We measure language modeling loss for all our LLaMA2-7B models on a random sample of its
pre-training data distribution, according to Touvron et al. [2023b]. We measure “pseudo-loss” for all
our fine-tuned RoBERTa models on a random sample of the four datasets that RoBERTa used for
pre-training(OpenWebText [Gokaslan and Cohen, 2019], CCNews [Hamborg et al., 2017], Stories
[Trinh and Le, 2019], and bookcorpus [Zhu et al., 2015]) and weigh them proportionally to their
contribution as described by Liu et al. [2019].

C.2 Compute Resources

All experiments were run on an internal, shared 8xA100-SXM4-80GB machine. All RoBERTa-base
fine-tuning runs required a single A100 GPU. All evaluations and analyses also required a single A100
GPU. Many experiments were run sequentially due to need to share these computing resources. Due
to these constraints, instead of fine-tuning our own LLaMA2-7B models, we use publicly released
fine-tuned models. For more information on these models, see Section L. Each RoBERTa-base

2PEFT, the most popular LoRA library, use learning rates ≥ 1e-3 in their tutorials and states “With LoRA-like
methods, you can afford to use a higher batch size and learning rate." [Mangrulkar et al., 2022].

16



fine-tune run takes at most 6 hours on a single GPU. Evaluating an arbitrary LLaMA2-7B model for
both test accuracy and forgetting takes about 45 minutes on a single GPU.

C.3 RoBERTa fine-tuning details

We generally follow the procedure used by Hu et al. [2021]. For all models, we use a linear learning
rate schedule with 0.06 linear warmup ratio and train for a maximum of 5 epochs with batch size 16.
We use the Adam optimizer [Kingma and Ba, 2017] with no weight decay and a maximum sequence
length of 512. We fine-tune all linear layers besides the embedding matrix. For full fine-tuning,
we use a learning rate of 1e-5. For LoRA, we set α = 2r, and train for all ranks in {1, 2, 4, 8,
16, 64}. We hold the “total learning rate of LoRA", which is α ∗ η, fixed as we sweep rank such
that this product always equals 2.4e-3. We fine-tune these models to equivalent accuracy on their
downstream task. We fine-tune on six sequence classification tasks: sentiment analysis [Socher et al.,
2013], entailment [Williams et al., 2018], duplicate identification [Wang et al., 2019], fact verification
[Thorne et al., 2018], and common sense reasoning [Sap et al., 2019, Sakaguchi et al., 2021].

D Model Accuracies

We report the accuracies that our RoBERTa models achieve in Table 1 and Table 2. Our main results
are based on the models in Table 2.

Model Type MNLI SST-2 QQP WinoGrande SIQA FEVER

RoBERTa-base

Full 0.8745 0.9438 0.9152 0.6582 0.6499 0.6892
r=1 0.8647 0.9358 0.9045 0.6251 0.672 0.6712
r=2 0.8604 0.9415 0.9058 0.6172 0.6581 0.6673
r=4 0.8607 0.9369 0.9079 0.6472 0.6505 0.6694
r=8 0.8648 0.9438 0.9108 0.6417 0.6586 0.6582

r=16 0.8604 0.9427 0.9095 0.6235 0.6853 0.663
r=64 0.8671 0.9484 0.9117 0.6614 0.6638 0.6601

Table 1: Model accuracies on their given downstream task after fine-tuning for α = 8.

Model Type MNLI SST-2 QQP WinoGrande SIQA FEVER

RoBERTa-base

Full 0.8745 0.9438 0.9152 0.6582 0.6499 0.6892
r=1 0.8677 0.9415 0.9042 0.6275 0.6418 0.687
r=2 0.869 0.945 0.9054 0.6551 0.6438 0.6822
r=4 0.8698 0.9472 0.9089 0.6361 0.6602 0.6827
r=8 0.8704 0.9472 0.9093 0.6346 0.6607 0.6928

r=16 0.8739 0.9461 0.9093 0.6417 0.6571 0.6924
r=64 0.8719 0.9472 0.9061 0.6212 0.6167 0.6864

Table 2: Model accuracies on their given downstream task after fine-tuning for α = 2r. Our main
results are based on these models.

E Cosine Similarity with Orthogonal Vectors that Span a Space

Here we demonstrate why it is possible for a vector to have low cosine similarity with every orthogonal
vector that collectively span a space if the dimensionality of the vectors is high.

Minimizing the Maximum Cosine Similarity. Lets take Z = min
v∈Rn

max
i

cos(v, xi), where v is an

arbitrary vector and each vector xi, which we collectively call X , make up an orthonormal basis that
span the space. Z can be small in a high dimensional space.

2-D case. Assume X = I without loss of generality. It is trivial to see that Z = 1√
2

, and is when

v =
[

1√
2

1√
2

]
.

17



3-D case. Assume X = I without loss of generality. Z = 1√
3

when v =
[

1√
3

1√
3

1√
3

]
.

N-D case. In the N-D case, we can see, via induction, that Z = 1√
n

.

As we can see here, if n is large, the value of Z will be low, even though we are doing the cosine
similarity of a vector with respect to a set of orthonormal vectors that span a space.

F Derivation of LoRA Adapter’s Gradients

Our calculations were derived independently but follow a similar line to that of Hao et al. [2024].

Derivation for Full Fine-tuning. Full fine-tuning is structured such that

Y = WtunedX = (W0 +∆W )X,

where X ∈ Rn×b are the inputs, Y ∈ Rm×b are the outputs, W0 ∈ Rm×n are the pre-trained weights,
and ∆W ∈ Rm×n is the fine-tuning update. Accordingly, ∂L

∂∆W = ∂L
∂Y XT , and the update is

∆Wn = ∆Wn−1 − η
∂L

∂Y n
XT

n ,

where η is the learning rate.

Derivation for LoRA. LoRA is structured such that

Y = WtunedX = (W0 +
α

r
BA)X,

where X ∈ Rn×b are the inputs, Y ∈ Rm×b are the outputs, W0 ∈ Rm×n are the pre-trained weights,
B ∈ Rm×r is initialized to zero, A ∈ Rr×n is randomly initialized, and α is a hyperparameter.
Accordingly, ∂L

∂B = α
r

∂L
∂Y XTAT and ∂L

∂A = α
rB

T ∂L
∂Y XT . Therefore, their respective updates are

Bn = Bn−1 − η
α

r

∂L

∂Y
XTAT

and

An = An−1 − η
α

r
BT ∂L

∂Y
XT ,

where η is the learning rate.

Differences in First Step. During the very first step of training, given identical examples both full
fine-tuning and LoRA have the same X and Y for each layer since B is initialized to zero. After the
first step, full fine-tuning has a update matrix equal to

∆Wfull = −η
∂L

∂Y
XT .

In contrast, LoRA has an update matrix equal to

∆Wlora = (
α

r
)(B0 − η

α

r

∂L

∂Y
XTAT

0 )(A0 − η
α

r
BT

0

∂L

∂Y
XT ).

Since B0 = 0,

∆Wlora = (
α

r
)(−ηα

r

∂L

∂Y
XTAT

0 )(A0).

From this, we can see that the gradient steps are clearly different, even with the same training
examples.

18



Figure 11: For LLaMA2-7B, intruder dimensions correlate with forgetting. Top row: MetaMath.
Bottom row: Magicoder. We display intruder dimensions vs test accuracy and intruder dimensions vs
forgetting.

G Intruder Dimensions Correlate with Forgetting

G.1 For RoBERTa

As mentioned in the main text, when measuring the Spearman correlation between the number of
intruder dimensions and forgetting in Fig. 7 we find an extremely strong fit, with ρ = 0.971 and
p-value ≪ 0.001. This shows us that intruder dimensions strongly correlate with forgetting. In
contrast, when we correlate intruder dimensions with performance, we find no such correlation: for
RoBERTa, we measure ρ = −0.3381 with p-value = 0.218.

G.2 LLaMA2-7B

When measuring the Spearman correlation between number of intruder dimensions and forgetting for
our LLaMA2-7B models across training epochs (Fig. 11 (middle)), we find a statistically significant
relationship with ρ = 0.59 and p-value = 0.0006. When correlating intruder dimensions and test
accuracy (Fig. 11 (left)), we instead measure ρ = −0.3178 with p-value = 0.0869. Again, we see
that intruder dimensions correlates with forgetting.

H Intruder Dimensions Cause Forgetting (Scaling Experiments)

H.1 Performance Differences When Scaling Down Intruder Dimensions

H.1.1 RoBERTa

We report our findings for RoBERTa models fine-tuned on MNLI, QQP, and FEVER in Table 3.
Remember that we scale down using the equation W = W0 +∆W + (λ− 1)uiσiv

T
i . Here, we see

that scaling down intruder dimensions leads to a sharp drop in forgetting (pre-training loss) and a
much smaller drop in test accuracy. Scaling down an intruder dimension by two (λ = 0.5) results
always leads to less than a two percent drop in test accuracy but double digit percentage drops in
forgetting. One particularly compelling example, as shown in Fig. 8d, shows how scaling down
the top intruder dimensions with λ = 0.7 when fine-tuning on QQP and using LoRA r=8 result in
essentially no (0.0%) drop in adaptation performance but a large (-33.2%) drop in forgetting. Our
findings of the impact of scaling down intruder dimensions hold across three datasets and both LoRA
r=1 and r=8, which were the two ranks that we found to have many intruder dimensions. Note that

19



this experiment is meaningless if a model has no intruder dimensions, since no singular vectors will
be removed.

Task LoRA λ = 0.1 λ = 0.3 λ = 0.5 λ = 0.7 λ = 0.9
Rank TA PTL TA PTL TA PTL TA PTL TA PTL

MNLI r=1 -18.7 -13.3 -8.3 -14.5 -2.7 -13.7 -0.6 -11.0 0.0 -5.1
r=8 -5.1 -24.7 -1.9 -23.1 -0.6 -19.8 -0.2 -14.5 0.0 -5.9

QQP r=1 -8.6 -35.5 -4.4 -35.8 -1.6 -34.1 -0.4 -28.9 0.1 -14.6
r=8 -3.3 -52.0 -1.6 -50.6 -0.6 -45.0 -0.0 -33.2 0.1 -13.0

FEVER r=1 -11.1 -10.3 -4.2 -11.8 -0.4 -11.1 0.6 -8.7 0.6 -3.8
r=8 -5.6 -14.6 -1.0 -15.3 0.7 -13.4 1.3 -9.7 0.6 -4.0

Table 3: Impact of scaling RoBERTa-base’s intruder dimensions on test accuracy (TA) and pre
training loss (PTL). Numbers reported are the percent change in test accuracy and percent reduction
in forgetting induced by fine-tuning. Scaling down intruder dimensions leads to less forgetting.
On RoBERTa. PTPL is Pre-training loss and TA is test accuracy. Both are reported as percent change
with respect to the unchanged fine-tuned model. Scaling down intruder dimensions has large impact
on forgetting but little impact on test accuracy.

H.1.2 LLaMA2-7B

Our finding that scaling down intruder dimensions leads to less forgetting but similar test accuracy
holds to LLaMA2-7B. One particularly interesting example is for LLaMA2-7B fine-tuned on Meta-
Math with r = 256: when scaling the top intruder dimensions down with λ = 0.5, we see a large
drop (-25.2%) in forgetting and an increase (+1.8%) in test accuracy.

Dataset LoRA λ = 0.3 λ = 0.5 λ = 0.7 λ = 0.9
Rank TA PTL TA PTL TA PTL TA PTL

MetaMath
r=16 -15.0 -46.5 -6.6 -40.4 -2.7 -28.2 0.0 -10.5
r=64 -5.8 -29.1 -4.4 -22.3 0.3 -14.2 0.3 -4.9

r=256 -0.1 -33.3 1.8 -25.2 0.5 -15.5 -0.8 -5.2

Magicoder
r=16 -1.6 -37.5 -0.6 -24.4 -0.1 -13.2 0.1 -4.1
r=64 -5.0 -12.7 -3.3 -8.3 0.3 -4.3 2.2 -1.4

r=256 -4.3 -12.8 -1.3 -10.2 -0.9 -7.0 -1.6 -2.8
Table 4: Impact of scaling LLaMA2-7B’s intruder dimensions on test accuracy (TA) and pre
training loss (PTL). Numbers reported are the percent change in test accuracy and percent reduction
in forgetting induced by fine-tuning.

H.2 Intruder Dimensions Cause Worse OOD Performance

As we discussed in section 5 of the main text, for LoRA models with main intruder dimensions (r = 1
and r = 8 in our experiments) we measure the impact of intruder dimensions by identifying and
scaling the top intruder dimension in every weight matrix such that W = W0+∆W +(λ−1)uiσiv

T
i ,

where i is the index of the top intruder dimension (note that λ = 0 is removal, λ = 1 is no change,
and λ = 2 doubles the intruder dimension). For our RoBERTa models fine-tuned on MNLI, QQP,
and FEVER, we use λ ∈ {0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0} and for each measure the test accuracy and
pre-training loss. For a comparison baseline, we select the neighbor of the intruder dimension to
separately scale.

We report these results in Fig. 12a (MNLI), Fig. 12b (QQP), and Fig. 12c (FEVER). We find that
when scaling down intruder dimensions (λ < 1), we observe a clear and significant drop in forgetting
(pre-training loss) but a negligible drop in test accuracy (adaptation). When we instead scale up
intruder dimensions (λ > 1), we observe that forgetting increases significantly. We observe that when
scaling up top intruder dimensions by 50% (λ = 1.5), adaptation performance remains relatively
flat with a large increase in forgetting, providing further evidence that intruder dimensions are task
specific. These trends hold across all 6 models we study (3 datasets with two different LoRA ranks).

In contrast, when we scale a neighboring (pre-trained) singular vector of intruder dimensions instead,
we observe starkly different behaviors. When scaling down (λ < 1) these pre-trained singular vectors,

20



(a) RoBERTa-base fine-tuned on MNLI. (b) RoBERTa-base fine-tuned on QQP.

(c) RoBERTa-base fine-tuned on FEVER.

Figure 12: Scaling RoBERTa-base’s intruder dimensions. We scale the top intruder dimension
in each matrix by λ, a multiplicative constant, such that W = W0 +∆W + (λ− 1)uiσiv

T
i . Using

λ < 1 leads to a large drop in pre-training loss while only slightly impacting the test accuracy. For
Figs. 12a, 12b, and 12c, we also scale the intruder dimension’s neighbor, which is a pre-trained
singular vector. Changing these vectors negatively impacts both pre-training loss and test accuracy.

we observe we see that forgetting sharply increases and adaptation performance drops more sharply
than when scaling intruders instead. When scaling up (λ > 1) these pre-trained singular vectors, we
observe similar drops in forgetting and adaptation performance. This is likely because pre-trained
singular vectors are well tuned for language modeling, and therefore any change to them will have
negative downstream impacts on performance. This shows that are observations are not due to
the robustness of the model to scaling down specific singular vectors, but rather the difference in
contribution to model performance of intruder dimensions vs. pre-trained singular vectors.

Here, we clarify some possible points of confusion. We only scale the top intruder dimension in each
weight matrix, if and only if an intruder exists in that matrix, so even when λ = 0 we do not recover
the pre-trained model because not all weight matrices have intruder dimensions and it is possible
for multiple intruder dimensions to exist in a weight matrix if LoRA r > 1. Furthermore, intruder
dimensions are not perfectly orthogonal to the pre-trained singular vectors. Due to the orthogonality
constraint imposed by the SVD, all singular vectors will be changed slightly in the matrix, so that
even when we remove the intruder dimension, the resulting matrix will be slightly different. These
reasons are why when λ = 0 our LoRA r = 1 models do not return to baseline performance.

These findings hold to LLaMA2-7B: in Fig 13, we see that scaling down intruder dimensions leads to
much less forgetting but similar test accuracy.

21



Figure 13: Scaling down LLaMA2-7B’s intruder dimensions leads to less forgetting and nearly
equivalent test accuracy.

I The Effective Rank of the Update Matrix Depends on Alpha

Kalajdzievski [2023] found that LoRA can have gradient collapse when rank is high if alpha is not set
properly. Biderman et al. [2024] found that setting α = 2r is very important for the performance of
high rank LoRA. In this section, we provide additional evidence of the importance of setting α = 2r
and show that if α is held fixed, high rank LoRA converges to low rank solutions. To do this, for
both α = 2r and α = 8, we measure the effective rank [Roy and Vetterli, 2007] of the weight matrix
updates for different LoRA ranks. Effective rank is a measure of the information density of a matrix
and can be thought of as an estimation of the rank needed to capture the information held in the
weight matrix. It is computed using the singular values of a matrix and we expect the LoRA rank to
be the upper bound on what the effective rank can be: LoRA r = 8 should have an effective rank
update of at most 8. We present the effective rank measurements in Fig. 14. In this plot, we find that
when α = 2r (Fig. 14a), LoRA r = 64 and r = 768 have much higher effective rank than r = 8
and r16, with r = 768 appearing to always have effective rank above 100. In stark contrast, we see
that when α = 8 (Fig. 14b), high ranks of LoRA have much lower effective ranks, frequently even
converging to the effective rank of much lower rank updates (like r = 8 and r = 16). For example,
LoRA r = 768 has an effective rank that is consistently below 50 when α = 8. We note that full
fine-tuning has an effective rank update of above 400 consistently. These plots suggest that when
α is kept fixed when scaling LoRA rank, the solutions are uable to take advantage of their higher
expressability and instead converge to low rank solutions.

22



(a) Effective Rank of the LoRA update when α = 2r. (b) Effective Rank of the LoRA update when α = 8.

Figure 14: Effective rank of LoRA update matrices (∆W ) for RoBERTa fine-tuned on MNLI. We
observe that when α = 2r, higher ranks of LoRA (r = 64, 768) have much higher effective rank
than the same ranks of LoRA but instead with α = 8. Building on Kalajdzievski [2023], Biderman
et al. [2024], this suggests that α = 2r is necessary for high ranks of LoRA to utilize their expressive
capacity. Note: full fine-tuning consistently has updates with effective rank above 400.

J Impact of Matrix Percentage on Number of Intruder Dimensions

In this section, we examine the extent to which intruder dimensions exist throughout the entire weight
matrix and how they are distributed. As described in the main text, we hold ϵ fixed as ϵ = 0.5 and
measure the number of intruder dimensions while varying the proportion of the fine-tuned singular
vectors that we examine (this means varying our k parameter in Algorithm 1). Here, we can see that
LoRA consistently has more intruder dimensions than full fine-tuning, regardless of what fraction of
the singular values we examine. The only caveat to this is that, for some datasets, full fine-tuning
passes LoRA r = 1 when examining the last 20% of the fine-tuned singular vectors. This is likely
due to the limited expressivity of rank 1 updates and is interesting because it suggests that in this case,
full fine-tuning may be changing lower-ranking singular vectors more than LoRA. One interesting
contradiction to our findings is in Fig. 15d, which shows that full fine-tuning and LoRA appear
to have very similar distributions of intruder dimensions within their matrix when fine-tuned on
code. This is likely due to the large domain shift from natural language to coding tasks (Biderman
et al. [2024] also make this observation of a large domain shift required for models fine-tuned on
Magicoder [Wei et al., 2024]).

23



(a) Impact of the number of singular vectors in the fine-tuned matrix we examine, k, on the number of intruder
dimensions for RoBERTa models fine-tuned on 6 different tasks. Here, we set ϵ = 0.5.

(b) LLaMA-7B fine-tuned on
Alpaca.

(c) LLaMA2-7B fine-tuned on
MetaMathQA.

(d) LLaMA2-7B fine-tuned on
Magicoder-Evol-Instruct.

Figure 15: Impact of k, the number of fine-tuned singular vectors we examine, on the number
of intruder dimensions. We see that models fine-tuned with LoRA tend to have more intruder
dimensions than full fine-tuning, regardless of the value of k used.

K Impact of Dataset Size On Intruder Dimensions

The total number of intruder dimensions increases proportionally to the size of the fine-
tuning dataset. Using our training recipe (Appendix C.3), we fine-tuned models on data subsets
of varying sizes. We trained RoBERTa-base on MNLI using LoRA with rank 1 and 8 (cases where
we originally saw intruder dimensions) and measure the number of intruder dimensions along with
the impact of ϵ and k (Fig. 16). For r = 8, as we train on more data, more intruder dimensions are
introduced. Interestingly, however, LoRA with rank 1 appears to converge to similar amounts of
intruder dimensions, regardless of the dataset size. This may be because of the limited expressivity of
models with r = 1. This experiments suggest that with smaller datasets, fewer intruder dimensions
may be introduced by LoRA.

Figure 16: (Left) Impact of cosine similarity threshold, ϵ, on the number of intruder dimensions for
LoRA models trained on different proportions of the MNLI dataset. (Right) Impact of the number of
fine-tuned singular vectors we examine, k, on the number of intruder dimensions for LoRA models
trained on different proportions of the MNLI dataset. We see that training on a larger proportion of
the dataset increases the number of intruder dimensions in the model.

24



L LLaMA/LLaMA-2 Instruction Tuned Models

Our LLaMA-7B checkpoints were fine-tuned on the Alpaca [Taori et al., 2023] and consist of
two fully fine-tuned models, one LoRA model with rank 16, and one QLoRA [Dettmers et al.,
2023] model with rank 64. Our LLaMA2-7B checkpoints were fine-tuned on either code (IFT with
Magicoder-Evol-Instruct-110K [Wei et al., 2024] or CPT with StarCoder [Li et al., 2023]) or math
(IFT with MetaMathQA [Yu et al., 2024] or CPT with OpenWebMath [Paster et al., 2023]) and
consist of one fully fine-tuned model and 3-4 LoRA’ed models of different ranks for each dataset and
generously provided by Biderman et al. [2024]. In Fig. 4a, Full #1 refers to “PKU-Alignment/alpaca-
7b-reproduced" and Full #2 refers to “chavinlo/alpaca-native".

Hugging Face Path Base Model IT Dataset
timdettmers/qlora-alpaca-7b LLaMA-7b Alpaca

tloen/alpaca-lora-7b LLaMA-7b Alpaca
PKU-Alignment/alpaca-7b-reproduced LLaMA-7b Alpaca

chavinlo/alpaca-native LLaMA-7b Alpaca
LoRA-TMLR-2024/magicoder-lora-rank-16-alpha-32 LLaMA2-7b Magicoder

LoRA-TMLR-2024/magicoder-lora-rank-64-alpha-128 LLaMA2-7b Magicoder
LoRA-TMLR-2024/magicoder-lora-rank-256-alpha-512 LLaMA2-7b Magicoder
LoRA-TMLR-2024/magicoder-full-finetuning-lr-5e-05 LLaMA2-7b Magicoder
LoRA-TMLR-2024/metamath-lora-rank-16-alpha-32 LLaMA2-7b MetaMath

LoRA-TMLR-2024/metamath-lora-rank-64-alpha-128 LLaMA2-7b MetaMath
LoRA-TMLR-2024/metamath-lora-rank-256-alpha-512 LLaMA2-7b MetaMath
LoRA-TMLR-2024/metamath-full-finetuning-lr-1e-05 LLaMA2-7b MetaMath
LoRA-TMLR-2024/starcoder-lora-rank-16-20B-tokens LLaMA2-7b StarCoder
LoRA-TMLR-2024/starcoder-lora-rank-64-20B-tokens LLaMA2-7b StarCoder

LoRA-TMLR-2024/starcoder-lora-rank-256-20B-tokens LLaMA2-7b StarCoder
LoRA-TMLR-2024/starcoder-full-finetuning-lr-1e-05-20B-token LLaMA2-7b StarCoder

LoRA-TMLR-2024/openwebmath-lora-rank-16-20B-tokens LLaMA2-7b OpenWebMath
LoRA-TMLR-2024/openwebmath-lora-rank-64-20B-tokens LLaMA2-7b OpenWebMath
LoRA-TMLR-2024/openwebmath-lora-rank-256-20B-tokens LLaMA2-7b OpenWebMath

LoRA-TMLR-2024/openwebmath-full-finetuning-lr-1e-05-20B-tokens LLaMA2-7b OpenWebMath
Table 5: Hugging Face model paths for LLaMA-7b/LLaMA2-7b IT models.

M Continual Learning

M.1 Performance during continual learning

As described in Section 4 in the main text, we train sequentially on 6 tasks and measure task
performance on all of these tasks across tasks trained on (continual learning). We report the full
graph of our findings in Fig. 17. In it, we find that when all our models are trained to similar accuracy,
lower ranks of LoRA, which coincide with more intruder dimensions, forget more of their previously
learned tasks than higher ranks of LoRA and full fine-tuning.

M.2 Similarity matrices during continual learning

After each continual learning dataset we fine-tune on, we measure the similarity matrix between the
current model and the pre-trained model. In Fig. 18b, we observe that LoRA accumulates intruder
dimensions across fine-tuning datasets. In contrast, in Fig. 18a we observe that the pre-trained
structure of the model is retained well across fine-tuning datasets. These experiments suggest why
LoRA appears to degrade faster during continual learning.

25



Figure 17: Full plot of Fig. 9a. Continual Learning performance of RoBERTa for full fine-tuning and
LoRA. We sequentially train on six tasks, in order from left to right. Horizontal dotted line indicates
baseline pre-trained performance. Vertical solid line indicates when a specific dataset is fine-tuned on.
Gray region represents performance before the model has been trained on that task. We are interested
in the differences in accuracies of these methods both right after training (at the vertical black line)
and later (in the white region). We see that low ranks of LoRA forget previously learned tasks more.

(a) Continual learning similarity matrices for full fine-tuning.

(b) Continual learning similarity matrices for LoRA.

Figure 18: LoRA accumulates intruder dimensions, while full fine-tuning does not. The pre-
trained structure of the model degrades across tasks trained on.

26



N Case Study: Setting Alpha=8 instead of Alpha=2r

Our main experiments were conducted with α = 2r. However, Hu et al. [2021] instead set α = 8 for
RoBERTa-base. While not the recommended practice now, we explore what impact this selection has
on our findings. We report our key plots in Fig. 19a, 19b, 20, 21, & 14b. In Fig. 19a & 19b we see
that LoRA’d models with high rank have significantly more intruder dimensions in comparison to
when α = 2r. Interestingly, whereas when α = 2r LoRA models with ranks like 64 had no or very
few intruder dimensions (see Fig. 4), they now have numerous intruder dimensions. These differences
are corroborated by Fig. 14b, where we see that the learned solutions of LoRA have significantly
lower effective rank in comparison to when α = 2r. For example, we see in Fig. 14b that when
LoRA has a rank of 768, the effective rank is never above 100. In contrast, we see in Fig. 14a that
with the same rank of 768, LoRA always has an effective rank above 768. This suggests that when
α = 8, LoRA is converging to lower rank solutions than when α = 2r. This supports the finding
that setting α = 2r improves LoRA’s performance when a high rank is used [Biderman et al., 2024,
Kalajdzievski, 2023]. Behaviorally, we see in Fig. 21 that LoRA models with high rank have much
more forgetting on previously learned tasks in comparison to full fine-tuning and LoRA when α = 2r
is used (α = 2r results are in Fig. 17). Likewise, in Fig. 14b we see that when LoRA has high rank,
it has much more forgetting on the pre-trained distribution in comparison to LoRA when α = 2r.

(a) Number of intruder dimensions in RoBERTa models fine-tuned on 6 different tasks. Here, we set k = 10.
We use the same conditions as in Fig. 4d but instead now set α = 8 instead of α = 2r.

(b) Impact of the number of singular vectors in the fine-tuned matrix we examine, k, on the number of intruder
dimensions for RoBERTa models fine-tuned on 6 different tasks. Here, we set ϵ = 0.5. We use the same
conditions as in Fig. 15a but instead now set α = 8 instead of α = 2r.

Figure 19: We find that when α = 8 instead of α = 2r, our models have more intruder dimensions.
(Top) Replication of Fig. 4d with α = 8 instead of α = 2r. (Bottom) Replication of Fig. 15a with
α = 8 instead of α = 2r.

O Impact of Random Seeds

To ensure that random seed does not play a role in the number of intruder dimensions we observe
in a model, we sample 5 different seeds and fine-tune RoBERTa-base on MNLI using the same
methodology as in Fig. 4d. We find that the initialization has a negligible role on the number of
intruder dimensions. This shows that our findings are not dependent on the random initialization of
the LoRA modules.

P LoRA Variants

We focus significantly on the standard LoRA method proposed by Hu et al. [2021] in order to study it
in depth. However, many variants of LoRA have been proposed recently. AdaLoRA [Zhang et al.,
2023] adaptively allocates LoRA rank to different modules in order to ensure optimal allocation of
trainable parameters to certain modules. LoRA+ [Hayou et al., 2024] sets different learning rates
for the A and B modules in LoRA. PiSSA [Meng et al., 2024] initializes the A and B modules with

27



Figure 20: For α = 8. RoBERTa’s performance on its pre-training data distribution after fine-tuning
on a particular task. We measure pseudo loss as described by Salazar et al. [2020]. We compare these
results to when α = 2r (Fig. 6).

Figure 21: For α = 8. RoBERTa’s performance on six datasets during continual learning. We
sequentially train on six tasks, in order from left to right. Horizontal dotted line indicates baseline
pre-trained performance. Vertical solid line indicates when a specific dataset is fine-tuned on. We
compare these results to when α = 2r (Fig. 17).

the top ranking singular vectors of the pre-trained weights. VeRA [Kopiczko et al., 2024] models
LoRA as the product of two random matrices with trainable parameters doing elementwise operations
on the resulting vectors. These variants may have important impacts on the presence of intruder
dimensions. For example, PiSSA initializes with the singular vectors and therefore may have an
easier time changing them, possibly leading to more intruder dimensions. In contrast, LoRA+ in
effect lowers the learning rate, which we found to be important to introducing intruder dimensions,
and may therefore reduce the number of intruder dimensions.

In order to examine if intruder dimensions are still relevant for these methods, we rerun our MNLI
fine-tuning experiment with RoBERTa with each of these methods with default hyperparameters
that they provide. These results are supplied in Fig. 23. Interestingly, we see that all the variations
we examine have intruder dimensions. Some interesting observations include: LoRA+ and LoRA
r = 1 appear to have nearly identical curves, suggesting they have very ismilar intruder dimension
characteristics. We again see that with higher ranks (r = 64) these LoRA variants tend to have very
few intruder dimensions. However, it does appear that methods that explicitly modify the singular
vectors, like PiSSA, have many intruder dimensions. This makes sense since they are explicitly
constructed to modify the singular vectors on the pre-trained model. These findings emphasize that

28



Figure 22: Impact of Random Seeds on intruder dimensions. We fine-tune RoBERTa-base across
5 random seeds and use our same methodology as in Fig. 4d. We find that the initialization has a
negligible role on the number of intruder dimensions. This shows that our findings are not dependent
on the random initialization of the LoRA modules.

Figure 23: Measuring LoRA variants for intruder dimensions. k = 10. We compare variants
of LoRA to normal LoRA (blue) and full fine-tuning (black). We find that the LoRA variants we
examine still have intruder dimensions and shows that our findings are not just exclusive to normal
LoRA.

intruder dimensions are not just an observed phenomenom in normal LoRA and suggests to future
work the examination of LoRA variants.

29



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Each claim is clearly stated. We callout with bold each claim in the introduction
and takeaways are bolded in later sections to call out our key claims.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes. We discuss the limitations of our work throughout the paper. We also add
a new section in the appendix to discuss limitations (Section A).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

30



Answer: [NA]
Justification: We have no theoretical results. We briefly justify results with calculations in
the appendix(section F), but these are not central or important to our results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We release code to replicate our main results (code is not attached to avoid
breaking double-blind review, link will be attached upon acceptance). This github repository
contains exact commands needed to replicate our findings. Additionally, methodology for
reproducing experiments is located in the appendix. All our data is publicly available.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

31



5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We release code to replicate our main results (code is not attached to avoid
breaking double-blind review, link will be attached upon acceptance). This github repository
contains exact commands needed to replicate our findings. Additionally, methodology for
reproducing experiments is located in the appendix. All our data is publicly available.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All details for replicating our training and evaluation methods are provided in
the appendix. This includes datasets, models, hyperparameters, optimizer, etc. See section
C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Error bars for most experiments are not used because of the computational
requirements for these experiments, making it infeasible to, for example, perform more
than one training run. Elsewhere, analyses are deterministic and do not need error bars. In
addition, we do report statistical significance tests for our correlations of intruder dimensions
and forgetting and intruder dimensions and test accuracy.

32

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All of this information is provided in a subsection of section C in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: this paper conforms to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

33

https://neurips.cc/public/EthicsGuidelines


Justification: This paper does not have a true societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite every single model (Section L) and codebase/dataset (Section C) we
use. While difficult to find licenses for these resources, they are all open source.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.

34



• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We don’t release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing or human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing or human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

35

paperswithcode.com/datasets


• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: No LLM usage.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

36

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background & Related Work
	Structural Differences
	Model Differences: Forgetting and Out-of-Distribution Generalization
	Intruder Dimensions Cause Forgetting
	Conclusion
	Limitations
	Why do intruder dimensions exist & can we alleviate them?
	What do intruder dimensions do?
	Adding a random vector
	Differences in update rule
	Impact of learning rate on intruder dimensions.
	Matrix product parameterization of LoRA

	Implementation Details
	Evaluation details
	Compute Resources
	RoBERTa fine-tuning details

	Model Accuracies
	Cosine Similarity with Orthogonal Vectors that Span a Space
	Derivation of LoRA Adapter's Gradients
	Intruder Dimensions Correlate with Forgetting
	For RoBERTa
	LLaMA2-7B

	Intruder Dimensions Cause Forgetting (Scaling Experiments)
	Performance Differences When Scaling Down Intruder Dimensions
	RoBERTa
	LLaMA2-7B

	Intruder Dimensions Cause Worse OOD Performance

	The Effective Rank of the Update Matrix Depends on Alpha
	Impact of Matrix Percentage on Number of Intruder Dimensions
	Impact of Dataset Size On Intruder Dimensions
	LLaMA/LLaMA-2 Instruction Tuned Models
	Continual Learning
	Performance during continual learning
	Similarity matrices during continual learning

	Case Study: Setting Alpha=8 instead of Alpha=2r
	Impact of Random Seeds
	LoRA Variants

