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Abstract

Explainability plays a critical role in ensuring that Al and ma-
chine learning models are transparent, trustworthy, and ac-
tionable - especially in high-stakes domains. However, many
popular explanation techniques, such as Shapley values, fo-
cus on predictive rather than causal explanations. This lim-
its their ability to inform decisions or policy. Recently, re-
searchers have introduced variants of causally-aware Shapley
values. In this paper, we extend a path-wise causal explana-
tion framework for binary treatment settings, by introducing a
new effect designed to better capture mediation. Additionally,
we leverage doubly robust estimators to improve both relia-
bility and efficiency. We validate our framework through sim-
ulations and real-world case studies, demonstrating its prac-
tical utility. We also show how individual-level explanations
can be aggregated to estimate population-level effects, which
allows broader causal analysis.

Introduction

In recent years, the need for explainability in machine learn-
ing has become very important, especially in high-impact
domains like law or healthcare. In these settings it is impor-
tant to understand not only the outputs of predictive algo-
rithms but also how and why decisions are made (Sadeghi
et al. 2024).

One of the most widely used model-agnostic frameworks
for model explainability is based on Shapley values. Since
explanations are intended for human interpretation, it is es-
sential that the resulting attributions have a coherent and log-
ical interpretation. In real-world scenarios features are of-
ten interconnected through complex causal connections. Ac-
counting for these causal relationships is crucial for making
explanations more interpretable and trustworthy. This need
has led to the development of several causal-aware exten-
sions of the classical Shapley value framework.

Traditional Shapley approaches, such as Marginal or Con-
ditional Shapley values have been shown to provide very
limited causal interpretability (Rozenfeld 2024; Janzing,
Minorics, and Blobaum 2020), (Chen et al. 2020). More
recent methods, like Asymmetric Shapley values (Frye,
Rowat, and Feige 2020) and Causal Shapley values (Heskes
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et al. 2020), aim to incorporate causality but are still lim-
ited in providing path-specific explanations. While Causal
Shapley values can decompose feature attribution into direct
and indirect effects, this level of decomposition often lacks
the granularity required to identify biases along individ-
ual causal paths. In cases where multiple causal paths con-
tribute differently, the aggregated indirect effect may hide
bias, making it difficult to uncover the true sources of influ-
ence within the model.

Path-wise interpretability offers a promising approach to
uncover such biases by tracing distinct causal pathways. In
particular, recent frameworks like Path-Wise Shapley (PW-
SHAP) (Ter-Minassian et al. 2023) integrate user-defined
causal graphs with Shapley value-based methods to decom-
pose feature effects along specific causal paths. However,
the proposed effect may obscure the contribution of a medi-
ator, especially when complex interactions with moderators
or downstream processes are involved, potentially leading to
unexpected directions of attribution.

To address this, we introduce , an extension of PW-SHAP
that is specifically designed to improve causal interpretation
in mediation settings. We directly incorporate a doubly ro-
bust estimator into the computation of Shapley effects. ap-
proach is designed to provide both local, path-wise inter-
pretable explanations for individual predictions and global,
population-level causal insights. Our contributions are as
follows:

* We propose , an effect that more faithfully captures
mediation-related causal properties.

* We propose doubly robust estimators for the effects en-
abling more direct and efficient estimation.

* Demonstrate how aggregated effects can be used to ex-
tract meaningful population-level insights.

» Conduct comparative analysis with existing approaches.

Causality for Model Explainability

Following the notation of Janzing, Minorics, and Blobaum
(2020), let a model f operate on input features X =
{X1, Xs,...,Xn}, for each input feature corresponds to a
real-world causal variable. In practice, these real-world vari-
ables may be connected through a causal graph, informed by
domain knowledge.



Consider a model that predicts income using age (X1),
work experience (X»), and English proficiency (X3). The
model may rely primarily on X5 and X3, with little or no di-
rect use of X ;. Some feature attribution methods might then
suggest that age has no influence on the prediction. However,
both experience and English proficiency can be causally af-
fected by age - making age a source of significant indirect
effects on the outcome.

Focusing only on direct effects can thus obscure the
broader causal impact of certain features. Causal explain-
ability helps disentangle these relationships by distinguish-
ing between features that affect the model output directly
and those that act through causal pathways.

This decomposition can be further extended to analyze
specific indirect paths (e.g., Age — Experience — Income
or Age — English — Income), allowing more detailed and
actionable interpretations.

Such causal improvements have been shown to provide
actionable insights for achieving desired outcomes and sup-
porting informed decision-making (Albini et al. 2022; Wat-
son 2022).

Shapley Values

Shapley values were originally introduced by Shapley
(1951) to fairly allocate a collective payoff among players
based on their individual contributions. In the context of ma-
chine learning, each input feature is treated as a “player” in
a cooperative game, and the objective is to quantify the con-
tribution of each feature to a model’s prediction.

Formally, let qblf denote the attribution of feature ¢ with
respect to a model f. To ensure fairness, Shapley values sat-
isfy four fundamental properties: Efficiency, Dummy Player,
Symmetry, and Additivity (see Appendix for formal def-
initions). These axioms uniquely characterize the Shapley
value.

We begin by defining some notation:

e N is the set of all feature indices.

* S C N represents a coalition (subset) of features, where
S = N\ S is the complementary set.

+ v: 2NV — Ris a value function that assigns a real-valued
payoff to any coalition S, quantifying its contribution to
the model output.

The contribution of feature ¢ ¢ S to coalition S is defined

as:
s = v(SU{i}) —v(S).

Considering all possible permutations 7 of the feature set

N, define ‘
St={jeN:j=<,i}

as the set of features preceding 7 in permutation 7. The
Shapley value of feature ¢ is then computed by averaging
its marginal contributions over all permutations:

1 i - i
o= i [v(Sx U{i}) —v(Sy)] .-
mell ’
This formulation effectively marginalizes the contribution
of feature 7 across all possible combinations of other fea-
tures, ensuring a fair attribution. The choice of the value

function v plays a critical role in shaping the behavior of
Shapley values; we elaborate on this in the following sub-
section.

Related Work

The interpretability of Shapley values, especially their
causal meaning, critically depends on how the value func-
tion v is defined.

A common approach is the Marginal Shapley Values,
where the value function is computed as the expected model
output over the marginal distribution of features outside the
coalition, v(S) = E[f(xg, Xg)]. This ignores dependencies
between features and can lead to unrealistic feature combi-
nations, capturing only direct effects.

In contrast, the Conditional Shapley Values conditions on
the observed values of features outside the coalition and de-
fines the value function as v(S) = E[f(zs, Xg) | Xs =
x 5], thereby accounting for statistical dependencies and cap-
turing both direct and indirect effects (Rozenfeld 2024).
However, since this relies on correlations rather than causal
relationships, it may attribute importance to features corre-
lated with the outcome but not causally responsible.

Several extensions have been proposed to integrate causal
information directly into the Shapley value framework.
Asymmetric Shapley Values (Frye, Rowat, and Feige 2020)
relax the symmetry property to incorporate known causal
structures by computing contributions only over permuta-
tions that respect a given causal DAG.

Another approach, Causal Shapley Values (Heskes et al.
2020), modifies the value function to use the interventional
distribution: v(S) = E[f(zg, Xg) | do(Xs = zg)], ex-
plicitly incorporating the causal graph into the computation.
Causal Shapley values allow the decomposition of feature
attributions into direct and indirect effects .

These two key extensions, relaxing symmetry and us-
ing interventions, offer distinct causal improvements. Com-
bined, they define Asymmetric Causal Shapley Values. Un-
like the symmetric variant, which splits indirect effects be-
tween a feature and its mediators, the asymmetric approach
assigns the full indirect effect to the root cause. See Ap-
pendix for theoretical explanation.

Besides focusing on causal properties, many recent stud-
ies have concentrated on enhancing robustness and im-
proving estimation methods to make Shapley values more
practical. For example, Manifold Restricted Shapley values
(Taufig, Blobaum, and Minorics 2023) address a issue that
most Shapley value methods evaluate model outputs on data
points outside the training data distribution, which makes
them vulnerable to adversarial attacks (Slack et al. 2020;
Frye et al. 2020). The Do-Shapley approach (Jung et al.
2022) proposes estimators for Causal SHAP values when the
model is inaccessible, meaning that not every combination is
possible to provide in the model.

More recently, the Path-Wise Shapley Values method
(Ter-Minassian et al. 2023), an on-manifold Shapley (con-
ditional) values approach, decomposes feature attributions
along causal paths. This is achieved by expressing coali-
tion Conditional Shapley values in terms of the propensity
score and pseudo-CATE (path-wise effect). By aggregating



these path-wise effects, the method quantifies how much
each causal path contributes to the final prediction. For more
details on properties and definitions of explained approaches
see Appendix.

In this work, we propose , an extension of PWSHAP, a
model-agnostic framework designed to provide both local,
path-wise interpretable explanations of individual model
predictions and global, population-level causal insights.

Our approach is motivated by the decomposition of Con-
ditional Shapley values into weighting and CATE-like com-
ponents, as introduced in (Ter-Minassian et al. 2023).

We consider a feature X; as I’ the treatment (feature of
interest), C' as X N\i the other covariates, and Y as the out-
come of interest. Given a trained machine learning model
f*, our goal is to explain the predicted outcome

Y = f*(T,C)+¢, with E[e|T,C]=0,

by uncovering the path-wise mechanisms through which T'
influences Y.

Coalition Conditional Average Treatment Effect

Core components of the method is the Coalition Conditional
Average Treatment Effect (CATE) (see in definition in Ap-
pendix). Note that in our definition, we aim to explain the
impact of T" on Y (model prediction) rather than on Y, as
our focus is on model explainability rather than ground-truth
causal effects.

[Coalition Conditional ATE (C-CATE)] LetT' € {t,t'} be

a binary treatment, Y the observed outcome, and Cg C C' a
subset (coalition) of features. The Coalition Conditional Av-
erage Treatment Effect conditioned on C's = cg is defined
as the difference in the expected potential outcomes under
treatments ¢ and ¢’, conditional on the coalition:

A(es) =E[Y (1) | Cs = es] —E[Y (') | Cs = cg].

The expectation is taken over the distribution of features
C3 not in the coalition, conditional on C's = cg.

Depending on the causal structure and the set of features
we control for, this effect can provide a valuable property in
a mediation setting.

[C-CATE as Controlled Direct Effect] Let T" be a treat-
ment, Y an outcome, and X g a set of mediators. If Cg is not
a descendant of any other variables except for T or any other
variable included in C'g, then A(cg) is a Controlled Direct

Effect of T on Y, having Cs fixed at cg (proof in Appendix)

Ai(cs) = CDEx, (t, t/, 565)

Path-specific effects

The PW-SHAP introduced in (Ter-Minassian et al. 2023) de-
fines the Path-Wise Shapley Effect as the difference between
two pseudo-CATEs: one where all covariates are held fixed,

and another where all covariates except the feature of inter-
est are fixed.

[Path-Wise Shapley Effect] The Path-Wise Effect along
the causal path T — C; — Y is defined as the differ-
ence between the "CATE” of T' given all covariates, and the
”CATE” of T when all covariates except C; are held fixed:

\IJT%Ci%Y/ = At(CS*) — At(Cs*\i)’

where S* denotes the index set of all covariates.

We extend this definition to a Portion Eliminated Path-
Wise Shapley Effect, which, as we show later, can of-
fer better insights in mediation settings. Motivated by the
four-way decomposition of the Average Treatment Effect
(VanderWeele 2014) we can extract path-wise information.
CDE(t,t',m) can be interpreted as the effect of the treat-
ment 7' not mediated by M. Difference between ATE and
CDE(t,t',m) isolates the combined effects transmitted
through the mediator, including pure mediation, interaction
between the mediator and treatment (moderation), and their
joint mediated interaction. This is the portion of the effect of
the exposure that would remain if the mediator were fixed to
0, commonly refered as Portion Eliminated Effect (Robins
and Greenland 1992; Hafeman and Schwartz 2009; Vander-
Weele 2013). Because these components represent distinct
causal pathways by which the treatment influences the out-
come indirectly via the mediator or through interactions in-
volving the mediator, we consider this difference a path-wise
effect. This effect has been shown to be useful in media-
tion settings (Hafeman and Schwartz 2009), (VanderWeele
2013).

[Portion Eliminated Shapley Effect] The Effect along the
path T'— C; — Y is defined as the difference between the
total effect of treatment ¢ and the effect when the mediator
C; is held fixed at level ¢;. If A;(C; = ¢;) satisfies Property
, then:

A v =A¢(0) — ALCs = @),

where A;(0)) denotes the total effect of treatment ¢, and
A (C; = ¢;) represents the Controlled Direct Effect with
C; fixed at ¢;.

Intuitively, we subtract from the total treatment effect the
effect that is not mediated by C;, by fixing C; to ¢;, this way
isolating local path-wise effect through C;.

This formulation can be generalized to paths of arbitrary
length by fixing the values of all mediators along the path.
We subtract the controlled direct effect along the specified
path from the average treatment effect to obtain the contri-
bution of that path.

Comparison of PW-SHAP and PE-SHAP Despite struc-
tural similarities, these approaches possess crucial differ-
ences.

When the PW-SHAP effect is computed, it controls for all
variables except the one of interest. However, this can sup-
press the true impact of that feature, especially when it is
involved in complex interactions with moderators or down-
stream processes. As a result, PW-SHAP may obscure the
actual contribution of mediators and can even produce in-
correct signs for mediation effects.

T—Ci—



Method

NDE Estimate NIE Estimate

S-learner  0.0503 (0.002)
0.0525 (0.007)

0.0284 (0.004)
0.0404 (0.006)

Table 1: Comparison of Estimated Natural Direct Effect and Natural Indirect Effect on Y Across Methods. Estimates are
reported with Mean Absolute Error and Monte Carlo Error shown in parentheses.

In contrast, PE-SHAP does not condition on all other vari-
ables, allowing it to preserve the mediator’s role and its in-
teractions.

As aresult, PE-SHAP better captures the mediation effect
and produces more accurate effect signs. In settings with-
out moderation, the PE-SHAP effect directly corresponds to
the pure mediation effect, while PW-SHAP gives a reversed
sign. For a detailed derivation using a specific example, see
the Appendix.

Additionally, PE-SHAP effects rely on less localized esti-
mations than PW-SHAP, making them more stable and eas-
ier to compute - especially in low-density regions where PW-
SHAP can struggle.

PE-SHAP effects can also be aggregated to estimate
population-level effects, enabling broader and more inter-
pretable analyses.

Population Effect While local effects provide valuable
insight into individual-level behavior, it is also important
to quantify effects at the population level. Population-level
analysis allows access to the broader model fairness and po-
tential biases that may not be evident from local explana-
tions alone.

By aggregating effects over the distribution of feature re-
alizations conditioned on the alternative treatment, we re-
cover the Natural Indirect Effect of treatment 7" on the pre-
dicted outcome Y (see definition in Appendix).

[ Effect Aggregation for NIE]

If Cs represents the set of all mediators and is not a de-
scendant of any variables other than 7' or members of Cg
itself, then the Natural Indirect Effect on Y can be expressed
as the expectation of the Portion-Eliminated Shapley effects
over the distribution of C's under do(T" = t') (proof in Ap-
pendix):

NIE — / P(Cs = cs | do(T =) - Ay, ers_5rdes

Similarly Natural Direct Effect can be computed directly
from weighted aggregation of Coalition CATE effects.

We experimentally compared estimators of the Natural
Direct Effect and Natural Indirect Effect with the more clas-
sical S-learner approach, demonstrating that produces com-
parable results (see in Table 2). For wider analysis see Ap-
pendix.

Estimation

The proposed approach can integrate any CATE estimator
as a foundational component, benefiting from the extensive
research on this topic. This flexibility makes it easy to adapt
the method to the specific needs of the use case and the na-
ture of the data.

Method NDE NIE
S-learner-MLP _ 0.0503 (0.002)  0.0284 (0.004)
-GT 0.0546 (0.007)  0.0407 (0.006)
-MLP 0.0525 (0.007)  0.0404 (0.006)
~XGBoost 0.0547 (0.007)  0.0407 (0.006)

Table 2: Comparison of Estimated Natural Direct Effect and
Natural Indirect Effect on Y Across Methods. Estimates are
reported with Mean Absolute Error and Monte Carlo Error
shown in parentheses.

To estimate the effects, we propose using a doubly ro-
bust estimator (Bang and Robins 2005), which combines
models for both the treatment and outcome. This approach
gives consistent and unbiased effect estimates if either the
treatment model or the outcome model is misspecified. This
greatly improves the method’s robustness, which becomes
challenging as data and causal connections grow more com-
plex.

Doubly robust estimator demonstrated superior perfor-
mance compared to the imputer method originally employed
in the PW-SHAP implementation (Carpenter, Kenward, and
Vansteelandt 2006). While the imputer relies primarily on
outcome imputation to estimate missing or counterfactual
values, the doubly robust method leverages information
from both treatment assignment and outcome models.

[Doubly Robust Estimator of C-CATE]

A doubly robust (DR) estimator of the C-CATE is given
by:

APR(cs) =E [YPR(1) | Cs = cs]
~E [YPR) | Cs = cs] .
where:
N . . I () — N N . .
. YjDR(t) — Mt(C(J)) + % (y(]) — ut(c(.j))) 1S the
doubly robust estimate of the potential outcome,
« (D) = E[Y | T =t,C = ¢9)] is the outcome re-
gression model,
e é(cW)) = P(T =t | C = c\) is the estimated propen-
sity score.

Note that we use g instead of the ground-truth outcome y,
as our goal is to explain the model’s output rather than the
true causal effect.

Using only a single component of the estimator, such as
the treatment model alone (IPW estimator) or an individual

outcome model estimator like meta-learners (S-learner, T-
learner, X-learner, or others), can be advantageous in cases



C ~ N(0.3, 0.5%)
T ~ Bernoulli(0.8 — C)

My = 0.5T + N(0, 0.5%)

My = 0.7T + N(0, 0.5%)
Y=C+T-08M}—05MT
Y = f(cha My, M>)

Figure 1: Causal DAG and corresponding structural equations

Method Ty T M My =Y T M, =Y T — My —Y
Causal Shapley  0.34(0.35) -0.16(-0.18) - -
PW-SHAP* 0.79(0.78) 0.26(0.26) 0.32(0.33) 0.09(0.08)
PE-SHAP* 0.79(0.78) -0.26(-0.26) -0.17(-0.18) 0.06(0.07)
Sample T=1,C=0.2, M; =0.6, My =1
Causal Shapley  0.47(0.49) -0.17(-0.19) - -
PW-SHAP* 0.75(0.75) 0.22(0.22) 0.17(0.18) 0.07(0.07)
PE-SHAP* 0.75(0.75) -0.22(-0.22) -0.15(-0.15) -0.05(-0.04)
Sample T=1,C=0.5, M; =0.6, My =1
Causal Shapley  0.51(0.54) -0.17(-0.19) - -
PW-SHAP* 0.85(0.85) 0.33(0.32) 0.28(0.28) 0.02(0.01)
PE-SHAP* 0.85(0.85) -0.33(-0.32) -0.31(-0.31) -0.05(-0.04)

Sample T=1,C=0.5, M; =03, My =1

Table 3: Shapley values comparison: The values indicate the effect on the GT model, with values in brackets showing the
corresponding effect on the trained MLP model. Effects marked with **’ are computed using the DR estimator.

where we are confident in the correctness of the outcome or
treatment model. These singular estimators may be benefi-
cial, particularly since doubly robust estimators often exhibit
higher variance.

Experiments
Path-wise Analysis

To evaluate our proposed method, we design experiments
on a synthetic dataset generated from a known causal struc-
ture (see Figure 1). We consider a causal DAG with a bi-
nary treatment variable T, an outcome variable Y, mediator
M7, independent feature Mo, and a treatment confounder C.
We generate samples using structural equations with addi-
tive noise, where all variables are continuous and normal-
ized. M7 not only mediates but also moderates the effect of
treatment T on the outcome Y, with a negative influence on
the prediction. However we aim to explain effect of 7" on Y.
Note that M> does not impact Y however it is an input of
blackbox model f .

This example demonstrates a critical limitation of Causal
Shapley values - they can only capture direct and indirect
effects. While the indirect effect is shown as a small positive
value, path-wise approaches reveal that most of the effect oc-

curs through M7, whereas path through M5 contributes al-
most no effect. This provides much better resolution of what
is actually happening.

Both approaches showed a large effect for M; and a very
small effect for My. While and PWSHAP produced re-
sults of similar magnitude, their signs were completely re-
versed. This difference arises because captures the effect
of M; when computing the average treatment effect, while
Path-wise Shapley values condition on all features, includ-
ing M, removing its influence. PE-SHAP correctly cap-
tured the sign of the effect, aligning with expectations. For
a more detailed theoretical explanation of this example, see
Appendix.

Estimator Comparison

C-CATE Estimator MAE (MC)
Iterative Imputer 0.191 (0.02)
DR Estimator 0.157 (0.03)

Table 4: Comparison of Mean Absolute Error (MAE) with
Monte Carlo error (in parentheses) for different C-CATE es-
timators.



Method Attribution
Causal SHAP +0.040
Asymmetric Causal SHAP +0.040
Conditional SHAP —0.001
Asymmetric Cond. SHAP +0.019
Marginal SHAP +0.037

Table 5: Shapley Value Attribution for Gender

Method Component  Attribution
Causal SHAP  gdirect +0.037
(bindirect 10.003
PW—SHAP * U x o7l +0.053
I\IIT—>X —>Y‘ +0.045
PE-SHAP* A1 x, o7 +0.036
/\T—>XS—>17‘ +0.054

Table 6: Causal Path-wise Attribution for Gender. Effects
marked with * are computed using the DR estimator.

To evaluate the robustness and accuracy of different
strategies for estimating Coalition Conditional Average
Treatment Effects, we compare two distinct approaches:

The original method introduced in the PW-SHAP frame-
work, which estimates C-CATE using Conditional Shapley
values combined with iterative imputation to approximate
conditional distributions. And a direct estimation approach
that uses a doubly robust estimator to compute C-CATE

Table 4 reports the Mean Absolute Error for both method,
along with the corresponding Monte Carlo (MC) error in
parentheses. The results show that the DR-based C-CATE
estimator substantially outperforms the PWSHAP method,
achieving lower estimation error.

Additional we made comparison under various model
misspecification scenarios (when the outcome or treatment
models are incorrectly specified) further demonstrate the im-
proved stability and accuracy of the DR-based C-CATE ap-
proach.

The results empirically confirm the theoretical robustness
of the Doubly Robust (DR) estimator. It is worth noting
that the DR estimator can underperform relative to IPW or
regression-based methods when there is high confidence in
the correct specification of either the treatment or outcome
model. This is primarily due to the higher variance typically
associated with DR estimators. See comparison in Table 9 in
Appendix.

Real-Data Case Study

In this section, we investigate the presence and propaga-
tion of gender-related bias in a credit risk prediction model
trained on the German Credit dataset (Hofmann 1994). We
focus on the role of the sensitive attribute Gender and how
its influence is mediated through other features in the model.
While gender is typically not considered confounded at the
population level, the imbalance in this dataset indicates a se-
lection effect that could introduce confounding (Arah 2019).
The causal structure assumed in our analysis is derived from
(Bothmann, Dandl, and Schomaker 2023), where Gender
may affect the model prediction both directly and indi-
rectly through variables such as Saving accounts and
Credit amount.

We construct a counterfactual comparison between two
individuals who are identical in all observed features except
for the sensitive attribute Gender. Both individuals are 34
years old, have little savings in their accounts, and are ap-
plying for a credit amount of 1569 monetary units. The only

difference between the two is their gender.

Our trained model produces different risk predictions for
these two individuals, suggesting a potential gender bias. To
understand how this disparity arises, we analyze the contri-
bution of Gender to the final prediction using a variety of
Shapley-based attribution methods. Specifically, we decom-
pose the overall contribution of Gender into two distinct
pathways: (1) the direct effect, representing the influence
of Gender on the prediction that is not mediated by any
other variables, and (2) the indirect effects, which capture
the influence of Gender as it propagates through interme-
diate features such as Saving accounts and Credit
amount.

The Table 5, 6 below summarizes the contribution of Sex
to the prediction outcome. The results show that the direct
effect of the feature is greater than the indirect effect. Both
PE-SHAP and PW-SHAP demonstrated the small yet similar
magnitude of effect.

Future Work

The proposed solution opens several promising directions
for further investigation. As a next step, we plan to extend
this approach to continuous, non-binary treatments. This
will enable us to compute the proposed effects for all fea-
tures and compare them more systematically, similar to the
original Shapley visualization framework. This extension
will significantly broaden the range of potential applications.

Additionally, we intend to explore how coalition aggre-
gation can enhance this approach by fairly distributing the
impact of each feature while accounting for its interactions
with other features.

Discussion

We demonstrated that path-wise level explanations provide
better resolution and are highly valuable for model inter-
pretability. In this work, we proposed an alternative formu-
lation of path-wise effects that better aligns with the original
Shapley values by capturing interactions between features.

We further showed how local explanations can be aggre-
gated to quantify population-level effects, such as the Natu-
ral Indirect Effect. Additionally, we introduced an efficient
approach for estimating these effects using a doubly robust
estimator.
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Appendix
Rules of Do-Calculus

Let G+ denote the graph obtained by removing all edges directed into the features in X . Let G'x denote the graph obtained by
removing all edges directed out of the features in X. Let G+ denote the graph obtained by removing all edges directed into

(W)
the nodes in 7" that are not ancestors of any node in .
We will refer to the modified graph as G'.

1. Observation can be ignored: If Y | 7' | W, X in G’ = G, then
Py | do(z),w,t) = P(y | do(x), w)
2. Observation can replace intervention: If Y L 7' | W, X in G’ = G r» then
Py | do(t), do(w),w) = P(y | t,do(x), w)

3. Intervention can be ignored: If Y L T | W, X in G’ = GY T then

P(y | do(t), do(x), w) = P(y | do(z), w)

Definitions
Propensity score The propensity score (Rosenbaum and Rubin 1983) measures the probability of the treatment feature T’
given the observed covariates Xg, where T' ¢ S:

W(xs) = P(T= 1 | XS = 3;‘5)

In practice, the propensity score can be approximated by fitting a logistic regression model with 7" as the target variable and
X as predictors.

Average Treatment Effect The Average Treatment Effect is the expected difference in outcomes between two treatment
conditions across the entire population: E[Y |do(T = t)] — E[Y|do(T = t')]. It captures the overall impact of a treatment,
regardless of individual characteristics.

Conditional Average Treatment Effect The Conditional Average Treatment Effect is the expected difference in outcomes
between two treatment conditions for a specific subpopulation, given a set of observed covariates: E[Y |do(T = t),C =
c] — E[Y|do(T =t'),C = c|. It captures how the treatment effect varies across different subgroups within the population.

Controlled Direct Effect Controlled Direct Effect is expected difference in outcome while holding the mediator M at fixed
value: E[Y |do(T = t, M = m)] — E[Y|do(T = t', M = m)] ((VanderWeele and Vansteelandt 2009), (Pearl 2010)).

Natural Direct Effect Natural Indirect Effect is the causal effect that measures the effect transmitted through the mediator,
while holding the treatment set and comparing the outcome when the mediator takes the value it would have under treatment ¢
versus the value it would have under alternative treatment ¢':

NDE =E[Y | do(T = t, M = my)] —E[Y | do(T = ', M = my/)]

The value my is the potential value that the mediator M would naturaly take if the exposure is set to ¢’. ((Lendle, Subbaraman,
and van der Laan 2013))

Natural Indirect Effect Natural Indirect Effect is the causal effect that measures the portion of the treatment effect transmit-
ted through the mediator, capturing the change in outcome due to the mediator changing from its natural value under treatment
t to its natural value under treatment ¢’, while holding the treatment fixed at ¢.

NIE =E[Y | do(T = t,M = m,)] —E[Y | do(T = t, M = my)]

Two-Way Decomposition of the Average Treatment Effect The two-way decomposition of the ATE breaks down the total
effect into two main components: the Natural Direct Effect effect and the Natural Indirect Effect.
Mathematically, this is expressed as:
ATE = E[Y1 p, — Yo,01,]
= E[(Y1,m, = Y1) + (Y1040 — Yo,010)]
= E[Y1,m, — Yon,) + EY1a, — Y] -

Natural Direct Effect (NDE)  Natural Indirect Effect (NIE)




Four-Way Decomposition of the Average Treatment Effect The total causal effect of an exposure X on an outcome Y can
be decomposed using the four-way decomposition framework (VanderWeele 2014), which explicitly accounts for mediation
and interaction effects involving a mediator M. The four-way decomposition expresses:

= E[(Y1,ar, = Y1,0,) + (Y10 — Yo,01)]
EY1 am, — Yo,uro) +E[(Y1,0, — Yimg) — Yo,un, — Yo,010)] +E[Yo, 00, — Yo,01,] -

Natural Direct Effect (NDE) Reference Interaction (INTef) Pure Indirect Effect (PIE)
and Mediated Interaction (INTeq)

Shapley Values Axioms
Efficiency Total payoff is fully distributed across players:

=24
JjEN
Dummy Player A player ¢ that does not contribute to any coalition receives zero attribution:
o(SU{i}) = u(8) = ¢/ =0.

Symmetry If two players ¢ and j contribute equally to every coalition, they receive the same attribution:

VS C N\ {i,j}, v(SU{i}) =v(SU{j}) = ¢f =¢l.

Additivity For two games with value functions v and w, the attribution of the combined game v + w is the sum of the
attributions for each game:

¢l =gl + ¢, Vie N.

Marginal Shapley Values

Marginal Shapley values use marginal (i.e., observational) distributions to compute the value function of a coalition S. The
value function is defined as:

v(S) = E[f(zs, X /f rg,r5)P(Xg = vg) drg

where g are the values of sample for the subset of features S, and X7 are the remaining features marginalized over their
distribution.
To illustrate the interpretation of marginal Shapley values, consider a linear model with two features:

f(x1,22) = Bray + Poxa.

We compute the marginal Shapley values for feature X; with two coalition orders:

¢f omarginal _ = (Biz1 + BE[X3]) — (BLE[X1] + BE[X3])

= Bi(x1 — E[X4]).
¢{7?;}r»gmal (Brzy + Bawe) — (BLE[X1] + Box2)
= Bi(z1 — E[X1]).

The full marginal Shapley attribution for feature X, is the average over both permutations:

f,marginal __ 1 f,margmal f,marginal
¢! = 5 (ol + ol )

= fu(z1 — E[X4]).
This shows that, under marginal Shapley values, the attribution of X; only reflects its direct effect on the model output,

ignoring any indirect effects through X5. In particular, if 81 = 0, the attribution for X is zero, even if X influences Xo, which
in turn affects the outcome. This illustrates a key limitation of marginal Shapley values in capturing causal effects.



Conditional Shapley values

Conditional Shapley Values compute feature attributions using a value function that conditions on the values of in-coalition
features. Formally, the value function for a coalition S C N is defined as:

v(S) = E[f(xs, Xg) | X5 = 25] = /.f(l’s@g)P(Xg =xg| Xs = xg) drg,

where x5 denotes the observed values of features in the coalition, and S = N \ S represents the remaining features.

This approach is conceptually similar to Marginal Shapley Values, but differs in how the weighting is computed. Instead
of averaging over marginal distributions, Conditional Shapley Values incorporate feature dependencies by conditioning on the
values in the coalition.

Consider a linear model f(x1,x2) = B121 + P222. The conditional Shapley values for feature X; can be derived as follows:

$15™ = (Br1 + B2 - B[Xs | X1 = 21]) — (B1 - E[X1] + B - E[Xo))
= Bi(z1 — E[X4]) + B2 (E[X3 | X1 = 21] — E[X3]),

¢{?3n}d = (Brer + Pawz) — (B1 - E[Xy | Xy = xa] + Baa)
=B (1 —E[Xy | Xo = x3]).

The final attribution for feature X is the average over these two permutations:
f,econd 1 f,cond f,cond
¢1 - 5 ¢1,® + ¢1,{2}
1
= 3 |Bi(@1 —EX1) + B2 — E[X, | X = 22])

+ f2(E[X2 | X1 = x1] — E[X3])|.

Interestingly, even if 81 = 0, the attribution for feature X; may still be non-zero due to its influence on X5, captured via the
conditional expectation. This reflects the indirect effect of X; on the model output through feature dependencies.

It is important to note that, since Conditional Shapley Values rely on conditioning by observation, they capture correlations
rather than causal relationships. As a result, they cannot distinguish between correlation and causation.

Asymmetric Shapley Values

Asymmetric Shapley Values (Frye, Rowat, and Feige 2020) relax the Symmetry Axiom of classical Shapley Values to incorpo-
rate prior causal knowledge into feature attributions.

When features are causally related (e.g., age causes education level), treating them symmetrically can obscure impor-
tant distinctions. For instance, even though both age and educat i on may provide information about income, we may prefer
to attribute more importance to age since it causally precedes education, and only consider education after accounting
for age.

ASVs define a new permutation weighting function w(7) that depends on the causal DAG. Two common weighting strategies
are:

* Distal cause weighting wyis1 (7): Selects only those permutations where all causal ancestors of a feature already appear in
coalition.
Let M be the number of permutations consistent with the causal graph. Then:

1 (1 ife¢ <, j for every known ancestor ¢ of j,
wdistal(’]r) =

M |0 otherwise

That is, for any descendant j ¢ S, its ancestor ¢ must appear in the coalition ¢ € S before j is added.

* Proximate cause weighting wpmximate(w): Selects only those permutations where features appear before their causal ances-
tors, anti-causal orderings

1 (1 ife >, 5 for every known ancestor ¢ of j,
Wproximate (7T>

- M |0 otherwise



In both cases, if no causal information is provided, these weights reduce to the uniform distribution w(7) = ﬁ recovering

the classical (symmetric) Shapley Values.
ASVs use the same conditional value function as Conditional Shapley Values:

v(S) = E[f(zs, Xg) | X5 = zs]

This captures both direct and indirect effects, while the permutation weights control which effects are emphasized.

Similarly to consider the case where feature X5 causally precedes X, i.e., Xo — Xj. Under a distal weighting, the only
valid permutation is 7 = (2, 1), reflecting the causal ordering.

The attribution for feature X; under the Asymmetric Conditional Shapley Value is then:

¢f,asym-cond _ d)f,cond
1 712}

= B1 - (21 — E[X1]| X2 = 22])
This attribution does not rely on conditioning that runs against the causal direction.

Causal Shapley Values

Causal Shapley Values (Heskes et al. 2020) incorporate causal knowledge directly into the computation of feature attributions
by using interventional (do-calculus) probabilities. Unlike Asymmetric Shapley Values, which inject causal structure into the
ordering of permutations, Causal Shapley Values integrate causal models directly into the value function. These two perspectives
represent seperate directions of causal enhancement.

The value function in Causal Shapley Values is defined using interventional distributions:

v(S) = E[f(zs, Xg) | do(Xs = x5)]
/f (zs,25) P(Xg = 25| do(Xs = xg)) drg

Computing Interventional Distributions When the full causal DAG is known, the interventional distribution P(Xg |
do(Xs = xg)) can be computed via the truncated factorization formula (see ):

P(X§ | dO(XS = ll?s’)) = H (X | X )ﬂS?de(j)mS) (D)
j=1

In practice, however, we often lack access to a complete causal graph. To support this, Causal Shapley Values support partial
causal ordering. Specifically, the feature set is partitioned into components 7 = {X;, X;, ... }, with a topological ordering over
components such as (71, T2, 73 ), while intra-component relationships remain unspecified.

For each component 7, we specify whether dependencies within the component are due to confounding or mutual interaction.
Given this, the interventional distribution can be computed as ():

P(Xg|do(Xs=2s))= ] PX,n5 | Xpairns Tpa(rins) X

TE 7zonf0unding

H P(X, 3| Xpa(fr)ﬂ§7 xpa(‘r)ﬁS’vxTﬁS)
TE€ T srromding

confounding

2)

Direct and Indirect Effect Decomposition A major advantage of Causal Shapley Values is their ability to decompose attri-
butions into direct and indirect effects, where their sum yields the total effect:

¢ f,total causal ¢ f,direct causal + (b f,indirect causal

d)f d1rectcau8dl E[f(XSaxSU{ }> ‘ dO(XS — 'TS)] E[f(X§7 IS) | dO(XS = IS)}

¢f,mdlrect causal _ E[f(Xg\{lpxSU{z}) | dO(XSU{i} = xSU{z})]
- E[f(Xg\{i}JSu{i}) | do(Xs = xs)]

Direct effect: Measures the change in output when feature X; is set to its sample value, without allowing it to influence other
features (i.e., controlling for its downstream effects).

Indirect effect: Captures the influence of X; on the outcome via its effect on other features, by comparing distributions with
and without intervening on X;.

Total effect: Sum of direct and indirect effects.



Example: Linear Model For a linear model f(x1,x2) = S121 + B222, we get a similar decomposition to that of Conditional
Shapley Values, with the key difference being that conditioning is now interventional:

ftotal causal __, f,direct causal f,indirect causal
®1 =1 +¢1 X

Bi - (1 — E[X1]) + B - (w1 — E[X; | do(X2 = x2)]) +
Direct effect

P2 - (E[X; | do(Xy = z1)] — E[Xy])

Indirect effect

Here, the direct effect captures the isolated influence of =, while the indirect effect reflects how xz; causally impacts z2, and
thus the final prediction.

Asymmetric/Symmetric Causal Shapley values

Let G - be causal DAG, f - any function, G* subtree of G with root in feature X; spanned by all features it causally impacts.
Let X; be feature which mediates impact of feature X; - X; <g+~ X;. Letif X <g- Xj, then Y L X;| X/, meaning that
knowing information about X; will not give any additional information for prediction knowing already X/, alternatively X;
just passes impact of parents, not adding anything additionally.

When computing Symmetric Causal Shapley values for feature X; we take into account any permutation 7. Let us denote
coalition S’, where feature X is not included; that is, X; ¢ S’

qsi)x}iifggtcausal =K [f (X?\{Xj}’xS’U{Xj}) ’dO (XS’U{XJ-} _ IS'U{Xj})}
—E [f (X?\{Xj}’xs’u{xj}) ‘do (Xgr = xs')} #0

Since feature X is influenced by X;, impact of X; will be given to X ;. This way spreading its impact for all features in G*.
In contrast if we use Asymmetric Shapley value for feature X; we would not have such permutation 7 that X; ¢ S’. Let
S* = Xj» <@~ X, then indirect effect of feature X;:

asym. indirect causal __ E

X;,S {f(X§\{Xj}» fSu{Xj}) ‘ do(xSU{Xj}>]

—E f(Xg\{Xj}, J)SU{XJ.}) do(xg)}

T,
=E {f (X311 Tsuix;)) ’dO(Iw\s*)u{xj ,pa(xn})]

—E _f(Xg\{xj}a xsu{Xj}) d0($(S\S*)Upa(Xj))}

(2
=E [f(Xg\{Xj}7ISU{Xj}) ’dO(I(S\S*)Upa(Xj))}

—E _f(Xé\{Xj}a xSU{Xj}) do(x(S\S*)Upa(Xj))}
=0
(1) - Using 3 rule of do calculus we can ignore conditioning by intervention on X;; <g~ X, because we already condition
upon X;. Intuitively we would not get any additional information about features further down in causal graph G' from feature

that are above X; as we already know impact of X;.
(2)- Aswestated Y L X;|pa(X;), thus we can ignore conditioning on X;.

Manifold Restricted Interventional Shapley Values

Taufiq, BlIobaum, and Minorics (2023) propose Manifold Shapley Values (ManifoldShap) under the assumption that a model’s
behavior should primarily be characterized on the data manifold. To satisfy this, they define a value function restricted to a local
neighborhood Z C X, where x € Z, as:

vz(S) =E[f(zs, Xg) | do(Xs = xg), x € Z]

In practice, it is sufficient to estimate an indicator function § = 1(x € Z), which identifies whether a sample lies on the
manifold. The value function becomes:



va(S) = Elf(zs, Xg5) - 9(X) | do(Xs = z5)]
E[9(X) [ do(Xs = zs)]
This formulation ensures that Shapley attributions are computed only using samples that lie close to the data manifold,
avoiding unrealistic or out-of-distribution combinations that can arise in standard interventional approaches.

Path-Wise Shapley values

Path-Wise Shapley values (Ter-Minassian et al. 2023) is designed to explain the local effect of a binary variable T' (e.g.,
treatment) on an outcome Y through a directed acyclic graph representing causal dependencies.

PWSHAP extends traditional on-manifold (Conditional) Shapley values by breaking them down into causally valid contri-
butions. PWSHAP decomposes Coalition-Wise shapley value in Propensity weight and Coalition-wise Shapley Effect

Decomposing Coalition-Wise Shapley Values into Shapley Effects Let i be a treatment feature (i.e., X; = T') and Y the
model prediction. The Shapley value associated with the coalition S can be decomposed into two components: a propensity
weight and a Coalition-Wise Shapley effect (proof ):

¢i.s(v) = v(SU{i}) —v(S)
=(t—P(T=1| Xs=us)) (0(SU{i})],_, —v(SU{i})|;_,)

Propensity weight w(z s,t) Coalition-Wise Shapley effect Y,y x4 (zs)

Propensity Weight. The term
w(zg,t) =t —m(zg)=t—P(T =1|Xg =xg)
is the difference of feature value ¢ and propensity score . Intuitively it can be understood as a measure of how much feature
value t is as an outlier.

Coalition-Wise Shapley Effect. Given a treatment feature 7" and a subset of covariates Xg, the Coalition-Wise Shapley
effect isolates the expected change in output from setting 7' = 1 vs. T' = 0, while conditioning on the coalition Xg:

Yroyixs(@s) = v(SULi})|,_, —v(SU{i})|,_,
This can be seen as a generalization of the Conditional Average Treatment Effect . However, unlike CATE, Xg is not
necessarily a valid adjustment set.

Path-Wise Shapley Effect Coalition-Wise Shapley effect can be understood as flow from 7" to Y through set of covariates
Xs. To isolate the effect of the treatment through X; path we subtract from the causal flow through all covariates, the flow
through all covariates except for X;.

Path-wise effect of 7" on Y through X; for model f can be determined as difference of two Coalition-wise Shapley effects:

f — f
Ve, (e) = wT—)Y\CS* (csw) — wT—>Y|Cs*\{i} (csa\(i})
Depending on the causal role of the feature in the graph Path-wise Shapley values can be interpreted differently.

Tracing Different Paths This experiment evaluates the ability of Path-Wise Shapley values to attribute model output to
specific causal pathways, and compares them to standard Causal Shapley values. To do so, we generate synthetic datasets under
four structural settings: 1) neither C nor Cy are mediators, 2) only 1 is a mediator, 3) only C5 is a mediator, and 4) both C
and Cy are mediators.

We define the mediating variables as follows:

-Cmed  Bern.((1 —T) - 0.3+ 0.5)

-CPed ~ Bern.((1—T) - 0.6 + 0.2)

These expressions indicate that the treatment 7" affects the distribution of Cy and/or C, thus creating a mediated path from
T to Y. Non-mediated versions are sampled independently: C; ~ Bern.(0.5), C; ~ Bern.(0.2). In all settings, the outcome is
defined as Y = (1 + Cs. The different data distributions are summarized below.

T ~ Bern.(0.5) T ~ Bern.(0.5) T ~ Bern.(0.5) T ~ Bern.(0.5)

Cy ~ Bern.(0.5) Cped Cy ~ Bern.(0.5) Cped

Ca ~ Bern.(0.2) Co ~ Bern.(0.2) Ced Cied

Y =C1+Cy Y =C1+Cy Y=C+Cy Y =C1+Cs
Mediators: () Mediators: {C } Mediators: {C5} Mediators: {C},C>}

The results in Table 7 show that Path-Wise Shapley values can successfully isolate and quantify the contribution of individual
mediation paths.

Note that Path-Wise Shapley values are not guaranteed to sum to the model prediction and may operate on a different scale.
We use absolute values to mitigate the impact of sign instability in attributions.



Table 7: Path-Wise Shapley vs. Causal Shapley effects on synthetic mediation scenarios.

Structure [Vrsc syl Wrsc,sy| | Pindieal
C, Co 0 0 0
Ci-M, Cy 0.29 0 0.06
C1, Co-M 0 0.51 0.14
C1-M, Co-M 0.16 0.32 0.23

Conditioning by Intervention
Proof of conditioning on interventions using observational conditioning:

P(Xg = zgldo(zs)) H P(Xj = 21X (j 205 do(es)) =

jES

1)

= HP( ‘_‘r]| a(])ﬂS’d (IES’)):
jes 3)

(2)

= HP( i =zl pa(j)msad (Tpa(j)ns)) =
j€S

3)

- H P( - x]| a(])msaxpa(j)ﬂS)
j€S

(1) - Using rule 1 of do-calculus, we can remove conditioning by observation for all nodes that causally precedes parents of
X;.

](2) - Using rule 3 of do-calculus, we can ignore conditioning by interventions upon nodes that are further in the causal graph
and causally precedes parents of feature X;.

(3) - Using rule 2 of do-calculus, we can change conditioning by intervention on conditioning by observation upon variables
that are higher up in causal structure.

Proof of conditioning on interventions using observational conditioning for partial causal ordering:

P(XS = :L‘S|dO(XS = xs)) (X|dO(XS = xs))
= [[ P(X+|Xr1<e Xr,do(Xs = 25))

TeT
1
@ I PO X pa(ry: do(Xs = )
T€T
= H P(XTﬂg‘Xpa(‘r)ﬂ?’dO(XS = $S))
TeT (4)
@
H P ‘rﬁS| pa(T)NS> ('7;(7'/<GT)05')7 do(xTﬁS))
TeT
®)
H P(X, 51X, o (r)n5: d0(Zpa(r)ns), do(zrns))
T€T
(4
H P ‘rﬂS| pa(T)NS> PG(T)QS7dO(ITﬁS))
TeT

(1) - Using rule 1 of do-calculus, we can remove conditioning by observation, as X L X/~ (pa(r))|s Xpa(r), X5 in graph
G- Intuitively, knowing all relevant information about the parents of a variable, makes additional information about parents’
parents redundant to determine impact on the variable.

(2) - Xg can be decomposed as Xg = {X(T,_<GT)QS,X(T,>GT)HS, X;ns}- Using rule 3 of do-calculus, we can ignore
conditioning by intervention for all components further down in causal chain, X g 1 X (717N 5|X pa(r)NS X (r1<eT)NS in
updated graph G'.

(3) - Using 3 rule again, we can ignore conditioning by interventions for all components before X, (;), as X g
Xr1<apa(r)| Xpa(r)» Xrns in updated graph G”.



(4) - Using rule 2, we can change conditioning on intervention on conditioning by observations.
Using 3 rule of do-calculus, for component with dependencies induced by common confounder:
P(X, 51X pa(r)n5s Tpa(rns: do(zrns)) =

= P(XTO§|Xpa(T)ﬁ§’ xpa(‘r)ﬂS)
Again using 2 rule of do-calculus, for component with dependencies induced by mutual interactions:

P(X, 051X pa(r)n5> Tpa(r)ns, do(zrns)) =

= P(XTnE‘Xpa(T)néa Tpa(r)nSs TrAS)

Path-wise Shapley Value Decomposition

Proof of Property
Let X; be a treatment feature and x; € {0, 1} its observed value. We start by expressing the value function using conditional
expectations:

v(S) =E[f(zs, Xi, X5\ (;3) | Xs = 5]
=P(X; =i | Xg = wg) - E[f(xs, 2, Xg\ ;) | Xi = 25, Xg = xg]
+PX;=1-2; | Xs =x3) E[f(zs,1— xi,Xg\{i}) | X; =1—2;, Xg = xg]
=P(Xi = | Xs =xs) - 0(SU{i})|y._,.
+P(X;=1—2;| Xs =x5) - v(SU {z‘})|Xi:17wi

We now compute the marginal contribution of X to the coalition S

v(SU{i}) —v(S) = P(X; = 2 | Xs =) - v(SU{i})|y._,.
+P(Xi=1-a; | Xs =2s) - 0(SU{i})|y. _,.
—P(Xi =i | Xs =x5) v(SU{})|y _,.
—P(X;=1-2; | Xs=2s) - v(SU{i})|y_,_,

= P(Xi =1 -2 | Xs =as) - [o(S UGN, ~v(SU{D] ]

Proof of Property C-CATE as Controlled Direct Effect

Let T be the treatment, Y the outcome and X g a set of mediators. The Controlled Direct Effect of 7" on Y, with mediators Xg
fixed to value x g, is defined as:

CDEx, (t, t/, :I:s) = E[Y|dO(T =t Xg = xs)] — E[Y|d0(T = t/,XS = .%‘5)}

Then:

CDEx,(t,t',xs) = E[Y|do(T = t, X5 = 25)] — E[Y|do(T = t', Xg = x5)] 2

E[Y|do(T = t), Xs = 5] = E[Y|do(T = t'), X5 = 5] = A¢(s)

(1) - According to Rule 2 of do-calculus, an intervention can be replace by observation if Y | Xg|T in G' = G xg- This

condition hold if all of the variables in X are not a descendant of any other variable besides 7" and any other variable included
in Xs.



Proof of Property PE-SHAP Effect Aggregation for ATE
Let T be the treatment, Y the outcome and X g a minimal adjustment set. From definition of Average Treatment Effect:

/ Ai(ws) - P(Xs = o | do(T = 1)) dus
e9)

() /At(xs) - P(Xg = xs) dos

=Ex.[Ai(zs)]

=Ex, [E[Y | do(T =t), X5 = x5] — E[Y | do(T =), X5 = a5]]
=E[Y | do(T = t)] — E[Y | do(T = t')]

= ATE

(1) - By the third rule of do-calculus, since X g is minimal adjustment set that causally precedes 7', the distribution of Xg is
unaffected by the intervention do(T = t').

Proof of Property PE-SHAP Effect Aggregation for NDE

Let T be the treatment, Y the outcome and Xg - subset of mediators, not a descendant of any other variables except for T or
any other variable included in X g. Then:

/ A(ws) - P(Xs = 3 | do(T = t')) das

@ / CDE(LY,z5) - P(Xs = wg | do(T = ) des

= E[Y ‘ dO(T = t, XS = :ct/)] — E[Y | dO(T = t/,XS = :L't/)]
= NDE

(1) - This equality follows from Property . Since Xg is not a descendant of any other variables except for T or any other
variable included in Xg, CDE(¢,t', xs) equals to As(zg).

Proof of Property PE-SHAP Effect Aggregation for NIE

Let T be the treatment, Y the outcome, and X g a subset of mediators such that no element of X g is a descendant of any variable
other than T or variables already included in Xg. Then:

/P(Xs =zg | do(T =1)) - Ap(t) X5 (as)—y dTs
= /P(XS =g | dO(T = t/)) . (ATE — At(xs)) d(Es
= ATE — /At(l's) -P(Xg=uzg|do(T = t/))dxs

W ATE - NDE

©NiE
(1) - Follows from Property about NDE aggregation, since Xg is a subset of mediators that are not descendants of any
variable except for 7" or variables within Xg.
(2) - Follows from the two-way decomposition of the Average Treatment Effect .

Experiments: Population Effects

One important application of the proposed approach is its ability to aggregate local explanations into meaningful population-
level causal effect estimates, such as the Natural Direct Effect (NDE) and Natural Indirect Effect (NIE). Our method, , leverages
this property to provide interpretable decompositions of the total effect into these causal components. Table 8 compares the
estimated NDE and NIE across different methods. The S-learner-MLP, a common baseline, produces the lowest NDE estimate,
yielding slightly better results with smaller Monte Carlo error compared to the aggregated estimates. However, despite this
slight advantage, performs very well, producing robust and consistent effect estimates that closely align with the baseline. This
highlights ’s capability to provide reliable causal effect decompositions while also offering enhanced interpretability. Notably,



Method NDE Estimate (SE) NIE Estimate (SE)
S-learner-MLP 0.0503 (0.002) 0.0284 (0.004)
-GT 0.0546 (0.007) 0.0407 (0.006)
-MLP 0.0525 (0.007) 0.0404 (0.006)
-XGBoost 0.0547 (0.007) 0.0407 (0.006)
-Linear 0.1565 (0.003) 0.1340 (0.003)

Table 8: Comparison of Estimated Natural Direct Effect and Natural Indirect Effect on Y Across Methods. Estimates are
reported with Mean Absolute Error and Monte Carlo Error shown in parentheses.

the -Linear method produces substantially larger estimates for both NDE and NIE, which is expected given the differences in
model structure and data representation, particularly due to the inclusion of squared terms.

Overall, while the classical S-learner achieves the smallest effect magnitudes in this setting, demonstrates comparable per-
formance.
Theoretical Details of Shapley Values Comparison Example

Consider a black-box predictive model f defined as follows:

Y = f(T,C, My, My) = C + BrT + Bar, My + Brar, (T x My) + Bar, M + &,

where T represents the treatment variable, C'is a covariate, and M;, My are mediators influenced by the treatment through the
relationships:

My =T +m, My=T+mn,
with €, 11, 12 representing error terms.
We define the total average treatment effect and controlled direct effect on the outcome Y as:
A7 (D) = ATE = Br + (Bar, + Bran) + B2,
Ar(My =my) = CDE(M; = m1) = Br + Brar,m1 + Bar, Y2
Ar(My = my, My = my) = CDE(M; = my, My = ma) = Br + Brum,mi,
Ar(My = my) = CDE(My = ma) = Br + Bar, 71 + Branm

By subtracting the controlled direct effect from the total effect, we isolate the path-specific effect of the treatment 7" mediated
through Mj:

AT My ()Y = Ar(0) — Ap(My = m1) = (Bum, + Brar,)n1 — Bra,ma
‘I/T—>Ml—>if = AT(Ml =my, My = my) — Ap(My = mz) = —Bmm

Importantly, when the interaction term S7js, = 0, this path-specific effect simplifies to 3y, v1, which represents the direct
mediation effect of M; without any treatment-mediator interaction.

Experiments: Estimators comparison

Estimators Both Correct Incorrect Outcome Incorrect Treatment Incorrect Both
Doubly Robust  0.0734(0.0110) 0.0736(0.0109) 0.0734(0.0110) 0.1146(0.0126)
Regression 0.0679(0.0111) 0.2844 (0.0254) 0.0679(0.0111) 0.2844 (0.0254)
IPW 0.0657(0.0111) 0.0657(0.0111) 0.1838 (0.0174) 0.1838 (0.0174)

Table 9: Mean Absolute Error with Monte Carlo Error (in parentheses) across different model specification scenarios.

To assess the empirical performance and robustness of the proposed CATE estimators, we evaluate them under four distinct
model specification scenarios that reflect varying degrees of misspecification in both the outcome and treatment models:

1. Both outcome and treatment models are correctly specified.

2. Outcome model is misspecified - we assume a linear functional form, whereas the true data-generating process includes
non-linear dependencies.

3. Treatment model is misspecified - due to omission of a confounding variable.
4. Both models are misspecified.



Table 9 presents the Mean Absolute Error (MAE) along with the Monte Carlo standard error (in parentheses) across all four
scenarios. Lower MAE values indicate better estimator accuracy in recovering the true CATE.

The results empirically confirm the theoretical robustness of the Doubly Robust (DR) estimator: it achieves stable perfor-
mance when either the outcome model or the treatment model is misspecified. However, its performance degrades when both
models are misspecified - though it still generally outperforms alternative methods in such settings. Regression-based estimation
performs exceptionally well when the outcome model is correctly specified but degrades significantly under outcome model
misspecification. In contrast, IPW is highly sensitive to misspecification of the treatment model, as expected, given its reliance
on accurate estimation of the propensity scores. It is worth noting that the DR estimator can underperform relative to IPW or
regression-based methods when there is high confidence in the correct specification of either the treatment or outcome model.
This is primarily due to the higher variance typically associated with DR estimators.



