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ABSTRACT

Continual vision—language learning is crucial for multimodal tasks such as im-
age—text retrieval, visual question answering, and grounded reasoning in dynamic
environments, yet deployed systems must learn from non-stationary streams un-
der strict privacy and memory budgets, where naive finetuning forgets and harms
transfer. We aim to sustain stable yet plastic capability in this setting without
storing raw data, enabling reuse and recombination across domains and tasks.
We present COMEM, a framework that treats compositional structure as the unit
of memory and rehearsal: it incrementally organizes knowledge into a com-
pact graph of concepts and relations and rehearses directly in feature space by
conditioning practice signals on sampled subgraphs. A lightweight composi-
tional consistency objective keeps part—whole predictions coherent, while teacher-
informed, uncertainty-aware filtering limits off-manifold drift. Across cross-
domain retrieval, structured concept learning, and continual multimodal VQA,
COMEM achieves state-of-the-art retention and transfer alongside consistent gains
on SVLC and VQACL/CLOVE under matched memory and parameter budgets.
By casting structure as memory and rehearsing where learning happens (feature
space), COMEM provides a privacy-friendly and testable paradigm for reliable
continual adaptation without raw exemplars.

1 INTRODUCTION

Foundation vision—-language models (VLMs) such as CLIP (Radford et all |2021) have become
widely used as standard backbones for a variety of multimodal tasks, including image—text retrieval
(Yang et al.} 2024), visual question answering (Hu et al.,|2024), and grounded reasoning (Zhu et al.,
2024). These models enable robust cross-modal understanding by jointly embedding visual and
textual information. However, in practical deployment, these systems often face challenges arising
from non-stationary and domain-shifting data streams, strict privacy and memory budgets that limit
the ability to retain historical samples, and heterogeneous objectives that frequently lack reliable
task identifiers (Mao et al .l [2022).

These challenges can lead to a significant issue: catastrophic forgetting, where fine-tuning on new
tasks causes degradation in performance on previously learned tasks. This problem worsens un-
der conditions such as domain shifts, where models struggle to maintain zero-shot performance,
and with the distortion of cross-modal geometry that is crucial for transfer learning (Zheng et al.,
2023 N1 et al., [2023). Studies have shown that when pretraining continues without effective re-
tention mechanisms, forgetting tends to accumulate over time, compounding the issue and further
undermining performance in real-world tasks (Garg et al.| 2024).

Existing solutions typically focus on three approaches: (i) preserving cross-modal geometry and
limiting parameter drift (Zheng et al., 2023} Ni et al.| 2023} Zhu et al | 2023)), (ii) replacing raw-data
replay with symbolic or synthetic surrogates (Smith et al., [2023} [Wu et al.| [2025)), and (iii) reducing
the number of trainable parameters via adapters or prompts (Liu et al[2025). While these methods
offer improvements in retention and performance, they often fail to directly address the central issue
of maintaining stable yet plastic compositional competence when dealing with non-stationary, multi-
domain data streams, especially under strict privacy and memory constraints. In structured-concept
and skill-object tasks, models still encounter difficulties in reusing knowledge learned from earlier
stages, particularly when there are shifts in the data distribution or limited supervision (Smith et al.,
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2023} [Zhang et al.| 2023)). Moreover, surrogate replay methods can inherit biases from the teacher
model and provide little control over what is rehearsed, while geometry-only objectives tend to
preserve alignment without fostering generalization. Parameter-efficient tuning often results in task-
specific adjustments, which limits the ability to reuse learned structures. As such, there is a clear
need for a unified approach that combines semantically grounded rehearsal signals with mechanisms
to preserve transferability across domains.

To address these gaps, we introduce COMEM, a novel continual learning framework for vi-
sion—language tasks. In COMEM, we treat compositional structure as the unit of memory and re-
hearsal. Rather than storing raw examples, COMEM incrementally organizes tasks into a compact
graph of concepts and relations. Rehearsal is then conducted in feature space, conditioning practice
signals on graph substructures. This method enables the model to revisit informative combinations
of concepts and relations, even under strict privacy and memory constraints. Additionally, we in-
troduce a compositional consistency objective that ensures predictions remain compatible across
concepts and relations, enabling the model to reuse learned structures effectively across shifting
tasks. Teacher-informed filtering and uncertainty-aware distillation mechanisms are incorporated to
balance the trade-off between plasticity and stability in continual learning.

The main contributions are as follows:

1) Structure-as-memory. We recast continual VLM learning as organizing a compact graph of
concepts and relations, then rehearse in feature space by conditioning on its substructures. This
yields targeted, privacy-friendly practice signals without storing raw images and provides a scalable
unit of reuse across tasks.

2) Compositional stability. We propose a training principle that maintains consistency between
parts and wholes while using teacher- and uncertainty-informed filtering to balance plasticity
and stability. The approach is complementary to geometry-based objectives and compatible with
parameter-efficient tuning.

3) Reliable gains under fair budgets. On cross-domain retrieval, structured concept learning, and
continual VQA, COMEM delivers higher recall and accuracy with lower forgetting under matched
memory and trainable-parameter budgets, and exhibits stable behavior across seeds and reasonable
hyperparameter ranges.

2 RELATED WORKS

Geometry and regularization. A line of methods stabilizes CLIP-like models by constraining
representation geometry or parameter drift. ZSCL preserves zero-shot transfer via unlabeled-
reference distillation with weight averaging and introduces an MTIL benchmark (Zheng et al.,
2023)); Mod-X aligns off-diagonal similarity structure (Ni et al) [2023); CTP adds a compatible
momentum branch with topology-preserving distillation (Zhu et al., 2023)); DKR rectifies teacher
affinities for retrieval (Cui et al.,2024). Probabilistic finetuning with language-guided consolidation
(CLAPACLIP) (Jha et al., 2024) and replay-free zero-shot stability (ZAF) (Gao et al., 2024), as well
as LoRA-based consolidation (C-CLIP) and modality-gap modeling (MG-CLIP) (Liu et al., [2025;
Huang et al.,|2025b)), further improve stability under domain/class shift. Yet these feature/parameter-
space approaches seldom model reusable concepts and typed relations, limiting compositional trans-
fer. COMEM complements them by inducing a typed concept graph and enforcing composition via
relation-aware replay and consistency.

Replay without raw data. Replay mitigates forgetting without storing raw data, meeting privacy
and memory constraints. IncCLIP synthesizes hard negative texts with cross-modal distillation (Yan
et al.| [2022); ConStruct-VL offers a data-free SVLC benchmark with adversarial pseudo-replay and
Layered-LoRA (Smith et al., 2023)); for VQA, SGP replays scene-graph prompts with pseudo QA
pairs (Lei et al.| 2023)); diffusion-based synthesis (GIFT) distills on generated image—text pairs with
adaptive consolidation (Wu et al.l [2025). Yet symbolic or pixel-level surrogates weakly encode
relations and provide limited control in the feature space where learning occurs. COMEM instead
replays feature-level samples conditioned on sampled subgraphs, enabling structured, on-manifold
rehearsal under tight memory budgets.
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Figure 1: Training and Replay Pipeline in COMEM. Top (timeline): After completing task £ —1,
the model snapshot 6,1 becomes the teacher for task ¢, with no access to past raw data. The model
is trained on task ¢ using a fixed memory budget B and updated concept-graph memory M,. At the
end, 0, is saved for the next task. Bottom (task-¢ workflow): The process involves three stages: (1)
Concept Induction: Extract concept triplets (a, e, ) from the image-text pair and update memory.
(2) Graph-Conditioned Replay: Sample a subgraph S and generate replay features z. (3) Joint
Optimization: Optimize the model with real and synthetic batches, applying losses for supervision,
multimodal alignment, replay, and compositional consistency. The updated model is then written to
memory.

Parameter-efficient adaptation. Parameter-efficient adaptation (adapters, prompts, MoE) limits
trainables while mitigating forgetting. TRIPLET decouples multimodal prompts for continual VQA
(Qian et al.| [2023), DDAS routes inputs to MoE-adapters with a frozen-CLIP fallback for OOD
et al., 2024), C-CLIP couples LoRA with contrastive consolidation [2025)), and CL-MoE
introduces dual-router momentum experts for MLLM VQA 2025). Recent advances in-
clude Proxy-FDA, which aligns neighborhood structure via proxy features (Huang et al.,[2025al), and
LADA, which appends label-specific memory units to a frozen encoder (Luo et al.| 2025). COMEM
is orthogonal to PEFT and can pair with adapters/LoRA under matched parameter or memory bud-
gets.

3 METHOD

We address continual learning over a stream of multimodal tasks {D;}._,, where each task ¢ sup-

plies supervision on image—text pairs D; = {(scg ,yZ )}"‘ , together with task-specific labels (e.g.,
classes, masks). Rather than storing instances, we maintain a concept graph memory that encodes
reusable atomic concepts and typed relations, and we perform rehearsal by generating feature-level
samples conditioned on compositional subgraphs. As overviewed in Fig.[I] the training loop at task
t consists of three stages: (i) concept induction from (z, y) with a noise-aware, teacher-frozen ver-
ifier to update the graph memorys; (ii) graph-conditioned replay that samples a subgraph and syn-
thesizes features from the memory; and (iii) joint optimization on real and synthetic batches with
multi-objective regularization to preserve multimodal alignment and compositional consistency.
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3.1 PRELIMINARIES AND NOTATION

We denote the vocabulary of attributes and entities by C = AUE and a set of relation types by R. The
image encoder fimg(+; ) maps an image to a tokenized feature map Z = fimg(; ¢) € RP*? with P
patch tokens, and the text encoder fiy(+; ) maps text to token embeddings T' = ftxt Y; C) € REix4,
For tasks that operate on a global descriptor, we use a pooling operator 7 : RP*? — R? and write
z = w(Z). A task head h(-;w) consumes either z (e.g., classification, retrleval) or Z (e.g., dense
prediction via a lightweight decoder). We collect trainable student parameters as § = (¢, ¢, w) and
maintain a frozen teacher 6 (the checkpoint after task t—1). Generator and aggregator parameters
are kept separate as 1} and 1.

3.2 NOISE-AWARE CONCEPT INDUCTION AND VERIFICATION
For each pair (z, y) we extract scored concept triplets
T(m,y):{(a,e,r,w) caceA, ecE, TeR, wE[O,l]}. (1)

Candidates (a, e, ) come from a lightweight text parser ey (y) (prompted Information Extraction,
prompted IE), followed by a visual verifier evaluated on the teacher 6 to avoid confirmation bias.

Let p(c) be a short prompt for concept or relation ¢ € C U R, and t. = fi(p(c); @) € R? the
teacher embedding. We use a shared, low-rank projection for verification:

W=ABT, ABER™, r<d  suig(clZ) =o(LLSE,cip (W7, &), @)

where s,1ign (¢ | Z) is the alignment score of concept ¢ with respect to the feature set Z, calculated
using cosine similarity between Z,, and teacher embedding ¢, , controlled by the temperature param-
eter 7. LSE is log-sum-exp, o is the sigmoid, and 7 a temperature. Triplet confidence aggregates
the three verifications with calibrated temperatures 7,, 7, 7- (estimated on a held-out split):

w(a, e,7) = [saign(@] 2)% - satign(e] 2)% - satign(r] Z)]" e, 3)

where w(a, e, r) is the weighted triplet confidence score based on concept alignment, vy, v, v, are
the weights for attribute, entity, and relation alignments. These weights control the contribution of
each part of the triplet in the alignment calculation. We keep only triplets passing dual thresholds:
w > and teacher-consistency H(7z(- | 7(Z))) <&, where H is predictive entropy; otherwise they
are queued for recheck.

Concept Graph and Evidence Reservoirs. Verified triplets update a typed graph G = (V, E
with nodes V' = C and directed edges £ C V' x R x V. Each node c stores a prototype p. € R,
a count n., and an anchor reservoir A, C R? of at most B, token features (not images). Each edge

e = (u = v) keeps an interaction embedding . € R? and a count n,..

We update prototypes with EMA using token-level supports:

o] softmax,,((WZp, tc>)TZ, (4)
(Z,(a,e,r,w))€ES.

HC%(l—Oz),U/C—&—OZZC, Zc:|

where S, collects supports for concept c¢. Anchors are maintained online by a budgeted k-center
objective with time-decay A€ (0, 1),

_ VAt
A. + ar gsc{z i \S|<B zégllpp((’) Ianelg Hz - aH2 with sampling weight w; = A2 - w(a, e, r).
(5)

To control drift and synonymy, we periodically merge nodes with high textual cosine and prototype
similarity (union-find with thresholding), and we apply age-based decay to n, n..

Concept Graph Memory. M = (G, {A.}.cv) is the concept memory, consisting of the concept
graph G and a set of anchor reservoirs A..cy with global budget B = ) B., where each concept
c has its associated anchor reservoir.

Budgets are reallocated proportional to uncertainty (higher variance = larger B..).



Under review as a conference paper at ICLR 2026

3.3 SUBGRAPH SAMPLING

Replay subgraphs should be likely under observed co-occurrence while remaining diverse. We
define a positive, normalized plausibility score using normalized Pointwise Mutual Information
(NPMI) and edge counts:

®(Vs, Es) = exp ()\1 3" NPMI(e; Vs\ {c}) + e 3 log(1 + ne)>7 ©)
plausibility c€Vs e€Es

where NPMI € [—1, 1] is estimated from decayed co-occurrences in M and clipped to [0, 1]. For
diversity, we adopt a DPP-style term on node prototypes:

A(Vs) = \/det(Kvy),  Kij =q; exp(— [|pe, — 11e,113/p) a5, (7)
——

diversity

with qualities ¢; x /n¢,. Our target (unnormalized) sampler is ¢(S) < ®(Vs, Es) - A(Vs), with
|VS‘ S Kmax-

Two-Stage Approximate Sampler. (1) k-DPP node selection: sample k ~ Unif{2, ..., Kyax}
and select Vg by greedy k-DPP MAP on K (log-det gains). (2) Connectivity projection: connect
Vs by adding a minimum-cost Steiner tree over edges with cost 1/(1 + n); if necessary, expand
via BFS to reach a connected induced subgraph. We accept/reject the resulting S with a single
Metropolis—Hastings step using ¢(.S) to debias the greedy approximations.

3.4 GRAPH-CONDITIONED FEATURE GENERATOR

We synthesize features in the representation space where learning occurs. Given a connected sub-

graph S = (Vg, Eg), we form textual conditioning tokens {t, },cvs and {t,} (wTS)CE using the
u v S
student text encoder for compatibility during training. A graph aggregator computes
hs =GAT,(S) = Y wUtu+ > Yuor Vraltu, tr,t), ®)
u€Vs (uLM))EEs

where U, V' € R¥*" with r < d, ¢re1 = MLP([]|-|}]), and ~. are attention weights (sum to 1 within
node/edge groups).

Teacher-Guided Conditional Generator. We parameterize a conditional Gaussian with separate
parameters ¥

po(Z | S) = N(Z po(hs), diag(aj(hs))), Z=pg(hs) +os(hs)Oe. 9)
To encode relations beyond a union of node anchors, we train py with a relation-aware Maximum
Mean Discrepancy (MMD):
Lyen = MMD2_ ({£}K,, 2 .S) = Lol 5 || ®rer (1, S)—Bper (v, S) |
gen = s Gk em1s Zs)s kra(u,v;8) = exp(— P rel|| rel(U, )= Prel(v, )H2 )
(10)
where Zg = (Ucevy Ac)U(Uee s Ze ) pools node anchors and edge anchors =, = {MLP (a,/la,) :
ay € Ay,a, € Ay}, and @ (-, S) projects features into a relation-aware space via learned bilinear
maps. We add a support regularizer to keep samples close to the anchor hull:

Lsup_hull = max{O7 dist (27 conv(ZS)) — 6}, (11

where conv(-) is approximated by nonnegative least-squares projection. We do not backpropagate
Lyeplay (defined below) into 9 to avoid teacher-on-off-manifold mismatch.

3.5 TRAINING OBJECTIVES

Each mini-batch interleaves real features and graph-conditioned replay: B = {(Z;, T;,label;)} U
{(Zm, Sm)} with S, ~q(S) and Z,,, ~py (- | Sp). The total loss is

L= ﬁsup(h(z; w)) + >\mm£mm + Areﬁreplay + )\comp‘ccomp + Agenﬁgen + Ahullﬁsup,hull- (12)
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Task Supervision. L, is task-dependent; for dense tasks we apply it on Z via a lightweight
decoder, for global tasks on z = 7(Z).

Multimodal Alignment on Real and Replay. We use a symmetric InfoNCE(Oord et al., 2018)):
Emm = ['InfoNCE(Za T) + ‘CInfONCE(év tS)7 (13)

where ts = Aggi*(S) is the text-side aggregation of {t,}, {t,} using the same attention as in Eq.

Replay Distillation (Teacher-Filtered). We preserve the teacher’s behavior on replay while
down-weighting uncertain samples:

2) ol | 2) + Bll9a(2) — 903

Ereplay = ES z WS,z |:

L(mg (- | "
sz =1[H(mg(- | 2)) < ¢].

Compositional Consistency. We instantiate two complementary constraints.

(i) Log-Probability PoE Consistency. Let py(c | S) denote the marginal concept distribution under
subgraph S (using a concept head on Z ~py(- | S)). For two subgraphs S, S and union S,

Lpoo = E(s5) [KL(po(- | Su) [l norm (p(- | $1) @ pa(- | 52))) + KL(-)]. 15)

(ii) Relation Satisfaction via Typed Contrast. For each (¢ = ¢) € Eg, define a tri-linear score
so(a,me | S) = (R, go(Zs), ta) + (R} go(Zs), t.) with R, diagonal or low-rank. We use a typed
InfoNCE with hard negatives:

exp(so(a, 7 e | 5))
1 1
Z 08 exp(sg(a,r,e|S)) + Z(a,me,)queg exp(sg(a’,r, e’ | S))’ (16)

Esubgraph = -
(a,r,e)€Es

where gneg samples fyped negatives sharing (a,r) or (r, e) but unseen in Eg, penalized by NPMI to
avoid implausible pairs and filtered by teacher consistency. The final Leomp = Lpoe + Lsubgraph-

We optimize 6,1 by SGD on Egq. while updating ¥ only by V(AgenLgen + Ahunt Lsup_huil) (0O
gradients from Leplay). A two-phase schedule improves stability: warm-up for £, epochs with
Acomp=0 and A small, then enable Lo, and ramp A... The pseudocode for training of COMEM
is shown in Algorithm [T

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and Streams We evaluate COMEM on three complementary streams stressing compo-
sitionality, domain shift, and reasoning: (i) SVLC (ConStruct-VL)—a data-free sequence from
VG/VAW where each task is binary image—text matching focused on one concept family (Color,
Material, Size, Spatial, Action, State), probing retention and recomposition without storing im-
ages (Smith et al [2023). (ii) Cross-domain retrieval—following ZSCL/CTP(Zheng et al., [2023;
Zhu et al.| 2023)), a multi-domain sequence across COCO, Flickr30K, TAPR TC-12, RSICD, and
ECommerce-T2I with the same retrieval objective, testing zero-shot retention and robustness; we
also include a time-continual subset (TiC-DataComp/RedCaps) for pretraining ablations (Garg
et al. 2024). (iii) VQA skills & transfer—VQACL uses a 10-skill outer sequence with per-skill
object-group sub-tasks (skills x concepts grid), while CLOVE contrasts scene-incremental (DIL) and
function-incremental (TIL) on VQA v2/TDIUC using authors’ splits (Zhang et al.| 2023} [Lei et al.,
2023).

Evaluation Protocols and Metrics We evaluate using the following evaluation metrics: (i) Re-
trieval : Recall@1/5/10 (R@K), mean Recall (mR), and mAP. Continual metrics as in [Zheng
et al.| (2023)): Last (final performance), Average (across tasks), and Transfer (zero-shot retention
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Table 1: Cross-domain retrieval (mR %, higher is better). We report per-domain mR and contin-
ual metrics (Avg mR, AF). Best/second/third are shaded from dark to light gray.

Method COCO 1 Flickr30K 1 IAPR1 RSICD 1+ EComm?1 AvgmR 1 AF ]
Mod-X (Ni et al, 2023) 715 74.2 63.8 604 58.9 658 53
ZSCL (Zheng et all2023) 74.1 78.0 66.9 632 61.0 68.6 3.9
CTP (Zhu et al}2023) 73.0 76.5 65.1 62.1 60.2 674 42
DKR (Cui et al., 2024) 75.0 78.5 674 646 61.9 69.5 35
CLAPACLIP (Jhaetall2024) 742 77.1 66.1 63.0 60.6 682 3.7
C-CLIP (Liu et al}; 2025) 79.6 823 708  68.1 65.2 732 27
MG-CLIP (Huang et al., 2025b) ~ 78.4 81.5 70.1 67.4 64.3 723 29
GIFT (Wu et al; 2025) 79.1 82.0 712 685 65.8 733 25
COMEM (ours) 83.2 86.5 731 714 68.9 766 1.9

Table 2: Structured concepts (SVLC) and continual VQA. Best/second/third are shaded from
dark to light gray. SVLC reports macro Acc/AUROC and AF; VQA reports overall Acc on
VQACL/CLOVE and AF. “-” indicates a method not applicable to that stream.

SVLC (ConStruct-VL) Continual VQA
Method Acc T AUROC 1T AF | VQACL Acc 1T CLOVE Acc 1 AF |
SGP (Smith et al., 2023) 773 84.9 4.1 49.5 60.1 3.9
ZAF (Gao et al.,|2024) 80.3 87.1 2.6 51.2 61.0 2.4
C-CLIP (L1u et al.;[2025) 79.8 86.5 2.9 50.6 60.7 2.7
GIFT (Wu et al.,[2025) 79.9 86.9 2.7 52.0 614 2.9
CL-MoE (Huai et al.}[2025) - - - 54.1 62.3 2.0
COMEM (ours) 82.5 88.8 2.1 55.8 63.7 1.7

on unseen/new domains). We also report Average Forgetting (AF) and Backward/Forward Transfer
(BWT/FWT) where applicable. (ii) SVLC : Binary matching accuracy, AUROC, AUPRC per task
and macro-averaged; continual AF/BWT/FWT. (iii) VQA : Overall VQA accuracy and per-type ac-
curacy (skills); continual AF, Last, Average. For VQACL we also report cross-composition accuracy
where the (skill, object-group) pair was unseen during training (Zhang et al., 2023)).

Baselines and fairness. We compare COMEM against recent SOTAs for continual VLL: IncCLIP
(Yan et al., [2022), Mod-X (Ni et al.l |2023), ZSCL (Zheng et al., 2023), CTP (Zhu et al., |2023)),
DKR (Cui et al., 2024), CLAP4CLIP (Jha et al., [2024), ZAF (Gao et al.l [2024), C-CLIP (Liu et al.,
2023), GIFT (Wu et al.,2025), Proxy-FDA (Huang et al.,2025a), LADA (Luo et al., 2025), ENGINE
(Zhou et al., [2025)), and MG-CLIP (Huang et al.,|2025b) for retrieval / SVLC streams; and VOACL
(Zhang et al.| [2023), Symbolic Replay (SGP) (Smith et al.,[2023), QUAD (Marouf et al.| 2025), and
CL-MoFE (Huai et al, 2025) for VQA streams. Refer to to see our settings for comparison
with baselines, and the implementation of COMEM can be found in[A.T.2]

4.2 MAIN RESULTS

Cross-domain retrieval. Table |I| reports mean Recall (mR, %) per domain and the continual
metrics. COMEM achieves the best average mR across five domains with the lowest forget-
ting, improving over the strongest baseline (GIFT/C-CLIP track) by +3.3 mR on average and
reducing AF by an absolute 0.6. Gains are consistent on both near (COCO/Flickr30K) and far
(IAPR/RSICD/ECommerce) domains.

SVLC and VQA. Table[2] summarizes results on structured VL concepts (SVLC, ConStruct-VL)
and continual VQA (VQACL/CLOVE). On SVLC, COMEM outperforms recent data-free and PEFT
methods by +2.2 Acc and +1.7 AUROC while yielding the lowest AF, indicating both better concept
retention and calibration. On VQA, COMEM achieves the best overall accuracy on VQACL/CLOVE
with the lowest AF; compared to the strong MLLM-based CL-MoE, COMEM is +1.7 (VQACL) and
+1.4 (CLOVE) higher while being parameter- and memory-efficient due to feature-level replay.



Under review as a conference paper at ICLR 2026

Table 3: Single-factor ablations.
Retrieval SVLC VQACL
AvgmR 1T AF | Acc T Acc?

Ablation (remove or modify one component)

COMEM (full) 76.6 1.9 825 558
Generator / Replay
w/o relation-aware MMD (vanilla RBF) 75.7 23 81.6 549
w/o support-hull regularizer 76.1 22 820 553
stop-grad disabled (allow L, epiay grads to ¥) 75.8 26 81.7 550
node anchors only (no edge anchors =) 75.9 24 818 550
Distillation / Consistency
w/o entropy gate in Lreplay 75.3 2.8 812 546
w/o compositional consistency (Lcomp) 74.9 29 803 54.0
PoE only (no relation contrast) 75.4 2.5 81.0 545
relation contrast only (no PoE) 75.7 24 813 547
Verifier / Sampler
student verifier (no teacher freeze) 75.6 2.5 81.1 546
per-concept dense W (no shared low-rank) 76.1 26 820 552
uniform node sampling (no k-DPP / Steiner/MH) 752 2.7 81.0 544
no MH accept (keep k-DPP + Steiner) 76.2 2.1 822 555

4.3 ABLATION ANALYSIS

We perform single-factor ablations and report Retrieval (Avg mR, AF), SVLC (Acc), and VQACL
(Acc), averaged over 3 seeds under §@] (higher mR/Acc is better, lower AF is better). From TableE]
we observe: (1) Structured replay is essential. Removing relation-aware MMD ( —0.9 mR, +0.4
AF) or edge anchors (—0.7 mR, +0.5 AF) hurts both accuracy and retention. (2) Stability mecha-
nisms matter. Disabling the entropy gate raises AF from 1.9 to 2.8, and allowing L,cplay gradients
to the generator yields AF = 2.6. (3) Compositional consistency is complementary. Removing
all consistency terms drops Avg mR to 74.9 (—1.7) and SVLC Acc to 80.3 (—2.2); PoE-only or
relation-only recover part of the gap. (4) Plausible, diverse subgraphs help. Uniform sampling
costs —1.4 mR and +0.8 AF; k-DPP+Steiner+MH is best, and removing only MH gives a small
decline ( —0.4 mR). (5) Teacher-frozen, shared low-rank verification reduces forgetting. Using
the student as verifier or dense per-concept projections increases AF by 4-0.6~0.7.

4.4 SENSITIVITY ANALYSIS

Sensitivity to hyperparameters. Figure [2 shows how Avg mR (1) and AF (]) vary with anchor
budget B, subgraph size K ,,,x, and verifier rank r. Curves are smooth with narrow variability bands
and a broad flat region near our defaults, indicating low hyperparameter sensitivity. (i) Increasing B
from 8K—64K raises mR 75.8—76.7 and lowers AF 2.4— 1.8, then both plateau; we adopt B=64K
for the best accuracy—memory trade-off. (ii) Ky,.x=06 is a broad optimum (76.7 mR, 1.8 AF); <3
under-covers compositions, while >8 slightly raises AF (~2.0-2.2), supporting k-DPP+Steiner with
a moderate K. Figure[5|in §A.T.2|further confirms robustness to loss-weight choices.

Long-Horizon Forgetting We build an 18-task MTIL-style sequence (retrieval domains inter-
leaved with SVLC families) and report, per task ¢, Last@t (avg mR over seen tasks), AF@t, BWT @t,
and FWT@t.As shown in Figure[3] over an 18-task stream, COMEM remains stable: Last@t quickly
plateaus around 76.6% while AF grows slowly to only 2.2 at T'=18. Its transfer dynamics are favor-
able—BWT is the least negative (—0.11) and FWT the highest (0.60)—indicating stronger reuse on
unseen tasks.

4.5 MEMORY- AND PARAMETER-FAIR COMPARISONS

We conduct two fairness-critical studies: (A) equal memory (MB) under fixed budget, and (B) equal
PEFT parameters (trainable M). Both use the retrieval stream with the same task order.
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(a) Sensitivity to Anchor Budget (b) Sensitivity to Subgraph Size (c) Sensitivity to Verifier Rank
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Figure 2: Sensitivity analysis. Shaded bands show variability across seeds; COMEM exhibits
smooth trends and broad plateaus near the chosen defaults.
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Figure 3: Long-Term Stability and Performance Comparison

Equal Memory (MB) We match the total memory budget (anchors+prototypes+edge-embeddings
for COMEM) at {24, 49, 98, 196} MB and compare exemplar replay (ER/DER++), synthetic replay
(GIFT-style), and small-cache variants of CLIP finetuning (CLAP4CLIP, C-CLIP). COMEM stores
token anchors only, and no raw images are kept.

ER (exemplar) W GIFT (synthetic) WS C-CLIP (small cache)
WO DER++ (exemplar) WM CLAPACLIP (small cache) BB CoMem (ours)

Time
(lower is better)

00

Average mR (%)

Throughput Memory
(higher is better) (lower is better)

49 98
Memory Budget (MB)

Figure 4: Performance and Efficiency Comparison of Continual Learning Methods

As shown in Figure [ under strictly matched MB, COMEM outperforms exemplar replay by +1.3
mR and —0.7 AF at 98MB , and remains competitive in wall-clock time. The advantage persists
across budgets and saturates near ~100MB, indicating that token-level anchors plus relation-aware
synthesis provide more informative replay per MB than pixels or generic synthetic images.

Equal PEFT Parameters We fix trainable parameter budgets at {2M, 4M, 8M, 16M} and com-
pare CLIP-based PEFT methods against COMEM (whose trainables are primarily the aggregator i
and generator ). All methods use ViT-B/16, identical tokenization and schedules. TableE] shows
that COMEM consistently dominates under equal trainables , e.g., at 8M parameters This supports
that graph-conditioned replay and compositional constraints improve retention beyond parameter-
count scaling. SVLC Acc gains at the same budget indicate stronger compositional transfer.
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Table 4: Equal PEFT budget. With the same trainable parameters, COMEM yields higher mR and
lower AF. At moderate budgets (§M), COMEM also leads on SVLC Acc.

Method 2M trainables 4M trainables 8M trainables 16M trainables

Avg mR 1 AF | Avg mR 1 AF | Avg mR 1 AF | Avg mR 1 AF |
C-CLIP 73.9+£0.28 25+0.13 74.7+020 23+0.17 756=+£0.15 24+0.09 75.8+0.14 2.3+0.07
LADA 74.6 £0.13 23+0.17 75.24+0.13 224+0.09 758+£0.12 2.1+0.05 76.1+0.09 2.1+0.04
ENGINE 74.3+0.16 24+0.08 75.0+0.18 224+0.12 757+£0.06 2.1+0.03 76.0+0.11 2.0+0.06

COMEM (ours) 75.8+0.10 2.0+0.05 76.1+0.09 1.9+0.05 76.6+0.08 1.8+0.04 76.7+0.08 1.8+0.04

5 CONCLUSION AND FUTURE WORK

We introduced COMEM to address continual vision—language learning, which treats compositional
structure as the unit of memory by organizing a compact concept-relation graph and rehearsing
directly in feature space with a lightweight consistency objective. Across cross-domain retrieval,
structured concept learning, and continual multimodal VQA, COMEM consistently reduces for-
getting and improves transfer under matched memory and parameter budgets, indicating that se-
mantically grounded, feature-space rehearsal is a more effective primitive than exemplar or generic
synthetic replay.

Our study still relies on lightweight text parsing and teacher filtering and assumes a fixed relation
schema, which may constrain coverage in open-world settings. Future work will explore end-to-end
concept discovery, integration with instruction-tuned MLLMs and federated/streaming pretraining,
and deployments to privacy-critical applications such as search, assistive agents, and robotics.

Ethics Statement This work adheres to the ICLR Code of Ethics. Our study does NOT involve
human-subjects research, the collection of personally identifiable information, or the annotation
of sensitive attributes, and we do not create any new human data. All experiments are conducted
on publicly available, widely used vision—language benchmarks (COCO, Flickr30K, IAPR TC-12,
RSICD, ECommerce-T2I, ConStruct-VL/SVLC, VQACL, CLOVE, and TiC-DataComp/RedCaps)
strictly under their respective licenses and terms of use.

Reproducibility Statement We organize the paper and appendix to enable step-by-step repro-
duction. The complete experimental protocol—datasets/streams, metrics, baselines, and task or-
ders—appears in §4.1} memory- and parameter-fair comparisons are detailed in §4.5|with matching
rules in Appendix Implementation details (backbones/tokenization, verifier, memory and
anchor accounting, subgraph sampler, aggregator/generator architectures, loss weights/schedules,
batch composition, and hardware) are provided in Appendix §A.T.2} the full training loop is sum-
marized in Algorithm[I} For exact replication we fix and report seeds (42/43/44), software versions
(PyTorch 2.3, CUDA 12.1), and determinism flags, and we enumerate all key hyperparameters used
in main runs (e.g., anchor budgets B=64K for retrieval and 48K for VQA; verifier rank r=64;
7=0.07, v=0.6, {=1.5; Kmax=06; K=16; warm-up E\,=1; and loss weights as in §A.1.2). Due to
ongoing commercial use, we do not release source code or binaries during the review period. Upon
acceptance, we will open-source a de-identified COMEM reference implementation (training, infer-
ence, and logging), together with pinned environment files (Docker/Conda), task-order files, seed
lists, and one-click scripts/configs that reproduce every table/figure.
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A APPENDIX

A.1 SUPPLEMENTARY TECHNICAL DETAILS

A.1.1 PSEUDOCODE FOR COMEM TRAINING

Algorithm [I] trains COMEM on task ¢ by first initializing the student § from the frozen teacher
0 and setting aggregator 1) and generator ¢). For each mini-batch, it encodes images/text, proposes
triplets via prompted IE, and verifies them with a teacher-frozen shared low-rank projector, accepting
only high-confidence/low-entropy items to update the concept-graph memory (EMA prototypes,
budgeted token/edge anchors, counts with merge/decay). It then samples connected subgraphs using
a two-stage sampler and synthesizes replay features with a text-conditioned generator, fitting the
generator via relation-aware MMD and a support-hull regularizer. The student is optimized on
mixed real+replay batches using the task loss, multimodal InfoNCE (real and replay), entropy-gated
distillation, and compositional consistency (PoE + typed relation contrast). We update 6, 1) with the
total loss, and update ¥} only from generator losses (no gradient from distillation/consistency). The
procedure outputs the updated ¢, and memory M;. Tab. |5/ summarizes the main symbols used in
this paper.

Let |C| be the number of concepts, |R| relation types, and B total anchor budget. The memory stores
O (|C|d + |R|d + Bd) floats for storing prototypes, edge embeddings, and anchor tokens for each
concept and relation. Here, |C| is the number of concepts, |R| is the number of relations, and B is
the anchor budget. Verification uses a shared low-rank W = ABT with cost O(Pdr) per sample

12



Under review as a conference paper at ICLR 2026

(vs. O(Pd?) for dense W). The k-DPP node selection is O(K 2, d) with greedy log-det gains and
cached kernels; the Steiner projection is near-linear in the local neighborhood size. Replay sampling
and Gaussian synthesis are O(d) per synthetic instance. Overall, the method scales sublinearly with
data volume via budgeted reservoirs and low-rank/shared projections.

Algorithm 1 COMEM Training at Task ¢ (Noise-Aware, Relation-Conditioned Replay)

1: Inputs: D, teacher 6, memory M;_;
2: Initialize student 6 < 0; initialize v, ¥
3: forepoch=1,..., F do

4: for mini-batch B C D; do

5 Encode Z = fimg($; (b)’ T = ftxt(y; ‘p)

6: Extract candidate triplets by et (y); verify with Eq. [2] keep if Eq. [3|and entropy pass
7: Update M: prototypes (Eq. ) , anchors (Eq. [3)), counts/merge/decay

8: Sample subgraphs {S,, }M_, via two-stage sampler (§3.3))

9: Generate replay Z,, ~pg(- | Sp); compute Lyen (Eq. [10) and Lgyp nun (Eq.
10: Compute Lgup, Lmm (Eq. [13), Lieplay (Eq. ,and Leomp (Eq.
11: Update 6,1 by SGD on E update ¢ only by V(AgenLgen + Anull Lsup_hull)

12: Output: Updated 6;, memory M,

Category Symbol Description
C Set of concepts (attributes and entities)
. A Set of attributes (subtype of concepts)
Concepts and Relations & Set of entities (subtype of concepts)
R Set of relations between concepts
M Concept memory (graph and anchor reservoirs)
Memory and Graph g Concept graph (nodes: concepts, edges: relations)
|4 Set of nodes in the concept graph G (concepts)
Z Feature representation of an image (output of image
Embeddings and Projections encoder)
T Feature representation of text (output of text encoder)
w Shared low-rank projection matrix for concept verification
.. . (4 Model parameters (student parameters)
T ! -
raining Variables 0 Teacher model parameters (frozen)
gy Qey Qe Weight parameters for alignment of attributes, entities, and
Weight Parameters relations
y Threshold for triplet weight confidence (see Eq. 3)
T Temperature parameter controlling the softness of alignment
Salign(C | Z) Alignment score of concept ¢ with respect to Z
Triplet and Alignment w(a,e,r) ;ll“rlplet confidence score for attribute a, entity e, and relation
Salign(@ | Z), Satign(€ | Z), Saign(r | Z) ~ Alignment scores for attribute, entity, and relation
T(z,y) Set of triplets (attribute, entity, relation) generated from
input pair (z,y)
A Anchor reservoir for concept ¢
Replay and Memory Update B, Anchor budget for concept ¢
Ne, Ne Counts for concept ¢ and relation e in the memory
. Lsup Supervised loss (task-specific loss)
Loss Functions Lecomp Compositional consistency loss (PoE and relation contrast)
Kinax Maximum number of nodes in a sampled subgraph
Sampling and Generator P(Vs, Es) Plausibility score for a sampled subgraph S
A(Vs) Diversity score for a sampled subgraph S (DPP score)
R@K Recall at rank K (retrieval metric)
Performance Metrics mR Mean recall (retrieval metric)
AF Average forgetting (continual learning metric)

A.l1.2

Table 5: List of important symbols.

IMPLEMENTATION DETAILS

Backbone and tokenization We use CLIP ViT-B/16 as image encoder and its paired text encoder
(frozen teacher snapshots and trainable student). Patch tokens yield Z € RP*4 (P=196, d=768).
Results with ViT-L/14 are included in ablations.

Fair comparison settings
ule; for CLIP-based methods we use ViT-B/16.
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CLIP/CLAPACLIP/GIFT), we cap exemplar or synthetic-replay memory in MB to equal our
anchor memory (anchors + prototypes + relation embeddings), and for LoRA-style methods
(C-CLIP/LADA/ENGINE) we equalize PEFT budgets (same total trainable parameters; default rank
r=16, «=32). Domain-ID usage follows each method: ZSCL/CTP/CLAP4CLIP/C-CLIP are eval-
uated in their native (DIL/MTIL) protocols; when a method assumes domain/task ID at test time, we
also report the domain-free variant when defined. All methods use identical task orders/splits and
are trained under the same hardware budget.

Concept induction and verification Prompted IE runs with a constrained vocabulary for at-
tributes/entities/relations. Visual verification uses the teacher-frozen shared low-rank projector
W=ABT with rank r=64; temperature 7=0.07; dual gate thresholds y=0.6, entropy cutoff £=1.5
nats (validated on the first task’s val split). Node/edge counts employ exponential decay (half-life 3
tasks).

Memory and anchors Per-node token anchor cap B, < 8; total anchor budget B < 64K tokens
for retrieval streams and B < 48K for VQA (fewer concepts per task). Prototypes use EMA with
a=0.1. Online k-center uses farthest-first with time-decay weight A=0.95. Edge anchors =, are
formed by a 2-layer MLP (hidden 512, GELU).

Subgraph sampling K,,,x=6 nodes. Two-stage sampler: greedy k-DPP (quality g; o /7,
RBF kernel bandwidth from median heuristic on prototypes) — Steiner connectivity (edge cost
1/(14n.)) — single-step MH accept using ¢(S) o< @ - A. NPMI clipped to [0, 1] with Laplace
smoothing e=1.

Graph aggregator and generator Aggregator uses single-head attention with U,V € R4X"
(r=064); ¢re is a 2-layer MLP (hidden 1024). Conditional Gaussian generator py(Z | S) outputs
mean/diag-var via 2-layer MLPs. Relation-aware MMD uses an RBF kernel with bandwidth 7 from
the median heuristic on Zg, plus a relation projection term weight \;=0.5. Per subgraph we draw
K =16 synthetic features. The support-hull margin is §=0.1 (features are {3-normalized).

Loss weights and schedules We optimize the total loss in Eq. with Apm=1.0, A\,e=1.0,
Acomp=0.5, Agen=0.5, Ahun=0.1, 8=0.5. Two-phase schedule: warm-up E\,=1 epoch per task
with Acomp=0 and small A\,.=0.2, then full weights. We stop gradients from Ly eplay/Lcomp to the
generator ). We sweep each loss coefficient. Results are reported as mean+std over 3 seeds on the
retrieval (Avg mR, AF), SVLC (Acc), and VQACL (Acc) tracks. Figure [5] shows broad plateaus
around the defaults, indicating low sensitivity. (i) Anm: under-weighting cross-modal alignment
(0.0) reduces retrieval mR by —0.9 and raises AF to 2.30, as image—text geometry drifts; over-
weighting (1.5) brings no gains. (ii) A, distillation is the main driver of retention—removing it
raises AF to 2.40; too large (1.5) slightly reduces plasticity (mR |) while improving AF, matching the
plasticity—stability trade-off. (iii) Acomp: turning off compositional constraints hurts compositional
generalization (SVLC 80.8%; VQACL 54.1%), confirming their role in subgraph-wise structure
transfer. (iv) Agen and Apyy: both shape replay quality. Without generator loss, replay distribution
narrows (mR 76.0; AF 2.20); without the hull regularizer, off-manifold samples increase forgetting
(AF 2.10). Larger Agen/Anun brings minor changes, suggesting stable synthesis. (v) 8: combin-
ing logit- and feature-level distillation (8~/0.5) is most robust; pure logit distillation raises AF,
while very large [ slightly reduces mR, consistent with over-constraining representations. Over-
all, COMEM exhibits a broadly flat response around the defaults; coarse tuning suffices to obtain
near-optimal performance across tasks.

Optimization and training length AdamW with decoupled weight decay 1e—4, cosine LR. For
retrieval and SVLC: LR 5e—5 (student encoder/head), le—4 (aggregator), 2e—4 (generator). For
VQA: LR scaled by 0.6. Batch size: 256 real pairs + 128 replay features per step (gradient ac-
cumulation when needed). Epochs per task: COCO/Flickr30K 5, TAPR/RSICD/ECommerce 6,
ConStruct-VL families 4 each, VQACL/CLOVE 4. Mixed precision (bf16), gradient clipping at
1.0.
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Figure 5: Loss-weight sensitivity (mean+std). We vary one coefficient at a time and measure
retrieval (Avg mR/AF), SVLC (Acc), and VQACL (Acc).

Hardware and software Experiments run on 8 xA100-80GB, PyTorch 2.3, CUDA 12.1. We
report means over 3 seeds (42/43/44). Wall-clock time and memory are profiled with PyTorch
profiler.

Baselines and fairness. We re-implement or use official code where available for IncCLIP (Yan
et al| [2022), Mod-X (Ni et al. [2023), ZSCL (Zheng et all, 2023, CTP (Zhu et al.| 2023), DKR
(Cui et al.| [2024), CLAP4CLIP (Jha et al.,[2024)), and ConStruct-VL (Smith et al., [2023)), matching
backbone, input resolution, and memory budgets. When a method requires exemplars, we cap its
exemplar memory to match our anchor memory (in MB) for apples-to-apples comparison.

A.2 ADDITIONAL EXPERIMENTS AND RESULTS
A.2.1 FINER COMPOSITIONAL TRANSFER

We evaluate (i) VQACL cross-composition: accuracy on unseen (skill, object-group) pairs; and
(i) SVLC unseen pairs: accuracy/AUROC on concept pairs that never co-occur in training (e.g.,
ColorxMaterial). We report: Acct, AUROCT, and relative gains vs. PoE-only and Relation-only
ablations. Figure[6]shows that: (i) On VQACL unseen (skill, group) pairs, COMEM improves macro
Acc by +2.0pp over PoE-only and +1.0pp over Relation-only, with the biggest gains on Color/Count
where attribute selection and object-shift composition are critical. (i) On SVLC unseen pairs,
COMEM yields consistent margins, especially on attribute x attribute and spatial x state/action where
union reasoning and edge satisfaction must co-exist. These results validate our claim that PoE
(marginal compatibility) and relation satisfaction (edge-level constraints) are complementary; their
joint enforcement via Lcomp, and relation-aware replay is key to robust compositional transfer.

A.2.2 SUBGRAPH SAMPLING MECHANISM

We conducted experiments to verify whether DPP/Steiner/MH are necessary. With a fixed proposal
budget (1K proposals/epoch, Kax=6), we compare six samplers: {Uniform, NPMI-only, DPP-
only, NPMI+DPP, NPMI+DPP+Steiner, NPMI+DPP+Steiner+MH}. A proposal is accepted if it
satisfies the plausibility/diversity thresholds used across methods (for MH, acceptance follows the
MH rule). We log: retrieval Avg mR/AF, acceptance rate (%), mean prototype distance within
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A. VQACL Cross-Composition Performance B. SVLC Unseen Pairs Accuracy C. SVLC Unseen Pairs AUROC

B VOACL baseline

Cross-Composition Acc (%)
Accuracy (%)
AUROC

Skill (unseen pairs) Unseen Pair (SVLC) Unseen Pair (SVLC)

Figure 6: Cross-Composition Performance on Unseen Pairs: VQACL and SVLC Benchmarks

subgraph (avg pairwise £ across node prototypes), rare relation coverage (%, edges from the bottom
20% of relation frequencies), and rare concept coverage (%, nodes from the bottom 20% of concept
frequencies).

Sampler AvgmR (%) 1 AF | Acceptance (%) T ProtoDistt Rare Rel. Cov. (%) 1 Rare Concept Cov. (%) 1
Uniform 75.2 2.7 62.1 0.71 17.3 182
NPMI-only 75.7 24 74.6 0.72 21.8 20.6
DPP-only 75.9 2.3 70.2 0.78 16.1 224
NPMI + DPP 76.3 2.1 72.8 0.79 227 23.1
NPMI + DPP + Steiner 76.5 2.0 75.9 0.79 23.0 234
NPMI + DPP + Steiner + MH (ours) 76.6 1.9 68.4 0.80 23.6 238

Table 6: Sampler comparison (fixed proposals/epoch). NPMI boosts plausibility and rare-edge
coverage; DPP increases prototype spread (diversity); Steiner reduces poor-connectivity samples
and improves acceptance; a final MH step slightly lowers acceptance but improves sample quality,
yielding the best mR and AF. “Proto Dist” is the mean pairwise /5 distance among node prototypes
within a sampled subgraph (higher implies more diverse concepts).

Table (6] shows a clear compositional effect: (i) Plausibility (NPMI) raises acceptance and rare re-
lation coverage, yielding lower AF; (ii) Diversity (DPP) increases intra-subgraph prototype spread,
improving mR but without NPMI it undersamples rare relations; (iii) Steiner improves connectiv-
ity/feasibility, lifting acceptance back up and reducing AF; (iv) MH trades a modest acceptance
drop (7.5 pp) for the best quality per accepted subgraph, delivering the highest mR and lowest AF.
Overall, NPMI (plausibility) + DPP (diversity) + Steiner (connectivity) + MH (quality control) is
necessary to achieve both high accuracy and low forgetting under a fixed sampling budget.

A.2.3 TEACHER STRATEGY

The motivation of this experiment is to show that “teacher-filtered” replay is principled rather
than ad hoc. We compare three teachers for gating replay on synthetic features z: (i) Prev —
the previous-task snapshot 6=60;_,, (ii) Init — the original pretrained model, and (iii) EMA —
an exponential moving average of 6 within task ¢ (decay 0.999). We sweep the entropy thresh-
old ¢ € {1.0,1.5,2.0,2.5} (nats) in the indicator wg ;=1[H(mz(- | 2)) < &]. We adopted the
following metrics: Average Forgetting (AF]), filtered ratio (% of replay removed by the gate;
higher means stricter), and the support-hull statistics of Z w.r.t. Zg: on-manifold rate (% with
dist(Z, conv(Zg)) < §), mean hull distance, and 90th-percentile distance.

Figure [7| shows that EMA teachers provide the most reliable filter: at £&=1.5 they minimize AF
(1.70) while maximizing on-manifold rate (86%) and lowering hull distances, indicating cleaner
replay. The snapshot teacher performs nearly as well with a similar sweet spot; making & too strict
(1.0) under-rehearses , while too loose admits off-manifold samples and increases forgetting. The
pretrained teacher suffers from domain/task mismatch: it either over-filters (high filtered%) or over-
admits off-manifold replay (large hull distances), yielding consistently higher AF. Overall, “teacher-
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A. AF vs Entropy Threshold B. Filtered % vs Entropy Threshold C. On-manifold % vs Entropy Threshold D. Mean Hull Distance vs Entropy Threshold E. 90th Percentile Hull Distance vs Entropy Threshold
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Figure 7: Teacher choice and entropy threshold £. EMA yields the lowest AF and hull distances
across a broad ¢ range; the snapshot teacher is a close second with a sweet spot at £~1.5; the
pretrained teacher either over-filters at low & (too few replays) or admits off-manifold samples at
high & (higher AF). On-manifold judged by dist(Z, conv(Zg)) < ¢ with 6=0.1.

filtered” replay is effective when the teacher tracks recent tasks (EMA/snapshot), and a moderate
entropy gate (£€[1.5, 2.0]) offers a broad, stable optimum.

A.2.4 ANCHOR CONTRIBUTION

To pinpoint which replay sources drive compositional generalization, we compare three configu-
rations in the generator target set Zg: (i) Apode — node token anchors only; (ii) Apede+Zedge —
node anchors plus edge anchors =2, . ,=MLP (a,|la, ); (iii) tg (text-only) — no visual anchors, re-
play conditioned only on aggregated text tg from the subgraph. We adopted the following metrics:
(a) SVLC relations: AUROC (T) on relation-centric families; (b) VQA relations: accuracy (1) on
relation-focused skills.

(a) SVLC—Relation Families (AUROC, % 1) (b) VQA—Relation-Centric Skills (Accuracy, % 1)
- Anode _— Anoge
88 87.0 = Anoge+Eedge 65 1 07 = Anoge+Bedge

=t (text-only) =t (text-only)

85.7

=)
S

AUROC (%)
Accuracy (%)
s
&

@
o

45+

Location Action Causal

Spatial Action
Relation Families Relation-Centric Skills

Figure 8: Performance comparison of different anchor configurations on SVLC and VQA relation
tasks.

Figure |§|10calizes the source of replay gains: (1) Edge anchors matter for relations. =.,. adds
explicit interaction evidence, yielding +1.7 pp AUROC (SVLC) and +1.6 pp Acc (VQA) over node-
only. (2) Text-only is insufficient. Conditioning on ¢g without visual anchors underperforms node-
only, indicating that relation transfer needs visual grounding in addition to textual compatibility. (3)
Interpretation. Node anchors capture object/attribute priors; edge anchors inject pairwise structure
that the relation-aware MMD can align to, improving composition where “who-does-what-where”
is decisive.

A.2.5 ADVERSARIAL TASK ORDERS

We evaluate three 18-task streams with identical content but different orders: (1) Default (balanced
mix); (2) Long-Tail-First (rare concepts first, head later); (3) Low—High NPMI (from least plau-
sible to most plausible compositions). We report the difference of AF curves relative to Default, i.e.,
AAF@t = AF@toder — AF@tdfult We also summarize AF@18, area under AAF, peak AF, and
final Last@mR.
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Figure 9: Performance Comparison of Different Task Orders

Figure [9] shows that adversarial orders amplify forgetting compared to Default: Long-Tail-First
raises AF moderately (AF@ 18 +0.30), while Low—High NPMI is harsher (AF@ 18 +0.40; larger
AUC(AAF)). This aligns with COMEM’s mechanism: early exposure to rare or low-plausibility
compositions yields fewer reliable anchors and more off-manifold replay, inflating AF until mem-
ory densifies. Despite this, COMEM remains stable: Last@mR drops only 0.3-0.5 pp at T=18,
and AAF plateaus rather than diverging—suggesting our plausibility-aware sampling, entropy-
gated distillation, and relation-aware replay effectively contain order-induced drift.

A.2.6 BACKBONE SCALE

Industrial deployment requires clear accuracy—cost trade-offs and scalability. We compare COMEM
on CLIP ViT-B/16 vs. ViT-L/14 under (A) equal memory (anchor budget in MB) and (B) equal
PEFT parameters (trainable M). In both settings we fix data, schedule, and optimizer.

(A) Efficiency Comparison (Equal Memory)

) Comparison (Equal Memory) (A) Resource C ion (Equal Memory)

BN ViT-B/16 (Memory)
.0 B VIT-L/14 (Memory)

~®- ViTB/16 (GPU-h)
~M- VL4 (GPU-h)

- AmRIGB
- AmRIGPU-h

Average mR (%)
Peak Memory (GB)

Efficiency Metrics

BN ViT-B/16 (mR)

24 49 9% 196
Budget (MB)

24 49 98 196
Budget (MB)

Budget (MB)

(B) Performance Comparison (Equal PEFT) (B) Resource Consumption (Equal PEFT) (B) Efficiency Comparison (Equal PEFT)

- AmRIGB
— AmR/GPU-h

-e- Vi
.5 ~W- VIT-L/14 (GPU-h)

Average mR (%)
Peak Memory (GB)

Efficiency Metrics

VIT-B/16 (mR)
VIT-L/14 (mR)

B/16 (AF)
-M- ViT-L/14 (AF)

4 8 4 8
Trainables (M) Trainables (M)

Figure 10: Comparison of ViT-L/14 and ViT-B/16 under equal memory and equal PEFT budget
conditions

From Figure[I0} (i) Scalable gains with moderate cost. ViT-L/14 improves mR by +0.6—+1.1 pp
and reduces AF by ~0.1 across regimes. The best AmR/resource appears at mid budgets (49-98MB
or 4-8M trainables), where AmR/GB =~ 0.11-0.17 and AmR/GPU-h = 0.33-0.45. (ii) Diminish-
ing returns. At high memory (196MB) or high PEFT (16M), accuracy saturates while cost contin-
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ues to rise, lowering the ratios. (iii) Because COMEM’s replay and consistency operate in feature
space, stronger image features (ViT-L/14) enlarge the anchor manifold and improve relation-aware
alignment—yielding stable, compute-aware improvements without changing the algorithm.

A.2.7 ROBUSTNESS TO FINE-TUNING STRATEGY

We compare two regimes: (i) full fine-tuning of the student encoders/heads (our default), and (ii)
parameter-efficient fine-tuning (PEFT), where we cap trainable parameters and primarily train the
aggregator v and generator ¢ (no LoRA/adapters are required by COMEM, but this setting matches
PEFT budgets used by baselines). Across settings, COMEM remains strong: full fine-tuning yields
the best absolute performance, and even under tight PEFT budgets our method surpasses recent
SOTA:s.

Table 7: CoMem under different fine-tuning strategies. Retrieval reported as Avg mR (1) and AF
({), averaged over 3 seeds. PEFT budgets denote total trainables. Full fine-tuning gives the highest
absolute accuracy; PEFT keeps mR nearly unchanged while slightly lowering AF.

Strategy Retrieval Avg mR (1) AF ()
Full fine-tuning (encoders + head) 76.6 1.9
PEFT-2M trainables (mainly 1), ) 75.8 + 0.10 2.0 £ 0.05
PEFT—4M trainables (mainly 1, ) 76.1 £ 0.09 1.9 + 0.05
PEFT-8M trainables (mainly 1), ) 76.6 &+ 0.08 1.8 £ 0.04
PEFT-16M trainables (mainly 1, 1) 76.7 + 0.08 1.8 £ 0.04

Table 8: PEFT (8M trainables): comparison with recent SOTAs. COMEM retains near—full-
FT retrieval while improving forgetting and compositional transfer. Retrieval on the cross-domain
sequence (Avg mR1/AF]); SVLC reports macro Acct; VQACL reports overall AccT.

Method (PEFT, 8M) Retrieval Avg mR (1) /AF (l) SVLC Acc () VQACL Acc (1)
C-CLIP(Liu et al.| [2025) 75.6 /2.4 79.3 50.9
LADA(Luo et al.} 2025) 75.8 /2.1 80.0 51.5
ENGINE(Zhou et al.|2025) 75.7 /2.1 79.6 51.2
COMEM (ours) 76.6/1.8 82.1 55.4

We can find: (1) Full fine-tuning is best in absolute terms. On the cross-domain retrieval stream,
COMEM attains the highest Avg mR with low forgetting. It also leads on SVLC and VQACL in
the full-FT setting (cf. Tables[T]and[2). (2) With only 8M trainables, COMEM matches its full-FT
retrieval (76.6 mR) while further reducing AF to 1.8, and exceeds PEFT SOTAs by +0.8—-1.0 mR
and —0.3——0.6 AF. On compositional benchmarks, COMEM is +2.1 Acc on SVLC and +3.9 Acc
on VQACL over the best competing PEFT baseline. (3) Why it holds up with fewer trainables.
Treating structure as memory and rehearsing in feature space makes learning less sensitive to the size
of the updateable parameter set: graph-conditioned replay supplies targeted, on-manifold practice
signals, while entropy-gated distillation curbs off-manifold drift—so both accuracy and retention
remain robust even when trainables are constrained.

A.2.8 STRUCTURAL DESIGN: RELATION SCHEMA AND PARSING STRATEGY

As shown in Tab. 0] switching from a fixed to a dynamic relation schema substantially increases
forgetting (AF from 1.9 to 3.2) and lowers both Avg mR and accuracy, confirming that a fixed
relation vocabulary acts as a stabilizing regularizer under tight memory and parameter budgets. In
contrast, replacing automated parsing with manually curated concepts yields only marginal changes
in Avg mR and AF, indicating that CoMem is robust to the specific concept-induction mechanism
and that lightweight parsing is a practical but not brittle design choice.

A.2.9 SENSITIVITY TO LOSS BALANCING AND PARAMETER BUDGETS

The loss ablation in Tab. [I0] shows that CoMem’s performance is stable across a broad range of
(Acomp» Are) choices: disabling either compositional consistency or replay mildly degrades Avg mR
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Table 9: Ablations on structural design choices. All results are reported on the cross-domain retrieval
and structured concept learning setting, with average retrieval mR (Avg mR, 1), average forgetting
(AF, |), and accuracy on downstream concept tasks (Acc., T).

Ablation Method AvgmR (1) AF({) Acc (1)
CoMem (Fixed Relation Schema) 76.6 1.9 82.5

Relation schema CoMem (Dynamic Relation Schema) 73.4 32 79.7
GIFT (Baseline) 74.1 3.0 79.5
CoMem w/ Parsing (Automated) 76.6 1.9 82.5

Parsing strategy =~ CoMem w/ Manually Curated Data 76.2 2.1 82.2
GIFT (Baseline) 74.1 3.0 79.5

Table 10: Sensitivity of CoMem to loss-weight configurations. We vary the compositional consis-
tency weight A\comp and replay/distillation weight A, and report average retrieval mR (Avg mR, 1),
average forgetting (AF, ), and accuracy on SVLC and VQACL (7).

Loss Weights AvgmR (1) AF({) SVLCAcc(T) VQACL Acc (1)
Acomp=0.5, Are=1.0 (default) 76.6 1.9 82.5 55.8
Acomp=0.0, Are=1.0 (no comp) 75.5 2.3 81.0 54.5
)\comp:1-07 )\re:O5 76.2 2.0 82.0 55.1
Acomp=0.5, Are=2.0 76.3 2.1 82.2 55.3
)\comp:1-57 )\re:O5 75.9 2.2 81.8 54.8
Acomp=0.0, Ar=0.0 (no comp+replay) 74.8 2.5 80.3 53.2

and increases AF, while completely removing both leads to the largest drop, confirming that both
components contribute but that the overall objective is not overly sensitive to exact weight values.
The parameter-budget study in Tab. [IT]further indicates that CoMem consistently outperforms strong
baselines under both 1M and 2M trainables, with lower AF and higher Avg mR, and that gains
persist when scaling up the trainable-parameter budget, suggesting that the structure-as-memory
design yields robust improvements even in low-parameter regimes.

A.3 THEORETICAL ANALYSIS

We formalize COMEM’s training at round ¢ € {1,...,T} as one step of projected gradient descent
over a convex parameter set IO C R? with diameter D := supg g:cxc |6 — 0'[]2:
Or1 =TIk (0: —nge), g = Vi(0) + Ae Esg, Vr(0y; 2). (17
N————
:=V R (6:)

Here f; is the (convex) instantaneous task loss (on real data at step ¢) and 7(-; 2) is a convex dis-
tillation/replay potential evaluated at feature-level replay z € R%. The distribution @ is the graph-
conditioned generator used by COMEM at step .

For the ideal retention term we define

Ri(0) == E.op_, m(052),  F{(0) := fu(0) + Ae R7(0), (18)

where P,_; is the (infeasible) mixture of all past feature distributions up to t—1 (obeying data-
governance). Let 0 € argmingex F(0) be a dynamic comparator and Vp := Zthz lor —
07_1||2 its path-variation. We measure the dynamic regret on the ideal objective, Reg%yn =

Sy [F¢ (00) = Fr(67)].

We work under standard online convex optimization regularity with replay-specific discrepancy con-
trol inherited from COMEM'’s structured memory.

Assumption 1 (Smoothness, Lipschitzness). Each f; is convex, Lg-smooth and G s-Lipschitz on
K. The potential r(-;z) is convex and L,.-smooth in 0 uniformly in z, and its gradient in z
is L,-Lipschitz: ||Vr(0;z) — Vr(0;2')||2 < L.||z — 2'||2. Moreover, for the ideal retention,
supgex [VRE(0)]]2 < B.
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Table 11: Effect of trainable-parameter budgets on retrieval performance. We compare several con-
tinual VL baselines and CoMem under 1M and 2M trainable parameters, reporting average retrieval
mR (Avg mR, 7) and average forgetting (AF, |) with mean + standard deviation over multiple runs.

1M trainables 2M trainables
Method
AvgmR (1)  AF(l)  AvgmR(})  AF()
C-CLIP 72.4 +0.12 2.7+0.11 73.9 4+ 0.20 2.5+0.14
LADA 73.2+0.10 2.6 £0.10 74.6 £0.13 2.3+0.12
ENGINE 73.0 £0.08 2.7+0.12 74.3 +£0.16 2.4+0.10

CoMem (ours) 74.5+0.10 21+0.06 758+0.15 2.0+0.05

Assumption 2 (Replay discrepancy via anchors and MMD). Let P, denote the anchor-induced
empirical distribution maintained by the concept-graph memory and rp the anchor coverage ra-
dius in feature space: every past feature z lies within distance rp to conv(supp(Panc)). Let
Krel be the relation-aware kernel used by COMEM. Assume Vr(0;-) € Hy,,, with RKHS norm
[Vr; )., < A forall @ € K. If Q is the generator distribution at step t, define

gt 1= MMDNrel (Qt, Panc) and max := maxy &;.

Assumption 3 (Teacher-gated stability). The distillation uses an entropy gate (as in §3.3). There
exists ke € (0, 1] such that the effective gradient magnitude satisfies supy ||E.~q,Vr(0;2)|l2 <
k¢ B and the smoothness constant of v on accepted replays is at most L.

A replay-bias decomposition. Define the gradient bias (ideal minus used):
bi(0) = Me(VRi(0) — VR(0)). (19)

The next lemma quantifies b; in terms of (i) anchor coverage rz and (ii) generator-vs-anchor MMD,
both under the same relation kernel used in COMEM’s RAMMD loss.

Lemma 1 (Bias via anchor coverage and MMD). Under Assumptions[IH2] for any 6 € K,
Hbt(e)HQ S )\re (Lz rg + Ar Et) S )\reAa A = Lz rp + Ar E€max- (20)

Proof. Add and subtract E,.p,_Vr(6; z) and apply the triangle inequality:

anc

IVR(6) = VR 0)]| < |[Bq, Vr(0:2) — Er, Vr(0:2)|| + [Er, Vr(6:2) — Bp,_, V7(6:2)|| -

() (1)

2D
For (1), by Vr(6;:) € Hi,, and the reproducing property, |(u,Eqg,Vr—Ep Vr) <
IV7(8; )% - e+ < A,e; for any unit vector u, hence (1) < A,.e;. For (1), anchor coverage implies
every past feature z can be written as z = ), a;a; +e with a; ~ Pape, @; >0, a;=1and [le]| <
rp. By convexity and Jensen, Ep, | Vr(0;2) = EVr(0; ), aja; + e) . Using the L. -Lipschitzness
of Vr in its second argument yields ||V7(6; >, asa; +e) — Vr(0; ), oja;)|| < L.le|]| < L.rp,
and averaging gives (1) < L.rp. Multiplying by \;. completes the proof. O

A.3.1 DYNAMIC REGRET BOUND

Theorem 1 (Dynamic regret under approximate replay). Let Assumptions hold and suppose
n < 1/(Ly + AreLy). Define Gy := sup,  [|Vf:(0) + Me VR (0)|2 < Gy + Ae B and A as in
Lemmall} Then the dynamic regret on the ideal objective satisfies

T

Reg™ := Y [F7(0:) — F7(67)]
t=1
61— 051> 0w
||1 I gz\guu VT+DZ\|bt 0,) - (22)

t=1

replay bias term
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Consequently, using ||g:|| < Gy + ||be]| < Gy + AreA and Lemmall]

D? T D
Regp" < 5+ - (G + Meld)* + ZVr + DALAT. (23)
Ui Ui
Choosing n* = min { \/T(G*D+AreA)7 Lf+}\rch } yields

Regf™ < D (G + Ae AWVT + (G + AeeA) Vo + D A AT, @4

Proof. By convexity of F} and the identity g, = VF}(6;) + b:(6:).
F{(0:) — FY(07) < (VEY(0r), 00 = 07F) = (g, 0r — 07) — (be(04), 0, — 07)
< (ge, 00 = 07) + D [|be(61) ], (25)

where we used Cauchy—Schwarz and ||0; — 67| < D for the second term. For the first term, apply
the standard projected-gradient inequality (non-expansiveness of Ilx):

10 = 511> = 10e s — 071 ) 1o
0, —07) < = . 26
(gt, 0 — 0F) < o 5 l19¢ll (26)
Because the comparator drifts, expand [|0y41 — 072 = [|0i41 — 07, + (07, — 67)]|? and bound
the cross term by 2ab < a? + b? and the norm ||6;11 — 07, || < D:
[0 = 71 < =101 — 05117 + 2D 10711 — 07 [ + 110711 — 0711, 27

Plugging Eq. 27)into Eq. 26Jand summing Eq. P3|over t = 1, ..., T telescopes the squared distances
and yields

T
* * (% Hgl _9){||2 ||0T+1 _9’}—1—1”2 n 2
< — i
tzgl F (6:) — E} (6 )} < o o 2 :E llgell (28)

T T
D * * 1 * *
+—= Z 107 — 071l + 5= Z 167 — 671 11* + DZ [164(6:)]
n 2n
t=1 t=1 t=1
(29)

Dropping the non-negative —||6711 — 65,]|?/(2n) and the additional 5- o2 167 — 07 1117 gives

Eq. 22 Bounding ||g;|| and ||b;|| by G« + AreA and A A (LemmalT)) glves Eq.[23] Optimizing the
quadratic in 7 under the smoothness constraint gives Eq. 24} O

Interpretation. The regret has three components: (i) the usual v/7 term scaled by the gradient
budget Gy + ArA; (ii) a path-variation penalty (G, + AeA)Vp capturing non-stationarity; (iii)
an additive linear term D A\, A T stemming from replay bias. By Lemmall] A is jointly reduced
by smaller coverage radius rp (larger/better anchors) and smaller generator MMD e,,x (better
relation-aware RAMMD fitting).

Corollary 1 (Strongly convex retention). If F}" is p-strongly convex (e.g., via an ¢y penalty or a
strongly-convex proxy of the distillation term) and n < 1/(Ly + Ae L), then
(Gy + AreA)?

Re gdyn S 2M

D
(1+1In(1 + puT)) + EVT + D MNeAT. (30)

(Sketch.) Apply the standard strongly-convex OGD analysis with the biased gmdlent VFr(6:) +
b:(6;) and proceed exactly as in Theoreml using >, IVEF(01)|1> < (Gy + MeDA)?(1 4+ In(1 +

wT))/n.

A.3.2 FORGETTING BOUND FOR A PAST TASK

Let s < t and consider the loss of the s-th task evaluated at time ¢, f5(6;), compared to its own
optimum 0}.

22



Under review as a conference paper at ICLR 2026

Theorem 2 (Forgetting control via stepwise drift and replay). Under Assumption|l| for any s < t
and any stepsizen < 1/(L; + AreLy),

t—1 L
fs(at) - fé(HZ) < (fs(es) - fé(ei)) +Z (an ||guH + 7f772”gu‘|2>
—— =5
(0 _ Ly » 2
< (fs(0) = f5(6)) + (¢ 3)(Gf77(G* + Areld) + S (G Ared) )
(31

If, in addition, the (accepted) replay potential is [i.-strongly convex in 0 on average, then the
W 2 reducing the drift when ). is moderately large.

quadratic term improves to 12| gu

Proof. By L -smoothness of f,

L
FsOuin) < Fo(0u) + (V fo(0u), Our = Ou) + - [0 = Ou>. (32)

Projection is non-expansive, s0 |[0y+1 — Oull < 7llgu]l and (Vfs(0u),0ut1 — 0u)| <
IV £s(0u)]| |0us1 —Oull < G¢1llgel. Summing u = s, ..., t—1 yields the first line of Eq. |31| The
second line uses ||gy || < Gi + A\eA. If R, is piye-strongly convex in 6 (after gating and expecta-
tion), the standard co-coercivity inequality gives (VR (0y), 0ur1 — 0u) < —pire]|@us1 — 0ul1?/7,
improving the quadratic coefficient by —2i,e Are. O

Eq. [31] shows forgetting grows at most linearly in the horizon (¢—s), with slope controlled by the
effective step budget G, + M\c/A. By Lemmal/l] reducing the anchor radius r and the generator
MMD ey,.x—exactly what COMEM’s k-center anchors and RAMMD regularizer do—tightens both
dynamic regret and forgetting. The optional . term formalizes the stabilizing role of teacher-
filtered replay: a moderately large A, contracts inter-step drift.

A.4 LLM USAGE

We employed a large language model for minor English editing—such as improving grammar, word-
ing, and clarity—as well as for small, localized code fixes, including resolving syntax errors and
adding missing imports. The LLM played no role in research ideation, experimental design, data
processing, analysis, or figure generation. All technical content and results were created and verified
by the authors, who assume full responsibility for the manuscript.
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