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Abstract

Recent advancements in Video Question Answering
(VideoQA) have introduced LLM-based agents, modular
frameworks, and procedural solutions, yielding promising re-
sults. These systems use dynamic agents and memory-based
mechanisms to break down complex tasks and refine answers.
However, significant improvements remain in tracking ob-
jects for grounding over time and decision-making based on
reasoning to better align object references with language
model outputs as newer models get better at both tasks. This
work presents an LLM-brained agent for zero-shot Video
Question Answering (VideoQA) that combines a Chain-of-
Thought framework with grounding reasoning alongside
YOLO-World to enhance object tracking and alignment.
This approach establishes a new state-of-the-art in VideoQA
and Video Understanding, showing enhanced performance
on NExT-QA, iVQA, and ActivityNet-QA benchmarks. Our
framework also enables cross-checking of grounding time-
frames, improving accuracy and providing valuable support
for verification and increased output reliability across multi-
ple video domains. The code is available here.

1. Introduction

In the present year, the evolution of large language models
(LLMs) [11, 26, 32] and vision language models (VLMs)
[1, 2, 14, 15, 19, 21, 49] has significantly advanced their abil-
ity in video understanding, particularly in the video question-
answering (VideoQA) task, a significant challenge on com-
puter vision, where the model is provided with a video and
a related question [6, 29, 31, 38] that they must answer as
accurately as possible. These models are designed to ana-
lyze the visual and linguistic data of the video to generate
answers based on semantics and dynamics. Despite recent
progress, significant limitations still need to be addressed
when addressing more complex videos, particularly those
with dynamic context and extensive length. Current LLM-

based solutions often struggle with reliably capturing content
that is crucial for answering questions when scenes are com-
plex or require a high level of contextual and sequential
understanding. This highlights the need for more adaptable
approaches that can respond to a broader range of video
types and question complexities [17, 20, 25, 40].

To address these challenges, agent-based strategies for
VideoQA have recently emerged, employing modular reason-
ing blocks [23, 28], memory-based strategies [7, 23]. Proce-
dural approaches [4, 28], as well as employing foundational
vision-language models as tools for solving complex tasks
and augmenting the context [4, 8, 34]. This enables models
to track relevant content more effectively over time, which
results especially useful for structuring tasks and reasoning
through multiple steps, enabling more accurate question an-
swering even when handling diverse and dynamic content.
A key approach in these frameworks is video grounding
[6, 8, 23, 39], wherein specific video segments are identified
as containing objects or events essential to answering the
question. In this case, Grounding anchors target segments
within the video, allowing the model to focus on relevant
portions rather than attempting to analyze entire video se-
quences. These approaches are also increasingly incorpo-
rating Chain-of-Thought (CoT) reasoning. In this method,
the model explicitly articulates step-by-step reasoning with
purposes of evaluating the consistency [12, 27, 39], plan-
ning the steps to solve a task [28], or just bringing a more
accurate and argued response [8, 23, 24, 50]. CoT reasoning
can enhance certainty in the model’s responses, improve
interpretability by presenting intermediate reasoning that
is understandable to humans, and validate model outputs
against additional contextual information.

Inspired by these advances, we propose ViQAgent. This
framework combines the capabilities of VideoLLMs and
state-of-the-art vision-language foundation models to cre-
ate a structured agent for VideoQA. ViQAgent employs a
VideoLLM [32] to identify the key objects (i.e., targets) in
the video that are relevant to the question, generating an
initial understanding of the main elements and dynamics in a
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Figure 1. An overview of our ViQAgent framework. Through three main modules, we propose an agentic solution for the Video Question-
Answering (VideoQA) task by taking advantage of most advanced VideoLLMs capabilities on first-sight zero-shot reasoning, timeframe
captioning, and target identification (M1), and the open-vocabulary capabilities of YOLO-World to ground the given targets/objects in
the video (OG) in specific parts of the video in between t0 and tf ; to finally end with a Chain-of-Thoughts judgment and reasoning layer
(M2) that compares both the grounded context and grounded object detections to determine the confidence of the M1 answer. In case of
discrepancy, the CoT judge defines a set of clarification questions in specific timeframes that go through the VideoLLM again for specific
short-ended question-answering. Finally, a reasoning layer takes these answers and the original question to produce a grounded and more
accurate answer.

video and a preliminary answer based on observed video con-
tent. This initial answer (i.e., first-sight response) includes
a first attempt to ground it in time and provides a set of key
timeframes with their corresponding captions in the video.
In the next phase, ViQAgent utilizes YOLO-World [3] to
perform object detection based on this list of targets. Here,
YOLO-World tracks occurrences of these predefined targets
across video frames, returning an accurate timeline of their
appearances, a task that sometimes VLMs tend to strug-
gle with, when compared against each other [18]. Unlike
traditional object detectors with fixed categories, YOLO-
World’s tracking is customized by the VideoLLM’s selected
open-vocabulary targets, allowing it to focus detection on
the objects that are most pertinent to solving the question.
The timeline created in this step adds a layer of precision,
extending the initial detection with frame-by-frame data for
each target object and the count of detected objects. In the
final phase, the judgment and reasoning layer compares the
initial response plus its grounded context, as well as the com-

prehensive object-tracking data, to determine whether the
response is confident or not. This reasoning layer applies
Chain-of-Thought (CoT) reasoning to combine both inputs,
carefully validating the initial reaction against the grounded
data from YOLO-World to produce an answer that is both
accurate and substantiated by clear visual evidence. In case
of an unconfident answer, a set of expressly framed questions
are re-validated through the VideoLLM to provide a final
answer then. The CoT approach in this output stage rein-
forces interpretability by tracing logical steps in reaching the
answer and strengthens answer reliability by cross-checking
the data from both sources.

Our approach provides multiple advantages as a zero-shot
solution, requiring no specialized task-based fine-tuning and
thus allowing easy adaptation to new scenarios and question
types with just a dataset-specific subprompt. By combining
the strengths of VideoLLMs for initial analysis and general
video understanding and YOLO-World for open-vocabulary
object detailed tracking, it benefits from the complemen-
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tary capabilities of these models, handling a wide range of
video-based questions with minimal configuration. Further-
more, the CoT mechanism contributes to a more nuanced and
compelling cross-validation of the reasoning outputs. This
grounding structure improves reliability and helps ensure
that the content in the video firmly supports all answers. The
open nature of ViQAgent’s vocabulary for target tracking -
dynamically adapted by the VideoLLM layer based on the
question - further enhances its flexibility and relevance for
various VideoQA tasks.

Empirical results underscore the effectiveness of ViQA-
gent, as it consistently outperforms current zero-shot solu-
tions across major benchmarks: NExT-QA [37] [22], iVQA
[43], ActivityNet-QA [47], and the Egoschema’s open sub-
set [22], achieving up to a 4.4% improvement in accuracy.
This improvement sets a new state-of-the-art for VideoQA
systems, especially in zero-shot scenarios where temporal
and spatial reasoning capabilities are essential.

In summary, our contributions are as follows: (1) Imple-
mentation of ViQAgent, a zero-shot framework that inte-
grates VideoLLMs and vision-language models for effective
video grounding, object tracking, and question answering
in VideoQA. (2) Enhanced interpretability through struc-
tured Chain-of-Thought reasoning and grounding outputs,
providing interpretable insight into the intermediate steps
that inform the final response of the model. (3) State-of-
the-art zero-shot performance across NExT-QA, iVQA, and
ActivityNet-QA benchmarks, highlighting ViQAgent’s ef-
fectiveness in addressing complex temporal and spatial rea-
soning tasks with higher accuracy and adaptability.

2. Related Work
Video Question-Answering. Video Question-Answering
(VideoQA) has seen significant progress in recent years
[6, 10, 17, 20, 25, 40, 45, 51], contributing advancements in
both video understanding and natural language processing.
Early VideoQA models focused on straightforward tasks,
such as frame captioning [45] or simple event identifica-
tion. Still, these approaches were often limited to funda-
mental interactions or small, static frameworks [31, 38]. Re-
cent methods have introduced more sophisticated architec-
tures that incorporate attention mechanisms [17, 20, 25, 40],
temporal modeling [6, 10], and multi-modal transformers
[14, 15, 19, 21, 29, 49] to handle complex questions over
temporally extended video sequences. Benchmarks such
as NExT-QA [37], iVQA [43], ActivityNet-QA [47], and
EgoSchema [22] have challenged models with complex
queries that require contextual awareness, reasoning over
sequential frames, and an understanding of nuanced inter-
actions. Despite these advancements, current end-to-end ap-
proaches struggle with contextual continuity across frames
and often require task-specific training to achieve high accu-
racy. Zero-shot solutions, while desirable, have had limited

success in maintaining high generalizability and usually re-
quire fine-tuning to increase performance significantly. This
highlights the need for more adaptable methods or vision-
language tools to respond to diverse question types. ViQA-
gent seeks to address this gap by utilizing an agent-based
approach that grounds key video elements in response to the
question, adding a layer of interpretability that can better
navigate complex VideoQA challenges in zero-shot scenar-
ios.
LLM Modular Agents. Modular agents built on large lan-
guage models (LLMs) [4, 7, 8, 23, 28, 34] have gained
traction as a solution for decomposing tasks into manage-
able components (i.e., modules), such as in MoReVQA [23]
and TraveLER [28], enabling improved specialization and
adaptability in complex problem-solving domains, including
VideoQA. These agents use LLMs to orchestrate a series of
modular reasoning blocks, each designed to address specific
sub-tasks within a broader query. This strategy allows the
model to segment complex questions, apply targeted reason-
ing processes, and sequentially consolidate insights into a
final answer. Many modern modular agents also incorporate
memory mechanisms, such as VideoAgent [7], TraveLER
[28], and MoReVQA [23]. This approach enhances their
ability to retain relevant contextual information over time.
This is particularly useful in VideoQA, where questions of-
ten require remembering objects or events across multiple
frames and reasoning about their changes over time. Further-
more, the integration of language-vision foundation models
as tools within these modular agents has allowed for more
accurate detection, such as in VideoAgent [34], ProViQ [4],
and MotionEpic [8]. ViQAgent builds upon this approach by
combining VideoLLMs [32] with YOLO-World [3], which
adds targeted grounding capabilities to the agent’s toolkit,
specifically tracking object appearances and interactions as
specified by the VideoLLM’s outputs. This allows for an
additional layer of analysis in complex scenes, enabling the
agent to consolidate multiple perspectives and enhance the
accuracy and interpretability of its answers.
Chain-of-Thought Reasoning. Chain-of-thought (CoT) rea-
soning has emerged as a promising approach in complex
question-answering, allowing models to break down tasks
into sequential, interpretable steps [8, 12, 23, 24, 27, 28, 36,
39, 50]. In VideoQA, where questions often require multi-
step reasoning to contextualize events, CoT enables models
to articulate intermediate reasoning steps, improving the ac-
curacy of the answer and enhancing the interpretability of
the model’s outputs. By outputting a transparent sequence of
reasoning steps, CoT makes it possible to validate each stage
of the decision-making process [23, 50], adding a layer of re-
liability to model predictions [12, 27, 39], this is particularly
observed on the VoT reasoning framework [8]. Grounding,
a related concept within CoT frameworks, involves iden-
tifying and tracking objects or actions relevant to a given

3



Figure 2. An outline of the black-boxed ViQAgent framework modules inputs and outputs, and the intermediate representations, that
allow to track and understand the final selected answer. The (M1) inputs are the video and the question plus the answer options (namely
prompt). In contrast, the outputs are the open-vocabulary targets, and the reasoning plus timeframe captions (namely Grounded Context).
The (OG) inputs are the targets and the video, and the output is the object detection timeline (namely Grounded Objects). Finally, the (M2)
first receives both ground responses and the prompt, then, if there seem to be inconsistencies, returns a doubtful timeframe and a set of
clarification questions to make to the VideoLLM from that specific timeframe. The answers are then re-inputted to produce the final answer.

question across frames [6, 10, 39]. This process creates a
temporal map of pertinent elements, providing a more struc-
tured basis for the CoT to build upon. ViQAgent leverages
CoT by incorporating it within its final judgment and reason-
ing layer, using CoT steps to align the preliminary answer
and grounded object tracking data from YOLO-World, ul-
timately refining the response based on these validated in-
sights through several validation questions about them. This
structured approach ensures that each reasoning step is clear
and accessible, supporting the model’s interpretability and
enhancing its overall robustness in VideoQA tasks.

3. ViQAgent Framework
In this section, we describe in detail the implementation de-
tails of each module of the ViQAgent framework (Fig. 2),
starting with a general overview and task definition (Sec. 3.1),
module implementation details (Sec. 3.2, Sec. 3.3, and
Sec. 3.4), to finally end with an algorithm of the full im-
plementation (Sec. 3.5).

3.1. Overview

ViQAgent answers both open- and close-ended questions
about video content using three interconnected modules.
First, a VideoLLM-based module M1 provides initial in-
sights into the video’s relevance to the question. Next, an

open-vocabulary grounding module OG detects and tracks
detected targets across frames. Finally, a reasoning module
M2 validates, cross-checks, and refines answers using prior
outputs, forming a cohesive chain-of-thought question-based
reasoning process. ViQAgent thus identifies, tracks, and
reasons over relevant video segments, generating accurate
answers with minimal prior knowledge or domain-specific
data.

In a VideoQA task, the model is given a question Q and
a video V , composed of n frames V = [v1, ..., vn], based on
the video’s frames-per-second ratio. For close-ended ques-
tions, the model also receives a set of answer options Aopt,
ensuring that the output answer must be in that set A ∈ Aopt

[23]. Only Q and V are provided for open-ended questions,
though Aopt is typically used to gauge answer similarity
before the ground truth and the model’s output. Our pipeline
aims to solve the VideoQA task with an intermediate ratio-
nale for increasing interpretability. The task can be defined
as follows, assuming a solution system S:

S(V,Q+ [Aopt])→ A (1)

3.2. VideoLLM Analyzer

The analyzer module M1, also referred to as the first-sight
assessment, employs a VideoLLM to provide a preliminary
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Figure 3. A more detailed overview of the internal process of
the OG module. The process begins by extracting all frames from
the input video V . For each frame vi, the YOLO-World model de-
tects specified target classes within the frame, using predetermined
confidence and NMS thresholds (τc, τnms). After detection, these
classes are tracked across all frames to establish the exact time in-
tervals during which they are present. If a detected object is absent
from subsequent frames for a specified duration τt, it is assumed to
have exited the scene, marking the end of its appearance.

interpretation of the video for the question. Given the ques-
tion Q, and Aopt, and the entire video V , this module gener-
ates three outputs:
1. Open-Vocabulary Targets: The VideoLLM identifies a
set of open-vocabulary targets {T1, T2, ..., Tm} essential to
solving the question. These targets are derived from both the
question context and the video content, forming an initial
roadmap of entities or events likely to contribute to the an-
swer.
2. Preliminary Answer and Reasoning: Based on its anal-
ysis, the VideoLLM proposes an initial answer A1 to the
question, with a detailed rationale R1 that articulates why
this answer might be appropriate, and that will later aid in
the validation process.
3. Scene-Segmented Timeframes: The VideoLLM seg-
ments the video into discrete scenes based on changes it
identifies as relevant to the question and generates a cap-
tion describing in detail what happens in that scene. These
segmented timeframes serve as markers for different key
moments in the video, where one significant scene ends and
another begins, establishing a structured temporal foundation
for subsequent grounding and reasoning steps. These seg-
ments can be modeled as a set of pairs of timeframe-caption
{(ti, tf ) : c}.

3.3. Open-Vocabulary Object Grounding

The grounding module OG (Fig. 3) performs an object-
tracking task using the open-vocabulary targets identified
by the analyzer module M1. This module is responsible for
detecting and locating in time target objects within the video

frames and is structured as follows:
1. Object Detection: Utilizing YOLO-World [3] or a simi-
lar open-vocabulary object detection model, this phase pro-
cesses each video frame vi to identify instances of the rele-
vant targets. Applying a confidence threshold to τc ensures
that only credible detections are retained. Additionally, an
NMS (non-maximum suppression) threshold τnms is used
to filter redundant or overlapping detections, preserving the
most significant object representations and avoiding overlap-
ping noise in the results.
2. Timeframe Extraction: With object detections in place,
this phase extracts timeframes where targets are identi-
fied, considering a time threshold τt that reduces the risk
of short-lived false negatives (e.g., objects momentarily
obscured or blurred). This time threshold is highly ben-
eficial to ensure precise temporal localization so that de-
tected objects remain consistent with the scene continuity
without responding to minor, transient distortions. As a re-
sult, the grounding module outputs a set of well-defined
timeframes where each target is reliably tracked. These
extractions are a list of timeframes for a particular target
{T1 : [(ti0, tf0), ..., (tin, tfn)], ...}.

These three hyperparameters (τc, τnms, τt) were fine-
tuned under a set of tests before running the benchmarks and
are crucial to achieving balanced and precise object ground-
ing having been optimized to ensure comprehensive target
coverage without excessive or unreliable detections.

3.4. CoT Judgment

The final module M2 performs in-depth reasoning and cross-
validation, combining outputs from the previous modules to
deliver a definitive answer to the question. This module acts
first as a judge, evaluating and consolidating all prior insights
through a chain-of-thought approach, and reutilizes the M1

logic in case of inconsistencies, then, with the additional
information, acts as a reasoner to provide a final answer:
1. Comparison judgment First, both the M1 reasoning out-
put and the scene-segmented timeframes are merged into a
single grounded context, that contains information regarding
the overall video and a first answer to be judged. This context
is compared against the OG grounded object timeline. The
main output from this comparison judgment is a decision of
whether they are consistent and, if not, a specific reasoning
of why and where they are inconsistent.
2. Question Generation: If the outputs are effectively dis-
crepant, with the aid of the why/where specifications of the
discrepancy, and the original question Q and answer options
Aopt, a set of one or more clarification questions are formu-
lated for the given timeframe, in order to obtain additional
information for being able to finally validate the confidence
of the answer candidate proposed by M1. These clarification
questions are then fed to the M1’s VideoLLM instance for
simple question-answering. The answers are then analyzed
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in a further step.
3. Answer Refinement: Based on the clarification questions
created in the previous step and their corresponding answers
given by the VideoLLM, the module adjusts or refines the
initial answer where necessary, ensuring that the final output
reflects a coherent understanding of the video as well as
consistency with both visual and semantic information.

3.5. ViQAgent

The end-to-end ViQAgent pipeline integrates these modules
in a sequential, end-to-end manner to provide an accurate,
reliable answer for VideoQA tasks. The algorithm of the
whole framework can be seen in Algorithm 1.

By structuring each module’s operations this way, ViQA-
gent provides a robust VideoQA pipeline capable of answer-
ing complex questions in a zero-shot setting. It employs
open-vocabulary grounding and modular reasoning to han-
dle diverse visual-linguistic queries.

4. Experiments
This section outlines the setup for benchmarking and evalu-
ating ViQAgent’s performance. We detail the datasets and
metrics used, compare them against relevant baselines, and
discuss modification studies that inform key hyperparameter
choices in our model. Implementation details and a compre-
hensive analysis of our results are also provided.

4.1. Datasets and Metrics

We evaluated ViQAgent on four widely recognized video
question answering (VideoQA) benchmarks, each represent-
ing unique video types, question formats, and challenges in
the domain.
1. NExT-QA [37]: This dataset tests reasoning over causal,
temporal, and descriptive question types. In our experiments,
we used the validation split containing 4,996 video-question
pairs. Each question is close-ended, presenting five answer
options, with ViQAgent tasked with selecting the correct
one.
2. iVQA [43]: iVQA comprises instructional video clips
from the HowTo100M dataset, lasting 7-30 seconds. Each
video clip includes a question and an annotated set of ground
truth answers, with ViQAgent evaluated on the test set, which
consists of 1,879 clips. Notably, iVQA is an open-ended
VideoQA task, requiring ViQAgent to generate responses
without candidate options.
3. ActivityNet-QA [47]: This dataset includes 5,800 videos,
each with ten annotated question-answer pairs, covering
actions, objects, locations, and events. Similar to iVQA,
ActivityNet-QA is an open-ended VideoQA dataset. For
consistency with previous works, we report results on the
test split, utilizing an evaluation based on a large language
model (LLM) comparison between ViQAgent’s response
and ground-truth answers (see Appendix C.1).

Algorithm 1 ViQAgent framework algorithm, after initializ-
ing the models YoloWorld, VideoLLM1,2,3,4, LLM1,2,3

1: Hyperparameters: τc, τnms, τt
2: Input: V,Q, [Aopt]
3: prompt← Q+ [Aopt]
4: ▷ M1 starts
5: A,R1 ← VideoLLM1(V, prompt) ▷ Rationale
6: TC ← VideoLLM2(V ) ▷ Timeframes
7: T ← VideoLLM3(V, prompt) ▷ Targets
8: {T1, T2, ..., Tm} ← T
9: ▷ OG starts

10: YoloWorld.set classes(T1, T2, ..., Tm)
11: D ← {T1 : ∅, T2 : ∅, ..., Tm : ∅} ▷ Detections
12: for vi in V do
13: d← YoloWorld.detect(vi, τc, τnms)
14: for Ti in T do
15: D[Ti]← D[Ti] + d[Ti]
16: end for
17: end for
18: t← 0
19: TG← {T1 : ∅, T2 : ∅, ..., Tm : ∅} ▷ Timeframes
20: for Ti in T do
21: idx← 0
22: for d in D do
23: t← t+ (V .fps)−1

24: if d[Ti] ̸= ∅ then
25: if idx+ 1 ̸= |TG[Ti]| then
26: TG[Ti][idx]← (t, 0)
27: else
28: TG[Ti][idx][1]← t
29: end if
30: else
31: ∆t← t− TG[Ti][idx][1]
32: if ∆t ≥ τt then
33: idx← idx+ 1
34: end if
35: end if
36: end for
37: end for
38: ▷ M2 starts
39: µ← LLM1(R1, TC, TG) ▷ Unconfidence
40: if µ then
41: W ← V .trim(µ.times)
42: qs← LLM2(µ, prompt)
43: as← ∅
44: for q in qs do
45: as← as+VideoLLM4(W, q)
46: end for
47: A← LLM3(R1, prompt, qs, as)
48: end if
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Method Zero-Shot Agent Acc@C Acc@T Acc@D Acc@All
HiTeA ✗ ✗ 62.4 58.3 75.6 63.1

LLaMa-VQA ✗ ✗ 72.7 69.2 75.8 72.0
SeViLa (fine-tuned) ✗ ✗ - - - 73.8

InternVideo ✓ ✗ 43.4 48.0 65.1 49.1
AssistGPT ✓ ✗ 60.0 51.4 67.3 58.4

SeViLa ✓ ✗ 61.3 61.5 75.6 63.6
ProViQ ✓ ✓ - - - 63.8

ViperGPT+ ✓ ✓ - - - 64.0
JCEF ✓ ✓ - - - 66.7
LLoVi ✓ ✓ 69.5 61.0 75.6 67.7

TraveLER ✓ ✓ 70.0 60.5 78.2 68.2
MoReVQA ✓ ✓ - - - 69.2

VideoAgent (mem) ✓ ✓ 60.0 76.0 76.5 70.8
VideoAgent (long) ✓ ✓ 72.7 64.5 81.1 71.3

MotionEpic ✓ ✓ 75.8 74.6 83.3 76.0
ViQAgent (ours) ✓ ✓ 82.2 74.5 86.3 80.4

Table 1. Results of ViQAgent against all the other state-of-the-art solutions in NExT-QA benchmark, in all the casual (C), temporal (T), and
descriptive (D) subsets, as well as the overall accuracy. ViQAgent surpasses all the baselines, achieving a new state-of-the-art on VideoQA.

Method Zero-Shot Agent Acc
VideoCoCa ✗ ✗ 39.0

FrozenBiLM (fine-tuned) ✗ ✗ 39.7
FrozenBiLM ✓ ✗ 27.3

BLIP-2 ✓ ✗ 45.8
InstructBLIP ✓ ✗ 53.8

ProViQ ✓ ✓ 50.7
JCEF ✓ ✓ 56.9

MoReVQA ✓ ✓ 60.9
ViQAgent (ours) ✓ ✓ 62.6

(a) iVQA results.

Method Zero-Shot Agent Acc
FrozenBiLM (fine-tuned) ✗ ✗ 43.2

Video-ChatGPT ✓ ✗ 35.2
Video-LLaVa ✓ ✗ 45.3
VideoChat2 ✓ ✗ 49.1
ViperGPT+ ✓ ✓ 37.1

ProViQ ✓ ✓ 42.3
JCEF ✓ ✓ 43.3

MoReVQA ✓ ✓ 45.3
MotionEpic ✓ ✓ 54.6

ViQAgent (ours) ✓ ✓ 59.9
(b) ActivityNet-QA results.

Table 2. Open-ended Question-Answering benchmark results.

4. EgoSchema [22]: Focused on long-form, egocentric video
understanding, EgoSchema contains 3-minute clips sourced
from the Ego4D benchmark. It includes close-ended ques-
tions with higher complexity and length than NExT-QA’s,
assessing a model’s ability to handle extended video content.
We evaluated ViQAgent on the available 500 samples of the
open-answer split, focusing solely on accuracy. This experi-
ment, in particular, is not considered a paper contribution, as
we didn’t evaluate the whole benchmark, but it still provides
an addition to previous results.

Across all benchmarks, accuracy was used as the pri-
mary evaluation metric, providing a direct and interpretable
measure of ViQAgent’s performance on close-ended and
open-ended tasks alike.

4.2. Hyperparameter Tuning

To refine ViQAgent’s hyperparameters, we performed a se-
ries of simple modification studies on the NExT-QA dataset,
specifically on each experiment’s small, randomly sampled,
evenly class-distributed subset of videos. We investigated the
effects of varying detection thresholds in the object ground-
ing module and the time threshold to separate appearance
timeframes effectively:
Confidence Threshold. We evaluated confidence values of
0.01, 0.05, 0.1, and 0.3 for the object detection model within
YOLO-World. A default confidence of 0.05 was found opti-
mal, balancing sensitivity to target objects with tolerance to
noise in lower-resolution, motion-filled frames. This value
is considerably lower than the 0.3 confidence suggested in
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Method Agent Acc Subset Acc
SeViLa ✗ 25.7 22.7

ImageViT ✗ 40.8 30.9
ShortViViT ✗ 49.6 31.0
InternVideo ✗ - 32.1
LongViViT ✗ 56.8 33.3
MC-ViT-L ✗ 62.6 44.4

Vamos ✗ - 48.3
JCEF ✓ - 50.0
LLoVi ✓ 57.6 50.3

MoReVQA ✓ - 51.7
TraveLER ✓ - 53.3

VideoAgent (long) ✓ 60.2 54.1
ProViQ ✓ - 57.1

ViQAgent (ours) ✓ 67.87 -

Table 3. EgoSchema results.

Benchmark Increase of the SotA
ActivityNet-QA +5.3%

NExT-QA +4.4%
iVQA +1.7%

Table 4. Increase on the state-of-the-art results on the benchmarks.

the original YOLO-World paper [3] due to the challenges
posed by low-resolution and high-motion video frames in
the benchmarks, which is not the case on image-level object
detection. This reduction ensures that important objects are
detected, accounting for YOLO-World’s open-vocabulary
capabilities, which can introduce variability in detection sen-
sitivity based on the complexity of target object sets provided
by the first module.
NMS Threshold. The non-maximum suppression (NMS)
threshold, controlling overlap in detections, was tested with
intersection-over-union (IoU) values of 0.1 and 0.3. An IoU
of 0.1 performed best, effectively reducing overlapping false
positives while preserving distinct object instances in most
of the cases, essential for ViQAgent’s open-vocabulary ob-
ject grounding approach.
Time Threshold. We tested temporal segmentation with
500ms, 1s, and 1.5s time thresholds. A 1.5-second threshold
was chosen because it captured consistent object presence
across varying scene dynamics, particularly useful in lengthy
benchmark videos, ensuring detection continuity despite
video length and quality variances. However, minor changes
on this threshold didn’t result in significant differences.

4.3. Results and Discussion

ViQAgent not only surpasses prior state-of-the-art results
across all evaluated benchmarks (Tab. 4) but also establishes
itself as a leading choice in both zero-shot VideoQA and

modular, agent-based solutions. In the close-ended NExT-
QA benchmark (Tab. 1), ViQAgent demonstrated a signif-
icant edge, achieving a 4.4% increase in accuracy over the
previous best-performing Video-of-Though (VoT) solution:
MotionEpic [8]. One particularly notable finding is that our
zero-shot model outperforms fine-tuned models that are opti-
mized specifically for this benchmark, such as SeViLa [46],
LLaMa-VQA [13], and HiTeA [44]. This result highlights
ViQAgent’s capability to generalize effectively without need-
ing task-specific training, underscoring its potential as a more
adaptable and resource-efficient solution for VideoQA tasks.
This zero-shot superiority not only raises the benchmark
for VideoQA performance but also signals the value of ro-
bust, generalized VideoLLMs in solving real-world, unseen
problems without extensive fine-tuning.

Results across the open-ended benchmarks—iVQA
(Tab. 2a), ActivityNet-QA (Tab. 2b)—further validates
ViQAgent’s robustness and adaptability to diverse video
types and question structures, showing its performance
as a versatile VideoQA agent capable of handling both
close-ended and open-ended tasks, while being able to sur-
pass robust state-of-the-art agentic solutions for VideoQA:
MoReVQA [23] (and it’s additional contributions JCEF and
ViperGPT+), TraveLER [28], ProViQ [4], MotionEpic [8],
VideoAgent [7], and VideoAgent [34].

Further, ViQAgent shows promising results on the par-
tial open-answer subset of questions within the EgoSchema
benchmark (Tab. 3), expanding its potential applicability as a
flexible VideoQA model well-suited for both straightforward
and complex agentic tasks.

5. Conclusion

In this paper, we presented ViQAgent, a novel frame-
work that advances the field of video question answering
(VideoQA) by leveraging a modular, task-specific approach
tailored for zero-shot generalization across diverse VideoQA
benchmarks. By employing a strategically layered architec-
ture that integrates open-vocabulary object detection, object
grounding, and chain-of-thought reasoning, ViQAgent dy-
namically adapts to the complexities of various video do-
mains, enabling it to successfully tackle both close-ended
and open-ended questions without requiring extensive hours
of fine-tuning or training. Through extensive benchmarking
on datasets such as NExT-QA, iVQA, and ActivityNet-QA,
we demonstrated ViQAgent’s superior performance, signifi-
cantly outperforming existing zero-shot and modular-agent
approaches. Our experiments also highlight the adaptabil-
ity of our framework to low-resolution, high-motion, and
lengthy videos, settings that traditionally challenge VideoQA
models. By pushing the boundaries of zero-shot VideoQA,
setting a new standard for intelligent and efficient multi-
modal comprehension in versatile video understanding.
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and László A. Jeni. Zero-shot video question answering
with procedural programs. CoRR, abs/2312.00937,
2023. 1, 3, 8, 12

[5] Wenliang Dai, Junnan Li, Dongxu Li, Anthony Tiong,
Junqi Zhao, Weisheng Wang, Boyang Li, Pascale
Fung, and Steven Hoi. InstructBLIP: Towards general-
purpose vision-language models with instruction tun-
ing. In Thirty-seventh Conference on Neural Informa-
tion Processing Systems, 2023. 12

[6] Shangzhe Di and Weidi Xie. Grounded question-
answering in long egocentric videos. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 12934–12943, 2024.
1, 3, 4

[7] Yue Fan, Xiaojian Ma, Rujie Wu, Yuntao Du, Jiaqi
Li, Zhi Gao, and Qing Li. Videoagent: A memory-
augmented multimodal agent for video understanding.
In Computer Vision – ECCV 2024, pages 75–92, Cham,
2025. Springer Nature Switzerland. 1, 3, 8, 12

[8] Hao Fei, Shengqiong Wu, Wei Ji, Hanwang Zhang,
Meishan Zhang, Mong-Li Lee, and Wynne Hsu. Video-
of-thought: Step-by-step video reasoning from percep-
tion to cognition. In Forty-first International Confer-
ence on Machine Learning, 2024. 1, 3, 8, 12

[9] Difei Gao, Lei Ji, Luowei Zhou, Kevin Qinghong Lin,
Joya Chen, Zihan Fan, and Mike Zheng Shou. As-
sistgpt: A general multi-modal assistant that can plan,
execute, inspect, and learn, 2023. 12

[10] Xin Gu, Heng Fan, Yan Huang, Tiejian Luo, and Libo
Zhang. Context-guided spatio-temporal video ground-
ing. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 18330–18339, 2024. 3, 4

[11] Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux,
Arthur Mensch, Blanche Savary, Chris Bamford, De-
vendra Singh Chaplot, Diego de las Casas, Emma Bou
Hanna, Florian Bressand, Gianna Lengyel, Guillaume
Bour, Guillaume Lample, Lélio Renard Lavaud, Lu-
cile Saulnier, Marie-Anne Lachaux, Pierre Stock,
Sandeep Subramanian, Sophia Yang, Szymon Anto-
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ViQAgent: Zero-Shot Video Question Answering
via Agent with Open-Vocabulary Grounding Validation

Supplementary Material

This supplementary material provides detailed informa-
tion about the ViQAgent framework implementation. It in-
cludes a case study showcasing the outputs at each stage of
the framework and analyzing observations from each step
(App. A). Additionally, the prompts and schemas used in the
solution are detailed (App. B), along with the baselines and
benchmark configurations (App. C). Finally, insights and
implications are discussed in greater depth (App. D).

A. Case Study
To illustrate the internal outputs and their overall contribu-
tion to the final answer, we present a comprehensive step-
by-step case study. This example demonstrates a scenario
where the VideoLLM fails to answer the question directly
but provides hints that facilitate the detection of subsequent
inconsistencies, ultimately leading to a correct answer. The
case study is detailed in Figs. 4–10. These steps align with
the methodology and sequence outlined in Algorithm 1.

B. Prompts and Schemas
In the ViQAgent framework, multiple LLMs are utilized in
both the M1 and M2 modules. Module 1 is responsible for
independently extracting relevant information and reasoning
from the video, while Module 2 compiles and evaluates the
final answer based on the information gathered.

Module 1 directly interacts with the video through Vide-
oLLMs, whereas Module 2 leverages LLMs for reason-
ing using the pre-computed information without direct ac-
cess to the video. The prompts and output schemas for all
VideoLLM1,2,3,4 (Module 1) and LLM1,2,3 are presented in
Tabs. 5 - 18, following the procedure shown previously in the
Algorithm 1. Notably, for VideoLLM1 (Tab. 5) and LLM3

(Tab. 17), a space is left at the end. This is because these
two submodules are specifically responsible for providing
direct answers to the query. As the question formats depend
on the specific benchmark, an additional subinstruction is
appended in this section to accommodate the requirements
of the respective benchmark.

C. Baselines and Benchmarks
For each of the evaluated benchmarks, we conducted a thor-
ough review of the most relevant state-of-the-art solutions
from recent years that have reported results on these bench-
marks, focusing on those that achieved notably high accuracy
or are widely recognized baselines evaluated against previ-
ous work.

NExT-QA [37]: We compare against fine-tuned solutions
that achieved high performance across both specific subsets
(Casual, Temporal, and Descriptive) and the overall subset.
The solutions include HiTeA [44], LLaMa-VQA [13], and a
fine-tuned version of SeViLa [46]. Additionally, several zero-
shot solutions emerged, as NExT-QA is a significant bench-
mark for evaluating Video Question-Answering solutions.
We classified these solutions into agentic and non-agentic
categories. The non-agentic solutions include InternVideo
[35], AssistGPT [9], and SeViLa [46]. The agentic solutions,
which are more pertinent for comparison with our frame-
work, include ProViQ [4], ViperGPT+, JCEF, MoReVQA
(all introduced in Min et al. [23], with ideas from Surı́s et al.
[30]), LLoVi [48], TraveLER [28], VideoAgent [7], VideoA-
gent [34], and MotionEpic [8] with its Video-of-Thought
(VoT) framework.

iVQA [43]: For this dataset, only two fine-tuned solu-
tions were identified, as reported in Min et al. [23]: Video-
CoCa [41] and a fine-tuned version of FrozenBiLM [42].
Its non-fine-tuned counterpart, alongside BLIP-2 [14] and
InstructBLIP [5], forms the zero-shot non-agentic baselines
for comparison. Regarding the agentic solutions, which are
particularly relevant to our framework, the notable baselines
include ProViQ [4], JCEF, and MoReVQA [23].

ActivityNet-QA [47]: For the ActivityNet-QA bench-
mark, the fine-tuned group comprises only the FrozenBiLM
solution [42]. The non-agentic zero-shot baselines include
Video-ChatGPT [21], Video-LLaVa [19], and VideoChat2
[16]. For agentic solutions, the primary baselines are
ViperGPT+, JCEF, MoReVQA [23], ProViQ [4], and Mo-
tionEpic [8], which employs the VoT framework.

EgoSchema [22]: Although EgoSchema is not a primary
benchmark for our solution, several baselines were compared
with our partial results. It is noteworthy that fine-tuning is not
feasible for this dataset, as only a subset of the answers is ac-
cessible. Therefore, only non-agentic and agentic solutions
were included in the evaluation. Among the non-agentic
baselines, the most relevant are SeViLa [46], InternVideo
[35], and Vamos [33]. For agentic solutions, previously estab-
lished baselines were used, including LLoVi [48], TraveLER
[28], VideoAgent [34], ProViQ [4], JCEF, and MoReVQA
[23].

C.1. ActivityNet-QA evaluation

ActivityNet-QA [47] open-ended benchmark provides only
a single correct answer for each question, requiring LLM-
based evaluation of responses, as shown in prior work
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[21, 23, 32]. Notably, this process was not required for iVQA
[43], which offers a set of potential answers. For this evalua-
tion, we used the following prompt:

Evaluate whether the predicted answer
/reasoning are correct based on the real
answer to the question. Only output ’yes’
or ’no’, don’t provide an explanation.

Question: {q}
Real answer: {a}
Predicted answer: {p}
Predicted reasoning: {r}
Output (yes/no):

D. Additional Analysis
As demonstrated in the benchmark results, the ViQAgent
framework shows significant promise for the Video Question
Answering task and, in general, tool-using agents, estab-
lishing a new state-of-the-art by integrating VideoLLMs,
LLMs, and computer vision foundation models to address
questions based on video content. However, it is important
to acknowledge that, as LLMs currently cannot be seeded,
certain random factors in their output remain uncontrollable,
even though all experiments were conducted with a tem-
perature parameter set to 0.0. Furthermore, the ViQAgent
framework proves most effective when the object or target
of the query is visibly present in the video. In cases where
the YOLO-World model cannot detect the object, confusion
may arise. Nevertheless, the framework is robust enough to
mitigate this confusion through the CoT judge module (M2),
resulting in improved performance while preserving the pri-
mary advantages of Zero-Shot VideoLLM-based question
answering.
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Figure 4. VideoLLM Analyzer (VideoLLM1): Given the full video, and the ”prompt” (question plus answer options, if available), the
VideoLLM Analyzer submodule provides a first-sight response with a reasoning text of why that answer is correct.

Figure 5. VideoLLM Captioner (VideoLLM2): Given the full video, but not the question (to avoid bias), the VideoLLM Captioner
submodule provides a comprehensive set of event-separated timeframes with a description (i.e. caption) of what is happening in every part of
the video. This is the first grounding output, used then for comparison against YOLO-World object grounding.
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Figure 6. VideoLLM Target Finder (VideoLLM3): Given the full video, and the ”prompt” (question plus answer options, if available), the
VideoLLM Target Finder submodule is very straightforward and simple, yet effective on finding up to 4 relevant targets to identify in the
video with the YOLO-World model. These objects/targets are selected based on both the video content and the relevant targets mentioned in
the questions and answers.

Figure 7. (OG Module): First, given the full video and the selected targets, the Object Detector Model (YOLO-World) extracts the
detections from the targets in the video, which are then passed to the Object Grounder to consolidate into a dictionary that contains all the
timeframes in which each target is detected.
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Figure 8. LLM Grounding Comparator (LLM1): Given the grounding output from the captioning submodule (VideoLLM2), the object
grounding, and the first-sight reasoning (VideoLLM1), the grounding comparator determines whether there are inconsistencies or uncertain
parts within them, determines, and explains in which parts are these inconsistencies, which are then fed to the Question Generator (LLM2)
along with the prompt (original question plus answer options, if available), to state up to 3 clean questions and their doubtful timeframes, to
be then asked to a VideoLLM.
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Figure 9. The stated questions from the previous step are then fed to the VideoLLM QA (VideoLLM4) submodule to simply answer them.

Figure 10. Once all the intermediate outputs are generated, they are fed to a Final Reasoner (LLM3) submodule that answers the question
with the new information.
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Table 5. VideoLLM Analyzer Prompt (VideoLLM1)

Prompt: VideoLLM Analyzer

VLLM_PROMPT_1 = """
Based on the provided video, select or provide the correct answer for the user
question. Break down your reasoning into clear, logical steps, and arrive at
the most accurate answer.

To ensure accuracy, follow this step-by-step reasoning process:
1. Restate or reframe the question for clarity.
2. Consider key events, actions, or objects relevant to the question.
3. If answer options are provided, assess each option in relation to the
video’s content. If no options are given, logically derive an answer.
4. Provide a clear and concise response based on your reasoning.

You must provide the index of the selected answer or the answer itself, and a
brief explanation of your reasoning.

"""

Table 6. VideoLLM Analyzer Schema (VideoLLM1)

Output Schema for VideoLLM Analyzer

VLLM_SCHEMA_1 = {
"type": "object",
"properties": {

"reasoning": { "type": "string" },
"answer": { "type": "string" }

}
}
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Table 7. VideoLLM Captioner Prompt (VideoLLM2)

Prompt: VideoLLM Captioner

VLLM_PROMPT_2 = """
Based on the provided video and the given question (and answer options if
available), capture a list of the main timeframes in the video in the format
<<mm0:ss0,mm1:ss1>>: {description}, where ’description’ is a detailed
description of what is happening in that particular timeframe.

Follow these steps to generate your response:
1. Carefully analyze the question and the video content to identify the key
events or actions that are relevant to the question.
2. Identify key events, actions, or transitions that represent meaningful
changes or notable moments in the video.
3. Break the video into distinct timeframes where these events occur.
4. For each identified timeframe, provide a clear, detailed description of the
action or scene in that segment.
5. Ensure that each description is specific, concise, and accurately reflects
the action within the timeframe.
"""

Table 8. VideoLLM Captioner Schema (VideoLLM2)

Output Schema for VideoLLM Captioner

VLLM_SCHEMA_2 = {
"type": "object",
"properties": {

"timeframes": {
"type": "array",
"items": { "type": "string" }

}
}

}
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Table 9. VideoLLM Target Finder Prompt (VideoLLM3)

Prompt: VideoLLM Target Finder

VLLM_PROMPT_3 = """
Based on the provided video and the given question (and answer options if
available), your task is to capture a **list of objects/targets** that are
involved in the video and are relevant to the question. These targets will
be used for object detection and grounding via a YOLO model. Please follow
these steps:

1. Understand the question and its context within the video, along with any
answer options provided.
2. Focus on the most relevant objects or targets that are involved in the
video’s key actions or scenes. Ensure that these targets directly relate to
the question.
3. Choose no more than 4 targets, ideally 3 or fewer. Consider only the
objects that are clearly present and essential to answering the question,
and that are not too complex to identify (not too large as well), but not
too general for the particular video.
4. Ensure that the targets are also directly related to the answer options,
if provided.
5. Provide a short list of targets, ensuring each description is clear and
relevant (e.g., ’player in white outfit’, ’spoon’, etc.).
"""

Table 10. VideoLLM Target Finder Schema (VideoLLM3)

Output Schema for VideoLLM Target Finder

VLLM_SCHEMA_3 = {
"type": "object",
"properties": {

"targets": {
"type": "array",
"items": { "type": "string" }

}
}

}
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Table 11. VideoLLM QA Prompt (VideoLLM4)

Prompt: VideoLLM QA

VLLM_PROMPT_4 = """
Based on the provided video, answer the user question in the VERY SPECIFIC
given timeframe.

Only provide the final, concise answer, directly related to the question.
Base your answer ONLY on the information in the video, and do not add any
information. If the answer is not present in the video, state ’unanswerable’.
For example, if the question is ’What color is the car?’, and the car is not
shown in the video timeframe, the answer should be ’unanswerable’.
"""

Table 12. VideoLLM QA Schema (VideoLLM4)

Output Schema for VideoLLM QA

VLLM_SCHEMA_4 = {
"type": "object",
"properties": {

"answer": { "type": "string" }
}

}
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Table 13. LLM Grounding Comparator Prompt (LLM1)

Prompt: LLM Grounding Comparator

LLM_PROMPT_1 = """
You will be provided with reasoning for an answer to a question, along with
two grounding pieces of information:
1. **VideoLLM-extracted grounding captions**: These describe the key events
and timeframes within the video (e.g., <<mm0:ss0,mm1:ss1>>: {description}).
2. **YOLO object grounding**: This identifies the specific objects/targets
and their appearances in different video timeframes.

Your task is to analyze if there is any disagreement between the grounding
information (both the captions and object grounding) and the reasoning for
the answer. Disagreements may occur if the reasoning implies events or objects
appearing in timeframes that are inconsistent with the grounding.

Please output a "disagree" boolean indicating if there is any disagreement at
all, and a detailed but concise explanation of the specific timeframes where
the grounding information does not align with the reasoning. Only include
timeframes where discrepancies occur, and keep the explanation short but clear.
If no disagreement is found, simply explain that there is no disagreement.

Disagreements should be highlighted by timeframe (<<mm0:ss0,mm1:ss1>>) and why
the reasoning conflicts with the provided grounding information.
"""

Table 14. LLM Grounding Comparator Schema (LLM1)

Output Schema for LLM Grounding Comparator

LLM_SCHEMA_1 = {
"type": "object",
"properties": {

"reasoning": { "type": "string" },
"disagree": { "type": "boolean" }

}
}
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Table 15. LLM Question Generator Prompt (LLM2)

Prompt: LLM Question Generator

LLM_PROMPT_2 = """
You will be provided the following:
1. A question (and answer options if available) related to a video.
2. A text explaining the set of discrepancies found in previous studies of the
video. These indicate specific timeframes in the video where the grounding
information does not align with the reasoning. These timeframes and the reasons
for the discrepancies are provided.

Your task is to generate a set of up to 3 concise questions to ask a VideoLLM
to clarify and provide a more grounded, precise answer. The goal is to resolve
the discrepancies and improve the grounding for the question at hand.

- Each question should focus on a specific timeframe where a discrepancy was
found.
- Each question should be concise and relevant to the timeframe, and
particularly relevant to answer the question.
- Ensure that each question includes the timeframe where the clarification
is needed, formatted as <<mm0:ss0,mm1:ss1>>.
- The timeframe must be very precise in time, covering only the specific
segment where the discrepancy occurred.
- Do not include any unnecessary details, just the specific query for
clarification.
- If there are not CONSIDERABLE discrepancies, you may return an empty list!

Generate between 0 and up to 3 questions based on the discrepancies identified.
"""

Table 16. LLM Question Generator Schema (LLM2)

Output Schema for LLM Question Generator

LLM_SCHEMA_2 = {
"type": "object",
"properties": {

"questions": {
"type": "array",
"items": { "type": "string" }

}
}

}
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Table 17. LLM Final Reasoner Prompt (LLM3)

Prompt: LLM Final Reasoner

LLM_PROMPT_3 = """
You will be provided the following:
1. A question (and answer options if available) related to a video.
2. An initial reasoning made for a possible answer, along with an
explanation of why it was chosen. This reasoning was done BEFORE
knowing the grounding information, and clarification questions.
3. The **grounding information**:

- **VideoLLM grounding**: Timeframes and event descriptions from the
video.
- **YOLO object grounding**: Objects/targets identified in the video
and their corresponding appearing timeframes.

4. A set of clarification questions asked about discrepancies in the
grounding, and their responses.

Your task is to:
1. Analyze all the provided information and reasoning.
2. Select or provide the correct answer for the user question, based on the
new clarifications from the questions and grounding data.
3. Provide the final, most accurate specific answer, as well as a reasoning
for it.

Remember to stick to the information provided, and ensure that your answer
is accurate and well-supported by the grounding information and reasoning
provided. If none of the answer options are correct, select the most
appropiate based on the new information and reasoning.

"""

Table 18. LLM Final Reasoner Schema (LLM3)

Output Schema for LLM Final Reasoner

LLM_SCHEMA_3 = {
"type": "object",
"properties": {

"reasoning": { "type": "string" },
"answer": { "type": "string" }

}
}
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