
Under review as submission to TMLR

Graph Pooling via Ricci Flow

Anonymous authors
Paper under double-blind review

Abstract

Graph Machine Learning often involves the clustering of nodes based on similarity structure
encoded in the graph’s topology and the nodes’ attributes. On homophilous graphs, the
integration of pooling layers has been shown to enhance the performance of Graph Neural
Networks by accounting for inherent multi-scale structure. Here, similar nodes are grouped
together to coarsen the graph and reduce the input size in subsequent layers in deeper
architectures. The underlying clustering approach can be implemented via graph pooling
operators, which often rely on classical tools from Graph Theory. In this work, we introduce
a graph pooling operator (ORC-Pool), which utilizes a characterization of the graph’s
geometry via Ollivier’s discrete Ricci curvature and an associated geometric flow. Previous
Ricci flow based clustering approaches have shown great promise across several domains,
but are by construction unable to account for similarity structure encoded in the node
attributes. However, in many ML applications, such information is vital for downstream
tasks. ORC-Pool extends such clustering approaches to attributed graphs, allowing for the
integration of geometric coarsening into Graph Neural Networks as a pooling layer.

1 Introduction

Multi-scale structure is ubiquitous in relational data across domains; examples include complex molecules in
computational biology, systems of interacting particles in physics, as well as complex financial and social
systems. Many graph learning tasks, such as clustering and coarsening, rely on such structure. Graph Neural
Networks (GNNs) account for multi-scale structure via pooling layers, which form crucial building blocks in
many state of the art architectures.

Figure 1: Clustering based on
connectivity vs. node attributes
only.

Node clustering often utilizes an implicit or explicit pooling operation,
which decomposes a given graph into densely connected subgraphs by
grouping similar nodes. Applied at different scales, aggregating information
across subgraphs allows for uncovering multi-scale structure (coarsening).
A number of classical algorithms implement such operations, including
spectral clustering (22; 51), the Louvain algorithm (11) and Graclus (14).
Recently, clustering approaches based on graph curvature (41; 50; 59; 54;
19) have received interest. They utilize discrete Ricci curvature (43; 23)
to characterize the local geometry of a graph by aggregating geometric
information across 2-hop node neighborhoods. An associated curvature
flow (42) characterizes graph geometry at a more global scale, uncovering
its coarse geometry.

A crucial shortcoming of classical node clustering approaches in the case of attributed graphs is their inability
to capture structural information encoded in the node attributes, as they evaluate only similarity structure
encoded in the graph’s topology. However, such information is often vital for downstream tasks. Applying a
separate clustering approach to the (typically vector-valued) node attributes does not resolve this issue, as it
is blind to similarity structure encoded in the graph’s topology, which is often equally vital for downstream
tasks (Fig. 1). Hence, to capture meaningful clusters in attributed graphs, pooling operators need to evaluate
both graph topology and node attributes. Recent literature has introduced a plethora of pooling operators for

1

Under review as submission to TMLR

attributed graphs (9; 65; 4), many of which are based on the classical algorithms listed above. In this work,
we extend, for the first time, clustering approaches based on Ricci flow to attributed graphs.

Related Work. The design of pooling layers has historically build on clustering algorithms, such as
Graclus (14) or MinCutPool (8). A plethora of pooling operators has been proposed in recent literature,
inspired by spectral clustering (9; 32), matrix factorization (4), hierarchical clustering (65), modularity (39)
and multi-set encoding (5), among others. The Select-Reduce-Connect (short: SRC) framework (28) serves
as a unifying framework and benchmark for pooling operators. Most closely related to our work is a pooling
approach proposed by (47), which performs edge cuts guided by Ricci curvature, instead of a curvature-
adjustment computed via Ricci flow. Among other differences, their approach does not incorporate node
attributes, which can lead to reduced performance on attributed graphs. We provide a detailed comparison
of the two approaches (conceptual and experimental) in Apx. C.

Summary of contributions. The main contributions of the paper are as follows:

1. We introduce ORC-Pool, a trainable pooling operator, which utilizes discrete Ricci curvature and an
associated geometric flow to identify salient multi-scale structure in graphs. ORC-Pool groups nodes
according to similarity structure encoded both in the graph’s topology, as well as its nodes’ attributes,
presenting the first extension of Ricci flow based clustering to attributed graphs.

2. We further introduce a pooling layer, which allows for incorporating ORC-Pool into Message-Passing
Graph Neural Networks.

3. We perform a range of computational experiments, which demonstrate the utility of ORC-Pool layers
through improvements in node- and graph-level tasks. We complement our empirical results with a
discussion of the structural properties of ORC-Pool.

2 Background and Notation

Let G = {V,E} denote a graph, V (|V | = N) the set of nodes and E = V × V the set of edges; G is endowed
with the usual shortest-path metric dG. We assume that G is attributed and denote node attributes as
X ∈ R|V |×m. We further assume that G is weighted; i.e., its edges are endowed with scalar attributes, given
by a weight function w : E → R+. Below, we recall basic Graph Neural Networks concepts and introduce the
graph curvature notions and associated curvature flow utilized in this work.

2.1 Graph Neural Networks with Pooling

Message-passing Graph Neural Networks. The blueprint of many state of the art architectures are
Message-Passing GNNs (MPGNNs) (25; 30), which learn node embeddings via an iterative “message-passing”
(MP) scheme: Node representations are iteratively updated as a function of their neighbors’ representations.
Node attributes in the input graph determine the node representations at initialization. Formally, MPGNNs
consist of a message m(l+1)

v and an update function fUp (l = 0, . . . , L− 1 denoting the layer):

m(l+1)
v = f

(l)
Agg

(
h(l)

v , {h(l)
u | u ∈ Nv}

)
h(l+1)

v = fUp

(
h(l)

v ,m(l+1)
v

)
.

fAgg, fUp may be implemented via MLPs with trainable parameters. Popular examples of MPGNNs are
GCN (34), GIN (63), GraphSage (30) and GAT (56).

Graph pooling operators. State of the art GNN architectures often combine MP base layers with pooling
layers. The selection, reduction, and connection (short: SRC) framework (28) formalizes pooling operators as
maps Pool: G 7→ GP = (XP , EP) composed of three functions that act on the nodes, node attributes and
edges of G, respectively (Fig. 3):

1. A selection function, which identifies a set of nodes that are merged to supernodes (Vk ⊆ {1, . . . , N}):
Sel : {1, . . . , N} 7→ (V1, . . . ,VK). The selection function lies at the heart of the pooling operator. Below,
we propose a geometric selection function, which utilizes the graph’s geometry for node-level clustering.

2

Under review as submission to TMLR

2. A reduction function, which computes the attributes of supernodes Vk by aggregating the attributes of its
nodes: Red : {(xk1 , xk2 , . . .)}k∈[K] 7→ {x′

k}k∈[K].

3. A connection function, which determines the connectivity of supernodes and (re-)assigns edge attributes:
Con : ((V1, . . . ,VK), E) 7→ {(Vk,Vl), e′

kl)}k,l∈[K].

SRC is a unifying framework for commonly used pooling operators and has been utilized in graph machine
learning libraries such as Spektral(27) and PyTorch Geometric(21).

2.2 Graph Curvature

Classically, Ricci curvature establishes a connection between the local dispersion of geodesics and the local
curvature of a manifold, deriving from a crucial connection between volume growth rates and curvature:
Negative curvature characterizes exponential fast volume growth, while positive curvature indicates contraction.
Several analogous notions have been proposed for discrete spaces, including by Ollivier (43), Forman (23)
and Erbar-Maas (18). Common among all notions is the observation that edges, which encode long-range
dependencies, have low (negative) curvature, while edges that form local connections have high curvature,
allowing for a characterization of local and global connectivity patterns in a graph. Here, we focus on Ollivier’s
curvature, which we introduce below.

2.2.1 Ollivier’s Ricci curvature

Ollivier (43) introduces a Ricci curvature, which relates the curvature along a geodesic between nearby
points x, y on a manifold M with the transportation distance between their neighborhoods. Recall that the
Wasserstein-1 distance between two probability distributions µ1, µ2 is given by

W1(µ1, µ2) = inf
µ∈Γ(µ1,µ2)

∫
dM(x, y)µ(x, y) dx dy , (1)

where dM(x, y) denotes the geodesic distance, BM(x, ϵ) := {z ∈ M : dM(x, z) ≤ ϵ} the ϵ-neighborhood
of x and Γ(µ1, µ2) the set of measures with marginals µ1, µ2. Further let µM

x (z) denote a measure on this
neighborhood. Then Ollivier’s Ricci curvature (ORC) is given by κM(x, y) = 1− W (µM

x ,µM
y)

dM(x,y) . Analogous to
the continuous case, ORC can be defined in discrete spaces: Let B denote a matrix with entries bij = e−wij

inverse proportional to the edge weights and DB denote a matrix with entries dii =
∑

j bij . Consider a
diffusion process on the graph G, i.e., we place a point mass δv at a node v and consider the diffusion
pv(t) = δve

−tD−1
B

(DB−B) (12). The distribution generated by pv(t) defines a measure on the t-neighborhood
of v. We define a discrete analog of ORC (43; 26) for an edge e = (u, v) via the transportation distances
between neighborhood measures defined by diffusion processes starting at its adjacent vertices, i.e.,

κt
uv = 1− W1(pv(t), pu(t))

dG(u, v) . (2)

How does this quantity relate to the coarse structure of the graph? In most graphs, similar nodes form densely
connected subgraphs (homophily principle). As a result, if u, v are similar, then the diffusion processes will
stay nearby with high probability, exploring the densely connected subgraph. In contrast, if u, v are dissimilar,
e.g., belong to separate clusters, then the diffusion processes are likely to explore separate clusters, drawing
apart quickly. The transportation distance W1(pv(t), pu(t)) is much higher in the second case than in the first.
Thus, edges that connect dissimilar nodes have low (usually negative) curvature, whereas edges that connect
similar nodes have high curvature. Hence, bridges between communities may be identified via low curvature
(see Fig. 2). To ensure computational feasibility, we restrict ourselves to a first-order approximation of the
diffusion process, pv ≈ αI + (1 − α)δvD

−1
B B, which defines a measure on the 1-hop node neighborhoods.

With this choice, we recover the classical discrete Ollivier-Ricci curvature (43; 36). We note that the pooling
operations introduced below naturally extend to curvature computed over t-hop neighborhoods. Varying
the neighborhood radius could provide an additional avenue for incorporating multi-scale structure into the
curvature computation, which could be valuable in practise, albeit at a higher computational cost. Notice
that the curvature notion introduced above does not account for node attributes. We may define edge weights
that encode a similarity measure on the node attributes, e.g., wij = 1

m+1
∑

k 1{xk
i

̸=xk
j

}).

3

Under review as submission to TMLR

Figure 2: Discrete Ricci curvature reveals coarse structure. Left: Relation between curvature and trajectories
of diffusion processes starting at similar (green) and dissimilar (red) nodes. Right: Dumbbell graph with
uniform edge weights (at initialization) and with curvature-adjusted edge weights (darker colors represent
lower curvature).

2.2.2 Curvature-based Clustering

Ricci Flow. In continuous spaces, an associated geometric flow (Ricci flow) is of great importance, as it
reveals deep connections between the geometry and topology of the manifold (geometrization conjecture).
As a loose analogy, a geometric flow associated with discrete Ricci curvature can be defined, which has
been related to the community structure (41) and coarse geometry (61) of graphs. Ollivier (42) proposes a
curvature flow

d

dt
dG(u, v)(t) = −κuv(t) · dG(u, v)(t) ((u, v) ∈ E) ,

associated with discrete ORC along edges (u, v). A discretization of this flow gives a combinatorial evolution
equation, which evolves edge weights according to the local geometry of the graph: Consider a family of
weighted graphs Gt = {V,E,W t}, which is constructed from an input graph G = G0 by evolving its edge
weights as (setting dt = 1)

wt
u,v ← (1− κuv)dG(u, v) ((u, v) ∈ E) , (3)

where κuv, dG(u, v) are computed on Gt. Eq. 3 may be viewed as a discrete analogue of continuous Ricci
flow. To control the scale of the edge weights, we normalize after each iteration.

Geometric clustering algorithms. Geometric clustering approaches based on ORC for non-attributed
graphs have previously been considered, e.g. (50; 41; 54). These algorithms are partition-based, i.e., remove
edges to decompose the graph into subgraphs, and come in two flavors: The first takes a local perspective,
cutting edges with ORC below a given threshold (e.g., (50)). The second evolves edge weights under Ricci
flow (Eq. 3), encoding local and more global geometric information into the edge weights, before removing
edges with weight below a certain threshold (e.g., (41)). Both approaches exploit the observation that ORC
flow “highlights" the multi-scale structure of the graph (e.g., community structure). We emphasize that
curvature, by construction, evaluates only the graph’s connectivity, but cannot account for node attributes
(apart from carefully chosen initialization of edge weights, see above).

2.2.3 Curvature Approximation

Computing ORC as defined above involves solving an optimal transport problem (i.e., computing the
Wasserstein-1 distances between measures on the 1-hop neighborhoods of the adjacent vertices). In the
discrete setting, this corresponds to computing the earth mover’s distance, which, in the worst case, has
complexity O(|E|m3) (where m denotes the maximum degree of nodes in G). A commonly used approximation
via Sinkhorn’s algorithm has a reduced complexity of O(|E|m2), which can still be prohibitively expensive
on large-scale graphs. Recently, Tian et al. (54) introduced a combinatorial approximation of ORC of the
form κ̂uv := 1

2
(
κup

uv + κlow
uv

)
, where κup and κlow are combinatorial upper and lower bounds, which can be

computed in O(|E|m). More details, as well as the formal statement of the bounds can be found in Apx. A. In
large or dense graphs, implementing the above introduced Ricci flow via this approximation can significantly
reduce runtime (54).

4

Under review as submission to TMLR

Figure 3: Proposed geometric pooling operator (ORC-Pool), which utilizes a curvature-based, geometric
selection function (Sel) to identify supernodes and superedges (Red), which are then reconnected to generate
the pooled graph (Con).

3 Geometric Coarsening and Pooling in attributed graphs

Characterizing the coarse geometry of a graph is invaluable for graph learning tasks. In this paper, we
introduce a geometric pooling operator (ORC-Pool, Fig. 3), which may serve as a standalone graph coarsening
approach, as well as a pooling layer that can be integrated into GNN architectures. ORC-Pool allows for
evaluating similarity structure encoded in the graph’s geometry via ORC flow, while also accounting for
similarity structure encoded in the node attributes. We follow the SRC framework (28) discussed above to
formalize our approach.

3.1 Geometric Graph Coarsening

Geometric selection function. To define a pooling operator that effectively coarsens a graph, the
selection function needs to identify a cluster assignment that preserves the overall graph topology (community
structure, etc.). We propose a geometric selection function, which computes the cluster assignment guided
by the relation between curvature and graph topology (sec. 2.2). We encode curvature information into
a matrix CT = (cij) with entries cij = wij given by the evolved edge weights after T iterations of ORC
flow. The matrix C can be seen as a curvature-adjusted adjacency matrix, which assigns an importance
score to each edge reflecting its structural role: Under ORC flow (Eq. 3), structurally important edges are
assigned a high score, whereas edges between similar nodes receive a low score. This encodes global similarity
structure, uncovering the coarse geometry of the graph (see discussion above and Fig. 2). Edges whose weight
decreases under ORC flow contract (positive curvature), moving the adjacent, similar nodes closer together.
On the other hand, edges whose weight increases under ORC flow expand (negative curvature), moving the
adjacent dissimilar nodes further apart. This naturally induces a coarsening of the graph. Curvature-based
coarsening utilizes this emerging structure by cutting edges with a high weight (wT

ij > ∆) and then merging
the remaining connected components into supernodes. The threshold ∆ is a crucial hyperparameter, which is
often difficult to choose in practice. Ni et al. (41) learn the threshold by optimizing the modularity of the
resulting decomposition. Modularity optimization is NP-hard and hence an exact solution is intractable.
They approximate the solution via an expensive parameter search. Since this subroutine is both expensive
and non-differentiable, it is not suitable for integration into a trainable architecture. Hence, we need to
employ a different auxiliary loss for identifying edges to cut, which we now describe.

Graph Cuts. Let S ∈ {0, 1}N×K denote the assignment matrix computed by the selection function, its
entries specify the assignment of N vertices to K supernodes, i.e., sik = 1, if vertex i is Vk and sik = 0
otherwise. The problem of computing S by removing edges relates to the mincut problem, a classical problem
in Combinatorics. In a seminal paper, Shi and Malik (49) show that the min-cut problem can be written as
an optimization problem with respect to the number of edges within and between putative clusters (here,
supernodes):

max 1
K

K∑
k=1

∑
i,j∈Vk

1i∼j∑
i∈Vk,j∈V \Vk

1i∼j
. (4)

5

Under review as submission to TMLR

Here, 1i∼j denotes the edge indicator function. In the Graph ML literature, an equivalent formulation of 4
due to Dhillon et al. (13) has been widely adapted,

max 1
K

K∑
k=1

ST
k ASk

ST
k DSk

s.t. S1K = 1N , (5)

where A denotes the graph’s (unweighted) adjacency matrix, D = diag(A) its degree matrix and Sk the kth
row of S. While this problem itself is NP-hard, it can be efficiently solved via the relaxation (52)

Q∗ := argmax
Q∈RN×K

QT Q=IK

1
K

K∑
k=1

QT
kAQk s.t. Q = D1/2S(STDS)−1/2 . (6)

Using classical results from spectral graph theory, one can show that the optimizer takes the form Q∗ = UKV ,
where UK ∈ RN×K is formed by the top K eigenvectors of the normalized adjacency Â = D−1/2AD−1/2

and V ∈ O(K) is an orthogonal transform. To recover the cluster assignment S, one can apply k-means
clustering to the rows of Q∗ (57). Approaches for efficiently computing minimal graph cuts have been
adapted for the design of effective graph pooling operators (9; 31). We have argued above that computing a
curvature-adjustment emphasizes the underlying community structure (e.g., Fig 2), which should make it
easier to learn graph cuts. Note that after curvature-adjustment, the graph is weighted, i.e., we now optimize
the sum of edge weights within and between putative clusters. We will provide theoretical evidence for this
observation in the next section. Weighted graph cuts have been considered previously, e.g., in metis (14),
which underlies the Graclus pooling layer. We can adapt Eq. 6 to a loss function for computing a cluster
assignment based on the (normalized) curvature-adjusted adjacency matrix, i.e.,

min
S

[
LCP = − trST ĈTS

trST D̂S

]
. (7)

Note that the entries of the degree matrix D̂ are the weighted node degrees after adjustment. For T = 0,
we recover the classical minimum graph cut objective. Notably, the resulting objective is differentiable and
can be optimized with standard techniques (see above), which is preferable over the parameter search for a
suitable edge weight threshold performed in (50; 41).

Geometric pooling operator (ORC-Pool). The reduction and connection functions of ORC-
Pool closely resemble canonical choices that are common among many pooling operators (e.g., Min-
CutPool (8), DiffPool (65), NMF (4), among others): Given a selection S ∈ {0, 1}N×K , which assigns N
nodes to K supernodes, we set Red(X) = STX =: X ′ and Con(E) = STES := E′. Naturally, if G is not
attributed, then there is no need for a reduction function. In the coarsened graph, edge weights are again
initialized either as 1 or according to differences in supernode attributes (implemented in the Con function).
This coarsening scheme may be applied multiple times, i.e., we can learn a sequence S1, S2, . . . of selection
matrices, which compute cluster assignments with varying degree of coarseness. With that, ORC-Pool may
serve as a standalone coarsening or clustering approach.

3.2 ORC-Pool layer for Graph Neural Networks

While the geometric pooling operator described above applies to attributed graphs, its selection function does
not evaluate similarity structure encoded in node attributes, aside from a specific edge weight initialization
discussed earlier. In this section, we will describe an alternative coarsening approach, where ORC-Pool is
integrated into GNNs as a pooling layer grounded in graph geometry. Stacked on top of MP base layers,
which learn node representation that reflect similarity structure in both graph topology and node attributes,
ORC-Pool integrates both types of structural information to coarsen the graph.

Pooling operators can be integrated into GNNs by stacking pooling layers, which implement the operator, on
top of blocks of base layers (usually MP layers). The base layer learns node embeddings X̃ = GNN(X, Â, θ),
where θ are trainable parameters. If the input graph is attributed, its node attributes are used to initialize

6

Under review as submission to TMLR

the base layer. We implement the ORC-Pool layer as an MLP, where we learn the cluster assignment matrix
S with an MLP with softmax activation (enforcing the constraint S1k = 1N) and trainable parameters ψ
(S = MLP (X̃, ψ)), which are trained using Eq. 7 as an auxiliary loss. The GNN is trained end-to-end. In
particular, we optimize the training objective

min
[
LCP(θ, ψ) = − tr ST ĈTS

tr ST D̂S
+
∥∥∥ STS

∥STS∥F
− IK√

K

∥∥∥
F

]
, (8)

where the first term of the objective corresponds to the auxiliary loss and the second encourages mutually
orthogonal clusters of similar size, preventing degenerate clusters (∥·∥F denotes the Frobenius norm). Notice
that the training objective closely resembles that of MinCutPool (8), but utilizes the curvature-adjusted
adjacency matrix CT . In particular, we recover MinCutPool as a special case (T = 0).

We obtain the adjacency matrix of the coarsened graph by setting AP = STAS and recomputing curvature-
adjusted weights via Ricci flow on the superedges. We initialize superedge weights as a measure of similarity
of the supernode attributes, which are obtained by setting XP = STX. Stacking blocks of base layers and
pooling layers on top of each other yields a successive coarsening of the graph, which reflects its multi-scale
structure. Notice that curvature-based importance scores influence the message functions on each scale. The
trainable parameters ψ, θ are trained end-to-end as part of the GNN architecture and the respective loss
for the downstream task, allowing for a seamless integration of geometric pooling into GNN architectures.
As a final remark, notice that the curvature-adjustment employed in ORC-Pool is flexible and could be
incorporated into other (dense) pooling operators too (especially those that build on graph cuts).

4 Properties of ORC-Pool

4.1 Basic properties

Permutation-invariance. Graphs and sets are permutation-invariant, as there is no natural order relation
on the nodes. Standard MP layers are permutation-equivariant and pooling layers permutation-invariant
to encode this structure as inductive bias. The curvature-adjustment added in ORC-Pool preserves this
property (for details see Apx. G).

Impact on Expressivity. A classical measure of the representational power of GNNs is expressivity, which
evaluates a GNNs ability to distinguish pairs of non-isomorphic graphs. It is well-known that standard
MPGNNs are as powerful as the Weiserfeiler-Lehmann test, a classical heuristic for graph isomorphism
testing (63; 38). To reap the benefits of pooling, pooling operators should preserve the expressivity of
the MP base layer. Recently, (10) established conditions for this property. A simple corollary shows that
ORC-Pool fulfills these conditions (see Apx. G for details):
Corollary 1. Consider a simple architecture with a block of MP base layers, followed by a ORC-Pool layer.
Let G1, G2 denote two 1-WL-distinguishable graphs with node attributes X1, X2. Further let X ′

1 ̸= X ′
2 denote

the node representations learned by the block of MP layers. Then the coarsened graphs GP
1 , G

P
2 learned by the

ORC-Pool layer are 1-WL distinguishable.

Topological Effects. MPGNNs are known to suffer from oversmoothing (35), which describes the con-
vergence of the representations of dissimilar nodes in densely connected subgraphs as the number of layers
increases. This effect is particularly prevalent in node-level tasks, e.g., negatively impacting the GNN’s ability
to perform node clustering. ORC-Pool mitigates this effect in two ways: By assigning higher weights to
sparse connections between dense subgraphs and smaller weights to edges within dense subgraphs, distances
between similar nodes are contracted and distances between dissimilar nodes are expanded. Moreover, pooling
layers generally counteract oversmoothing, as they induce scale-separation. That is, local and global features
are preserved separately, as they are encoded on different coarsening scales. Since similar nodes are merged
into supernodes, neighboring supernodes tend to be less similar than neighboring nodes at the previous
scale, alleviating oversmoothing on coarser scales. Conversely, limiting the number of layers could avoid
over-smoothing, but shallow MPGNNs are known to suffer from under-reaching (7): If the number of layers
is smaller than the graph’s diameter, information between distant nodes is not exchanged, which can limit

7

Under review as submission to TMLR

Table 1: Node Clustering. Average accuracy (NMI) for ORC-Pool in comparison with state of the art
pooling layers; average time per epoch (in seconds) is given in brackets. The reported times (mean/ standard
deviation) are computed based on 10 trials. Highest accuracy in bold.

Layer Cora CiteSeer PubMed

No pool 0.33 ± 0.04 (0.008 ± 0.000) 0.22 ± 0.02 (0.009 ± 0.000) 0.14 ± 0.02 (0.060 ± 0.001)
Diff 0.20 ± 0.04 (0.010 ± 0.000) 0.24 ± 0.12 (0.009 ± 0.000) 0.03 ± 0.02 (0.082 ± 0.002)
Mincut 0.43 ± 0.03 (0.018 ± 0.001) 0.31 ± 0.04 (0.016 ± 0.001) 0.23 ± 0.04 (0.689 ± 0.003)
DMoN 0.37 ± 0.05 (0.010 ± 0.000) 0.29 ± 0.03 (0.010 ± 0.000) 0.18 ± 0.04 (0.064 ± 0.001)
TV 0.33 ± 0.05 (0.010 ± 0.000) 0.30 ± 0.05 (0.010 ± 0.000) 0.21 ± 0.03 (0.069 ± 0.001)
Graclus 0.43 ± 0.03 (0.012 ± 0.001) 0.34 ± 0.02 (0.013 ± 0.001) 0.27 ± 0.02 (0.138 ± 0.001)
ORC (us) 0.47 ± 0.04 (0.035 ± 0.000) 0.35 ± 0.04 (0.029 ± 0.001) 0.24 ± 0.04 (0.92 ± 0.003)

the utility of the learned representations in downstream tasks. This underscores the value of effective pooling
layers for the design of deeper GNNs. We comment on the impact of pooling on over-squashing, a related
effect, in Apx G.

4.2 Structural Impact of Curvature Adjustment

Figure 4: Ga,b (a =
b = 3)

We further corroborate our earlier claim that ORC flow reveals coarse geometry and
emphasizes the community structure, making it easier to learn suitable graph cuts.
For our analysis, we employ a graph model, which exhibits community structure as
found in real data:

Definition 1. Consider a class of model graphs Ga,b (a ≥ b ≥ 2), which are
constructed by taking a complete graph with b nodes and replacing each by a complete
graph with a+ 1 nodes.

Ga,b-graphs can be seen as instances of stochastic block models with b blocks of size a+ 1 and exhibit a clear
community structure (see Fig. 9 for an example). Due to the regularity of the graph, we can categorize its
edges into three types: (1) bridges, which connect dissimilar nodes in different clusters; (2) internal edges,
which connect similar nodes in the same cluster that are at most one hop removed from a dissimilar node; and
(3) all other internal edges, which connect similar nodes within the same cluster. (41) derived an evolution
equation for edge weights under ORC flow for Ga,b graphs:

Lemma 1 (informal, (41)). Let wt = [wt
1, w

t
2, w

t
3] denote the weights of edges of types (1)-(3). Assuming

w0 = [1, 1, 1], the edge weights evolve under ORC flow (Eq. 3) as wt+1 = F (a, b)wt, where F (a, b) is a fixed
(3× 3)-matrix, depending on a, b only.

Utilizing this result we want to analyze the strength of the community structure subject to Ricci flow,
employing modularity (24) as a measure:

Q(W) := 1∑
uv wuv

∑
uv

(
wuv −

dudv∑
uv wuv

)
δ(Cu, Cv) .

Here, W = (wij) denotes a weighted adjacency matrix, dv weighted node degrees and δ(Cu, Cv) = 1, if u, v
are in the same cluster and zero otherwise. High modularity is often used as an indicator of a “strong”
separation of the graph into subgraphs, under which communities can be easier to detect. We show that
modularity increases as edge weights evolve under ORC flow:

Theorem 1 (informal). Let W denote the original adjacency matrix and Ct the curvature-adjusted adjacency
matrix after t iterations of ORC flow. Then Q(Ct) > Q(W), with Q(Ct) increasing in t.

We defer the full technical statement of Lem. 3 and Thm. 5, as well as proof details to supp. G.

8

Under review as submission to TMLR

Table 2: Graph Classification. Average classification accuracy for ORC-Pool in comparison with state of
the art pooling layers, averaged over 10 trials, using a 80/10/10 train/val/test split. Highest accuracy in bold.

Layer MUTAG ENZYMES PROTEINS IMDB-BINARY REDDIT-BINARY COLLAB PEPTIDES

No Pool 0.81 ± 0.05 0.29 ± 0.04 0.74 ± 0.03 0.58 ± 0.02 0.85 ± 0.03 0.67 ± 0.03 0.63 ± 0.03
Diff 0.83 ± 0.09 0.31 ± 0.03 0.75 ± 0.04 0.64 ± 0.06 0.86 ± 0.02 0.70 ± 0.02 0.66 ± 0.02
Mincut 0.83 ± 0.07 0.37 ± 0.05 0.76 ± 0.05 0.65 ± 0.05 0.85 ± 0.02 0.67 ± 0.02 0.67 ± 0.02
DMoN 0.84 ± 0.08 0.40 ± 0.04 0.76 ± 0.05 0.65 ± 0.04 0.85 ± 0.02 0.68 ± 0.02 0.67 ± 0.02
TV 0.83 ± 0.08 0.37 ± 0.05 0.75 ± 0.04 0.54 ± 0.03 0.85 ± 0.03 0.70 ± 0.02 0.67 ± 0.02
Graclus 0.84 ± 0.06 0.42 ± 0.03 0.75 ± 0.04 0.61 ± 0.04 0.84 ± 0.04 0.68 ± 0.02 0.66 ± 0.03
ORC 0.90 ± 0.06 0.38 ± 0.06 0.78 ± 0.04 0.71 ± 0.04 0.88 ± 0.02 0.71 ± 0.02 0.69 ± 0.01

Table 3: Curvature computation. Comparison of accuracy (NMI) and runtime (in brackets) of computing
ORC exactly (EMD), via Sinkhorn distances (Sinkhorn), and via combinatorial ORC approximation. Best
runtime in bold.

Layer Cora CiteSeer PubMed

EMD 0.47 ± 0.04 (19.97 ± 0.35) 0.35 ± 0.04 (16.77 ± 0.21) 0.24 ± 0.04 (571.11 ± 2.94)
Sinkhorn 0.45 ± 0.03 (56.36 ± 1.43) 0.35 ± 0.03 (42.16 ± 0.71) 0.22 ± 0.05 (904.38 ± 3.08)
ORC-approx 0.45 ± 0.03 (16.88 ± 0.43) 0.35 ± 0.03 (14.62 ± 0.10) 0.21 ± 0.03 (548.43 ± 1.79)

5 Experimental Analysis of Geometric Pooling

In this section we present experiments to demonstrate the advantage of our proposed pooling layer ORC-Pool.
We test our hypothesis that encoding local and global geometric information into the pooling layers can
increase the accuracy of the GNN in downstream tasks.

Experimental setup. We implement a simple GNN architecture, consisting of blocks of GCN base layers,
followed by a pooling layer. When comparing ORC-Pool with other state of the art pooling layers, we keep
the architecture fixed (only altering pooling layers) to enable a fair comparison. Details on the architecture
used in our node- and graph-level experiments can be found in Apx. D.1. We utilize the popular benchmarks
Planetoid (64) for node clustering, and TUDataset (37) and LRGBDataset (17) for graph classification.
Experiments are performed using PyTorch Geometric. We compare ORC-Pool with four state of the
art pooling layers, which were reported as best-performing across domains and graph learning tasks (28):
MinCutPool (8), DiffPool (65), TVPool (32), and Deep Modularity Networks (DMoN) (55). We
implement ORC-Pool using exact ORC, i.e., W1(·, ·) is computed via the earth mover’s distance.

Node Clustering. We compare the performance of ORC-Pool and other pooling layers for node
clustering, where we evaluate the Normalized Mutual Information (short NMI, defined in sec. D.2) of the
cluster assignments computed by the GNN, as well as the average runtime per epoch. The number of desired
clusters is known to the model beforehand. Results for Planetoid are reported in Tab. F. We see that
ORC-Pool performed best overall with the highest average NMI on all three graphs. The second best model
in all cases was MinCutPool, which the ORC-Pool layer is based on. In terms of runtime, we observed
that for the larger PubMed graph, DiffPool, DMoN, and TVPool are about one order of magnitude
faster per epoch compared to MinCutPool and ORC-Pool. The difference in time per epoch is much
smaller for Cora and CiteSeer.

Graph classification. We further compare the performance of ORC-Pool with that of other pooling
layers for graph classification, where we report the accuracy of label assignments. ORC-Pool performed best
overall on TUDataset, achieving the best accuracy on all datasets but ENZYMES (see Tab. 5). We further
tested ORC-Pool on Peptides, a large-scale graph classification tasks from the long-range graph benchmark
LRGB (17). Here, again, ORC-Pool showed superior performance. Run times for all experiments can be
found in Tab. D.3.

Curvature computation. ORC-Pool defines a dense pooling layer; i.e., E [Vk/|N |] = O(N). This
property is inherited from the MinCutPool objective and preserved by the curvature adjustment. Hence,
the complexity of the pooling operator is O(NK) for storage and O(K(|E|+NK)) for minimizing the relaxed
min-cut loss (9). As noted in sec. 2.2.3, the computation of the curvature-adjustment can be costly on large,

9

Under review as submission to TMLR

dense graphs. We test the performance of the two introduced curvature approximations (Sinkhorn distances,
combinatorial ORC) on the accuracy and average runtime per epoch. We focus on node-level tasks, where
input graphs are of larger size. Our results (Tab. 5) indicate that computing Sinkhorn distances is actually
slower than EMD on large, dense input graphs. This is consistent with previous results for curvature-based
community detection on graphs with similar topology (54). In contrast, the combinatorial ORC approximation
delivers a faster method, which retains accuracy similar to exact ORC. We note that our implementation can
likely be further optimized, which could lead to additional speedups, e.g., via more effective parallelization.

6 Discussion

We introduced ORC-Pool, a geometric pooling operator that leverages coarse geometry, characterized by
Ollivier-Ricci curvature and an associated geometric flow. ORC-Pool extends a class of Ricci flow based
clustering algorithms to attributed graphs and can be incorporated into GNN architectures as a pooling layer.
While curvature adjustment leads to improved performance in downstream tasks, it also adds computational
overhead, specifically in node-level tasks with large, dense input graphs. While our experiments indicate that
the runtime impact is modest in most cases, we show that a combinatorial ORC approximation can reduce
runtime impact while retaining accuracy on node-level tasks. Nevertheless, an important direction for future
work is the study of alternative curvature notions or approximations (see Apx. A.2), which could result in
more scalable implementations of ORC-Pool. In addition, it would be interesting to investigate the impact
of ORC-Pool layers in other graph learning tasks, such as graph regression or reconstruction, as well as on a
wider range of graph domains. Lastly, it would be interesting to consider extensions to directed input graphs.

References
[1] E. Abbe. Community detection and stochastic block models: Recent developments. Journal of Machine

Learning Research, 18(177):1–86, 2018.

[2] U. Alon and E. Yahav. On the bottleneck of graph neural networks and its practical implications. In
International Conference on Learning Representations, 2021.

[3] A. Arnaiz-Rodríguez, A. Begga, F. Escolano, and N. Oliver. Diffwire: Inductive graph rewiring via the
Lovász bound. arXiv preprint arXiv:2206.07369, 2022.

[4] D. Bacciu and L. D. Sotto. A non-negative factorization approach to node pooling in graph convolutional
neural networks. In International Conference of the Italian Association for Artificial Intelligence, pages
294–306. Springer, 2019.

[5] J. Baek, M. Kang, and S. J. Hwang. Accurate learning of graph representations with graph multiset
pooling. arXiv preprint arXiv:2102.11533, 2021.

[6] J. Baek, M. Kang, and S. J. Hwang. Accurate learning of graph representations with graph multiset
pooling. CoRR, abs/2102.11533, 2021.

[7] P. Barceló, E. V. Kostylev, M. Monet, J. Pérez, J. Reutter, and J. P. Silva. The logical expressiveness of
graph neural networks. In International Conference on Learning Representations, 2020.

[8] F. M. Bianchi, D. Grattarola, and C. Alippi. Spectral clustering with graph neural networks for graph
pooling. In International Conference on Machine Learning, pages 874–883. PMLR, 2020.

[9] F. M. Bianchi, D. Grattarola, L. Livi, and C. Alippi. Hierarchical representation learning in graph neural
networks with node decimation pooling. IEEE Transactions on Neural Networks and Learning Systems,
2020.

[10] F. M. Bianchi and V. Lachi. The expressive power of pooling in graph neural networks. arXiv preprint
arXiv:2304.01575, 2023.

[11] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of communities in large
networks. Journal of statistical mechanics: theory and experiment, 2008(10):P10008, 2008.

10

Under review as submission to TMLR

[12] F. R. Chung. Spectral graph theory, volume 92. American Mathematical Soc., 1997.

[13] I. S. Dhillon, Y. Guan, and B. Kulis. Kernel k-means: spectral clustering and normalized cuts. In
Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 551–556, 2004.

[14] I. S. Dhillon, Y. Guan, and B. Kulis. Weighted graph cuts without eigenvectors a multilevel approach.
IEEE transactions on pattern analysis and machine intelligence, 29(11):1944–1957, 2007.

[15] I. S. Dhillon, Y. Guan, and B. Kulis. Weighted graph cuts without eigenvectors a multilevel approach.
IEEE transactions on pattern analysis and machine intelligence, 29(11):1944–1957, 2007.

[16] A. Duval and F. Malliaros. Higher-order clustering and pooling for graph neural networks. In Proceedings
of the 31st ACM international conference on information & knowledge management, pages 426–435,
2022.

[17] V. P. Dwivedi, L. Rampášek, M. Galkin, A. Parviz, G. Wolf, A. T. Luu, and D. Beaini. Long range
graph benchmark. In Thirty-sixth Conference on Neural Information Processing Systems Datasets and
Benchmarks Track, 2022.

[18] M. Erbar and J. Maas. Ricci Curvature of Finite Markov Chains via Convexity of the Entropy. Archive
for Rational Mechanics and Analysis, 206(3), Dec. 2012.

[19] L. Fesser, S. S. d. H. Iváñez, K. Devriendt, M. Weber, and R. Lambiotte. Augmentations of Forman’s
Ricci curvature and their applications in community detection. arXiv preprint arXiv:2306.06474, 2023.

[20] L. Fesser and M. Weber. Mitigating over-smoothing and over-squashing using augmentations of Forman-
Ricci curvature. In Learning on Graphs Conference, 2023.

[21] M. Fey and J. E. Lenssen. Fast graph representation learning with PyTorch Geometric. In ICLR
Workshop on Representation Learning on Graphs and Manifolds, 2019.

[22] M. Fiedler. Algebraic connectivity of graphs. Czechoslovak mathematical journal, 23(2):298–305, 1973.

[23] R. Forman. Bochner’s Method for Cell Complexes and Combinatorial Ricci Curvature. volume 29, pages
323–374, 2003.

[24] S. Gómez, P. Jensen, and A. Arenas. Analysis of community structure in networks of correlated data.
Phys. Rev. E, 80:016114, Jul 2009.

[25] M. Gori, G. Monfardini, and F. Scarselli. A new model for learning in graph domains. In Proceedings.
2005 IEEE international joint conference on neural networks, volume 2, pages 729–734, 2005.

[26] A. Gosztolai and A. Arnaudon. Unfolding the multiscale structure of networks with dynamical Ollivier-
Ricci curvature. Nature Communications, 12(1):4561, 2021.

[27] D. Grattarola and C. Alippi. Graph neural networks in tensorflow and keras with spektral [application
notes]. IEEE Computational Intelligence Magazine, 16(1):99–106, 2021.

[28] D. Grattarola, D. Zambon, F. M. Bianchi, and C. Alippi. Understanding Pooling in Graph Neural
Networks, 2021. arXiv:2110.05292.

[29] A. Hagberg, P. Swart, and D. S Chult. Exploring network structure, dynamics, and function using
networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM (United States), 2008.

[30] W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large graphs. Advances in
neural information processing systems, 30, 2017.

[31] J. B. Hansen and F. M. Bianchi. Clustering with total variation graph neural networks. arXiv preprint
arXiv:2211.06218, 2022.

11

Under review as submission to TMLR

[32] J. B. Hansen and F. M. Bianchi. Total variation graph neural networks. In Proceedings of the 40th
international conference on Machine learning. ACM, 2023.

[33] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and J. Leskovec. Open graph benchmark:
Datasets for machine learning on graphs, 2021.

[34] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907, 2016.

[35] Q. Li, Z. Han, and X.-M. Wu. Deeper insights into graph convolutional networks for semi-supervised
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018.

[36] Y. Lin, L. Lu, and S.-T. Yau. Ricci curvature of graphs. Tohoku Mathematical Journal, 63(4):605 – 627,
2011.

[37] C. Morris, N. M. Kriege, F. Bause, K. Kersting, P. Mutzel, and M. Neumann. TUDataset: A collection
of benchmark datasets for learning with graphs. In ICML 2020 Workshop on Graph Representation
Learning and Beyond (GRL+ 2020), 2020.

[38] C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan, and M. Grohe. Weisfeiler
and Leman go neural: Higher-order graph neural networks. In Proceedings of the AAAI conference on
artificial intelligence, volume 33, pages 4602–4609, 2019.

[39] E. Müller. Graph clustering with graph neural networks. Journal of Machine Learning Research, 24:1–21,
2023.

[40] K. Nguyen, T. Nguyen, N. Ho, K. Nguyen, H. Nong, and V. Nguyen. Revisiting over-smoothing and
over-squashing using Ollivier’s Ricci curvature. arXiv preprint arXiv:2211.15779, 2022.

[41] C.-C. Ni, Y.-Y. Lin, F. Luo, and J. Gao. Community detection on networks with Ricci flow. Scientific
reports, 9(1):1–12, 2019.

[42] Y. Ollivier. Ricci curvature of Markov chains on metric spaces. Journal of Functional Analysis,
256(3):810–864, 2009.

[43] Y. Ollivier. A survey of Ricci curvature for metric spaces and Markov chains. In Probabilistic Approach
to Geometry, pages 343–381. Mathematical Society of Japan, 2010.

[44] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and
A. Lerer. Automatic differentiation in pytorch. 2017.

[45] O. Platonov, D. Kuznedelev, M. Diskin, A. Babenko, and L. Prokhorenkova. A critical look at the
evaluation of gnns under heterophily: are we really making progress?, 2023.

[46] Y. Rong, W. Huang, T. Xu, and J. Huang. Dropedge: Towards deep graph convolutional networks on
node classification. In International Conference on Learning Representations, 2020.

[47] C. Sanders, A. Roth, and T. Liebig. Curvature-based pooling within graph neural networks. arXiv
preprint arXiv:2308.16516, 2023.

[48] R. Sandhu, T. Georgiou, and A. Tannenbaum. Ricci curvature: An economic indicator for market
fragility and systemic risk. Science advances, 2(5):e1501495, 2016.

[49] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on pattern analysis
and machine intelligence, 22(8):888–905, 2000.

[50] J. Sia, E. Jonckheere, and P. Bogdan. Ollivier-Ricci curvature-based method to community detection in
complex networks. Scientific reports, 9(1):1–12, 2019.

[51] D. A. Spielman and S.-H. Teng. Spectral partitioning works: Planar graphs and finite element meshes.
In Proceedings of 37th conference on foundations of computer science, pages 96–105. IEEE, 1996.

12

Under review as submission to TMLR

[52] X. Y. Stella and J. Shi. Multiclass spectral clustering. In Computer vision, IEEE international conference
on, volume 2, pages 313–313. IEEE Computer Society, 2003.

[53] A. Tannenbaum, C. Sander, L. Zhu, R. Sandhu, I. Kolesov, E. Reznik, Y. Senbabaoglu, and T. Georgiou.
Ricci curvature and robustness of cancer networks. arXiv preprint arXiv:1502.04512, 2015.

[54] Y. Tian, Z. Lubberts, and M. Weber. Curvature-based clustering on graphs. arXiv preprint
arXiv:2307.10155, 2023.

[55] A. Tsitsulin, J. Palowitch, B. Perozzi, and E. Müller. Graph clustering with graph neural networks, 2023.

[56] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio. Graph attention networks.
arXiv preprint arXiv:1710.10903, 2017.

[57] U. Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17:395–416, 2007.

[58] M. Weber, J. Jost, and E. Saucan. Forman-Ricci flow for change detection in large dynamics data sets.
Axioms, 5(4):doi–10, 2016.

[59] M. Weber, J. Jost, and E. Saucan. Detecting the coarse geometry of networks. In NeurIPS Relational
Representation Learning, 2018.

[60] M. Weber, E. Saucan, and J. Jost. Characterizing Complex Networks with Forman-Ricci Curvature and
Associated Geometric Flows. Journal of Complex Networks, 5(4):527–550, 2017.

[61] M. Weber, E. Saucan, and J. Jost. Coarse Geometry of Evolving Networks. Journal of Complex Networks,
6(5):706–732, 2017.

[62] M. Weber, J. Stelzer, E. Saucan, A. Naitsat, G. Lohmann, and J. Jost. Curvature-based methods for
brain network analysis. arXiv preprint arXiv:1707.00180, 2017.

[63] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? arXiv preprint
arXiv:1810.00826, 2018.

[64] Z. Yang, W. Cohen, and R. Salakhudinov. Revisiting semi-supervised learning with graph embeddings.
In International conference on machine learning, pages 40–48. PMLR, 2016.

[65] R. Ying, J. You, C. Morris, X. Ren, W. Hamilton, and J. Leskovec. Hierarchical graph representation
learning with differentiable pooling. In arXiv preprint arXiv:1806.08804,, 2018.

[66] Z. Zhang, J. Bu, M. Ester, J. Zhang, C. Yao, Z. Yu, and C. Wang. Hierarchical graph pooling with
structure learning. arXiv preprint arXiv:1911.05954, 2019.

13

Under review as submission to TMLR

Table of Contents

A Curvature Approximation 14

A.1 Combinatorial ORC Approximation . 14

A.2 Forman’s Curvature . 15

B Illustration of Ricci Flow 15

C Additional Discussion of Related Work 15

D Additional Details on Experiments 17

D.1 Details on Experimental Setup . 17

D.2 Node Clustering . 17

D.3 Graph Classification . 19

E Additional Ablation Studies 20

E.1 Number of Ricci Flow iterations . 20

E.2 Choice of Base Layer . 21

E.3 Comparison with CurvPool (47) . 21

E.4 Comparison with additional Pooling Layers . 22

F Results on Open Graph Benchmark 23

G Details on Theoretical Analysis 24

G.1 Properties of ORC-Pool . 24

G.2 Structural Impact of Curvature Adjustment . 25

G.3 Licenses . 26

A Curvature Approximation

A.1 Combinatorial ORC Approximation

For completeness, we restate the upper and lower bounds on ORC derived by Tian et al. (54) in our notation.
We compute the combinatorial ORC approximation defined in sec. 2.2.3 using these bounds.

Recall the definition of ORC given in Eq. 2, and note that we fix t = 1 and α = 0. Let N(x) be
the 1-hop neighborhood of node x. For vertices u, v we have ℓ := N(u) \ N(v), r := N(v) \ N(u), and
c := N(u) ∩N(v). Mass distributions on node neighborhoods are denoted as pu(x). We further define the
shorthands Lu :=

∑
ℓ pu(ℓ) and Lv :=

∑
r pv(r). a+ denotes the quantity max(0, a).

14

Under review as submission to TMLR

Theorem 2 (Lower bound ((54), Thm. 4.6)).

κ1
uv ≥ 1−

∑
ℓ

wℓu

wuv
pu(ℓ)−

∑
r

wrv

wuv
pv(r)

−
∑

c

[
wcv

xuv
(pu(c)− pv(c))+ + wcu

wuv
(pv(c)− pu(c))+

]

−

∣∣∣∣∣Lu + pu(u)− pv(u)−
∑

c

(pv(c)− pu(c))+

∣∣∣∣∣ .
To state the upper bound, we further define P := {x ∈ N(u) ∪N(y) : pu(x) − pv(x) > 0} and N := {x ∈
N(u) ∪N(y) : pu(x)− pv(x) < 0}. For x ∈ V and S ⊆ V , let dG(x, S) = min{dG(x, y) : y ∈ S}.
Theorem 3 (Upper bound ((54), Thm. 4.6)).

κ1
uv ≤ 1−max

{∑
x

dG(x,N)
wuv

(pu(x)− pv(x))+,
∑

x

dG(x,P)
wuv

(pv(x)− pu(x))+

}
.

A.2 Forman’s Curvature

Forman’s curvature (23) gives a combinatorial notion of Ricci curvature, which aggregates local information
in the 2-hop neighborhood of an edge. That is, we consider the endpoints of a certain edge and all edges that
share an endpoint with the edge. One formalization of this curvature, which considers the contributions of
connectivity and triangles for the curvature computation, resembles Ollivier’s curvature qualitatively and has
found applications in community detection. Its computation is easily parallelizable, allowing for a fast and
scalable implementation. This has given rise to a range of applications of Forman’s curvature in Network
Analysis (60; 53; 48; 58; 62). While in general less suitable for identifying community structure (54), it could
present a viable alternative to ORC in large-scale graphs, where computing ORC is infeasible. We can adapt
the ORC-Pool operator proposed in this paper to the case of Forman’s curvature by simply exchanging the
curvature notion κ.

B Illustration of Ricci Flow

In the main text, we illustrated the evolution of edge weights under Ricci flow on a dumbbell graph. In Fig. 5,
we plot networks sampled from the stochastic block model, with two, three, four and five communities (left
to right). We show the network with original weights (all equal to one) on the top and curvature-adjusted
edge weights (after 5 iterations of Ricci flow, i.e., T = 5) at the bottom, where again darker colors correspond
to smaller curvature. We see that curvature reliable uncovers bridges between communities due to their low
curvature, whereas edges within communities have a higher weight.

We further illustrate the effect of Ricci flow on molecular graphs, which are representative of graph topologies
often encountered in graph-level tasks. Fig. 6 shows the evolution of edge weights under Ricci flow (T = 4)
for two graphs from the MUTAG data set, again initializing edge weights uniformely with one. We see that
the curvature-adjustment highlights “bridges” (dark color) between functional substructures, e.g., rings. This
allows the selection function to perform a pooling that aligns with multi-scale structure in the graph.

C Additional Discussion of Related Work

We provide a more detailed discussion of related work by (47), which also proposes a curvature-based graph
pooling approach, albeit with several key differences to our approach. We provide a detailed conceptual
comparison of the two approaches below; an experimental comparison can be found in sec. E.3.

Setting. Classically, graph pooling layers are designed to jointly evaluate similarity structure encoded in the
node features and graph connectivity, instead of connectivity only (see, e.g., DiffPool, MincutPool, as well as

15

Under review as submission to TMLR

Figure 5: Evolution of edge weights under Ricci flow in the Stochastic Block Model.

Figure 6: Evolution of edge weights under Ricci flow in MUTAG.

discussions in references such as (28)). Fig. 1 illustrates that in attributed graphs both types of information
need to be evaluated to identify meaningful sets of nodes to be pooled. However, the pooling layer introduced
in (47) only evaluates similarity structure encoded in the connectivity. This is also corroborated by the
experimental comparison of both approaches below, in which ORC-Pool achieves higher performance for all
tasks on attributed graphs.

Motivation. The motivation for our proposed pooling layer (and that of related pooling layers) is to
capture salient multi-scale structure. In sec. 2.2, we give a geometric motivation for how curvature captures
such structure utilizing a connection of discrete Ricci curvature and random walks (see also Fig. 2). On the
other hand, the approach in Sanders et al. is motivated by addressing over-smoothing and over-squashing.
While we agree that pooling (in general) mitigates over-smoothing due to the induced scale separation (as we
discuss in sec. 4.1), over-squashing effects may actually be amplified as we discuss in the appendix.

Different use of curvature and different notion. We note that while both the approach in Sanders et
al. and our proposed approach leverages different notions of curvature, there are two fundamental differences:
(1) Our approach relies on a curvature-adjusted adjacency matrix, which is computed using Ricci flow, a
geometric flow associated with discrete Ricci flow. The approach in Sanders et al. uses a discrete notion of

16

Under review as submission to TMLR

curvature, it does not use Ricci flow. (2) Our approach utilizes Ollivier’s Ricci curvature and approximations
thereof. Sanders et al. use a “balanced Forman curvature” instead. While related, the two curvature notions
differ substantially. The geometric motivation given in our paper does not directly translate to balanced
Forman curvature.

Complexity and hyperparameters. The balanced Forman curvature used in Sanders et al. has complexity
O(|E|d2

max). On the other hand, a variant of our proposed approach, which utilizes a combinatorial ORC
curvature, has complexity of only O(|E|dmax), making it more scalable on large-scale graphs. As Sanders et
al. state, their approach has several hyperparameters that have to be carefully chosen so as not to simplify
the graph too much. Determining this threshold via grid search could add significant computational overhead.
On the other hand, the main hyperparameter in our method is the number Ricci flow iterations and the
performance is relatively insensitive to the choice of this parameter.

Overview related pooling methods. Tab. 4 gives an overview of our main pooling baselines in the SRC
framework.

Method Select Reduce Connect
DiffPool (65) S = GNN1(A,X) (w/ auxiliary loss) X ′ = S⊤ ·GNN2(A,X) A′ = S⊤AS
MinCut (8) S = MLP(X) (w/ auxiliary loss) X ′ = S⊤X A′ = S⊤AS

Graclus (15) Sk = {xi, xj | arg maxj

(
Aij

Dii
+ Aij

Djj

)
} X ′ = S⊤X METIS

DMoN (55) S = GNN(Ã,X) (w/ auxiliary loss) X ′ = S⊤X A′ = S⊤AS
TV (32) S = MLP(X) (w/ auxiliary loss) X ′ = S⊤X A′ = S⊤AS

Table 4: Overview of Pooling layers

D Additional Details on Experiments

D.1 Details on Experimental Setup

We implement a GNN architecture consisting of GCN base layers and a single pooling layer, which are jointly
trained. For node-level tasks, one GCN layer is used to compute a graph embedding, and another GCN
layer is used to compute node clusters from the embedding. Then the pooling layer computes the loss of
the current node assignments, which is used to update the GCN parameters. For the graph-level tasks, our
architecture alternates between blocks of GCN base layers and pooling layers, which are jointly trained. We
train a global pooling layer on top, which computes the readout by aggregating node representations across
the graph. To reduce the computational overhead of the ORC computation, we use the curvature-adjustment
only in the first pooling layer, i.e., the second pooling layer is a standard MinCutPool layer. We note that
the choice of using MinCutPool in subsequent layers was driven by a desire to maximize scalability, as the
curvature-adjustment would require recomputing curvature in the coarsened graph. However, we note that
computing the curvature-adjustment in subsequent layers has reduced computational cost due to the smaller
size of the coarsened graph, which suggests that this is a viable extension of the present approach that may
be considered in future work.

To compare against Graclus, we incorporated the Graclus pooling layer, based on METIS, to PyTorch
Geometric. We note that our implementation is not optimized for runtime. Hence, we expect that it is
possible to obtain further speedups in Graclus.

All experiments are run on a NVIDIA A100 GPU with one CPU.

D.2 Node Clustering

Architecture. The first GCN layer embeds the nodes of the graph into an m-dimensional feature space.
That is, if the graph initially had a node feature tensor of dimension n× k, where n is the number of nodes,
in the output we have a node feature tensor of dimension n×m. The second GCN layer takes this embedded

17

Under review as submission to TMLR

Figure 7: Architecture for node clustering.

graph and computes an assignment tensor of dimension n× c, where c is the number of clusters. By taking
the softmax of this n× c tensor, we obtain the final assignment of each node to a single cluster.

We note that in the original implementation of TVPool, custom MP layers are used before pooling. Since
the goal of our experiments is a fair comparison of the effectiveness of the pooling layers, we use standard
GCN layers as base layers for all pooling approaches.

We also performed the experiments with a GCN without pooling using the same architecture, but omitting
the pooling layer. The output is computed by a softmax function, where the predicted class corresponds to
the element with the highest value.

Data. The Planetoid graphs Cora, CiteSeer, and PubMed are citation networks where documents are
nodes and citations are edges.

Table 5: Planetoid
Graph Nodes Edges Features Classes

Cora 2708 10566 1433 7
CiteSeer 3327 9104 3703 6
PubMed 19717 88648 500 3

Hyperparameters. Parameters for the experiments are as follows: For Planetoid, one GCN layer with
output dimension 8 and an ELU activation function is used to embed the graph. The optimizer is an Adam
optimizer with a learning rate of 1e−2. The models are trained for at most 10000 epochs, or until the best
NMI is found under a patience constraint. That is, if we achieve the current best NMI on epoch n and
patience is p, we stop training if the model does not have a better NMI at any epoch up to n+ p. For the
Planetoid graphs, patience is set to 100, and for Amazon-ratings (from Heterophilous), patience is set
to 250. When applying ORC-Pool to the Planetoid graphs, four Ricci flow iterations are used, and for
Amazon-ratings, two Ricci flow iterations are used.

NMI. We measure accuracy as the Normalized Mutual Information (short: NMI) if the cluster assignments
computed by the GNN. NMI is a classical evaluation metric for community detection. In our experiments
we employ NMI to measure the accuracy in the node clustering task. We give a brief definition of NMI for
completeness.

Let S ∈ RN×k denote a vector that encodes the label assignment to k clusters, i.e., we set sil = 1 if node i
belongs to cluster Cl and sil = 0 otherwise. The entries of S can be viewed as random varibles drawn from
the distribution P (sl = 1) = Nl/N and P (sl = 0) = 1 − P (sl = 1), where Nl := |Cl|. Using the marginal
probability distribution Psl

and the joint probability distribution P (sl, sl′), we further define the entropies
H(sl) and H(sl, sl′), as well as the conditional entropy of sl given sl′ as H(sl|sl′) = H(sl, sl′)−H(sl′). The
NMI for two cluster assignments S, S′ is given by

NMI(S|S′) = 1− 1
2 (H(S|S′) +H(S′|S)) .

18

Under review as submission to TMLR

Figure 8: Architecture for graph classification.

D.3 Graph Classification

Architecture. The main part of the model consists of two blocks of GCN layers followed by a pooling
layer. The first set of GCN layer(s) embeds the nodes of the graph into an m-dimensional feature space.
That is, if the graph initially had a node feature tensor of dimension n× k, where n is the number of nodes,
in the output we have a node feature tensor of dimension n×m. The second GCN layer takes this embedded
graph and computes an assignment tensor of dimension n× c, where c is the number of clusters. By taking
the softmax of this n× c tensor, we obtain the final assignment of each node to a single cluster. Here, the
clustering simply gives us a new graph in which groups of nodes have been aggregated, which we pass into
the second block. After the second block of GCN layer(s) and pooling, we pass the resulting graph into a
third block of GCN layers to get the final node embeddings. These are passed into a global pooling layer,
which aggregates node embeddings. In our case, we use global mean pooling, which simply computes the
average of all node embeddings. The resulting vector is then passed into a linear classifier.

As an additional baseline, we also run a GCN without pooling on all data sets. The output is obtained using
a global mean pooling followed by a linear classifier.

Data. Statistics for TUDataset graphs are shown below (37). MUTAG is a common dataset of chemicals
where the task is to predict the mutagenic effect. For ENZYMES, we classify enzymes into one of six classes
depending on which type of chemical reaction they catalyze. PROTEINS has a binary classification task for
whether a protein is an enzyme. REDDIT-BINARY, COLLAB, and IMDB-BINARY are social networks
where we predict the subreddit, research field, and genre of people in the network, respectively. For the
graphs that did not have any node features (COLLAB, IMDB-BINARY, REDDIT-BINARY), we add a
dummy node feature that is 1.0 for all nodes.

Peptides-func is the only dataset from LRGB asks to classify peptides based on their function.

Table 6: TUDataset and Peptides-func
Dataset # of Graphs Features Classes

MUTAG 188 7 2
ENZYMES 600 3 6
PROTEINS 1113 3 2
IMDB-BINARY 1000 0 2
REDDIT-BINARY 1000 0 2
COLLAB 5000 0 3

Peptides-func 15535 9 10

Hyperparameters. Parameters for the experiments are as follows: For all graphs, the GCN blocks depicted
above consist of a GCN layer with output dimension 8 and an ELU activation function. The optimizer is an
Adam optimizer with a learning rate of 5e−4 and a weight decay of 1e−4. The models are trained for at
most 10000 epochs, or until the best accuracy on a validation is found under a patience constraint. That is,
if we achieve the current best validation accuracy on epoch n and patience is p, we stop training if the model

19

Under review as submission to TMLR

does not have a better validation accuracy at any point up to epoch n+ p. For all datasets, patience is set
to 50. When applying ORC-Pool to MUTAG, ENZYMES, and PROTEINS, one iteration of Ricci flow
curvature is used. For IMDB-BINARY, REDDIT-BINARY, and COLLAB, two, three, and two iterations are
used, respectively. Two iterations are used for Peptides-func. We let the pooling layer approximately halve
the number of nodes each time. That is, after the first pooling layer, the number of nodes in XP

1 is the half
the average number of nodes for graphs in the dataset. The number of nodes in XP

2 is half the number of
nodes in XP

1 .

Runtime comparison. We report a runtime comparison of the graph-level tasks.

Table 7: Average seconds/epoch on TUDataset and Peptides-func.
MUTAG ENZYMES PROTEINS IMDB-BINARY

No Pool 0.023 ± 0.001 0.13 ± 0.02 0.22 ± 0.00 0.16 ± 0.001
Diff 0.057 ± 0.001 0.17 ± 0.03 0.34 ± 0.01 0.29 ± 0.00
Mincut 0.068 ± 0.001 0.21 ± 0.03 0.41 ± 0.00 0.35 ± 0.01
DMoN 0.069 ± 0.001 0.21 ± 0.02 0.43 ± 0.02 0.36 ± 0.00
TV 0.068 ± 0.000 0.20 ± 0.02 0.40 ± 0.01 0.34 ± 0.02
Graclus 0.061 ± 0.002 0.17 ± 0.01 0.038 ± 0.01 0.35 ± 0.02
ORC 0.190 ± 0.003 0.48 ± 0.03 1.32 ± 0.00 1.07 ± 0.02

REDDIT-BINARY COLLAB PEPTIDES-FUNC

No Pool 1.68 ± 0.06 1.02 ± 0.02 2.85 ± 0.05
Diff 5.28 ± 0.18 1.74 ± 0.03 3.79 ± 0.02
Mincut 5.39 ± 0.17 2.05 ± 0.01 4.64 ± 0.07
DMoN 2.95 ± 0.05 2.11 ± 0.01 4.68 ± 0.07
TV 5.34 ± 0.09 2.10 ± 0.02 4.35 ± 0.05
Graclus 4.83 ± 0.11 1.90 ± 0.03 4.01 ± 0.04
ORC 12.90 ± 0.17 6.05 ± 0.01 36.27 ± 0.10

Results for Heterophilous Graphs. The Heterophilous graph Amazon-ratings is a network of Amazon
products where edges connect products that are frequently bought together (45). The five classes correspond
to product ratings. Unlike the Planetoid graphs, we do not expect nodes of the same class to consistently
cluster together. The “natural” clusters of the graph generally correspond to categories of items, rather than
item ratings. Pooling layers combine clusters of nodes in order to coarsen a graph, a procedure whose utility

Table 8: Heterophilous data set.
Graph Nodes Edges Features Classes

Amazon-ratings 24492 93050 300 5

depends on an implicit homophily assumption. Hence, we do not expect GNNs with pooling layers to perform
well on data sets such as the Amazon graph. This is confirmed by our experimental results, which show poor
performance (in terms of NMI) for all models. In contrast, in the original Heterophilous study, GCNs
without pooling layers were able to attain good performance (45).

E Additional Ablation Studies

E.1 Number of Ricci Flow iterations

We investigate the impact of using a varying number of Ricci flow iterations on the performance of ORC-Pool.
In the case of node clustering, we re-run ORC-Pool on the Cora and CiteSeer graphs, using 2, 4, and 6
iterations of Ricci flow. In the results presented in the main text, 4 iterations were used.

20

Under review as submission to TMLR

Table 9: Amazon
Model NMI Time/epoch (s) Total time (s)
Diff 0.0014± 0.00036 0.1218 53.13± 18.47
Mincut 0.00004± 0.00013 1.4494 364.66± 1.89
DMoN 0.0012± 0.00009 0.0898 35.48± 0.47
TV 0.0010± 0.00011 0.0980 52.99± 16.34
ORC (us) 0.00067± 0.00077 1.5369 405.69± 25.41

Table 10: We report average accuracy (NMI) on Cora and CiteSeer when using varying Ricci flow iterations.
The average time per epoch (in seconds) is given in brackets. The reported times (mean/ standard deviation)
are computed based on 10 trials.

Iterations Cora CiteSeer

2 0.45 ± 0.04 (0.033 ± 0.001) 0.34 ± 0.03 (0.028 ± 0.000)
4 0.47 ± 0.04 (0.035 ± 0.000) 0.35 ± 0.04 (0.029 ± 0.001)
6 0.44 ± 0.05 (0.034 ± 0.001) 0.33 ± 0.02 (0.029 ± 0.001)

We find that the NMI is comparable for different numbers of Ricci flow iterations. This indicates that
the performance of ORC-Pool is not very sensitive to the number of iterations used, and that the
curvature-adjustment captures crucial multi-scale structure with only a few iterations.

We also investigate the impact of different numbers of iterations of Ricci flow on a graph classification task.
We compared different numbers of iterations for the REDDIT-BINARY data set, testing 2, 3, and 4 iterations.
In the main results, 3 iterations were used. Our results show comparable results across all experiments,
implying that the observations in node-level tasks above extend to this setting. Based on our results, we
expect that the performance of ORC-Pool is not very sensitive to the number of iterations of Ricci flow
and computing the curvature-adjustment based on a small number of iterations already leads to significant
performance increases. This is consistent with previous findings for curvature-based methods, see, e.g., (54).

Table 11: We report accuracy (NMI) and time per epoch on REDDIT-BINARY when using varying Ricci
flow iterations. The reported times (mean/ standard deviation) are computed based on 10 trials.

Iterations Accuracy Seconds/epoch

2 0.86 ± 0.02 11.28 ± 0.19
3 0.88 ± 0.02 12.90 ± 0.17
4 0.87 ± 0.03 13.72 ± 0.18

E.2 Choice of Base Layer

For all of the experiments above, we used standard GCN layers as base layers for each experiment. Here, we
investigate the performance of our model architecture using GAT and GIN instead of GCN.

For node clustering, we re-run our CiteSeer experiment, again comparing ORC-Pool against four baselines.
The experimental setup follows the description in Apx. D.2 apart from GIN and GAT replacing GCN. Our
results show a high NMI and overall similar performance gains using ORC-Pool. For graph classification,
we make analogous observations when re-running our PROTEINS experiment with GAT and GIN replacing
GCN base layers in the model architecture described in Apx. D.3.

E.3 Comparison with CurvPool (47)

We compare the results of ORC-Pool and CurvPool on PROTEINS and IMDB-BINARY, using the
architecture, hyperparameters, and experimental setup of the CurvPool paper. (47) presents three versions

21

Under review as submission to TMLR

Table 12: We report accuracy (NMI) on CiteSeer when using GAT and GIN in place of GCN base layers.
The average time per epoch (in seconds) is given in brackets. The reported times (mean/ standard deviation)
are computed based on 10 trials.

GAT GIN

Diff 0.28 ± 0.031 (0.062 ± 0.004) 0.29 ± 0.025 (0.097 ± 0.003)
Mincut 0.32 ± 0.018 (0.083 ± 0.002) 0.33 ± 0.023 (0.118 ± 0.004)
DMoN 0.31 ± 0.063 (0.077 ± 0.008) 0.30 ± 0.070 (0.094 ± 0.010)
TV 0.32 ± 0.016 (0.086 ± 0.007) 0.30 ± 0.026 (0.095 ± 0.008)
ORC (us) 0.34 ± 0.040 (0.156 ± 0.016) 0.35 ± 0.040 (0.219 ± 0.019)

Table 13: We report average classification accuracy for PROTEINS with GAT and GIN replacing GCN base
layers. We use a 80/10/10 train/val/test split. Averages are determined based on 10 trials. Highest accuracy
in bold.

GAT GIN

Diff 0.73 ± 0.017 (3.82 ± 0.55) 0.73 ± 0.022 (4.41 ± 0.56)
Mincut 0.76 ± 0.019 (4.16 ± 0.67) 0.77 ± 0.034 (4.91 ± 0.64)
DMoN 0.74 ± 0.030 (4.83 ± 0.53) 0.75 ± 0.070 (5.17 ± 0.71)
TV 0.76 ± 0.028 (4.01 ± 0.47) 0.76 ± 0.034 (4.96 ± 0.048)
ORC (us) 0.79 ± 0.022 (7.10 ± 0.63) 0.77 ± 0.039 (9.21 ± 0.73)

of CurvPool that differ in their pooling scheme. Below, we compare against the highest performing one,
HighCurvPool.

Table 14: We report average accuracy (NMI) for Planetoid for both ORC-Pool and CurvPool.
Layer Cora CiteSeer PubMed

Curv 0.35 0.32 0.15
ORC (us) 0.47 ± 0.04 0.35 ± 0.04 0.24 ± 0.04

For node clustering, we compare the two models on three Planetoid data sets. The CurvPool clustering is
deterministic, as it is based only on the edge curvatures of the original graph (hence no variance is reported).
We used HighCurvPool with a threshold of −0.2. We see that ORC-Pool outperforms CurvPool on
all three Planetoid graphs, by an especially large margin for Cora and PubMed. This is expected, since
ORC-Pool utilizes information encoded in both node attribute and connectivity, whereas CurvPool only
utilizes connectivity.

For graph classification, we compared ORC-Pool and CurvPool on one attributed (PROTEINS) and one
unattributed data set (IMDB-BINARY). We observe that ORC-Pool achieved higher performance than
CurvPool on PROTEINS and equal performance on IMDB-BINARY. This illustrates that ORC-Pool is
able to utilize crucial information encoded in the node attributes and that this is crucial for the performance
gains observed across data sets.

We note that achieving high performance with CurvPool requires careful tuning of the curvature threshold
for pooling nodes. As shown in (47), the choice of this hyperparameter can cause accuracy to change by as
much as 5-10 percentage points, depending on the dataset. Therefore, hyperparameter tuning, e.g., grid
search needs to be performed to determine the optimal threshold. In contrast, the key hyperparameter
in ORC-Poolis the choice of the number of Ricci flow iterations to which downstream performance is fairly
insensitive, as the experiments above indicate.

E.4 Comparison with additional Pooling Layers

We provide an additional comparison with recently introduced pooling layers HoscPool (16), MVPooL (66),
GMTPool (6). We follow the previously described experimental setup (see Apx. D.2 and D.3 for details). Our

22

Under review as submission to TMLR

Table 15: We report average classification accuracy for PROTEINS (attributed) and IMDB-BINARY
(unattributed) for ORC-Pool and CurvPool. We use 10-fold cross validation. Averages are computed over
the test sets for each of the folds. Highest accuracy in bold.

PROTEINS IMDB-BINARY

Curv 0.77 ± 0.061 0.71 ± 0.051
ORC (us) 0.79 ± 0.053 0.71 ± 0.049

experiments show that ORC-Pool achieves the highest accuracy in two graph-level tasks (Mutag, Proteins)
and the second highest in a node-level task (Cora). For the latter, only HoscPool achieves a higher accuracy.

Cora MUTAG Proteins

GMTPool 0.42 ± 0.04 (0.013 ± 0.001) 0.86 ± 0.07 (0.066 ± 0.001) 0.76 ± 0.04 (0.40 ± 0.00)
MVPool 0.32 ± 0.03 (0.015 ± 0.001) 0.83 ± 0.08 (0.071 ± 0.001) 0.74 ± 0.05 (0.42 ± 0.01)
HoscPool 0.51 ± 0.05 (0.020 ± 0.001) 0.87 ± 0.05 (0.089 ± 0.002) 0.76 ± 0.04 (0.58 ± 0.01)
ORC-Pool (us) 0.47 ± 0.04 (0.035 ± 0.000) 0.90 ± 0.06 (0.190 ± 0.003) 0.78 ± 0.04 (1.32 ± 0.00)

Table 16: Comparison of ORC-Pool with additional baselines.

F Results on Open Graph Benchmark

We include additional experiments on large-scale data sets from the Open Graph Benchmark (33). For node
clustering, we use OGBN-ARXIV, and for graph classification, we use OGBG-MOLHIV.

Like Cora and CiteSeer, OGBN-ARXIV is a citation network. It has 169,343 nodes and 1,166,243 edges; the
goal is the classification of papers by subject area. OGBG-MOLHIV is a molecular property prediction dataset.
It has 41,127 graphs with an average of 25.5 nodes. We follow the preferred evaluation metrics for OGB,
reporting accuracy for OGBN-ARXIV and ROC-AUC for OGBG-MOLHIV. When running ORC-Pool on
OGBN-ARXIV, 4 iterations of Ricci flow were used. For OGBG-MOLHIV, 2 iterations of Ricci flow were
used.

Table 17: We report accuracy and time per epoch on OGBN-ARXIV for all models.
Accuracy Seconds/epoch

No Pool 0.59 ± 0.037 0.33 ± 0.002
Diff 0.65 ± 0.031 0.59 ± 0.002
Mincut 0.70 ± 0.027 3.26 ± 0.009
DMoN 0.68 ± 0.028 0.42 ± 0.001
TV 0.68 ± 0.040 0.41 ± 0.001
ORC (us) 0.72 ± 0.036 9.29 ± 0.011

Table 18: We report ROC-AUC and time per epoch on OGBG-MOLHIV for all models.
ROC-AUC Seconds/epoch

No pool 0.64 ± 0.038 12.37 ± 0.78
Diff 0.68 ± 0.052 16.87 ± 1.51
Mincut 0.70 ± 0.040 18.38 ± 2.43
DMoN 0.73 ± 0.037 17.44 ± 0.89
TV 0.69 ± 0.034 17.58 ± 0.79
ORC (us) 0.73 ± 0.048 34.90 ± 2.16

We observe that ORC-Pool performs best on OGBN-ARXIV; on OGBN-MOLHIV DMoNPool performs
best. As in the experiments above, these results are based off 10 runs.

23

Under review as submission to TMLR

G Details on Theoretical Analysis

G.1 Properties of ORC-Pool

Expressivity. In the main text we stated the following result on the impact of ORC-Pool layers on the
expressivity of the GNN:

Corollary 2 (Expressivity of ORC-Pool). Consider a simple architecture with a block of MP base layers,
following by a ORC-Pool layer. Let G1, G2 denote two 1-WL-distinguishable graphs with node attributes
X1, X2. Further let X ′

1 ̸= X ′
2 denote the node representations learned by the block of MP layers. Then the

coarsened graphs GP
1 , G

P
2 learned by the ORC-Pool layer are 1-WL distinguishable.

Proof. This result is a simple adaptation of a recent result by (10, Thm.1), which establishes conditions under
which pooling layers preserve expressivity:

Theorem 4 ((10), Thm. 1). Let G = {X,E} (X ∈ RN×m) denote the input graph and G′ the graph
obtained after applying a block of MP base layers to G; X ′ denoting the new multiset of node features. Let
Pool : G′ → GP denote an SRC pooling layer after the MP layers, which produces a pooled graph GP with
multi-sets XP . Pool preserves the expressivity of the MP layers, provided that the following conditions hold:

1. Let G1, G2 denote two WL-distinguishable graphs and X ′
1, X

′
2 the node representations learnt by the

MP layers. Then
∑

x∈X′
1
x ̸=

∑
x̃∈X′

2
x̃.

2. The selection function assigns nodes to a unqiue supernode; i.e.,
∑K

j=1 s
j
i = 1 for all i ∈ [N].

3. The reduction function assigns supernode representations as xP
j =

∑N
i=1 x

′
is

j
i .

The authors show that conditions (2),(3) hold for dense pooling layers, such as MinCutPool and, hence, also
ORC-Pool. In particular, by construction, graph cuts or partition-based community detection algorithms
produce non-overlapping communities; hence the selection function assigns nodes to a unique cluster, which
becomes a supernode. The reduction function computes supernode attributes as XP = STX ′, which aligns
with condition (3). Condition (1) is independent of the choice of pooling operator and is fulfilled for any MP
layer that is as powerful as the 1-WL test, e.g., GIN (63).

Remark 1. We note that the inherent limitations in representational power in the MP layers may affect the
quality of the coarsening learned by the pooling layer for certain classes of graphs. However, the empirical
results presented in this work and the related literature indicate that, in practice, pooling layers coarsen graphs
effectively.

Permutation-invariance. In the main paper, we stated the following property:

Lemma 2. ORC-Pool is permutation-invariant.

This property is inherited from MinCutPool. For completeness, we provide a the argument below.

Proof. Again, we utilize the SRC framework to describe the ORC-Pool operator. The seletion function
Sel computes a cluster assignment matrix S. It is easy to see that the graph cut objective (Eq. (3.5)) is
permutation-equivariant. The permutation-equivariance is not impacted by the curvature-adjustment, as
it simply performs a re-weighting of the edges. It is further easy to see that the reduction and connection
functions (Red and Con) are permutation-invariant. With that, the composition (Sel ◦ Red) ◦ Con is
permutation-invariant, as desired.

24

Under review as submission to TMLR

Pooling and Over-squashing. As the number of layers in an MPGNN increases, one observes the formation
of bottlenecks (2): Information from far distant nodes is encoded into fixed-length node representations
during message passing, leading to information loss. This effect is particularly strong for bridges between
clusters, which connect dissimilar nodes whose neighborhoods have a small intersection. Previous literature
has characterized oversquashing via discrete Ricci curvature (40; 20): Edges that connect nodes in different
clusters (bridges), have low Ricci curvature. This effect is emphasized under ORC flow, as the weight of
the bridges increases. With that, our proposed curvature adjustment may amplify oversquashing effects.
Recent literature has proposed graph rewiring as a mitigation for oversquashing effects. During rewiring,
edges are re-sampled proportional to a relevance score (edge weight), which may be assigned utilizing the
Lovasz bound (3), random edge dropping (46) or discrete curvature (40; 20), among others. Since we already
compute discrete curvature during pooling, we could add a rewiring step with little overhead. We leave an
investigation of this approach for future work.

G.2 Structural Impact of Curvature Adjustment

Figure 9: Ga,b (a =
b = 3)

In the main text, we have given a brief argument for how coarsening approaches
based on ORC-Pool preserve the structural integrity of the graph. In this section,
we expand on these results. To corroborate our claim that ORC flow reveals coarse
geometry and emphasizes the community structure, we employ a graph model, which
exhibits community structure as found in real data:
Definition 2. Consider a class of model graphs Ga,b (a > b > 2), which are
constructed by taking a complete graph with b nodes and replacing each by a complete
graph with a+ 1 nodes.

Graphs of the form Ga,b are special cases of stochastic block models (1) with b blocks
(communities) of size a+ 1 (see Fig. 9 for an example). Due to the regularity of the graph, we can categorize
its edges into three types: (1) bridges, which connect dissimilar nodes in different clusters; (2) internal edges,
which connect similar nodes in the same cluster that are at most one hop removed from a dissimilar node; and
(3) all other internal edges, which connect similar nodes within the same cluster. (41) derived an evolution
equation for edge weights under ORC flow for Ga,b graphs:
Lemma 3 ((41)). Let wt = [wt

1, w
t
2, w

t
3] denote the weights of edges of types (1)-(3). Assuming initialization

w0 = [1, 1, 1], the edge weights evolve under ORC flow wt+1
u,v ← (1− κuvdG(u, v))wt

u,v as

wt+1 =

a−1
a+b

2a
a+b 0

b
a+b

ab−a−b
a(a+b)

1
a+b

0 0 1
a

︸ ︷︷ ︸

=:F (a,b)

wt . (9)

Building on this characterization, (41) show the follow result, which expresses edge weights wt with respect
to the eigenvalues of the matrix Fa,b:
Lemma 4 ((41), adapted to our assumptions). The matrix Fa,b has three real eigenvalues, λ1, λ2, λ3, for
which λ1 > 1, λ2 = 1

a and λ3 < 0, and corresponding eigenvectors w1, w2, w3. Then one can show

wt = a1λ
t
1w1 + a2λ

t
2w2 + a3λ

t
3w3 =

 a1λ
t
1 + o(λt

1)
ka1λ

t
1 + o(λt

1)(1
a

)t

 ,

where k ∈ (0, 1) and limt→∞
o(λt

1)
λt

1
= 0.

Utilizing this result we want to analyze the strength of the community structure subject to curvature-
adjustment, employing modularity (24) as a measure:

Q(W) := 1∑
uv wuv

∑
uv

(
wuv −

dudv∑
uv wuv

)
δ(Cu, Cv) . (10)

25

Under review as submission to TMLR

Here, W = (wij) denotes a weighted adjacency matrix, dv weighted node degrees and δ(Cu, Cv) = 1, if u, v
are in the same cluster and zero otherwise. It can be shown that a higher modularity corresponds to a
“stronger” separation of the graph into subgraphs, which is easier to detect; e.g., the corresponding min-cut
problem is easier to solve. We show that modularity increases, as edge weights evolve under ORC flow:
Theorem 5. Let W denote the adjacency matrix of the input graph and Ct the curvature-adjusted adjacency
matrix after t iterations of ORC flow; i.e., a matrix whose entries correspond to wt

j for edges of type j. Then
Q(Ct) > Q(W), with Q(Ct) increasing in t (for t not too small).

Proof. By construction, a Ga,b graph has b(b−1)
2 type (1), ab type (2) and a(a−1)

2 b type (3) edges. Using
Lemma 3, we have in iteration t (up to o(λt

1)
λt

1
error):

∑
uv

wt
uv ≈

b(b− 1)
2 wt

1 + abwt
2 + a(a− 1)

2 bwt
3 = b(b− 1)

2 a1λ
t
1 + abka1λ

t
1 + a(a− 1)

2 b
(1
a

)t

=: Σt ,

as well as degrees

dt
b = (b− 1)wt

1 + awt
2 = (b− 1)a1λ

t
1 + aka1λ

t
1

dt
i = wt

2 + awt
3 = ka1λ

t
1 +

(1
a

)t−1

for internal nodes (subscript i) and bridge nodes (subscript b), the latter being adjacent to edges of type 1.
We can write the modularity of a Ga,b graph with weights evolved after t iterations of Ricci flow as

Q(Ct) ≈
1

Σt

(
b(b− 1)

2

(
wt

1 −
(
dt

b

)2

Σt

)
δ(Cu, Cv)︸ ︷︷ ︸

=0

+ab
(
wt

2 −
dt

id
t
b

Σt

)
δ(Cu, Cv)︸ ︷︷ ︸

=1

+ a(a− 1)
2 b

(
wt

3 −
(
dt

i

)2

Σt

)
δ(Cu, Cv)︸ ︷︷ ︸

=1

)

= 1
Σt

(
ab
(
wt

2 −
dt

id
t
b

Σt

)
+ a(a− 1)

2 b
(
wt

3 −
(
dt

i

)2

Σt

))
.

Notice that as t increases, we have dt
id

t
b ≪ Σt and

(
dt

i

)2 ≪ Σt, which implies that the terms
(

dt
idt

b

Σt

)
and((

dt
i

)2

Σt

)
decrease fast with t. Moreover, wt

3 =
(

1
a

)t

is decreasing fast in t. Hence, the asymptotics of the sum
in brackets are dominated by the term abwt

2. We introduce the shorthands Σt
1,Σt

2,Σt
3 for the contributions of

edges of types (1)-(3) to Σt. With that the asymptotics of Q(Ct) are dominated by

Σt
2

Σt
1 + Σt

2 + Σt
3

= 1
1 + Σt

1+Σt
3

Σt
2

.

We see that

Σt
1 + Σt

3
Σt

2
=

b(b−1)
2 λt

1 +
(1

a

)t−1

abkλt
1

decreases in t with the assumptions in Lemma 3. Putting everything together implies that Q(Ct) increases
asymptotically under the Ricci flow.

G.3 Licenses

We provide below the licenses of all packages and data sets used in this work.

26

Under review as submission to TMLR

Model/Dataset License Notes
LRGB (17) Custom See here for license
TUDataset (37) Open Open sourced here
Planetoid (64) MIT See here for license
Pytorch Geometric (21) MIT See here for license
Pytorch (44) 3-clause BSD See here for license
NetworkX (29) 3-clause BSD See here for license
GraphRicciCurvature (41) Apache-2.0 license See here for license

27

https://github.com/vijaydwivedi75/lrgb
https://chrsmrrs.github.io/datasets/docs/home/
https://github.com/kimiyoung/planetoid/tree/master
https://github.com/pyg-team/pytorch_geometric/blob/master/LICENSE
https://pytorch.org/FBGEMM/general/License.html
https://networkx.org/documentation/stable/
https://github.com/saibalmars/GraphRicciCurvature

	Introduction
	Background and Notation
	Graph Neural Networks with Pooling
	Graph Curvature
	Ollivier's Ricci curvature
	Curvature-based Clustering
	Curvature Approximation

	Geometric Coarsening and Pooling in attributed graphs
	Geometric Graph Coarsening
	ORC-Pool layer for Graph Neural Networks

	Properties of ORC-Pool
	Basic properties
	Structural Impact of Curvature Adjustment

	Experimental Analysis of Geometric Pooling
	Discussion
	Curvature Approximation
	Combinatorial ORC Approximation
	Forman's Curvature

	Illustration of Ricci Flow
	Additional Discussion of Related Work
	Additional Details on Experiments
	Details on Experimental Setup
	Node Clustering
	Graph Classification

	Additional Ablation Studies
	Number of Ricci Flow iterations
	Choice of Base Layer
	Comparison with CurvPool sanders
	Comparison with additional Pooling Layers

	Results on Open Graph Benchmark
	Details on Theoretical Analysis
	Properties of ORC-Pool
	Structural Impact of Curvature Adjustment
	Licenses

