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ABSTRACT

Existing test-time adaptation (TTA) methods for person re-identification (re-ID)
assume unrealistic scenarios: a large target gallery is available in advance, ignores
temporal correlations in streaming input, and all identities are guaranteed to ex-
ist in the gallery set. Furthermore, they rely on server-side settings where data
from multiple cameras are aggregated in advance, which is unrealistic for edge
device applications on a single-camera. Therefore, they experience performance
degradation in practical real-world deployments due to domain gaps between the
training (source) data and the unseen (target) gallery streams. In this work, we
introduce a practical scenario of test-time adaptation for person re-ID tailored
for online streaming environment on resource-constrained edge devices, where a
small predefined query set is registered in advance and unlabeled large gallery data
continuously arrive from a single camera stream. We propose a novel framework
to address this practical problem, called PaTTA-ID, that enables effective adap-
tation from two complementary perspectives. First we devise Input Distribution
Compensation, which employs query-guided sampling and contrastive adaptation
to compensate the bias of streaming inputs and promote cross-camera discrim-
inability. Moreover, we investigate Model Drift Compensation, which prevents
the bias toward the current camera stream via camera invariant learning and query
feature compensation. Experimental results evaluated on four benchmark datasets
compared with nine baselines demonstrate that the proposed PaTTA-ID achieves
state-of-the-art performance surpassing existing TTA methods.

1 INTRODUCTION

Person re-identification (re-ID) is the task of matching a query image of a target individual against
gallery images captured from different cameras. It has drawn much attention due to its practical
applicability to real-world scenarios such as surveillance, augmented reality, and video analytics.
Recent re-ID methods |Ye et al.| (2021); |Chen et al.| (2023); Yuan et al.| (2025) have substantially
improved the performance of the model when the test data comes from the same target dataset.
However, in real-world scenarios, diverse datasets are generated across different locations and at
different times. This makes existing approaches suffer from a domain gap caused by distribution
shifts such as camera styles and environmental changes.

Recent studies such as BNTA (Han et al., 2022) and TEMP (Adachi et al.l 2024) have explored
test-time adaptation (TTA) for person re-identification by adapting a pretrained model to an unseen
target domain. However, both assume that the entire gallery, consisting of images captured by multiple
cameras in the target domain, is available beforehand. This assumption is unrealistic in practice,
where gallery instances continually arrive over time. In addition, they assume that every observed
person belongs to a predefined query set, which overlooks non-query individuals who frequently
appear in real-world environments. These methods also ignore the strong temporal correlation in
person appearances naturally arising in sequential streams. These limitations underscore the need for
a more practical TTA framework that works online and handles incomplete, temporally ordered, and
open-world gallery streams.

In this paper, we propose PaTTA-ID, a practical test-time adaptation framework for person re-
identification, motivated by real-world deployment scenarios. Unlike prior settings, we assume a
predefined query set representing target individuals of interest, such as suspects or missing persons.
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This assumption is practical, as query identities are typically known in advance and can be registered
before deployment. Our framework continuously adapts the model to an unlabeled stream of gallery
data captured from a single camera, where non-query persons are present and person appearances
exhibit strong temporal correlation. This practical setting introduces two major challenges: (i) Noisy
and Correlated Data Streams, where gallery inputs are temporally correlated and dominated by
non-query persons, injecting noise and redundancy into adaptation and hindering the learning of
camera-invariant representations; and (ii) Model Drift, where continual updates on gallery data from a
single camera stream bias the embedding space and cause the pre-extracted query features to become
misaligned with the evolving feature space.

To address these challenges, we propose PaTTA-ID, which enables adaptation from two complemen-
tary perspectives: (i) Input Distribution Compensation, achieved through query-guided sampling
that retains only reliable gallery instances and contrastive adaptation that strengthens cross-camera
discriminability. Together, these mechanisms compensate for model drift and biased input distribu-
tions, enabling robust adaptation; and (ii) Model Drift Compensation, achieved through camera-aware
sampling based camera-invariant learning together with query drift compensation that updates stored
query features using estimated drift vectors. We evaluate PaTTA-ID with four person re-ID bench-
marks of Market1501, CUHKO03, MSMT17, and LPW under our practical scenario. We compare
PaTTA-ID with nine state-of-the-art TTA methods (Nado et al.l [2020; [Wang et al., [2020}; |Gong
et al., 2022 Wang et al., [2022; Niu et al., [2023}; [Yuan et al., 2023} |Gong et al., 2023} |Han et al.,
2022; |/Adachi et al.| [2024), including recent studies that address TTA in person re-ID (Han et al.,
2022} |Adachi et al.|[2024)). Our evaluation with multiple person re-ID benchmarks demonstrates that
PaTTA-ID outperforms existing methods. For instance, PATTA-ID achieved 50.1% Rank-1 accuracy
on the most challenging dataset (CUHKO3), outperforming the best baseline Wang et al.|(2020) by
22.7% and the recent re-ID work |Adachi et al.[(2024) by 37.2%.

Our main contributions are summarized as follows: (i) Practical TTA Setting for Person re-ID, a
realistic test-time adaptation setting for person re-ID that considers real-world deployments, which
has not been investigated in the field. (ii) We propose a PaTTA-ID framework that enables effective
adaptation through two complementary strategies that compensate for the input distribution and the
model drift. (iii) The experimental results with multiple person re-ID benchmarks demonstrate that
PaTTA-ID outperforms existing methods under practical TTA setting.

2 RELATED WORK

Person Re-Identification. Person re-ID aims to retrieve query images of a given identity across
different cameras. Supervised learning methods (Sun et al) [2018} [Luo et al., 2019; |Ye et al.|
2021)) and unsupervised learning methods (Lin et al., 2019} Dai et al. [2022; |Cho et al.| [2022;
Chen et al. 2021) with pseudo-labeling or clustering techniques have been actively explored to
address this task. Recently, transformer-based methods (He et al., [2021}; Zhang et al.l [2023)) and
self-supervised pretraining (Fu et al.| 2021} 2022; |Chen et al.| |2023)) on large-scale unlabeled datasets
have significantly advanced the state of the art. In addition, post-processing techniques (Song et al.,
2025) have been proposed to remove the camera bias problem when the model encounters an unseen
domain. Domain generalization methods (Liao & Shao, 2022; Ni et al., 2023} Dou et al.| [2023)) have
also been introduced to improve robustness against unseen target domains. However, prior re-ID
studies have been developed and evaluated under static settings, focusing on benchmark-style analysis
where both training and inference are performed offline with pre-collected datasets.

Test-Time Adaptation. Test-time adaptation (TTA) aims to adapt a source-pretrained model to an
unlabeled test data stream. A widely studied setting is online TTA, where each mini-batch of target
data is used once to update model parameters and then discarded. Representative approaches include
entropy minimization on test predictions (Wang et al., 2020), adjusting normalization statistics to
handle distribution shifts (Gong et al.,|2022), and using a teacher model with weight restoration (Wang
et al.| 2022)). More recent methods address challenges in realistic streams, such as using statistics and
reweighting old samples (Yuan et al., [2023)), filtering high-entropy samples from mixed domains (Niu
et al.| 2023)), or reducing prediction sharpness to cope with noisy data (Gong et al., [2023)).

Test-Time Adaptation for Person Re-Identification. Recently, test-time adaptation methods for
person re-ID, BNTA (Han et al., 2022) and TEMP (Adachi et al., 2024), have been proposed to
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Figure 1: Comparison of TTA scenarios for person re-ID. (a) Previous and (b) the proposed scenarios.

adapt pretrained re-ID models to the target domain. Both methods assume that the entire gallery set
of the target domain is available in advance, which might be unrealistic in practice. BNTA (Han
et al., [2022)) employs a part classification loss on a subset of gallery images to guide the model in
learning part-aware representations, and then performs offline inference with the query and gallery
images. TEMP (Adachi et al. 2024), in contrast, performs online adaptation by minimizing the
prediction uncertainty of sequentially arriving queries, where uncertainty is estimated via cosine
similarity between query features and pre-extracted gallery features. However, these assumptions
are impractical for real-world deployments: they require centralized access to the entire target
gallery in advance and neglect the streaming nature of surveillance systems, where gallery data
arrives sequentially, non-query persons are dominant, and storage or privacy constraints often prevent
maintaining a complete gallery set. We elaborate on these limitations in Section [3.1]

3 METHODOLOGY

3.1 PROBLEM DEFINITION AND CHALLENGES

Test-time adaptation (TTA) enables models pretrained on a source domain to cope with distribution
shifts in unseen target domains using only unlabeled test data, which is particularly important in
person re-ID, where domain gaps—such as camera style and environmental changes—cause severe
performance degradation. Prior TTA methods for person re-ID (Fig.[T(a)) rely on several assumptions:
(1) a large gallery set of the target domain is available in advance and stored in a centralized server,
(ii) query images arrive sequentially in random order from multiple cameras, and (iii) the identity of
each query is guaranteed to exist in the gallery set. These assumptions, however, are rarely satisfied
in practice. In real-world scenarios: (i) pre-collecting and storing a large gallery is often impractical
on edge devices, as person images are continually collected over time, (ii) persons instead arrive
sequentially with strong temporal correlations, and (iii) many observed individuals do not belong
to the given query set, i.e., they are non-query persons. To address these limitations, we propose
a practical TTA scenario for person re-ID, motivated by real-world deployment on edge devices
(Fig.[I{b)). In real applications, target individuals of interest (e.g., suspects or missing children) are
typically known in advance, so we assume a predefined query set. A source-pretrained model is
deployed to a camera, which continuously receives unlabeled gallery streams containing both query
and non-query persons with temporal correlations. Then person re-ID is performed from the query
set to the online gallery streams.

Considering this practical TTA scenario for person re-ID, two major challenges arise. First, from
the input perspective, streaming gallery data pose challenges in two ways: (i) they are temporally
correlated and lack cross-camera diversity, since they originate from only one camera at a time; and
(i) many non-query identities outside the predefined query set are continuously introduced. Such
skewed and noisy input distributions hinder stable adaptation and gradually erode the discriminability
of learned representations. Second, continual parameter updates induce model drift, which appears in
two forms: (i) the embedding space becomes biased toward the current camera stream—adapting
solely to a single camera style risks overfitting and undermines the camera-invariance required for
cross-camera retrieval; and (ii) the fixed query feature memory becomes stale and misaligned with
the evolving embedding space.

3.2 METHODOLOGY OVERVIEW

To address the aforementioned challenges, we propose Practical Test-Time Adaptation for person
re-ID (PaTTA-ID), as illustrated in Fig. 2] PaTTA-ID enables effective adaptation from two com-
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Figure 2: Overview of PaTTA-ID.

plementary perspectives: (i) Input Distribution Compensation which leverages query features as
anchors to filter noisy gallery data and enhance cross-camera discriminability; and (ii) Model Drift
Compensation which enhances camera-invariant and query-specific representations for the current
camera stream and mitigates query feature drift.

Before gallery persons arrive, PaATTA-ID first initializes two memories: the query feature memory
F and the query image memory Q. The source-pretrained model M is used to extract features
of all query instances and store them in JF, while a small subset of query images, selected by a
camera-specific sampling strategy, is stored in Q. As gallery persons sequentially arrive from the
online stream, inference is performed in an online manner: given a gallery instance g; with its
feature f; extracted by M*~!, we compute the cosine similarity between f; and all query features
in F to retrieve its identity. After inference, query-guided sampling strategy is adopted to select
high-confident, query-relevant samples and store them in the gallery memory G (see Appendix [A] for
details). Once a sufficient number of gallery samples have been accumulated, the model is updated
at the ¢-th step, where the previous model M!~1! is optimized into M" using gallery samples and
a randomly drawn query batch from Q. For model adaptation, query guided contrastive learning
and camera-invariant learning is performed by using the following losses: Lol = Lgca + Lece + Lui-
Furthermore, PaTTA-ID compensates for query feature drift in F by estimating identity-wise drift
vectors from queries in Q and applying them to update the memory.

3.3 INPUT DISTRIBUTION COMPENSATION

A key challenge in streaming-based person re-ID lies in the biased input distribution: a gallery stream
is temporally correlated, dominated by non-query instances, and restricted to a single camera style
at a time. Such skewed distributions of multiple gallery streams from different cameras hinder the
adaptation by causing over-representation of certain identities and amplifying the noise. Under these
conditions, the model should still enhance its discriminability for gallery persons to enable reliable
cross-camera retrieval, despite being continuously exposed to biased and noisy inputs.

To compensate for the biased input distributions, we adopt a Query-Guided Sampling scheme that
leverages the query features as anchors to retain only confident gallery instances in the gallery memory
G. To employ independent and identically distributed (i.i.d.) batches, we prevent the memory from
being dominated by a few IDs, where the IDs whose samples are excessively stored are replaced
first (see Appendix [Alfor details). Then, we exploit the query feature memory F together with the

samples stored in G to guide the model adaptation. Specifically, let xg,_il denote the feature of a

4
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gallery sample in G extracted by M*~!, and let [, ; be its pseudo label. The positive and negative
query sets of the features are defined as

Pi={zi |1y =1lgi}, Ni={zi|ls; #lgi}, 1)

where [y ; denotes the ground-truth label of the j-th feature z; in . To pull xtfl closer to the

samples in the positive set and push it away from challenging negatives, we compute p; for xt !

given by

@

pm LS g a2

|P | Z€P; ZyEPiUDi exp(s(z, Tg,i Ly)/m)

where D; is the set of the negative samples in N; having the top-k similarities to :L' ! and s(-,+) is
the cosine similarity. Finally, we define the query- gulded contrast adaptation loss as

qca = Z Pis 3)

1EI(Q)

where I(-) means the index set. By combining the query-guided memory sampling with the proposed
contrastive adaptation loss, PaTTA-ID compensates for the biased input distributions in streaming
re-ID, alleviating the dominance of the non-query instances and the temporal correlation while
enhancing discriminability across cameras.

3.4 MODEL DRIFT COMPENSATION

Online updates on a single-camera stream induce model drift, where the embedding space gradually
shifts toward the streaming camera distribution, and leading the fixed query features in F gradually
become misaligned with the updated features. As the person re-ID is a cross-camera retrieval task, it
is essential to prevent such model drift problem. We address these issues with two complementary
approaches as follows.

Camera-Invariant Learning. We employ a small number of query samples as auxiliary training
data. For each identity in the query set, we store two representative queries in the query image
memory Q via camera-aware sampling, which is shown in Figure[2] Specifically, for each identity,
we first include one query image that was captured from the same camera with the current stream
cn. Then, we select another query image captured from a different camera from c,,, that yields the
lowest similarity to the stored one. This strategy ensures that @ maintains both intra-camera and
cross-camera diversity while keeping the memory cost low.

To conduct cross-camera invariant learning, we use the cross-entropy loss and the triplet loss for
model training. Specifically, at every update step ¢, we randomly sample a mini-batch from Q to
generate the query batch. Let g; denote the i-th sample in the query batch, [, ; its identity label,
and ! 0 ! the feature of ¢; extracted by M*~!. The classifier predicts the probability p(l, ; | 33 -h
for each sample that the sample has the ground truth identity label, and the cross-entropy loss is
computed as

:_7210gp q,i qz )’ (4)

where B is the number of samples in the query batch. Also, for each anchor xf;l-l in the batch, we
apply the triplet loss as follows:

B
1 _ . _
Lyi = v E [ max foml — zpll2 — In:rlr}}#nlq.i H;];le —zyll2 + | 5)

Tpilp=lg,i +

where z), and :I:n are the hardeset positive and hardeset negative samples, respectively, with respect to

the anchor x* i ! and « is the margin hyperparameter. By continuously optlmlzlng both losses with

the query batches from Q, the model learns to preserve the cross-camera invariance and enhances the
discriminability of query features, thereby mitigating the model drift.
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Query Feature Compensation. As model parameters

are updated during the online adaptation, the query fea-

tures initially stored in F gradually become misaligned 3
with the evolving feature space, leading to a drift of the
query feature. Figure [3]illustrates this phenomenon. Here,
Old Query refer to the query features extracted by the
source model M, representing the initial features stored
in F. Oracle Query and Gallery are obtained by extract- 0
ing the same query and gallery images using the fully
updated model trained on the entire gallery stream, respec-
tively. We compared the similarity distributions between
the query features (Old or Oracle) and their positive gallery
features (same identity but captured from different cam-
eras). As shown, Old Queries (red) yield substantially
lower similarity with their positives, while Oracle Queries (blue) maintain higher similarity. In such
cases, the fixed features in F become incompatible with the continuously updated feature space
during the gallery stream adaptation. We may re-extract the features of all the query instances after
each update of the model, however, this requires the storage space for the query images as well as the
high computation to repeatedly extract the features.

[ Old Query - Gallery
3 Oracle Query - Gallery
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Cosine Similarity

Figure 3: Similarity distribution illustrat-
ing the query drift problem.

For each sample ¢; in a mini-batch sampled from Q, we extract the features by using both M? and

M1, denoted as xf“» and xfﬁl, respectively. Then we estimate identity-wise feature drift as
A_lz(t_t—1) (6)
"B Tai = Tgi )>
1€B;

where B; denotes the set of the query samples with the label {. The drift vector A; captures the
average shift in the feature space for the identity [ associated with two consecutive update steps of the
model. With this identity-specific correction, each query feature z; in F associated with the label [ is
updated as

Zj < %5 + Ay, Vjst lf,j =1 @)

This simple yet effective rule continuously aligns the query features in F with the evolving feature
spaces, thereby mitigating model drift.

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENAL SETUP

Datasets. We adopted four widely-used person re-ID datasets, Market1501 (Zheng et al.,[2015)),
CUHKO3-NP (Zhong et al.,[2017), LPW (Xu et al., 2025), and MSMT17 (Wei et al., 2018) to conduct
our TTA experiments. Table[I|shows the statistics of the datasets. We used one dataset as a source to
pretrain the model, and the remaining datasets are individually set as the target datasets.

To construct our practical TTA setting, we first define the query set of the target dataset by uniformly
sampling 20 % of the total query identities. This design choice reflects real-world scenarios, where
only a limited number of query persons are available in advance, while the majority of observed
individuals in the gallery are non-query images. Using all identities as queries would be unrealistic,
as it assumes an impractically exhaustive query pool. Furthermore, uniform sampling ensures that
query identities appear consistently across the entire gallery stream, rather than being concentrated in
only the early portion. For the gallery stream, we split the gallery set according to camera labels and
generate one continuous stream per camera, simulating an online deployment scenario.

Evaluation Metrics. In our practical re-ID TTA setting, evaluation is performed online for each
incoming gallery instance. For gallery instances that have the same identities as the persons in
the predefined query set, we use the widely used mean averaged precision (mAP) and cumulative
matching characteristics (CMC) Rank1 score to measure retrieval performance. In addition, as our
work is the first to explicitly define non-query persons in re-ID, we introduce a new evaluation
protocol, termed Non-Query Aware Receiver Operating Characteristic (NQ-ROC), to assess the
ability of a model to reject them. Specifically, we use the top-1 cosine similarity between a gallery
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Table 1: Statistics of person re-ID datasets used in our experiments.

Dataset #identities #images #query # cameras
Market-1501 (Zheng et al.,[2015) 1,501 32,668 3,368 6
CUHKO3-NP (Zhong et al.,[2017) 1,467 14,097 1,400 2
LPW (Xu et al.||2025) 1,751 25,177 2,456 4
MSMT17 (Wei et al.|2018) 4,101 126,441 11,659 15

Table 2: Comparison with state-of-the-art methods on the target datasets of Market1501, CUHKO3-
NP, and LPW. Backbone models are trained on the source dataset of MSMT17. Best scores are
boldfaced.

Backbone Methods Market1501 CUHKO03-NP LPW

mAP  Rankl NQ-ROC  mAP  Rankl NQ-ROC  mAP  Rankl NQ-ROC

No adapt 49.6 65.0 74.4 25.2 16.7 57.6 511 53.6 71.6

BN Stats (Nado et al.}2020) 553 69.7 71.9 37.6 26.0 60.5 55.5 60.3 71.9

TENT (Wang et al.||2020} 53.6 67.3 69.2 38.9 27.4 60.4 56.4 59.8 70.7

a NOTE (Gong et al.}|2022] 52.6 66.6 68.0 37.1 25.6 59.8 56.4 59.8 68.6

3 CoTTA (Wang et al..2022) 16.2 18.4 53.3 8.1 3.5 522 13.0 11.3 51.0

~ SAR (Niu et al.}[2023) 552 69.7 71.8 37.7 26.2 60.5 55.6 60.4 71.9

%0 ROTTA (Yuan et al./[2023) 55.7 70.8 68.2 36.7 25.8 59.4 57.2 61.7 70.5

B SoTTA (Gong et al., 2023} 56.0 72.4 69.6 38.2 273 56.7 55.0 59.0 69.1

BNTA (Han et al..[2022) 41.8 579 66.0 224 12.5 55.1 42.7 437 63.4

TEMP (Adachi et al.|[2024) 44.1 59.6 71.5 21.1 129 55.8 46.3 479 68.3

PaTTA-ID 76.0 85.5 81.3 61.5 50.1 66.7 69.0 71.4 75.6

No adapt 50.6 67.6 73.1 38.3 26.5 63.4 57.9 62.4 71.3

BN Stats (Nado et al./2020) 49.2 60.6 66.0 38.1 26.2 60.6 56.4 60.2 69.4

TENT (Wang et al.||2020}) 49.1 59.5 65.6 38.5 26.7 60.8 56.8 60.1 69.2

a NOTE (Gong et al.}|2022] 474 57.8 65.9 38.8 26.6 61.0 57.7 62.4 68.5

2 CoTTA (Wang et al..2022] 25.2 29.2 52.1 14.1 6.9 51.4 24.5 24.1 53.2

&~ SAR (Niu et al.}[2023) 49.2 60.5 66.0 38.2 26.3 60.6 56.4 60.1 69.4

= ROTTA (Yuan et al.[[2023] 50.3 63.2 64.5 40.0 28.0 60.5 58.3 61.5 69.6

6‘ SoTTA (Gong et al., 2023} 51.0 65.5 66.1 40.7 279 60.6 58.9 63.4 70.7

BNTA (Han et al.)[2022) 48.8 65.4 71.5 35.7 233 61.1 58.7 61.0 72.0

TEMP (Adachi et al.)[2024) 47.5 63.7 71.2 33.9 22.3 61.9 54.9 57.8 69.0

PaTTA-ID 73.3 85.1 79.6 66.8 55.7 70.0 73.3 71.3 77.8

feature and the query feature memory as the decision score, and compute the area under the resulting
ROC curve. NQ-ROC summarizes the trade-off between correctly rejecting non-query instances and
mistakenly matching them to queries across varying decision thresholds. Note that we measure mAP,
Rank-1, and NQ-ROC per camera of the target domain, and report the average across all cameras.

Implementation Details. We adopted two backbones, Strong Re-ID (Luo et al.,[2019) and CLIP
Re-ID (Li et al., [2023)), to train the model with the source dataset. For CLIP Re-ID, we used a
ResNet50 (He et al., 2016) based network. Following their original papers and official codes, we
trained the models for 120 epoch on the source dataset, and used Adam optimizer with initial learning
rate of 0.00035, which is decayed by the value of 0.1 at epoch 40 and 70. For test-time adaptation, we
used a test batch size of 64, and set the memory size of G to 64. Also, the model was updated every
time 64 gallery persons arrived. We updated all weights of the model by using the Adam optimizer
with a fixed learning rate of 0.00035 and a weight decay of 0.0. 7; and « is empirically set to 1.0 and
0.3, respectively. We used Pytorch and a single NVIDIA RTX 3090 GPU.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

We compare PaTTA-ID with state-of-the-art TTA baselines of TENT(Wang et al.,[2020), NOTE(Gong
et al.| 2022), CoTTA(Wang et al., 2022), SAR(Niu et al., [2023), RoTTA(Yuan et al., [2023),
SoTTA(Gong et al.,[2023) and recent person re-ID test-time adaptation baselines of BNTA(Han et al.;
2022) and TEMP(Adachi et al.,[2024)). No adapt evaluates the source model directly on the target
gallery data without any adaptation. BN Stats updates the BN statistics of the source model with
the target gallery data. For classification TTA methods, it is hard to directly adopt these methods
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Table 3: Comparison with state-of-the-art methods on the target datasets of MSMT17, CUHKO03-
NP, and LPW. Backbone models are trained on the source dataset of Market1501. Best scores are
boldfaced.

Backbone Methods MSMT17 CUHKO03-NP LPW

mAP  Rankl NQ-ROC  mAP  Rankl NQ-ROC  mAP  Rankl NQ-ROC

No adapt 11.4 18.0 56.4 11.3 55 522 35.6 384 71.8

BN Stats (Nado et al.}2020) 12.4 17.4 55.7 242 15.0 55.7 53.1 58.1 73.8

TENT (Wang et al.||2020} 10.9 14.4 54.5 26.2 16.4 56.2 54.3 58.9 74.4

a NOTE (Gong et al.}|2022] 10.2 13.7 54.6 24.4 15.1 522 51.3 54.3 68.9

3 CoTTA (Wang et al..2022) 1.9 1.9 51.7 4.0 1.0 49.6 8.3 6.8 51.0

~ SAR (Niu et al.}[2023) 12.5 17.4 55.7 243 15.1 55.7 53.1 58.1 73.9

%0 ROTTA (Yuan et al./[2023) 12.1 17.5 56.1 22.5 14.2 53.2 54.8 59.5 73.2

E SoTTA (Gong et al.,[2023} 10.3 14.7 55.6 18.1 10.1 52.6 52.1 56.4 71.2

BNTA (Han et al..[2022) 8.8 13.7 53.7 13.4 73 53.5 29.7 31.0 65.8

TEMP (Adachi et al.|[2024) 7.0 10.9 53.8 7.1 2.8 50.9 33.0 36.2 70.7

PaTTA-ID 204 25.4 60.0 58.9 48.4 67.4 68.4 67.6 75.8

No adapt 12.3 18.5 57.9 25.7 16.2 58.2 48.5 51.3 76.7

BN Stats (Nado et al./2020) 10.2 13.8 54.2 29.5 19.3 56.1 55.5 59.8 74.5

TENT (Wang et al.||2020) 10.3 13.6 54.1 31.1 20.9 56.5 56.2 60.5 74.8

a NOTE (Gong et al.}|2022] 8.6 11.4 53.5 28.3 18.4 53.9 515 55.0 70.1

2 CoTTA (Wang et al..2022] 2.5 2.3 522 6.1 2.0 50.0 13.3 11.6 50.9

&~ SAR (Niu et al.}[2023) 10.2 13.8 54.2 29.5 19.3 56.1 55.5 59.8 74.5

= ROTTA (Yuan et al.[2023] 10.2 14.0 55.6 29.6 19.6 55.8 57.6 61.6 76.3

d SoTTA (Gong et al., 2023} 10.3 14.5 55.5 32.0 232 56.1 55.3 58.8 74.7

BNTA (Han et al.)[2022) 11.0 16.9 56.3 21.5 12.4 55.0 43.3 45.0 74.3

TEMP (Adachi et al.)[2024) 8.1 12.3 55.2 23.6 14.4 55.6 48.8 53.1 75.7

PaTTA-ID 18.3 239 58.9 64.2 54.4 70.8 72.7 74.4 79.4

since the identities in the target domain differ from those of the source domain. In an alternative
way, we employ last classification layer that was trained on the source domain to compute logits
and classification scores of target gallery persons, and apply the methods in their papers. For person
re-ID TTA baselines, note that since the scenarios of their methods are different from ours, we
fit their methods to our problem setting. BNTA(Han et al., 2022) assumes all gallery persons of
the target domain are prepared in advance, and applies self-supervised losses to a small subset of
gallery persons for adaptation. Differently, we apply the losses to the sequentially arriving gallery
persons for adaptation since our problem setting assumes gallery persons come in sequentially. For
TEMP(Adachi et al.| 2024)), we apply re-ID entropy loss to the sequentially arriving gallery persons,
through estimating the cosine similarity between gallery features and pre-extracted query features.

Table 2] and Table [3]show the online evaluation results on various target domains. Existing methods
yield some improvements on certain datasets but fail to provide sufficient gains due to model drift
and the presence of noisy inputs. Similarly, person re-ID TTA methods such as BNTA and TEMP
exhibit severe performance degradation, confirming that existing approaches cannot effectively adapt
the model in our scenario, as they are not designed to handle temporally correlated streams with
non-query persons. In contrast, PATTA-ID achieves the best performance under our practical setting,
demonstrating its ability to mitigate model drift and remain robust to noisy input streams.

4.3 ABLATION STUDY

Effect of Each Module in PaTTA-ID. In Table|4] we present an ablation study to evaluate the
effectiveness of the individual components of PaTTA-ID. Here, Re-ID Entropy denotes the entropy
loss proposed in TEMP (Adachi et al.| [2024)), where the loss is applied to samples in G for a fair
comparison. QCA indicates the query-guided contrastive adaptation loss, QRL denotes camera-
invariant learning that trains the model by using both L. and Ly, with query batch samples, and QFC
corresponds to query feature compensation. As shown in the table, QCA alone leads to performance
degradation, confirming that training only with gallery data from a single camera suffers from
drift caused by distribution shift. In contrast, combining QRL and QFC with QCA yields huge
improvements, demonstrating that leveraging queries through camera-aware sampling effectively
regularizes the model and mitigates the drift of query features. These results validate that addressing
biased input distributions and model drift provides a synergistic strategy for practical online TTA for



Under review as a conference paper at ICLR 2026

Table 4: Ablation study showing the effectiveness of each component in PaTTA-ID.

Market1501 CUHKO03-NP LPW
Methods
mAP  Rankl NQ-ROC mAP  Rankl NQ-ROC mAP  Rankl NQ-ROC

No adapt 49.6 65.0 74.4 25.2 16.7 57.6 51.1 53.6 71.6
Re-ID Entropy 23.9 23.8 57.0 14.8 6.1 53.5 26.5 23.0 56.3
QCA 30.4 32.5 56.9 23.6 13.9 54.2 324 29.3 60.0
QRL 66.7 80.6 76.9 47.7 36.3 61.9 60.6 64.1 714
QRL + QCA 69.0 82.0 77.0 49.8 36.6 61.5 65.4 69.2 73.9
QRL + QFC 73.0 83.3 80.2 57.0 45.5 66.9 66.0 68.7 74.2
QRL + QFC + Re-ID Entropy 55.1 58.3 68.1 41.2 249 59.2 51.4 46.7 64.6
QRL + QFC + QCA 76.0 85.5 81.3 61.5 50.1 66.7 69.0 71.4 75.6

person re-ID, improving the baseline performance by +26.8%, +23.9%, and +6.7% in averaged mAP,
Rank-1, and NQ-ROC, respectively.

Effect of camera-aware query sampling strat-

egy. We analyzed the effect of camera-aware Taple 5: Comparison of query image memory

sampling strategy in constructing query image sampling methods
memory Q. Table [5] shows the results in Mar-

Meth, AP Rankl R
ket1501, where all the methods perform sam- ethod n ankl NQ-ROC
. . . . Randomly sample 2 63.9 71.3 75.1
pling on each identity that are in the prede-  Rrandomly sample 4 656 711 767
fined query set. The results validate that our  2Cross-cam ) 6Ll 726 742

1 stream-cam + 1 cross-cam (easiest) 71.7 83.8 81.2

camera-aware Sampling strategy, which SampleS 1 stream-cam + 1 cross-cam (hardest)  76.0 85.5 81.3
the query image tailored to the camera stream,
as well as selecting the hardest cross-camera query image provides the best performance.

Impact of query ID ratios. Figure [ shows

the varying performance in Market1501 when il =i
we set different ratios of queries to construct

the query set. The results validate that our ap- g° g%

proach consistently outperforms the no-adapt ~ £7° g7

baseline across all query ratios, demonstrating <o 2o

its robustness in adapting to the target domain. s

In particular, even when the predefined query set

is very large (e.g., 90% of the total query iden- 0 0% D 0% 0 0% e D, ®

tities in Market1501), our approach still yields
clear improvements, highlighting its effective- Figure 4: Performance comparison when using
ness under such conditions. different query ratios to construct the query set.

5 CONCLUSION

In this paper, we introduced a Practical Test-Time Adaptation for Person Re-ID (PaTTA-ID), a frame-
work designed for realistic deployment on edge devices where gallery data arrive sequentially from a
single camera stream. Unlike prior test-time adaptation approaches that rely on centralized access to
complete gallery sets, PaTTA-ID addresses the challenges of online person re-ID, including biased
input distributions and model drift. Extensive experiments across multiple benchmarks demonstrated
that PaTTA-ID consistently outperforms existing re-ID baselines and test-time adaptation methods,
validating its effectiveness and practicality. We expect this pioneering work would encourage further
research for robust re-ID systems in real-world streaming environments.

Limitations and future work. A limitation of our current setting is that it assumes a predefined
query set, where each query is provided with multiple instances captured from diverse cameras, which
may not always be feasible in fully open-world scenarios. As a future direction, we plan to investigate
more challenging few-shot settings, where only a handful of query instances are available. Also, we
will explore more advanced scenarios in which new query identities are incrementally introduced
during deployment.
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A  ALGORITHM DETAILS

Gallery memory sampling  As aforementioned, gallery stream possess high correlation between
test batches and includes huge amount of negative samples(non-query) that has different identity
to query persons. To overcome this issue, we use query as an anchor to guide robust sampling and
mimic independent and identically distributed(i.i.d) batch from temporally correlated data streams.
The overall algorithm is illustrated in Algoritm|[I]

Algorithm 1: Query-guided sampling

Require: Gallery stream {g; } X |, gallery memory memory G with capacity N, threshold 7

1: for each gallery instance do

2:  Extract feature f; from incoming g;

3:  Compute confidence score s; = max,cg s(z, fi)
4:  Assign pseudo-label [, ; = argmax.co s(2, f;)
5. if s; > 7, then
6: if |[M| < N then
7 Add (gl-,lg,hsi,ai) tOg
8

: else

9: Y* < ID(s) with the largest occupancy in G
10: ifl;; ¢ V* then
11: Select ID y € YV* having the highest age
12: Remove the sample in ID 3 having the lowest confidence score
13: else
14: Remove the sample from ID [/, ; having the lowest confidence score
15: end if
16: Add (gi, g, Si,0:) t0 G
17: end if
18:  endif
19: end for

Specifically, given a feature f; extracted from the incoming gallery data g; by using M*~! and the
query feature memory F = {z1, 22, ..., 27| }, we compute the cosine similarity between f; and each
query feature z;, and define the top-1 similarity score as the confidence score of gallery data g; as

si = max s5(z, fi), (®)

We then assign the pseudo label of g; as the label of the query instance as

ly; = argmax s(z, f;). 9
zEF

In addition, we define the age of g; as a;, where a; represents the number of times the sample g; has
been used to update the model, and it is incremented by +1 each time g; participates in an update.
To reduce the effect of non-query samples for adaptation, we store the gallery data if its predicted
confidence score is higher than the predifined threshold 75. When G reaches its capacity, we first
identify the most prevalent IDs. Then we select the oldest identity(ID) based on the age of instances,
and discard the instance with the lowest confidence score from the selected ID. In this way, we can
maintain balances among IDs and reduce the impact of non-query samples for adaptation. With the
stored samples in G, we optimize M~ by using query-guided contrastive loss.

B ADDITIONAL EXPERIMENTS

Advanced backbone In this section, we show additional comparative results of PAaTTA-ID. Table E]
shows the results when we adopt SOLIDER Re-ID (Chen et al., [2023) as backbone model. We
adopted SWIN-Tiny network which is pretrained on large-scale unlabeled dataset LuP (Fu et al.,
2021)), and then trained the model on the source dataset MSMT17 to generate backbone source
model. As shown in the table, our PATTA-ID consistently outperforms previous approaches across

13
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Table 6: Comparison with state-of-the-art methods on target dataset : Market1501, CUHKO03-NP ,
and LPW. Backbone models are trained on the source dataset: MSMT17. Best scores are boldfaced.

Backbone Methods Market1501 CUHKO03-NP LPW
mAP  Rankl  NQ-ROC mAP Rankl NQ-ROC mAP Rankl  NQ-ROC

BN Stats (Nado et al.}2020) 71.4 83.4 82.9 59.7 475 70.1 74.4 78.4 77.6

TENT (Wang et al.||2020} 71.7 83.6 82.9 60.2 479 70.1 74.7 78.1 71.7

NOTE (Gong et al.}|2022] 71.9 83.9 83.0 60.2 48.1 70.1 74.7 78.6 71.17

o) CoTTA (Wang et al..2022) 63.5 75.4 68.4 53.0 40.9 59.7 65.0 67.6 66.2
° SAR (Niu et al.}[2023) 71.4 83.4 82.9 59.7 475 70.1 74.3 78.4 77.6
z ROTTA (Yuan et al./[2023) 71.4 834 82.9 59.7 47.5 70.1 74.4 78.4 71.6
E SoTTA (Gong et al., 2023} 71.5 83.4 82.9 59.9 47.6 70.1 74.6 78.6 77.6
g TEMP (Adachi et al.{[2024) 71.3 83.2 82.8 59.6 47.3 70.1 74.4 78.4 71.6
@ PaTTA-ID 79.2 89.2 86.6 73.1 62.3 75.3 78.4 81.3 80.2

Table 7: Comparison with state-of-the-art methods on target dataset : PRW, CDPS. Backbone models
are trained on the source dataset: MSMT17. Best scores are boldfaced.

Backbone Methods PRW CDPS

mAP Rank1 NQ-ROC mAP Rank1 NQ-ROC

BN Stats (Nado et al.![2020) 50.3 65.4 74.0 38.6 42.0 63.5

TENT (Wang et al.}[2020) 48.4 62.1 72.8 28.2 28.9 71.2

NOTE (Gong et al.}[2022) 49.2 63.7 73.8 32.1 31.7 60.1

CoTTA (Wang et al.}[2022) 13.8 14.6 534 7.5 6.2 49.7

a SAR (Niu et al.|[2023) 50.3 65.4 74.0 38.7 42.1 63.3

&5 RoTTA (Yuan et al.][2023) 52.2 68.6 72.8 43.5 46.8 65.9

o0 SoTTA (Gong et al.}[2023) 52.2 66.4 71.4 39.2 41.3 61.8

«Ug) BNTA (Han et al.![2022}) 36.1 49.7 66.7 21.4 21.2 57.3

TEMP (Adachi et al.,[2024) 36.1 47.0 68.7 20.6 21.0 58.3

PaTTA-ID 74.7 82.2 80.6 52.8 52.2 55.5

all benchmarks by a huge margin. Interestingly, most of baseline methods does not suffer from
performance drop as the source model is well generalized due to large scale pretraining datasets. Our
method aids from this generalized knowledge and achieves superior performance.

Different target datasets Moreover, we additionally use two large-scale challenging person search
benchmark datasets of PRW [Zheng et al.|(2017) and CDPS [Zhang et al.| (2024) as target datasets to
conduct more comparative experiments, We cropped the images of test dataset in PRW and CDPS by
using the ground-truth(GT) bounding boxes and conducted TTA experiments. As shown in Table
PaTTA-ID outperforms all baseline methods in PRW dataset in all metrics by a huge margin. In
CDPS, PaTTA-ID outperforms all baseline methods in terms of mAP and Rank1, demonstrating the
effectivness of PaTTA-ID under our practical scenario.

C ADDITIONAL ABLATION STUDY

Effect of query-guided sampling strategy. We
analyzed the effect of query-guided sampling strat- Taple 8: Comparison of gallery image memory
egy in constructing gallery image memory G. Ta- sampling methods
bl'eB] shows the results in MarketlS.OI. F;FO re- Method AP Rankl NQ-ROC
tains the most recent samples by discarding the
oldest ones as new data arrive. Time-Uniform ?FO . 742 829 800

. . . ime uniform 73.7 83.1 80.4
(Reservoir) selects samples with equal probabil-  Query-guided sampling 760 85.5 813
ity over time, ensuring unbiased coverage of the
entire stream. All the methods perform sampling on the sequentially arriving gallery person. The
results validate that our query-guided sampling strategy, which samples the gallery person with high
similarity with respect to query features in F, provided the best performance.
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D EXPERIMENT DETAILS

In the experiments, we use the official implementation of the baseline methods. Below, we detail the
descriptions of the adopted hyperparameters and implementation specifics.

TENT We set the learning rate as 0.00035 in all target datasets, which is same value as ours. We
referred to their original codes []_-] for implementations.

COTTA CoTTA involves three hyperparameters: the augmentation confidence threshold py,, the
restoration factor p, and the exponential moving average (EMA) factor m. For consistency, we
follow the settings recommended by the original authors, using p = 0.01 and o = 0.999 in our
implementation. We referred to their original codes E] for implementations.

SAR SAR is designed to adapt to varying batch sizes, and we used a batch size of 64 for fair
comparison. We set the learning rate to 0.00035, the sharpness threshold to p = 0.5, and the entropy
threshold to Ey = 0.4 x In |Y|, where |Y| denotes the number of classes. In addition, we froze the
top layer (layer4 for ResNet50) as in the original implementation, which SoTTA also adopts. We
referred to their original codes | for implementations.

NOTE We set the batch size to 64 for fair comparison. The soft-shrinkage width value is set to
4, and momentum value is set to 0.1. We used adam optimizer with a learning rate of 0.00035. We
referred to their original codes E] for implementations.

ROTTA We set adam optimizer with a learning rate of 0.00035 and 5 = 0.9. We followed the
hyperparameter settings reported by the authors, including the BN-statistic EMA rate o = 0.05, the
teacher model EMA rate v = 0.001, and the timeliness parameter \; = 1.0. We set the memory
capacity to 64 for fair comparison. We referred to their original codes ]| for implementations.

SOTTA We set the HUS memory size as 64 for fair comparison. The confidence threshold C, to
0.3, ADAM optimizer with a momentum value of 0.1, and learning rate 0.00035 is used. We set the
value of entropy-sharpmess L2-norm constraint p to 0.5. We referred to their original codes E] for
implementations.

BNTA We set number of stripes to 6, and the margin to 0.3. We used adam optimizer with learning
rate of 0.00035. Self-supervised SSL losses of their papers are applied to sequentially arriving
gallery persons. We do not sample the gallery set using part nearest neighbor mathcing algorithm
for the model adaptation as it violates our practical scenarios. We referred to the codes in E] for
implementations.

TEMP We used a batch size of 64 for fair comparison. We used adam optimizer with learning rate
of 0.00035, and weight decay of 0.0. 7 is set to 0.0001. For re-ID entropy loss, the temperature value
and k is set to 1.0 and 50, respectively, following their original codes. We referred to their original
codes [ﬂ for implementations.

E ADDITIONAL DISCUSSIONS

Broader Impacts. Our work focuses on practical test-time adaptation for person re-identification,
targeting realistic deployment scenarios on edge devices with single-camera streams. By addressing

https://github.com/DequaniWang/tent
https://github.com/ginenergy/cotta
*https://github.com/mr-eggplant/SAR
Ynttps://github.com/TaesikGong/NOTE
Shttps://github.com/BIT-DA/ROTTA

®https://github.com/taeckyung/SoTTA
"https://github.com/kzkadc/reid-tta
$https://github.com/kzkadc/reid-tta

15


https://github.com/DequanWang/tent
https://github.com/qinenergy/cotta
https://github.com/mr-eggplant/SAR
https://github.com/TaesikGong/NOTE
https://github.com/BIT-DA/RoTTA
https://github.com/taeckyung/SoTTA
https://github.com/kzkadc/reid-tta
https://github.com/kzkadc/reid-tta

Under review as a conference paper at ICLR 2026

biased input distributions and model drift in an online and resource-efficient manner, PaTTA-ID
facilitates more robust and accessible deployment of re-ID systems in applications such as public
safety, traffic monitoring, and video analytics. However, as with any advancement in re-identification
technology, there is potential for negative societal impacts: it could also be misused for intrusive
surveillance or violations of personal privacy. We therefore emphasize the importance of ethical
guidelines and regulatory oversight in applying our method to real-world systems.

Reproducibility. The codes for reproducing the experiments will be provided.
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