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Abstract: This paper addresses the challenge of occluded robot grasping, i.e.
grasping in situations where the desired grasp poses are kinematically infeasible
due to environmental constraints such as surface collisions. Existing RL meth-
ods struggle with task complexity, and collecting expert demonstrations is often
impractical. Instead, inspired by human bimanual manipulation strategies, where
two hands coordinate to stabilise and reorient objects, we focus on a bimanual
robotic setup to tackle this challenge. In particular, we introduce Constraint-based
Manipulation for Bimanual Occluded Grasping (COMBO-Grasp), an approach
which leverages two coordinated policies: a constraint policy trained using self-
supervised datasets to generate stabilising poses and a grasping policy trained us-
ing RL that reorients and grasps the target object. A key contribution lies in value
function-guided policy coordination, where gradients from a jointly trained value
function refine the constraint policy during RL training to improve bimanual coor-
dination and task performance. Lastly, COMBO-Grasp employs teacher-student
policy distillation to effectively deploy vision-based policies in real-world envi-
ronments. Experiments show that COMBO-Grasp significantly outperforms base-
lines and generalises to unseen objects in both simulation and real environments.
Videos can be found at: https://combo-grasp.github.io.
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1 Introduction

Grasping objects with kinematically infeasible grasp poses due to environmental collisions, known
as occluded grasping [1], presents a significant challenge in robotics. Such kinematic infeasibility
arises from supporting surfaces, such as the table that the object is resting on. For example, grasping
a keyboard that rests on a desk requires reorienting the keyboard with regard to the desk surface
(nonprehensile manipulation) to reveal the grasp pose (see Figure 1). Humans exhibit exceptional
dexterity in solving such occluded grasping problems through coordinated bimanual manipulation,
seamlessly using both hands to reposition objects for grasping. However, learning to acquire such
coordinated skills for a bimanual robotic system poses significant challenges, particularly when
using reinforcement learning (RL) [2, 3].

Specifically, compared to single-handed applications, bimanual manipulation exhibits a significantly
increased action space with coordination requirements adding to task complexity. These challenges
are exacerbated when using domain randomisation [4] to enable sim-to-real transfer and make RL
approaches infeasible due to sample inefficiency. For the occluded grasping task, these challenges
are particularly pronounced as the policies must enable one arm to stabilise the object while the other
reorients and grasps it. More importantly, designing a reward function that facilitates the emergence
of such coordinated behaviour is nontrivial. Compared to RL, learning from demonstration (LfD)
necessitates a large number of expert demonstrations [5] encompassing a diverse range of objects to
achieve generalisation to unseen objects.
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Figure 1: COMBO-Grasp uses two coordinated policies to tackle occluded grasping tasks. A con-
straint policy predicts a support pose for the right arm to assist the left arm controlled by a grasping
policy. The task execution sequence is: (1) the right arm moves to the support pose, (2) the left arm
grasps the object, (3) the right arm returns home, and (4) the left arm lifts the object.

We present Constraint-based Manipulation for Bimanual Occluded Grasping (COMBO-Grasp), a
system designed to address occluded grasping using bimanual robot systems. Inspired by human
bimanual strategies, where one hand stabilises an object while the other performs the manipula-
tion [6, 7, 8], COMBO-Grasp uses two coordinated policies: a constraint policy, trained from dataset
collected in a self-supervised manner, that generates stabilising poses, and a grasping policy trained
using RL that reorients and grasps the target. By stabilising with one arm before grasping with
the other, this coordination improves data efficiency and accelerates training for occluded grasping
tasks. COMBO-Grasp also introduces value-guided policy coordination to refine the constraint pose,
improving bimanual coordination. In particular, during RL training, gradients from the value func-
tion, trained alongside the grasping policy, optimise the constraint pose to increase grasp success.
This alignment enhances object stability during bimanual grasping.

COMBO-Grasp achieves effective sim-to-real transfer via teacher-student policy distillation. A
teacher trained with privileged information in simulation is distilled into a student policy that oper-
ates on point clouds. Unlike single-policy RL or LfD, COMBO-Grasp enables efficient bimanual
coordination and generalises to unseen objects without expert demonstrations.

In summary, our contributions are four-fold:

* COMBO-Grasp, a novel approach to bimanual manipulation comprising two coordinated poli-
cies to solve occluded grasping problems.

* The use of object stabilisation as a signal for self-supervised data collection, enabling training
of a constraint policy that accelerates subsequent RL grasping policy learning.

* Value function-guided policy coordination that refines generated constraint poses using gradients
from the value function to improve coordination during RL training for the grasping policy.

* Empirically demonstrating that COMBO-Grasp successfully grasps seen and unseen objects in
both simulated and real-world environments.

2 Related Works

Learning to Grasp Objects. Grasping is a fundamental robotic skill crucial for downstream manip-
ulation tasks [9, 10, 11]. Many prior works focus on learning grasp pose predictors with open-loop
planning [11, 12, 13], typically assuming that collision-free poses are reachable via motion planning.
However, these methods are often inadequate for occluded grasping scenarios, where environmental
constraints may obstruct the target grasp poses. Closed-loop policies using reinforcement learning
(RL)[14, 15, 16] and imitation learning (IL)[17, 18] provide an alternative. COMBO-Grasp builds
on this direction, addressing more challenging occluded grasping tasks that require non-prehensile
manipulation before grasping. Some prior works [19, 20, 21] address occluded grasping via extrin-



sic dexterity using a single arm. Sun et al. [19] employ dual arms for object reorientation, though it
still relies on external constraints such as a wall. In contrast, COMBO-Grasp operates without such
constraints, using one arm to stabilise the object while the other performs reorientation.

Bimanual Robotic Systems. Bimanual robotic manipulation [22, 23, 8, 24] has gained increasing
attention due to its flexibility and capability to handle complex tasks. RL approaches [3, 2] often
require extensive exploration, particularly for high-DoF bimanual tasks. Alternatively, IL often
demands a large number of expert demonstrations [5], which is often costly and impractical for
complex bimanual systems, especially in non-prehensile manipulation scenarios. Several works [25,
26, 27] address these challenges by incorporating inductive biases into RL. Similarly, COMBO-
Grasp introduces a constraint policy as an inductive bias, specifically tailored for occluded grasping
tasks. Inspired by studies in biopsychology [28, 6, 7], COMBO-Grasp uses one arm to stabilise the
object, while the other performs non-prehensile manipulation for occluded grasping.

Stabilising an object with one arm to assist the other in manipulation is a well-established strat-
egy [29, 24]. However, these prior works require expert demonstrations [29] or nested optimisation
loops [24], limiting scalability due to high supervision cost or sample inefficiency. In contrast,
COMBO-Grasp eliminates the need for expert demonstrations or nested optimisation by using self-
supervised simulation data to train a constraint policy, which stabilises objects and accelerates RL
training for occluded grasping. Crucially, COMBO-Grasp uses value function-guided policy coor-
dination to refine constraint poses by leveraging gradients from the grasping policy’s value function
during RL training. This allows the constraint policy to adapt poses that better align with the grasp-
ing policy, enhancing coordination for bimanual occluded grasping tasks.

3 Task and System Setup Third-person camera (L515)

/N

Right arm (constraint)

Left arm (manipulation)

Task description. To grasp a target object given
a desired grasp pose that is occluded, one arm is
needed to prevent the object from moving, while the
dominant arm attempts to reorient and grasp the ob-
ject. In this work, the left robot arm (dominant arm)
always attempts to grasp a target object while the
right arm (non-dominant arm) stabilises the object
to assist the left arm. We leave dynamic role assign-
ment of left and right arms to future work, similar .

. . . system uses two Kinova Gen3 arms mounted
to [29]. It is worth noting that the gripper of th.e left perpendicularly, each with a Robotiq 2F-85
arm autonomously closes at the end of each episode oripper and soft fingertips [30] for improved

to grasp the target object, and the left end-effector grip A third-person RealSense L515 camera
moves upward to lift the object. provides visual observations.
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Figure 2: Real-world system setup. The

Action Space The teacher and student policies share

the same action space. The grasping policy controls the left arm and outputs a six-dimensional
delta pose, including translation and rotation in axis-angle representation. The constraint policy
controls the right arm and outputs a six-dimensional absolute pose. Following prior work [24], our
experiments assume the end-effector remains at a fixed z-coordinate, as it is typically placed on
the table, with variations only in its x-y position and orientation. Thus, the first two dimensions
correspond to the = and y positions, and the remaining four specify orientation as a quaternion.

Real-World Setup. We design a system for bimanual occluded grasping (Fig.2) comprising two
Kinova Gen3 arms with Robotiq 2F-85 grippers, mounted perpendicularly on a central body. The
grippers use deformable fingertips [31] for improved grip, replacing the original rigid ones. A
calibrated Realsense L515 camera provides third-person point clouds for the vision-based student
policies. To control the arms, we use a hybrid task and joint space impedance controller [32, 33].

Simulation Setup. Isaac Sim [34] is used to train teacher policies for the occluded grasping task. To
train policies, 48 objects selected from the Google Scanned Objects dataset [35] are spawned into
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Figure 3: Method Overview. (1) COMBO-Grasp first collects a synthetic dataset in a self-
supervised manner in simulation to train a state-based teacher constraint policy that outputs a right
arm end-effector pose. (2) This constraint policy is frozen, and a state-based teacher grasping policy
Tteacher 18 trained with RL. To improve performance, we propose value-guided policy coordination,
refining the constraint output via gradients from a jointly trained value function. (3) Both teacher
policies are then distilled into vision-based student policies using point clouds, proprioception, and
optionally a desired grasp pose to tackle real-world bimanual occluded grasping.

the environment (see Figure 9). We use an operational space controller [36] to control robot arms.
Further information regarding the simulation setup can be found in Appendix B.

4 Approach

In this section we present COMBO-Grasp, a system designed to solve challenging bimanual oc-
cluded grasping tasks. COMBO-Grasp utilises two coordinated policies: a constraint policy trained
on a dataset collected without human supervision within a simulation to stabilise the target object
using one arm, and a grasping policy trained using RL to control the other arm and reorient the
object for successful grasping.

We first present a self-supervised data collection method in simulation (Section 4.1) to train the
teacher constraint policy (Section 4.2). Section 4.3 details the training of the teacher grasping policy,
including value function-guided coordination for refining constraint poses. Finally, teacher-student
distillation for real-world deployment is described in Section 4.5.

4.1 Self-Supervised Data Collection for Constraint Policy

Instead of relying on costly expert demonstrations, this work introduces a self-supervised data col-
lection method using force-closure signals in simulation to train the constraint policy across diverse
objects (see Figure 3 (1)). Target occluded grasp poses are generated via antipodal sampling [37]
for 48 objects from the Google Scanned Objects dataset [35] (see Figure 9 in Appendix B). These
poses are also used during RL training for the grasping policy (Section 4.3).

End-effector poses for the right arm are randomly sampled near the target object placed on a table,
while the left arm remains fixed in its initial position. A force of 25N x mass along the approach vec-
tor of a desired grasp pose is applied to the object. To assess whether a stabilising pose is achieved,
the object’s velocity is used as an approximation. A stabilising pose is considered successful if, after
applying force, the object’s velocity remains below a predefined threshold for the given grasp and
constraint poses. The sampled end-effector pose, the corresponding desired grasp pose, and the ob-
ject pose are then added to the dataset. By iterating this process in simulation, 3K constraint poses
per object are collected. With 48 objects, this results in a total of 144K samples. By leveraging the
object’s motion as a proxy measure for the success of a constraint pose, we can generate a rich set
of training data to train the constraint policy.



4.2 Teacher Constraint Policy Training

One of the central contributions of this work lies in value function-guided policy coordination, which
builds upon classifier guidance used in diffusion models to refine the generated constraint pose
during the training of the state-based teacher grasping policy. This is achieved by employing a
diffusion model for the state-based teacher constraint policy, denoted as w‘3¢"e" trained from the
privileged information in the dataset (see Section 4.1). This approach leverages gradients from the
value function to steer the teacher constraint policy’s output, optimising the stabilising poses to align

with the grasping policy’s objectives to improve task performance and sample efficiency.

The teacher constraint policy uses a diffusion model formulated as a Denoising Diffusion Proba-
bilistic Model (DDPM) [38]. Starting from 2 sampled from Gaussian noise, the DDPM performs
K denoising iterations to generate a series of intermediate samples with decreasing levels of noise,
xF 2#~1 . 20 To train the constraint policy, a forward diffusion process is applied to add noise
to an unmodified sample, z°, from the dataset by randomly sampling a denoising iteration & and
random noise €*. The noise prediction model ¢, is then trained to estimate the noise added to a

sample during the forward diffusion process. Thus, the training loss is formulated as
Leonstraint = MSE(Ek, €0 (Xgonst + ekv k)) (1

where X ., st 1S the constraint pose for the right arm. An MLP-based denoising model is used as the
backbone for the diffusion policy (see Appendix B.1 for further details of the architecture).

The constraint policy takes as input the object pose, desired grasp pose, and object IDs. To repre-
sent Object IDs, an autoencoder [39] is trained to reconstruct object point clouds using the Chamfer
distance. The resulting compact latent code replaces one-hot vectors, reducing observation dimen-
sionality for large object sets. The state-based teacher constraint policy is used only during teacher
grasping policy training (Section 4.3) and is distilled into a vision-based student policy for sim-to-
real transfer.

4.3 Teacher Grasping Policy

After the constraint policy is trained, a teacher grasping policy wgizg’;” is trained using Proximal
Policy Optimisation (PPO) [2] on diverse objects from privileged information in simulation. To
train a robust teacher grasping policy capable of performing in real-world environments, we employ
domain randomisation, incorporating additive Gaussian noise into low-dimensional observations,
as well as randomising the physics parameters of the target object and the controller parameters
during policy training. For further information about the domain randomisation, see Appendix D.1.
The teacher grasping policy receives as input the robot’s proprioceptive states, object pose, object
velocity, desired grasp poses, object IDs (see Section 4.2), object’s mass and friction parameters,
and the PID gains for the operational space control(OSC).

At the beginning of each training episode, the teacher constraint policy 7/¢2¢"¢" generates a con-

straint end-effector pose X .ons: for the right arm. Given the constraint end-effector pose, the joint
positions of the right arm are computed using the CuRobo IK solver [40]. Then, the right arm moves
to the computed desired constraint joint positions. Once the right arm is positioned, the grasping
policy controls the left arm to attempt the occluded grasping task.

We design a reward function with six components: (1) position and (2) orientation distance to the
target grasp pose for a left end-effector, (3) action penalty to penalise the large actions, (4) collision
penalty (including self- and table collisions), (5) lift reward to expose occluded grasps, and (6)
sparse grasp success reward. The collision penalty term is computed using the signed distance field
provided by CuRobo. The final reward r is

T = Q1Tdist_pos T Q2Tdist_ori — Q3Tcollision — ¥4Taction T A5Tlift T 6T success 2

where «; is a coefficient for each reward term. For more details on teacher policy training, domain
randomisation, and each reward term with the coefficient value, see Appendix B.



4.4 Value Function-guided Policy Coordination

A key aspect of COMBO-Grasp is to induce effective bimanual coordination using the trained con-
straint policy, thereby improving task performance and enhancing the sample efficiency of the RL
policy training. Since the teacher constraint policy is initially trained on datasets collected us-
ing a signal indicating whether a moving object is stabilised, it does not inherently guarantee the
generation of an optimal constraint for the grasping policy. To address this limitation, COMBO-
Grasp draws inspiration from classifier guidance in diffusion models and we propose value function-
guided policy coordination that refines the generated constraint pose using gradients from a value
function V' (x;), which is trained alongside the grasping policy using RL. The value function of
the grasping policy acts as a classifier in the classifier guidance framework, and the gradients for
guidance are obtained by maximising the estimated value. This approach effectively refines the
generated constraint poses to align more closely with the grasping policy’s requirements, leading
to improved overall performance and sample efficiency. By incorporating gradients from the value
function by maximisation, the denoising process for the constraint policy is formulated as

Xlrfo:llst = a(xlcfonst — V€0 (xlgonsﬁ k) - UIVV(X) + N(O> UQI)) (3)

where w is a scaling parameter, x is low-dimensional observation used as input to the value function
V' (), and the constraint pose X.ons: is a subset of the input state x for the value function (i.e.,
Xeonst € X). For further details on value function-guided policy coordination, see Appendix B.

4.5 Policy Distillation for Sim-to-Real Transfer

To deploy policies in real-world environments, leveraging visual observations as input is essen-
tial. Teacher-student policy distillation [41, 42] is used to transfer knowledge from trained teacher
constraints and grasping policies to student policies. These student policies process point cloud ob-
servations along with state information, such as proprioceptive data and, optionally, a desired grasp
pose. In COMBO-Grasp, we adopt a diffusion policy as the student grasping policy, similar to prior
work [43]. Specifically, DP3 [43] and MLP encoders process point cloud and state observations,
respectively, as illustrated in Figure 11 (Appendix C). The encoder outputs are concatenated to con-
dition the diffusion policy. For simplicity, the student constraint policy employs a Gaussian Mixture
Model (GMM). Unlike the teacher constraint policy, it does not require output steering, making the
GMM approach effective and straightforward.

To distil the teacher to the student policy, we rollout the teacher in simulation and collect 10K expert
demonstrations with visual observations. During distillation, we apply small perturbations to point
cloud observations to simulate real-world noise. For further details, see Appendix C.

S Experimental Results: Simulation

Our experiments address the following questions: (1) How successful is COMBO-Grasp in learning
a teacher policy compared to competitive baselines? (2) How well does COMBO-Grasp generalise
to unseen objects? (3) How does the value function-guided policy coordination affect COMBO-
Grasp’s overall performance? For further analysis of the experiments, see Appendix A.

5.1 Evaluation Metric and Baselines

For evaluation, we assess the success rate of grasping. In particular, a trial is considered successful if
the robot’s left arm securely grasps and lifts the target object at least 8 ¢cm at the end of the episode.

We compare COMBO-Grasp with the following baselines:
* PPO: A PPO [44] policy that controls both arms. The policy outputs 12-dimensional actions.

Compared to COMBO-Grasp which employs two coordinated policies, this baseline requires
more extensive exploration to solve the task.



* PPO + Constraint Reward: A PPO policy trained with a modified reward function that adds
a distance-based term between the right end-effector and the target object’s center. This en-
courages the right arm to act as a constraint, assisting the left arm in grasping. The policy thus
avoids undesirable behaviors seen with the original reward, such as high-velocity grasps by the

left end-effector without support.

* COMBO-Grasp with a fixed constraint: A PPO policy is trained to control the left arm, while
the right arm remains fixed in a predefined pose in contrast to COMBO-Grasp. This showcases

the importance of a constraint policy.

* COMBO-Grasp without refinmenet: COMBO-Grasp without value function-guided policy co-
ordination. This demonstrates the necessity of refining the constraint pose generated by the

constraint policy to further improve performance.

5.2 Sample Efficiency in Teacher Policy Training

COMBO-Grasp achieves higher performance and
sample efficiency. We first evaluate teacher policy
training in simulation. As shown in Fig. 4, COMBO-
Grasp solves the occluded grasping task more effi-
ciently and achieves better overall performance. In
contrast, PPO struggles due to task and system com-
plexity. More critically, it often exhibits unrealistic
behaviours—e.g., the left arm grasping aggressively
without right-arm support—by exploiting simulator
inaccuracies, which fail to transfer to the real world.

Reward shaping alone is insufficient for coordi-
nation. PPO + Constraint Reward partially ad-
dresses these issues using a distance-based reward,
but effective constraint poses are not known a priori
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Figure 4: Teacher policy training. We run 3
seeds per method, with shaded regions show-
ing standard deviation. COMBO-Grasp sig-
nificantly outperforms baselines in both per-
formance and sample efficiency.

and depend on coordinated behaviour between arms. This highlights the difficulty of inducing such

coordination through reward engineering alone.

Constraint learning and coordination drive performance. COMBO-Grasp with fixed constraints
performs poorly, as static poses may not generalise across tasks. Similarly, removing refinement de-
grades performance. These findings emphasise the importance of both pre-training and refining the
constraint policy. In general, our coordinated approach, learning separate constraints and grasping
policies, yields faster training and higher success rates than the RL baselines of a single policy.

5.3 Student Policy Performance in Simulation

COMBO-Grasp generalises well to both seen and
unseen objects. We evaluate the distilled student
policies in simulation (Fig.5). COMBO-Grasp han-
dles occluded grasping effectively across object sets.
Without the target grasp pose as input, performance
drops but remains competitive.

Coordinated strategies improve generalisation to
unseen objects. While PPO and PPO + Constraint
Reward perform similarly on seen objects, the latter
significantly outperforms on unseen ones by leverag-
ing the right arm as a constraint instead of exploiting
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Figure 5: Student Policy Performance av-
eraged over 3 seeds in Simulated environ-
ments. We evaluate each approach for 50
times using both seen and unseen objects.

simulator flaws. However, it still lags behind COMBO-Grasp due to the difficulty of reward shaping
for effective constraint learning, which limits the teacher policy and thus the student’s performance.



6 Experimental Results: Real-World
We evaluate a student policy trained on simulated data in real-world settings to address (1) How
does COMBO-Grasp perform on seen and unseen real-world objects? (2) Does conditioning on a

desired grasp pose improve its performance?

6.1 Experiment Setup

Student policies are evaluated on both seen
and unseen objects with diverse shapes, sizes,
and weights (Figure 6). To facilitate grasp-
ing, we scan objects to reconstruct 3D meshes ) » >
and generate grasp poses via antipOdal sam- Guboid-Medium-Heavy (Seen) (;uboid-Large-Light Cuboid-Small-Heavy

pling, avoiding the need for grasp pose predic- e -
tion models [12], which are outside our evalu- ' :
ation scope. However, COMBO-Grasp is com-
patible with any grasp pose prediction models.

When student policies are conditioned on de- Keyboard Bag Round-Large-Light
sired grasp poses, object pose is estimated in Figure 6: Selected objects of varying sizes and

real-time u§ing Foundat.ionPose'[45], .enabling weights requiring occluded grasping are used to
grasp pose inference during manipulation [46].  evaluate COMBO-Grasp in the real world.

Constraint poses from the student constraint
policy are converted to joint positions using CuRobo’s IK solver [40], and Movelt [47] controls
the right arm accordingly. Once positioned, the left arm executes the student grasping policy.

6.2 Results

COMBO-Grasp is effective in real-world oc-

cluded grasping, with trade-offs depending ~Cuboid-Medium-Heavy (Scen) ngf/f%ﬁ%“)”’ } Wé?)ci‘?;‘}{’{)’f :
on input. As shown in Table 1, COMBO- gfé’;?;‘,{ﬁgﬁg}éﬁ% 285; Egﬁg; \ %%(?;((68//118))
Grasp handles occluded grasping well for both Keyboard 80% (8/10) 40%(4/10)
seen and unseen objects. It struggles with the Roun d_f;“rgge_u eht iggg Efﬁg; fg;”,g Efﬁg;
round box due to stability challenges, and per- Average 68.3% (41/60) 58.3% (35/60)

formance slightly declines without the target .u1o 1. Performance of COMBO-Grasp in real-
grasp pose. In this setting, the policy cannotre- 61 environments for seen and unseen objects
cover from failed nonprehensile manipulation; ith varying shapes, sizes, and weights.

for instance, pushing a keyboard often fails due
to its thin shape, leading to a 40% success rate.

The target grasp pose improves robustness, but removing it increases practicality. Providing
the desired grasp pose enables retries and improves success by guiding the left arm more effectively.
However, omitting it increases deployment flexibility, removing the need for real-time pose estima-
tion, which is useful in environments where tracking is infeasible. The complete baseline results,
including PPO and various ablations of COMBO-Grasp, are presented in Table 2 in Appendix A.3.

7 Conclusion

We present COMBO-Grasp, a bimanual robotic system for occluded grasping tasks. By introduc-
ing a constraint policy and value function-guided policy coordination, which refines the constraint
pose using value gradients, we show that coordinated policies efficiently solve challenging occluded
grasping tasks. Furthermore, the trained teacher policies are then distilled into vision-based stu-
dent policies for real-world deployment. Through empirical evaluation, we show that COMBO-
Grasp achieves significantly better performance compared to a state-of-the-art baseline and instan-
tiations of COMBO-Grasp in both simulated and real-world environments.



8 Limitations

COMBO-Grasp offers notable improvements in learning efficiency and generalisation compared to
baselines and prior occluded grasping methods. However, there are some limitations to consider.
Firstly, COMBO-Grasp struggles with unseen objects of significantly different shapes, which could
be addressed by training the teacher and student policy with a more diverse set of geometries. Ad-
ditionally, COMBO-Grasp faces challenges with round objects in the real world, where stabilisation
during occluded grasping is difficult. This issue could be mitigated through a closed-loop control
approach, such as learning a residual policy for real-time constraint pose adjustments.

Finally, while COMBO-Grasp is tailored for bimanual occluded grasping, we view this as a founda-
tional step toward solving a broader range of bimanual tasks, such as threading a needle, painting, or
cutting—where one arm must constrain the object while the other performs precise ma- nipulation.
We see COMBO-Grasp with value-guided implicit coordination as a step towards efficiently solving
this class of problem.
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Figure 8: Grasp success rates of COMBO-Grasp’s student policies. The success rate is reported
for each object in simulation, averaged over 50 trials per object.

A Additional Analysis for Experime

nts

A.1 Ablation of the Value Function-guided Policy Coordination

The degree to which the value function-guided
policy coordination improves the task success
rate is investigated here. Concretely, the impact
of the scaling parameter w on the constraint dif-
fusion policy (see Eq. 3) during teacher pol-
icy training is investigated. As illustrated in
Figure 7, the teacher policy’s performance de-
creases when value function policy coordina-
tion is not applied (i.e., A = 0). On the other
hand, incorporating value function policy coor-
dination consistently enhances the teacher pol-
icy’s overall performance. This finding sug-
gests that the constraint policy occasionally
generates constraint poses that are suboptimal
for the grasping policy. Consequently, value
function policy coordination promotes on-the-
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Figure 7: Guidance scaling ablation. We
compare the guidance scaling parameter to steer
the output of the constraint policy. This result
indicates that COMBO-Grasp without guidance
shows worse performance and COMBO-Graspis
robust to a wide range of guidance scaling param-
eters to achieve better performance.

fly adjustments and this is cooperation between the two arms achieves higher success rates.

A.2 Student Policy Performance per Object

Figure 8 illustrates the success rate of COMBO-

Grasp for each object used during training. While

COMBO-Grasp demonstrate performant success rate across diverse objects, the occluded grasp per-
formance for small objects or objects with complex geometries is reduced when compared to that
of large objects with simple geometries. In order to overcome this limitation, it is suggested that
both teacher and student policies be trained using more diverse objects, such as those available in

the Objaverse datasets [48].
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COMBO-Grasp | w/o grasp pose | w/ fixed constraint | w/o refinement PPO

Cuboid-Medium-Heavy (Seen) 80% (8/10) 80% (8/10) 60% (6/10) 60% (6/10) 60% (6/10)

Cuboid-Large-Light 90% (9/10) 80% (8/10) 40%(4/10) 30% (3/10) 30% (3/10)

Cuboid-Small-Heavy 50% (5/10) 60% (6/10) 50% (5/10) 50% (5/10) 40% (4/10)

Keyboard 80% (8/10) 40%(4/10) 40% (4/10) 30% (3/10) 10% (1/10)

Bag 80% (8/10) 80% (8/10) 60% (4/10) 80% (8/10) 40% (4/10)

Round-Large-Light 30% (3/10) 10% (1/10) 0% (0/10) 10% (1/10) 0% (0/10)
Average 68.3% (41/60) | 58.3% (35/60) 38.3%(23/60) 43.3%(26/60) | 30.0% (18/60)

Table 2: Performance of COMBO-Grasp in real-world environments for seen and unseen objects
with varying shapes, sizes, and weights.

A.3 Real-world Experiments

Table 2 presents the full results of the real-world experiments, including comparisons with all base-
line methods. We observe that baseline approaches often fail to solve the tasks due to poor coordi-
nation between the left and right arms, likely because such coordination is not adequately learned
during training in simulation, and consequently does not transfer well to real-world environments.

B Teacher Policy Details

B.1 Teacher Constraint Policy

We employ a diffusion policy [49] as the basis for the teacher constraint policy. The diffusion
policy is implemented using a Denoising Diffusion Probabilistic Model (DDPM), with a multi-layer
perceptron (MLP)-based backbone. The denoising model is built on a three-level UNet architecture,
comprising residual blocks with a hidden layer size of 512. The diffusion time step is encoded as
an 80-dimensional feature vector. Additionally, the desired grasp pose, x € R, and the object’s
ID, Xopj.ia € R'®, are encoded into an 80-dimensional vector respectively to provide task-specific
context. Similarly, the noisy input representing the constraint pose is encoded into another 80-
dimensional vector. These encoded vectors are summed and passed through the residual blocks.
The denoising model outputs the noise added to the original input during the forward diffusion
process. In this work, we use 100 diffusion time steps for both training and inference. We train the
diffusion policy using an Adam optimiser with a learning rate of 1 x 10~%.

B.2 Teacher Grasping Policy

We train a teacher grasping policy using Proximal Policy Optimisation (PPO). An actor network
consists of an MLP with 2 hidden layers of sizes [256, 256]. The actor network is parameterized as a
Gaussian distribution with a fixed, state-independent standard deviation. The critic network consists
of an MLP with 3 hidden layers of sizes [256, 256, 256].

We define the privileged information used to train the policy as [Xrobot, Xgoal, xobj] € R%%. The robot
proprioceptive states, Xrohot, include the left end-effector pose, Xjef; € R?, the right end-effector pose,
Xright € R8, and the translational and rotational action scale parameters for the operational space
controller, Xconwoi € R2. The right end-effector states, X,;4¢, €xclude the z-coordinate position, as
the table height remains constant, and the constraint pose is fixed at a predetermined z-coordinate.
The goal-related states, Xgoq1, consist of the desired grasp pose, Xgrasp € R7, the distance between
the left end-effector and the desired grasp position, xgi; € R, and the orientation distance between
the left end-effector and the desired grasp orientation in the axis-angle representation, Xgis¢_ori € R3.
The object states, Xqpj, comprise the object pose, Xopj_pose € R7, the object velocity, Xobj_vel € RS, the
friction parameters, Xicion € R?, the object’s mass, Tmass € R, and the object’s ID, Xobjiq € R.

We train the policy using an Adam optimiser with an adaptive learning rate scheduler' based on the
KL divergence between the current policy and the previous policy, whose maximum learning rate is
1 x 10~2 and the minimum is 1 x 10~¢. We use a discount factor of 0.99, a GAE lambda value of

"https://skrl.readthedocs.io/en/latest/api/resources/schedulers/kl_adaptive.html
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Figure 9: Training objects. We choose 48 training objects from the Google Scanned Object
Dataset [35].

& Y =

= \

Figure 10: Test objects. We evaluate 10 held-out objects from the Google Scanned Object Dataset.

0.95, and an entropy coefficient of 6e — 3. After each policy rollout, the policy is updated using a
batch size of 2048 for 8 epochs.

B.3 Reward function

The reward function used in our experiments comprises six terms and is defined as follows:

T = Q1Tdist_pos + QaTdist_ori — Q3T collision (4)

— Q4Taction T QasTl;ft + Q6T success

where the weighting coefficients are set to oy = 0.2, ap = 0.2, a3 = 1.0, ay = 0.025, a5 = 0.1,
and ag = 40. Each term in the reward function serves a distinct purpose in guiding the robot’s
behaviour:

* Position Distance Reward (7 ;4 ,,05): This term incentivizes the left end-effector to move
towards the desired grasp position. It is computed as:
Tdist_pos = 1- tanh(4 : ||plefl - pgrasp| |2)7 &)

where pieiy € R? and Perasp € R3 represent the current and desired positions of the left
end-effector, respectively.

* Orientation Distance Reward (r4;s: or;): This term encourages the left end-effector to
align its orientation with the desired grasp orientation. The orientation difference is mea-
sured in the axis-angle space‘. The reward is computed as:

Tdist.ori — 1-—- tanh(02 : ||01eft - egraspHQ)a (6)

where 0., € R? and Ograsp € R3 represent the axis-angle representations of the current
and desired orientations of the left end-effector, respectively.

* Action Penalty (4..;0r,): This term discourages large control commands by penalizing the
magnitude of the action vector:
Taction = ||aH2 @)

¢ Collision Penalty (r¢onision): To prevent self-collisions and contact with the table, we com-
pute the signed distance (SD) using CuRobo [40]. The collision penalty is given by:

Tcollision = SDself,col + SDtable . (8)
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The signed distance is computed for the robot arms, excluding the grippers, since the grip-
pers must make contact with the table for occluded grasping problems. In CuRobo, a
positive signed distance indicates a collision.

 Lift Reward (rg): This term encourages lifting the object to expose an initially occluded
grasp pose. It is defined as an indicator function:

Nift = ]]-(Zgrasp > Zgrasp,init + 2 cm), 9

where Zgrasp and Zgrasp inic denote the current and initial heights of the desired grasp position,
respectively.

* Grasp Success Reward (7s,.ccss): At the end of an episode, a reward of 1 is assigned if
the left arm successfully grasps and lifts the object; otherwise, the reward is 0:

, _ {1, if grasp and lift are successful,

10
0, otherwise. (10

C Student Policy Details

We describe the architecture of the student constraint and grasping policy, as shown in Fig. 11.

C.1 Studnet Constraint Policy

The student constraint policy integrates the DP3 encoder [43] and a state encoder to process point
cloud and state observations, respectively.

The DP3 encoder comprises three fully connected layers with dimensions of [128, 256, 384], fol-
lowed by a max pooling operation and a final fully connected layer of size 64. Layer normalization
and ReLU activations are applied after each of the initial three layers preceding the max pooling
operation. The state encoder consists of two hidden layers with dimensions of [128, 256]. The state
encoder outputs a feature vector of size 32 given the desired grasp pose Xgrqsp-

The feature vectors produced by the DP3 and state encoders are concatenated and subsequently pro-
cessed through a MLP to generate a constraint pose. For this work, the student policy utilizes a
Gaussian Mixture Model (GMM)-based approach due to its simplicity and effectiveness. Specifi-
cally, the GMM-based policy employs 5 modes, with a minimum standard deviation of 1 x 10~
We employ an AdamW optimiser with a learning rate of 5 x 10~° and a weight decay of 5 x 1075,

C.2 Student Grasping Policy

We adopt the 3D Diffusion Policy (DP3) [43] as the foundation for the student grasping policy.
The architecture of the DP3 encoder and the state encoder is consistent with that employed in the
student constraint policy. However, the weights of these encoders are independently initialized
from those of the constraint policy. Furthermore, the input dimension for the state encoder in the
manipulation policy differs from that of the constraint policy. The state encoder for the manipulation
policy processes X,.opo¢ and optionally X444, as input. During training, we employ 100 diffusion
timesteps, whereas during inference a Denoising Diffusion Implicit Model (DDIMs) is used with
10 diffusion timesteps to accelerate action generation. We use an AdamW optimiser with a learning
rate of 5 x 1075 and a weight decay of 5 x 1075,

D Simulation Setup

D.1 Training

In order to train a teacher policy from a diverse set of objects, we select 48 objects from the Google
Scanned Object dataset, as illustrated in Figure 9. We select objects such that successful picking
requires occluded grasping. In particular, relatively flat objects that are difficult to grasp at the
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Figure 11: Student policy architecture. We utilize DP3 [43] as the backbone for the grasping
policy. The DP3 encoder processes the scene point cloud, and its output is concatenated with a
state feature vector obtained by a multi-layer perceptron (MLP). The resulting concatenated vector
serves as the conditioning input for the diffusion-based policy. Similarly, the constraint student
policy employs the DP3 encoder and an MLP, but it takes a desired grasp pose as input. Unlike
the grasping policy, the constraint student policy employs a Gaussian Mixture Model (GMM)-based
policy.

annotated target poses are deliberately included. To train teacher policies efficiently, we spawn 1024
robots and objects in the simulated environment.

In order to train a policy robust to noises and effectively transfer it to real-world environments,
we apply domain randomisation during teacher policy training. Table 3 describes the details of
the randomisations used in our experiments. We also apply domain randomisation during the self-
supervised data collection for the constraint policy.

Table 3: Domain Randomisation Hyperparameters

Parameter \ Description

Initial robot joint positions
Robot base position

PID position action scale
PID rotation action scale
Action
Object mass
Static and dynamic friction
Grasp position
Grasp translational distance
Grasp rotational distance
End-effector position
Object position
Object orientation

Add noise sampled from N(0, 0.05)
Add random noise sampled from ¢/(—0.015,0.015)
to the z-coordinate of the robot base
Sampled from /(0.03,0.04)
Sampled from /(0.1, 0.2)

Add random noise sampled from A/(0,0.01)
Add mass sampled from ¢/(—0.1,0.1)
Sampled from ¢/(0.8, 1.2)

Add random noise sampled from A (0, 0.005)
Add random noise sampled from A (0, 0.005)
Add random noise sampled from A (0, 0.005)
Add random noise sampled from N (0, 0.01)
Add random noise sampled from A/(0,0.01)
Add random noise sampled from
U(—0.27 rad, 0.27 rad) to the yaw axis

D.2 Evaluation

To evaluate policies for both seen and novel objects, we also select 10 held-out objects from the
Google Scanned Object dataset (see Figure 10).

E Real-World Experiment Setup

E.1 Input Observation for Student Policies

The distilled student policies take point clouds as input in real-world environments. We render
depth images with the size of 640 x 480 from a Realsense L515 camera to reconstruct point cloud
observations. Similar to [43], we crop the point cloud within a pre-defined bounding box such
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that it includes the robot arms and the target object. Then, we remove statistical outliers from the
point clouds reconstructed from depth images and apply farthest point sampling to sub-sample 1024
points.

E.1.1 Desired Occluded Grasp Pose Generation

In order to scan an object to reconstruct a mesh, we use Polycam, an application that captures
pictures of objects and reconstructs an object mesh using Neural Radiance Fields (NeRF). Using the
reconstructed mesh, we generate desired occluded grasp poses using antipodal sampling.

E.1.2 Execution

As illustrated in Fig. 1, the constraint policy first predicts a desired constraint pose, and the constraint
arm is positioned accordingly using motion planning. Once the constraint arm is in place, the grasp
policy controls the grasping arm to perform the occluded grasp. At the end of the episode, the
grasping arm automatically closes its gripper while the constraint arm returns to the home pose.
Finally, the grasping arm lifts the object to complete the task.

F Baseline Method Details

F1 PPO

We train a policy using Proximal Policy Optimization (PPO) [44], where the policy outputs 12-
dimensional delta end-effector poses corresponding to both the left and right arms. We use the same
hyperparameters employed for training COMBO-Grasp, except for the entropy coefficient, which is
set to 0.003. This modification was made because using the original entropy coefficient caused a
continuous increase in the policy’s standard deviation, resulting in the policy’s inability to exploit a
stable and effective strategy during training.

F.2 PPO + Constraint Reward

Similar to the PPO baseline, but we introduce an additional reward term that encourages the right
arm to be used as a constraint. In particular, we add a reward 7,;gps_gise = ||T°% — TT9MEE||,,

F.3 COMBO-Grasp w/ Fixed Constraint

Instead of employing a trained constraint policy, we place the right arm as a constraint at a fixed
pose. To accommodate objects of varying sizes and orientations, the constraint is positioned at the
right hand side of the workspace rather than at the centre. This policy is trained using the same
hyperparameters as those employed by COMBO-Grasp.
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