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Abstract

Dimensionality reduction techniques are widely used for visualizing high-dimensional data
in two dimensions. Existing methods are typically designed to preserve either local (e.g.
t-SNE, UMAP) or global (e.g. MDS, PCA) structure of the data, but none of the es-
tablished methods can represent both aspects well. In this paper, we present DREAMS
(Dimensionality Reduction Enhanced Across Multiple Scales), a method that combines the
local structure preservation of t-SNE with the global structure preservation of PCA via a
simple regularization term. Our approach generates a spectrum of embeddings between the
locally well-structured t-SNE embedding and the globally well-structured PCA embedding,
efficiently balancing both local and global structure preservation. We benchmark DREAMS
across seven real-world datasets, including five from single-cell transcriptomics and one from
population genetics, showcasing qualitatively and quantitatively its superior ability to pre-
serve structure across multiple scales compared to previous approaches.

1 Introduction

Real-world data often exhibits high-dimensional and complex structures, making their effective and inter-
pretable visualization a crucial step in exploratory data analysis. Dimensionality reduction methods serve
this purpose by projecting high-dimensional data into more interpretable low-dimensional representations
while preserving meaningful structures. Among dimensionality reduction methods, principal component
analysis (PCA, Hotelling 1933) and t-distributed stochastic neighbor embedding (t-SNE, van der Maaten
and Hinton 2008) have emerged as two widely used methods, each with distinct strengths. PCA excels at
capturing global structures by projecting data onto a lower-dimensional subspace in directions that maximize
variance, providing a broad overview of the dataset’s structure. In contrast, t-SNE is a neighbor-embedding
method with the objective to map data points that are nearby in high-dimensional space close to one another
in the low-dimensional embedding. This focus on neighbor preservation makes t-SNE particularly effective
in preserving local structures. When applied individually, both methods suffer from limitations: PCA of-
ten overlooks fine local relationships, while t-SNE distorts global structures in favor of local neighborhood
preservation.

However, in many real-world datasets, e.g. single-cell transcriptomic datasets, both local and global struc-
ture is meaningful. Local relationships can reveal microscopic data patterns such as small clusters and cell
types. For example, the Tasic et al. dataset features 122 fine clusters that represent cell types, which are
clearly separated in the t-SNE plot (Figure 1 right). Conversely, the global structure reflects macroscopic
data patterns such as separations between broad cell classes (Tasic et al., 2018) or developmental trajecto-
ries (Kanton et al., 2019) across an entire cell population. In the Tasic et al. dataset, this level of structure
separates individual cells into non-neurons, excitatory, and inhibitory neurons. This global structure is not
evident in the t-SNE plot, but is prominent in the PCA visualization, which in turn fails to separate the
finer clusters (Figure 1 left). Since both local and global structure carry essential and often complementary
information, neglecting either structure scale can result in incomplete or biased interpretations, highlighting
the importance of preserving both scales simultaneously.
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Figure 1: PCA, DREAMS, and t-SNE embeddings of the Tasic et al. dataset (Tasic et al., 2018) illustrate
how DREAMS preserves the global organization seen in the PCA embedding — such as the separation of
non-neurons, inhibitory, and excitatory neurons — while also capturing the local cell-type structure that is
present in the t-SNE embedding.

Our proposed method DREAMS combines the interpretability and global structure preservation of PCA
with the local sensitivity of t-SNE in a simple, yet effective way. On the Tasic et al. data, it maintains
PCA’s global arrangement by non-neurons, inhibitory, and excitatory neurons, while also revealing the finer
cluster structure within each broad group, similar to t-SNE (Figure 1 middle). DREAMS integrates global
structure preservation into the t-SNE objective by a PCA-based regularization term applied throughout
the entire optimization process. Varying the regularization strength allows DREAMS to transition from
the locally well-structured t-SNE embedding to the globally well-structured PCA embedding. Along this
spectrum it trades off local and global structure more favorably than its competitors resulting in improved
qualitative and quantitative structure preservation, particularly on datasets with hierarchical organization
that exhibit both prominent local and global patterns.

We chose PCA as the default global method in DREAMS due to its simplicity, inherent interpretability
(PCA is linear) and fast runtime. That said, DREAMS also offers regularizing with other global embeddings
such as multidimensional scaling (MDS).

In summary, we introduce the new method DREAMS making the following contributions:

1. suggest a simple but effective regularization strategy to combine t-SNE’s local with PCA’s global quality;
2. present a spectrum of visualizations from t-SNE to PCA with almost no local/global structure trade-off;
3. perform a benchmark of ten algorithms on seven real-world datasets;
4. provide an open-source implementation of DREAMS based on the openTSNE library.

Our code to reproduce the results of this paper is provided as supplementary material and will be made
publicly available upon acceptance. We used a modified openTSNE implementation (supplementary folder
DREAMS) and a modified CNE implementation (supplementary folder DREAMS-CNE).

2 Related Work

The most prominent and well-established visualization methods either excel at preserving local structure,
e.g., neighbor-embedding methods, such as t-SNE (van der Maaten and Hinton, 2008) and UMAP (McInnes
et al., 2018), or global structure such as PCA (Pearson, 1901; Hotelling, 1933) and MDS (Kruskal, 1964),
but not both simultaneously. Therefore, many recent efforts have aimed at producing visualizations with
faithful local and global structure.

Most of them attempt to improve the global structure preservation of neighbor embeddings. One way to
make neighbor embeddings more sensitive to the global structure of a dataset is to widen the set of points
that are deemed similar beyond a small set of nearest neighbors. For instance, increasing the perplexity
parameter in t-SNE effectively increases the number of considered nearest neighbors but consequently leads
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to increased runtime (Kobak and Berens, 2019; Lee et al., 2015; De Bodt et al., 2020). Similarly, several
modifications of UMAP, e.g. PaCMAP (Wang et al., 2021) and TriMAP (Amid and Warmuth, 2019), do
not only use nearest neighbors, but also consider more distant points in their optimization. In addition to
attraction between nearest neighbors, PaCMAP employs weak attraction on mid-near points, while TriMap
tries to also preserve the order of similarities in random triplets. Another triplet-based method, ivis (Szubert
et al., 2019), strives to balance local and global structure with a parametric encoder and a margin loss on
triplets of embedding distances.

A different strategy to improve the global structure in neighbor embeddings is to initialize them with a
global embedding, which can improve the global structure of the final embedding, despite no further steps
for preserving global structure during optimization (Kobak and Linderman, 2021; Wang et al., 2021).

A prominent way to trade off local and global structures within the neighbor-embedding framework is the
attraction-repulsion spectrum (Böhm et al., 2022; Damrich et al., 2023). Along this spectrum methods with
stronger between-neighbor attraction tend to focus on more global structure. UMAP and t-SNE both lie
on this spectrum with UMAP having more attraction. The most global method on this attraction-repulsion
spectrum is Laplacian Eigenmaps (Belkin and Niyogi, 2003).

Recently, hybrid methods were proposed that combine elements of neighbor embedding methods and global
methods during optimization. Several of these are variational autoencoders with a 2D latent space and
regularized ELBO maximization. The method scvis (Ding et al., 2018) uses a Gaussian latent prior and adds
a variant of the t-SNE objective to the ELBO. Its successor VAE-SNE (Graving and Couzin, 2020) employs
a more flexible Gaussian mixture prior. Instead of a regularizer promoting local structure preservation,
ViVAE (Novak et al., 2023) adds a stochastic MDS regularizer, but denoises the high-dimensional data
based on k-nearest neighbor relations.

More similar to our approach are non-parametric hybrid methods that directly optimize the embedding
positions. Local-to-Global Structures (Miller et al., 2023), a method for generic graph drawing, applies MDS-
like stress minimization to shortest path graph distances among pairs of points that are strongly connected,
while repelling non-neighboring pairs. The SQuadMDS-hybrid (Lambert et al., 2022) interpolates between
the objectives of t-SNE and MDS. For MDS it uses the stochastic quartet framework of Lambert et al.
(2022). To make both objectives more compatible, SQuadMDS-hybrid normalizes their gradients before
blending them together. The hybrid method StarMAP (Watanabe et al., 2025) changes the attractive force
in the UMAP objective. Instead of pulling only nearest neighbors together, it also pulls points towards
the PCA coordinates of their k-means cluster centroid. This combination of a neighbor embedding with
PCA is similar to our DREAMS. But instead of UMAP, we use t-SNE due to its better local structure
preservation. Moreover, we propose a simpler objective that avoids StarMAP’s clustering step, leaves the
neighbor-embedding objective intact, and simply pulls each embedding point towards its own PCA position.
We found that this simpler approach leads to a better local-global trade-off. Additionally, setting the
regularization strength in DREAMS to 0 or to 1 allows to recover standard t-SNE and PCA, while the
StarMAP framework cannot fully recover PCA.

Different from neighbor-embedding-inspired methods, PHATE (Moon et al., 2019) is a diffusion-based
method that tries to balance local and global structure preservation. Like neighbor embeddings, it starts
with the k-nearest neighbor graph of the high-dimensional data. It then integrates this local information into
a global graph distance. PHATE uses potential distance, a variant of diffusion distance that focuses more on
global structure. To visualize this global distance metric in 2D, PHATE uses MDS. Geometry-regularized
autoencoders of Duque et al. (2022) regularize their 2D latent space with a precomputed PHATE embedding.
DREAMS also uses a reference embedding for regularization, but is non-parametric, uses PCA or MDS, and
employs the t-SNE loss instead of the reconstruction loss.

3 Background

In dimensionality reduction, we aim to represent a high-dimensional dataset X = [x1, . . . , xn]T ∈ Rn×m with
n observations in an m-dimensional space by a lower-dimensional embedding Y = [y1, . . . , yn]T ∈ Rn×d,
where d ≪ m. The objective is to construct Y such that meaningful relationships among the observations
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are preserved in the lower-dimensional space. In this section, we outline the two dimensionality reduction
methods that DREAMS builds upon — PCA and t-SNE — and show how they approach this goal from
complementary perspectives.

3.1 Principal component analysis (PCA)

Principal component analysis (PCA; Pearson 1901; Hotelling 1933) is a linear transformation that projects
the data onto a new coordinate system aligned with the directions of maximum variance. PCA seeks a linear,
orthogonal mapping W ∈ Rm×d that projects the data into a lower-dimensional space Y = XW , where the
directions in W capture the maximal variance across the entire dataset X. This ensures the preservation
of the macroscopic, global structure since distances along directions with high variance are preserved in the
projection (Huang et al., 2022). However, because orthogonal projections can map distant points to similar
locations, PCA performs poorly at preserving local structures (Huang et al., 2022; Wang et al., 2023).

3.2 t-distributed stochastic neighbor embedding (t-SNE)

t-distributed stochastic neighbor embedding (t-SNE; van der Maaten and Hinton 2008) is a widely used
neighbor embedding method, that is especially effective at preserving local similarities (Espadoto et al.,
2019). By transforming Euclidean distances between points into pairwise similarity probabilities, t-SNE
constructs a probability distribution, P , based on the high-dimensional observations X, and a probability
distribution, Q, based on the low-dimensional embeddings Y . The distribution P = {pij}n

i,j=1 encodes the
nearest-neighbor structure in the high-dimensional space via

pij =
pj|i + pi|j

2n
, where pj|i =

exp
(
−∥xi − xj∥2/(2σ2

i )
)∑

k ̸=i exp (−∥xi − xk∥2/(2σ2
i )) if i ̸= j and pi|i = 0.

The width σi of the Gaussian kernels is adaptively chosen for each data point to ensure the same effective
neighborhood size, i.e., the number of points j for which pj|i ≫ 0. Due to the exponential decrease of the
Gaussians, most pij are close to zero, and are treated as exactly zero in most implementations.

The similarity probability distribution of the low-dimensional embedding points, Q = {qij}n
i,j=1, is based on

a Cauchy kernel:

qij =
(
1 + ∥yi − yj∥2)−1∑

k ̸=l (1 + ∥yk − yl∥2)−1 if i ̸= j and qii = 0.

The objective is to arrange the low-dimensional embedding Y such that the low-dimensional similarities qij

match the similarities pij as measured by the Kullback–Leibler divergence

Lt-SNE(Y ) = KL(P ∥ Q) =
∑
i,j

pij log pij

qij
, (1)

which is minimized via gradient descent with respect to the embedding positions Y .

The similarity probabilities act as kernels centered around the data and embedding points, assigning high
similarity values only to close neighbors while distant points have little impact on the loss function. This
makes neighbors in the high-dimensional space remain neighbors in the low-dimensional embedding space,
ensuring the preservation of local structure. In contrast, due to the weak influence of distant points, global
structure can be misrepresented (Huang et al., 2022; Wang et al., 2023).

4 Methods

4.1 Regularizing with precomputed global embedding

In DREAMS, we first precompute the PCA positions Ỹ ∈ Rn×2 as the reference embedding for global
structure of the data. To combine the local structure preservation of t-SNE with the global structure
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preservation of PCA, we augment the t-SNE loss function by a regularization term that penalizes embedding
points Y deviating from their PCA positions Ỹ , yielding the loss

L(Y ) = (1 − λ)Lt-SNE(Y ) + λ∥Y − αỸ ∥2
2. (2)

Since a PCA embedding scales linearly with the original data scale, while a t-SNE embedding does not, we
rescale Ỹ to match the scale of Y during each gradient-descent iteration by computing a scalar α

α = ∥Y ∥2
/

∥Ỹ ∥2. (3)

This scaling encourages the reference embedding to match the current scale of the t-SNE embedding during
optimization, making the global and local objectives more compatible. Note that α was treated as a constant
on each gradient descent iteration.

The first term of Equation 2 enforces the preservation of local structure in the embedding by minimizing
the t-SNE loss (Equation 1), while the regularization term ensures the preservation of global structure by
encouraging the embedding to resemble the (scaled) PCA embedding Ỹ . This setup allows for local adjust-
ments by the t-SNE loss, while the quadratic penalty prevents large deviations that would distort the global
layout. The regularization strength λ controls the impact of the PCA embedding on the final embedding,
thereby enabling a trade-off between local and global structure preservation. For λ = 0, DREAMS produces
a standard t-SNE embedding, while for λ = 1, it outputs the standard PCA embedding. Empirically, we
found λ = 0.1 to be a suitable value for combining the individual strengths of global structure preservation
of PCA with the local structure preservation of t-SNE without substantially compromising either aspect.

This framework is not limited to using the PCA embedding as Ỹ . Depending on the characteristics of
the dataset, other methods with a good global structure preservation, such as MDS, can also be used as
an effective choice for Ỹ . We will call the version of DREAMS that regularizes using the SQuadMDS
embedding as DREAMS-MDS. By default, we use PCA instead of MDS because PCA is faster and is
inherently interpretable due to its linearity.

Our implementation was based on the openTSNE library (Poličar et al., 2024) where we added the regular-
ization term to the gradient descent optimization. We used default openTSNE hyperparameters and always
initialized with the regularization embedding Ỹ . When using the PCA embedding as Ỹ , we normalized it
by the standard deviation of PC1. When using the MDS embedding (DREAMS-MDS), we directly used the
SQuadMDS output embedding, which performs some internal normalization and produces embeddings with
standard deviations around 10 for all datasets.

The openTSNE library implements Barnes–Hut t-SNE (Yang et al., 2013; Van Der Maaten, 2014) and FIt-
SNE (Linderman et al., 2019) approximations having runtime complexity O(n log n) and O(n) respectively.

4.2 Linear decoding regularization

An alternative approach to using a precomputed PCA embedding is using a linear decoder. Equivalent to
variance maximization, PCA can also be obtained by minimizing the reconstruction error

W̃ = arg min
W ∈Rm×d

∥X − XWW T ∥2
2 subject to W T W = Id. (4)

Since the PCA embedding is given by Ỹ = XW̃ , the DREAMS loss including the decoding regularizer
becomes

L(Y, D) = (1 − λ)Lt−SNE + λ
∥∥X − (Y DT + b)

∥∥2
2 ,

with D ∈ Rm×d being a trainable linear decoder and b ∈ Rm a trainable bias term that is added row-wise and
allows to handle uncentered embeddings. In this setup, by minimizing the reconstruction error, the decoder
is responsible for the global structure preservation by pushing the embedding towards the PCA structure
that has the minimal reconstruction error. If D were constrained to be orthogonal DT D = Id, the optimum
of the regularization term would be D = W̃ (Plaut, 2018; Nazari et al., 2023). Although we do not explicitly
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Table 1: Datasets used in our experiments with a description of their local and global structure. For MNIST,
we only used the training set.

Name Description Global structure Local str. n

Tasic et al. scRNA-seq of mouse cortex major cell classes cell types 23 822
Macosko et al. scRNA-seq of mouse retina major cell classes cell types 44 808
Kanton et al. scRNA-seq of human brain developmental trajectory cell types 20 272
Wagner et al. scRNA-seq of zebrafish embryos developmental trajectory cell types 63 530
Packer et al. scRNA-seq of C. elegans developmental trajectory cell types 86 024
1000 Genomes human whole-genome sequencing continental ancestry populations 3 450
MNIST hand-written digits none digits 0–9 60 000

enforce orthogonality, we observed that the learned linear decoder D naturally tends to be approximately
orthogonal.

We based our implementation on InfoNC-t-SNE (Damrich et al., 2023), a GPU-based contrastive learning
approximation of t-SNE with the InfoNCE loss, implemented in PyTorch as CNE (contrastive neighbor
embedding) package. This allowed us to add the decoding regularizer based on a linear PyTorch layer. We
increased the number of negative samples to 500 to improve the local structure preservation and approx-
imate t-SNE more closely. For the same reason, we ran the optimization for 750 epochs. The remaining
hyperparameters were kept at default values. For the regularization term, we used a linear layer mapping
the low-dimensional embedding to the original feature space. The weights were initialized using the first two
principal components of the data (the bias term was initialized with zero). We will refer to this version as
DREAMS-CNE-Decoder.

For comparison, we also implemented a version of DREAMS using the CNE backend with precomputed
PCA regularization as in Section 4.1. We will refer to this version as DREAMS-CNE. Here the gradient
with respect to Y was computed using autodifferentiation, including the ∥Y ∥ contribution to α.

5 Experimental setup

5.1 Datasets and metrics

To validate our method experimentally, we used seven real-world datasets, all but one containing both
prominent local and global structures (Table 1). We measured the embedding quality using two established
metrics quantifying local and global structure preservation (Kobak and Berens, 2019):

KNN The k-nearest neighbor recall (KNN) is the fraction of k-nearest neighbors in the high-dimensional
data that are preserved as k-nearest neighbors in the low-dimensional embedding. We used k = 10
throughout all experiments. The final metric is given as the average across all n data points. KNN
quantifies the preservation of local structure in the embedding.

CPD The correlation of pairwise distances (CPD) is the Spearman correlation between the pairwise dis-
tances in the high-dimensional space and in the embedding. We computed pairwise distances among
1 000 randomly chosen data points. CPD quantifies the preservation of the global structure in the
embedding.

These two metrics rely solely on the high-dimensional data X and its corresponding embedding Y and do
not make use of any metadata listed in Table 1.

We also evaluated an aggregated local-global score s. For each dataset, we normalized both metrics based
on the minimum and the maximum values observed across all methods. Let KNNmin and CPDmin denote
the lowest (worst) KNN and CPD scores across all methods for a given dataset, and KNNmax and CPDmax
denote the highest (best) scores. Given an embedding with specific KNN and CPD values, we define the
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aggregated local-global score as

s = 1
2

(
KNN − KNNmin

KNNmax − KNNmin
+ CPD − CPDmin

CPDmax − CPDmin

)
. (5)

This score ranges from 0 (embedding has the worst local and the worst global scores) to 1 (embedding has
the best local and the best global scores), and allows direct comparison of embedding methods regarding
their combined local and global structure preservation. Note that it only produces a relative score as it
depends on the considered competitors.

5.2 Comparison methods

We validated DREAMS against several baseline and hybrid methods (always using the default hyperparam-
eter settings):

• t-SNE (van der Maaten and Hinton, 2008) using the openTSNE implementation (Poličar et al., 2024)
with the same initialization as in DREAMS (PCA normalized by the standard deviation of PC1),
and UMAP (McInnes et al., 2018) as baselines for local structure preservation;

• PCA and MDS using the SQuadMDS implementation (Lambert et al., 2022) as baselines for global
structure preservation;

• TriMap (Amid and Warmuth, 2019), PacMAP (Wang et al., 2023), and PHATE (Moon et al., 2019)
as a methods that strive to preserve both local and global structure;

• and hybrid approaches SQuadMDS-hybrid (Lambert et al., 2022) and StarMAP (Watanabe et al.,
2025), which, like DREAMS, mix the local structure preservation of neighbor embeddings with
global methods.

We always report means and uncertainties (often barely perceptible) across four random seeds. All experi-
ments were conducted on a single Intel Xeon Gold 6226R CPU 2.90 GHz (16 cores, 32 threads), an NVIDIA
RTX A6000 GPU (48 GB VRAM, CUDA 12.7), and 377 GB system RAM, running on a Linux environ-
ment. Only experiments including DREAMS-CNE or DREAMS-CNE-Decoder utilized the GPU. Without
parallelization, the runtime of all experiments was about a week.

6 Results

6.1 DREAMS successfully combines the strengths of t-SNE and PCA

We first illustrate DREAMS using the Tasic et al. dataset. When adjusting the regularization strength
λ, DREAMS generates a continuum of embeddings between the two extremes of the locally focused t-
SNE embedding and the globally focused PCA embedding (Figure 2a). For small λ values, the resulting
embedding resembled the t-SNE embedding, effectively capturing the local data structure and highlighting
fine-grained clusters and cell types. For larger λ values, the embedding progressively shifted towards the PCA
embedding, emphasizing higher-level groupings, such as broad cell classes (inhibitory/excitatory neurons and
non-neuronal cells). At intermediate regularization strengths, DREAMS integrated both local and global
structures without visibly compromising either aspect of the data. Competing methods often missed much
of the global structure (Figure 2b, c) or showed less local structure (Figure 2c–e).

The quantitative metrics corroborated DREAMS ability to maintain both local and global structure (Fig-
ure 3). Across all seven datasets, t-SNE consistently achieved the highest KNN value, providing the best
locally structured embedding. In contrast, PCA and MDS maintained global structure best, as reflected in
their CPD values being the highest. For nearly all regularization parameters λ ∈ [0, 1] DREAMS yielded em-
beddings with better local or global structure preservation than its competitors. On the multi-scale datasets
(all our datasets apart from MNIST), DREAMS with its default regularization strength (λ = 0.1) simulta-
neously achieved KNN close to t-SNE’s and CPD close to PCA’s. Across all datasets, DREAMS preserved

7



Under review as submission to TMLR

Inhibitory neurons
Excitatory neurons
Non-neural cells

a t-SNE DREAMS PCA

b c d eSQuadMDS-hybrid UMAP TriMap StarMAP
= 0.0 = 0.05 = 0.1 = 0.2 = 1.0

Figure 2: Embeddings of the Tasic et al. dataset. a Spectrum of DREAMS embeddings for different values
of λ. b Embeddings obtained by some of the competing methods. For all embeddings, see Figure S2.

the local structure much better than StarMAP, which also combines neighbor embeddings with PCA. This
is likely because DREAMS relies on t-SNE, which preserves local structure better than UMAP, that is used
in StarMAP.

UMAP generally performed poorly in our metrics, often preserving not only the local but also the global
structure worse than t-SNE, as measured by the CPD metric. This is likely due to different default initial-
izations of openTSNE and UMAP (PCA and Laplacian Eigenmaps, respectively). In contrast, TriMap often
performed similarly well to StarMap, but still fell short compared to DREAMS in terms of local structure
preservation. PHATE and PacMAP yielded worse CPD and worse KNN scores compared to DREAMS on
all datasets.

Only on the MNIST dataset DREAMS was not able to maintain high global and local structure at the same
time, likely because this dataset does not have a prominent global structure in the first place (CPD values
were comparatively low for all methods including PCA and MDS). Nevertheless, even here, DREAMS was
on par or outperformed most other methods (Figure 3g).

Using our aggregated local-global score, we could directly compare DREAMS to other methods along a single
dimension (Table 2). The highest local-global score on every dataset was achieved either by DREAMS or
by DREAMS-MDS, depending on whether PCA or MDS was capturing global structure more effectively in
terms of the CPD metric. Following DREAMS, SQuadMDS-hybrid was consistently the next best method.
It achieved scores comparable to DREAMS on the 1000 Genomes and MNIST datasets, but on all remaining
datasets, its performance measured by the local-global score was at least 13% lower than the best performing
DREAMS variant. On the multi-scale datasets (all datasets apart from MNIST), all remaining other methods
had scores at least 19% lower than the best performing DREAMS variant.

6.2 DREAMS provides the best local-global spectrum

Next we compared the local-global embedding spectrum of DREAMS to the local-global spectra of existing
methods and variants of DREAMS.

In SQuadMDS-hybrid, the spectrum of embeddings is obtained by specifying the learning rates of t-SNE and
MDS. For StarMAP, varying the regularization strength allows trading off local and global structure. Fur-
thermore, increasing the exaggeration parameter in openTSNE can emphasize global structure preservation
and also yields a local-global continuum of embeddings (Böhm et al., 2022).

8



Under review as submission to TMLR

0.4 0.7 1.0
CPD (global)

0.0

0.1

0.2

0.3

0.4

0.5

KN
N 

(lo
ca

l)
a Tasic et al.

0.65 0.80 0.95

b Macosko et al.

0.6 0.8 1.0

c Kanton et al.

0.50 0.75 1.00

d Wagner et al.

0.5 0.7 0.9

e Packer et al.

0.30 0.65 1.00

f 1000 Genomes

0.25 0.50 0.75

g MNIST

DREAMS
DREAMS ( =0.1)

DREAMS-MDS ( =0.1)
PCA

openTSNE
UMAP

SQuadMDS
SQuadMDS-hybrid

StarMAP
TriMap

PaCMAP
PHATE

Figure 3: Quantitative evaluation of local and global structure preservation of different methods across
multiple datasets (Table 1). Spearman correlation of pairwise distances (CPD, global metric) is plotted
against kNN recall (KNN, local metric). For improved visual clarity different markers were used.

We observed that these spectra offered noticeably worse trade-offs than DREAMS, as illustrated on the Tasic
et al. dataset in Figure 4a, where PCA produces the best global layout. Similarly, DREAMS-MDS achieves
a better trade-off than SQuadMDS-hybrid, as demonstrated on the Packer et al. dataset (Figure 4b), where
MDS produces the best global layout.

Moreover, while DREAMS includes standard t-SNE and PCA/MDS as its corner cases for λ = 0 and λ = 1
(marked with stars in Figure 4), neither SQuadMDS-hybrid nor StarMAP could reach MDS and PCA,
respectively, in their most global setting. Additionally, SQuadMDS-hybrid underperformed compared to
t-SNE in its most local configuration (Figure 4a,b). This outcome is expected for StarMAP, as its objective
continues to blend aspects of UMAP and PCA, even at its highest regularization strength. In the case of
SQuadMDS-hybrid, the reason is likely the normalization of the t-SNE and MDS gradients before combining
them.

Switching DREAMS’ neighbor-embedding backend from openTSNE to contrastive neighbor embeddings
(CNE, Damrich et al. 2023) with the InfoNCE loss decreased the local structure preservation, directly
proportionally to the difference in local structure preservation between t-SNE and its InfoNCE version
InfoNC-t-SNE (Figure 4c). Using the CNE backend, we compared regularization using a precomputed PCA
embedding (DREAMS-CNE) with linear decoding regularization (DREAMS-CNE-Decoder), and observed
only marginal improvements with the decoder approach (Figure S1). The MNIST dataset was the only

Table 2: Aggregated local-global score. For each dataset, the methods within 0.05 of the highest score are
highlighted in bold.

Tasic
et al.

Macosko
et al.

Kanton
et al.

Wagner
et al.

Packer
et al.

1000
Genomes MNIST

DREAMS 0.91 0.87 0.88 0.86 0.62 0.89 0.62
DREAMS-MDS 0.87 0.80 0.90 0.89 0.81 0.92 0.67
SQuadMDS-hybrid 0.71 0.61 0.77 0.76 0.63 0.88 0.61
StarMAP 0.68 0.56 0.66 0.59 0.38 0.66 0.26
PHATE 0.25 0.42 0.40 0.39 0.28 0.35 0.19
PaCMAP 0.45 0.35 0.42 0.39 0.35 0.51 0.20
TriMap 0.66 0.55 0.56 0.58 0.51 0.55 0.10
UMAP 0.26 0.46 0.26 0.19 0.39 0.31 0.19
t-SNE 0.60 0.50 0.60 0.63 0.50 0.73 0.61
PCA 0.50 0.50 0.48 0.46 0.24 0.43 0.35
MDS 0.48 0.47 0.52 0.51 0.51 0.55 0.50
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Figure 4: Trade-offs between local and global structure preservation in different methods. Spearman corre-
lation of pairwise distances is plotted against kNN recall. Panels a and c show results on the Tasic et al.
dataset, while panel b is based on the Packer et al. dataset. a: Performance of DREAMS compared with
other local-global spectra. b: Comparison of DREAMS-MDS and SQuadMDS-hybrid. c: Performance of
different DREAMS variants.

one where the decoder approach performed much better in terms of our metrics, but this did not translate
into visible improvements of the embedding structure. Although the decoder could reconstruct the PCA
embedding and enhance global structure, it introduces additional randomness and computational complexity.
Moreover, with a precomputed global embedding, we are more flexible to adjust the global layout e.g. by
switching from PCA to MDS. For these reasons and especially due to the better local structure of openTSNE
than InfoNC-t-SNE, we prefer the simple regularization using a precomputed embedding as in the openTSNE-
based DREAMS variants.

7 Discussion

In this work, we introduced DREAMS, a dimensionality reduction method that adds a regularization term
to the t-SNE objective. This regularization term penalizes embedding points that deviate from their corre-
sponding PCA positions and thereby encourages global structure preservation throughout the optimization
process. Our approach addresses a critical shortcoming in conventional dimensionality reduction techniques,
which often prioritize one structural scale over the other. Through this simple yet effective regularization
term and a tunable hyperparameter λ, DREAMS allows for a continuous spectrum of embeddings that transi-
tion smoothly from the locally faithful structure of t-SNE to the globally coherent and interpretable structure
of PCA. Furthermore, with its default regularization strength (λ = 0.1), DREAMS provides an embedding
that successfully balances local and global structure preservation, outperforming competing methods.

Across seven real-world datasets, DREAMS or DREAMS-MDS with default λ = 0.1 consistently achieved
the best performance in terms of the local-global score. This highlights its robustness and wide applicability,
especially to hierarchical datasets with multiple inherent structure scales. While multiscale structure is
common in real-world datasets, DREAMS is less useful in datasets without it, such as the MNIST dataset,
as there is less global structure to preserve. Moreover, DREAMS introduces an additional hyperparameter,
the regularization strength λ, whose optimal value can depend on the specific dataset and the intended use.
Consequently, different datasets may require tuning λ to achieve the optimal balance between local and
global structure preservation. That said, we found that λ = 0.1 worked well across the datasets.

Because the regularization enforces alignment with a predefined structure, any biases or limitations in the
PCA embedding would propagate into the final embedding. As demonstrated in cases where the MDS
embedding captures global structure more effectively than PCA, sometimes it can be beneficial to regularize
towards the MDS embedding, as in DREAMS-MDS. Thanks to its flexible and simple design, DREAMS
accommodates such substitutions, making it adaptable to the specific characteristics of different datasets.

10
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Our alternative implementation DREAMS-CNE-Decoder performed worse than the default DREAMS due
to the lower local quality of sampling-based InfoNC-t-SNE. Therefore we prefer our openTSNE-based im-
plementation, even though the PyTorch implementation may be preferable in some use cases.

In conclusion, DREAMS successfully combines the local structure preservation strength of t-SNE with the
global structure of PCA. This makes DREAMS’ visualizations of high-dimensional data more faithful and
interpretable, particularly for datasets with hierarchical structure.
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A Appendix

A.1 Datasets

All scRNA-seq datasets (except Packer et al.) were preprocessed as in Böhm et al. (2022) and Kobak and
Berens (2019). After selecting the 1000 (3000 for Macosko et al.) most variable genes, we normalized the
library sizes to the median library size in the dataset, log-transformed the normalized values with log2(x+1),
and finally reduced the dimensionality to 50 via PCA. The Packer et al. dataset was already preprocessed
to 100 principal components of which we used the first 50. The original data was downloaded following links
in the original publications.

For the MNIST dataset (Lecun et al., 1998), which was downloaded using the torchvision API, we used the
first 50 principal components.

The raw 1000 Genomes Project data (The 1000 Genomes Project Consortium, 2015) is available at https:
//ftp.1000genomes.ebi.ac.uk. This dataset contains 3 450 human genotypes. We got the preprocessed
data from (Diaz-Papkovich et al., 2019) and (Diaz-Papkovich et al., 2023); this is in an integer-valued data
matrix with 53 999 features, containing values 0, 1, and 2, representing the number of alleles differing from
a reference genome. We used PCA to reduce the number of features to 50.

A.2 DREAMS-CNE and DREAMS-CNE-Decoder
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Figure S1: Spearman correlation of pairwise distances (CPD, global metric) is plotted against kNN recall
(local metric). The figure shows the spectrum of DREAMS-CNE, using a regularizer with precomputed PCA
embedding, and DREAMS-CNE-Decoder, using a regularizer with a linear decoder, across all seven datasets.
The bigger scatter points display DREAMS-CNE and DREAMS-CNE-Decoder with their respective default
regularization strengths (which achieved the highest average local-global score across all data sets) and
reference methods. Here, InfoNC-t-SNE is used as the t-SNE backbone and corresponds to the regularization
strength of λ = 0 while PCA corresponds to the maximal regularization strength of λ = 1. In panel g
(MNIST) the scatter points of PCA and DREAMS-CNE-Decoder lie exactly on top of each other.

A.3 Visualizations of all datasets

See next pages.
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Figure S2: Visualizations of the Tasic et al. dataset with all considered methods.
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Figure S3: Visualizations of the Macosko et al. dataset with all considered methods.
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Figure S4: Visualizations of the Kanton et al. dataset with all considered methods.
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Figure S5: Visualizations of the Wagner et al. dataset with all considered methods (hpf = hours post
fertilization).
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Figure S6: Visualizations of the Packer et al. dataset with all considered methods.
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Figure S7: Visualizations of the 1000 Genomes Project dataset (The 1000 Genomes Project Consortium,
2015) with all considered methods.
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Figure S8: Visualizations of the MNIST dataset (Lecun et al., 1998) with all considered methods.

21


	Introduction
	Related Work
	Background
	Principal component analysis (PCA)
	t-distributed stochastic neighbor embedding (t-SNE)

	Methods
	Regularizing with precomputed global embedding
	Linear decoding regularization

	Experimental setup
	Datasets and metrics
	Comparison methods

	Results
	DREAMS successfully combines the strengths of t-SNE and PCA
	DREAMS provides the best local-global spectrum

	Discussion
	Appendix
	Datasets
	DREAMS-CNE and DREAMS-CNE-Decoder
	Visualizations of all datasets


