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Abstract

Dimensionality reduction techniques are widely used for visualizing high-dimensional data
in two dimensions. Existing methods are typically designed to preserve either local (e.g.,
t-SNE, UMAP) or global (e.g., MDS, PCA) structure of the data, but none of the es-
tablished methods can represent both aspects well. In this paper, we present DREAMS
(Dimensionality Reduction Enhanced Across Multiple Scales), a method that combines the
local structure preservation of t-SNE with the global structure preservation of PCA via a
simple regularization term. Our approach generates a spectrum of embeddings between the
locally well-structured ¢-SNE embedding and the globally well-structured PCA embedding,
efficiently balancing both local and global structure preservation. We benchmark DREAMS
across eleven real-world datasets, showcasing qualitatively and quantitatively its superior
ability to preserve structure across multiple scales compared to previous approaches.
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Figure 1: PCA, DREAMS, and ¢t-SNE embeddings of the [Tasic et al| dataset illustrate how DREAMS
preserves the global organization seen in the PCA embedding — such as the separation of non-neurons,
inhibitory, and excitatory neurons — while also capturing the local cell-type structure that is present in the
t-SNE embedding.
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1 Introduction

Real-world data often exhibit complex structures, making their effective and interpretable visualization a
crucial step in exploratory data analysis. Dimensionality reduction methods serve this purpose by projecting
high-dimensional data into more interpretable low-dimensional representations while preserving meaningful
structures (de Bodt et al., [2025). Among dimensionality reduction methods, principal component analysis
(PCA; Hotelling; [1933)) and ¢-distributed stochastic neighbor embedding (¢-SNE; van der Maaten and Hinton,
2008) have emerged as two widely used methods. PCA excels at capturing global structures by projecting
data onto a lower-dimensional subspace in directions that maximize variance, providing a broad overview of
the dataset’s structure. In contrast, t--SNE is a neighbor-embedding method with the objective to map data
points that are nearby in high-dimensional space close to one another in the low-dimensional embedding. Its
focus on neighborhood preservation makes ¢-SNE particularly effective in preserving local structures. When
applied individually, both methods suffer from limitations: PCA often overlooks fine local relationships,
while ¢-SNE distorts global structures in favor of local neighborhood preservation.

However, in many real-world datasets, e.g., single-cell transcriptomic datasets, both local and global struc-
ture is meaningful. Local relationships can reveal microscopic data patterns such as small clusters and cell
types. For example, the [Tasic et al.| dataset features 122 fine clusters that represent cell types, which are
clearly separated in the t-SNE plot right). Conversely, the global structure reflects macroscopic
data patterns such as separations between broad cell classes (Tasic et all 2018) or developmental trajecto-
ries (Kanton et al. 2019)) across an entire cell population. In the [Tasic et al.| dataset, this level of structure
separates individual cells into non-neurons, excitatory, and inhibitory neurons. This global structure is not
evident in the ¢-SNE plot, but is prominent in the PCA visualization, which in turn fails to separate the
finer clusters left). Since both local and global structure carry essential and often complementary
information, neglecting either structure scale can result in incomplete or biased interpretations, highlighting
the importance of preserving both scales simultaneously.

Our proposed method DREAMS combines the interpretability and global structure preservation of PCA
with the local sensitivity of ¢-SNE in a simple, yet effective way. On the Tasic et al| data, it maintains
PCA’s global arrangement of non-neurons, inhibitory, and excitatory neurons, while also revealing the finer
cluster structure within each broad group, similar to ¢-SNE (Figure 1{ middle). DREAMS integrates global
structure preservation into the t-SNE objective by a PCA-based regularization term applied throughout
the entire optimization process. Varying the regularization strength allows DREAMS to transition from
the locally well-structured ¢-SNE embedding to the globally well-structured PCA embedding. Along this
spectrum it trades off local and global structure more favorably than its competitors, resulting in improved
qualitative and quantitative structure preservation, particularly on datasets with hierarchical organization
that exhibit both prominent local and global patterns.

We chose PCA as the default global method in DREAMS due to its simplicity, inherent interpretability
(PCA is linear) and fast runtime. That said, DREAMS also offers regularizing with other global embeddings
such as multidimensional scaling (MDS).

In summary, we introduce the new method DREAMS making the following contributions:

1. suggest a simple but effective regularization strategy to combine t-SNE’s local with PCA’s global quality;
2. present a spectrum of visualizations with state-of-the-art trade-off between local and global structure;
3. perform a benchmark of ten algorithms on eleven real-world datasets;

4. provide an open-source implementation of DREAMS based on the openTSNE library.

Our code is available at https://github.com/berenslab/dreams-experiments/tree/tmlr., We used a
modified openTSNE implementation available at https://github.com/berenslab/DREAMS/tree/tmlr and
a modified CNE implementation available at https://github.com/berenslab/DREAMS-CNE/tree/tmlr,

2 Related Work

The most prominent and well-established visualization methods either excel at preserving local structure,
e.g., neighbor-embedding methods ¢-SNE (van der Maaten and Hinton, 2008) and UMAP (Mclunes et al.,
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2018), or global structure, e.g., PCA (Pearson, 1901 Hotelling, 1933) and MDS (Kruskal, 1964), but not
both simultaneously. Therefore, many recent efforts have aimed at producing visualizations with faithful
local and global structure.

Most of them attempt to improve the global structure preservation of neighbor embeddings. One way to
make neighbor embeddings more sensitive to the global structure of a dataset is to widen the set of points
that are deemed similar beyond a small set of nearest neighbors. For instance, increasing the perplexity
parameter in t-SNE effectively increases the number of considered nearest neighbors but consequently leads
to increased runtime (Kobak and Berens, 2019; [Lee et all |2015; [De Bodt et all [2020)). Similarly, several
modifications of UMAP, e.g., PACMAP (Wang et al., 2021)) and TriMAP (Amid and Warmuth, 2019), do
not only use nearest neighbors, but also consider more distant points in their optimization. In addition to
attraction between nearest neighbors, PACMAP employs weak attraction on mid-near points, while TriMap
tries to also preserve the order of similarities in random triplets. Another triplet-based method, ivis (Szubert
et al [2019), strives to balance local and global structure with a parametric encoder and a margin loss on
triplets of embedding distances. Changing the similarity of input points more drastically, EmbedOR. (Saidi
et al) [2025) computes a neighbor embedding from a distance matrix based on the curvature, and thus
geometry, of the k-nearest neighbor graph.

A different strategy to improve the global structure in neighbor embeddings is to initialize them with
a global embedding, which can improve the global structure of the final embedding, despite no further
steps for preserving global structure during optimization (Kobak and Linderman) 2021} [Wang et al., 2021)).
UMATO (Jeon et al., [2025) first computes a skeletal layout of only the most densely connected points to
capture the global layout and then adds the remaining points in a second optimization phase.

A prominent way to trade off local and global structures within the neighbor-embedding framework is the
attraction-repulsion spectrum (Bohm et al., 2022; Damrich et al [2023)). Along this spectrum methods with
stronger between-neighbor attraction tend to focus on more global structure. UMAP and ¢-SNE both lie
on this spectrum with UMAP having more attraction. The most global method on this attraction-repulsion
spectrum is Laplacian Eigenmaps (Belkin and Niyogi, [2003]).

Recently, hybrid methods were proposed that combine elements of neighbor embedding methods and global
methods during optimization. Several of these are variational autoencoders with a 2D latent space and
regularized ELBO maximization. The method scvis (Ding et al., [2018) uses a Gaussian latent prior and adds
a variant of the t--SNE objective to the ELBO. Its successor VAE-SNE (Graving and Couzin| [2020)) employs
a more flexible Gaussian mixture prior. Instead of a regularizer promoting local structure preservation,
ViVAE (Novak et all [2023) adds a stochastic MDS regularizer, but denoises the high-dimensional data
based on k-nearest neighbor relations.

More similar to our approach are non-parametric hybrid methods that directly optimize the embedding posi-
tions. Local-to-Global Structures (Miller et al., 2023]), a method for generic graph drawing, applies MDS-like
stress minimization to shortest path graph distances among pairs of points that are strongly connected, while
repelling non-neighboring pairs. Cluster and Embed (Coda et al., |2025) embeds clusters separately, focusing
on their local structure. These fixed cluster embeddings then get arranged into a full embedding by rigid
transformations that minimize the overall stress like in MDS. The SQuadMDS-hybrid (Lambert et al., [2022)
interpolates between the objectives of {-SNE and MDS. For MDS it uses the stochastic quartet framework
of [Lambert et al.| (2022). To make both objectives more compatible, SQuadMDS-hybrid normalizes their
gradients before blending them together. The hybrid method StarMAP (Watanabe et al.l [2025|) changes
the attractive force in the UMAP objective. Instead of pulling only nearest neighbors together, it also pulls
points towards the PCA coordinates of their k-means cluster centroid. This combination of a neighbor em-
bedding with PCA is similar to our DREAMS. But instead of UMAP, we use t-SNE due to its better local
structure preservation. Moreover, we propose a simpler objective that avoids StarMAP’s clustering step,
leaves the neighbor-embedding objective intact, and simply pulls each embedding point towards its own
PCA position. We found that this simpler approach leads to a better local-global trade-off. Additionally,
setting the regularization strength in DREAMS to 0 or to 1 allows to recover standard ¢-SNE and PCA,
while the StarMAP framework cannot fully recover PCA.
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Different from neighbor-embedding-inspired methods, PHATE (Moon et al., [2019)) is a diffusion-based
method that tries to balance local and global structure preservation. Like neighbor embeddings, it starts
with the k-nearest neighbor graph of the high-dimensional data. It then integrates this local information into
a global graph distance. PHATE uses potential distance, a variant of diffusion distance that focuses more on
global structure. To visualize this global distance metric in 2D, PHATE uses MDS. Geometry-regularized
autoencoders of Duque et al.| (2022) regularize their 2D latent space with a precomputed PHATE embedding.
DREAMS also uses a reference embedding for regularization, but is non-parametric, uses PCA or MDS, and
employs the t-SNE loss instead of the reconstruction loss.

3 Background

In dimensionality reduction, we aim to represent a high-dimensional dataset X = [z1,...,2,]T € R™™ with
n observations in an m-dimensional space by a lower-dimensional embedding Y = [y1,...,yn] € R"*9
where d < m. The objective is to construct Y such that meaningful relationships among the observations
are preserved in the lower-dimensional space. In this section, we outline the two dimensionality reduction
methods that DREAMS builds upon — PCA and ¢-SNE — and show how they approach this goal from
complementary perspectives.

3.1 Principal component analysis (PCA)

Principal component analysis (PCA; Pearson, [1901; Hotelling} [1933) is a linear transformation that projects
the data onto a new coordinate system aligned with the directions of maximum variance. PCA seeks a linear,
orthogonal mapping W € R™*? that projects the data into a lower-dimensional space Y = XW, where the
directions in W capture the maximal variance across the entire dataset X. This ensures the preservation
of the macroscopic, global structure since distances along directions with high variance are preserved in the
projection (Huang et al.| [2022). However, because orthogonal projections can map distant points to similar
locations, PCA performs poorly at preserving local structures (Huang et al. 2022; [Wang et al., 2023).

3.2 t{-distributed stochastic neighbor embedding (t-SNE)

t-distributed stochastic neighbor embedding (¢-SNE; [van der Maaten and Hinton, 2008)) is a widely used
neighbor-embedding method that is especially effective at preserving local similarities (Espadoto et al.)
2019). By transforming Euclidean distances between points into pairwise similarity probabilities, t-SNE
constructs a probability distribution P, based on the high-dimensional observations X, and a probability
distribution @, based on the low-dimensional embeddings Y. The distribution P = {p;;}};_; encodes the
nearest-neighbor structure in the high-dimensional space via

exp (=i — z[|*/(207))
Doz exp (= [z — 2|2/ (207))

The width o; of the Gaussian kernels is adaptively chosen for each data point to ensure the same effective
neighborhood size, i.e., the number of points j for which p;; > 0. Due to the exponential decrease of the
Gaussians, most p;; are close to zero, and are treated as exactly zero in most implementations.

Pjli + Pij
Dij = ~on

, where pj; = if i # j and p;; = 0.

The similarity probability distribution of the low-dimensional embedding points @ = {g¢;; }ijl is based on
the Cauchy kernel:

(i —wl®
Zk;sl (1 +llyk — ylH2)7

Qij 7 if i # j and ¢;; = 0.

The objective is to arrange the low-dimensional embedding Y such that the low-dimensional similarities g;;
match the similarities p;; as measured by the Kullback-Leibler divergence

Lisxe(Y) =KL(P || Q) =Y pijlog %7 (1)
i,j Y
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which is minimized via gradient descent with respect to the embedding positions Y.

The similarity probabilities act as kernels centered around the data and embedding points, assigning high
similarity values only to close neighbors, while distant points have little impact on the loss function. This
makes neighbors in the high-dimensional space remain neighbors in the low-dimensional embedding space,
ensuring the preservation of local structure. In contrast, due to the weak influence of distant points, global
structure can be misrepresented (Huang et al., [2022; [Wang et al., [2023).

4 Methods

4.1 Regularizing with precomputed global embedding

In DREAMS, we first precompute the PCA positions Y € R"*2 as the reference embedding for the global
structure of the data. To combine the local structure preservation of ¢-SNE with the global structure
preservation of PCA, we augment the -SNE loss function by a regularization term that penalizes embedding
points Y deviating from their PCA positions Y, yielding the loss

L) = (1= NEess(¥) + 2]Y —a¥ [ (2)

Since a PCA embedding scales linearly with the original data scale, while a ¢-SNE embedding does not, we
rescale Y to match the scale of Y during each gradient-descent iteration by computing a scalar «

a=|Y|[r/IY]p (3)

This scaling encourages the reference embedding to match the current scale of the -SNE embedding during
optimization, making the global and local objectives more compatible. Note that o was treated as a constant
in each gradient descent iteration. We discuss alternative scaling options in Appendix

The first term of enforces the preservation of local structure in the embedding by minimizing
the t-SNE loss (Equation 1)), while the regularization term ensures the preservation of global structure by
encouraging the embedding to resemble the (scaled) PCA embedding Y. This setup allows for local adjust-
ments by the t-SNE loss, while the quadratic penalty prevents large deviations that would distort the global
layout. The regularization strength A controls the impact of the PCA embedding on the final embedding,
thereby enabling a trade-off between local and global structure preservation. For A = 0, DREAMS produces
a standard t-SNE embedding since the loss term reduces to the t-SNE objective. In the other
limiting case of regularization strength A = 1, the objective becomes the regularizer without the ¢-SNE
loss whose optimum is a (scaled) PCA embedding. For intermediate A € (0,1) the objective is a weighted
mean between the t-SNE objective and the regularizer. Empirically, we found A = 0.15 to be a suitable
value for combining the individual strengths of global structure preservation of PCA with the local structure
preservation of -SNE, without substantially compromising either aspect.

This framework is not limited to using the PCA embedding as the global reference embedding Y. Depending
on the characteristics of the dataset, other methods with good global structure preservation, such as MDS, can
also be used as an effective choice for Y. We will refer to the version of DREAMS that uses the SQuadMDS
embedding for regularization as DREAMS-MDS. By default, we use PCA instead of MDS because PCA is
faster and is inherently interpretable due to its linearity.

Our implementation is based on the openTSNE library (Policar et al.,2024), where we added the regularization
term to the gradient-descent optimization. We used default openTSNE hyperparameters and initialized the
embedding with the regularization embedding Y, which was rescaled so that its first dimension had a standard
deviation of 10™* (as is default in openTSNE).

The openTSNE library implements Barnes—Hut ¢-SNE (Yang et al., 2013} [Van Der Maaten, |2014)) and FIt-
SNE (Linderman et all |2019)) approximations having runtime complexity O(nlogn) and O(n) respectively.
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4.2 Linear decoding regularization

An alternative approach to using a precomputed PCA embedding is using a linear decoder. Equivalent to
variance maximization, PCA can also be obtained by minimizing the reconstruction error

W = argmin || X — XWW T ||2 subject to W W = I,. (4)
WeRmxd

Since the PCA embedding is given by Y =X W, the DREAMS loss with linear decoding regularizer becomes
2
L(Y,D)=(1-XNLesng +A||X = (¥YDT +0)||.,

with D € R™* being a trainable linear decoder and b € R™ a trainable bias term that is added row-wise and
allows to handle uncentered embeddings. In this setup, by minimizing the reconstruction error, the decoder
is responsible for the global structure preservation by pushing the embedding towards the PCA structure
that has the minimal reconstruction error. If D were constrained to have orthogonal columns (DT D = I,),
the optimum of the regularization term would be D = 1% (Plaut} [2018; Nazari et al., 2023)). Although we do
not explicitly enforce orthogonality, we observed that the learned linear decoder D naturally tends to have
approximately orthogonal columns.

We based our implementation on InfoNC-¢-SNE (Damrich et al., |2023), a GPU-based contrastive learning
approximation of t-SNE with the InfoNCE loss, implemented in PyTorch as CNE (contrastive neighbor
embedding) package. This allowed us to add the decoding regularizer based on a linear PyTorch layer. We
increased the number of negative samples to 500 to improve the local structure preservation and approx-
imate t-SNE more closely. For the same reason, we ran the optimization for 750 epochs. The remaining
hyperparameters were kept at default values. For the regularization term, we used a linear layer mapping
the low-dimensional embedding to the original feature space. The weights were initialized using the first two
principal components of the data (the bias term was initialized with zero). We will refer to this version as
DREAMS-CNE-Decoder.

For comparison, we also implemented a version of DREAMS using the CNE backend with precomputed
PCA regularization as in Section We will refer to this version as DREAMS-CNE. Here the gradient
with respect to Y was computed using autodifferentiation, including the ||Y||p contribution to .

5 Experimental setup

5.1 Datasets and performance metrics

To validate our method experimentally, we used eleven real-world datasets, all but one containing both
prominent local and global structures (Table 1f). We measured the embedding quality using two established
metrics quantifying local and global structure preservation (Kobak and Berens| [2019)):

KNN The k-nearest neighbor recall (KNN) is the fraction of k-nearest neighbors in the high-dimensional
data that are preserved as k-nearest neighbors in the low-dimensional embedding. We used k = 10
throughout all experiments (for results with different choices of k, see . The final metric
is given as the average across all n data points. KNN quantifies the preservation of local structure
in the embedding.

CPD The correlation of pairwise distances (CPD) is the Spearman correlation between the pairwise dis-
tances in the high-dimensional space and in the embedding. We computed pairwise distances among
1000 randomly chosen data points. CPD quantifies the preservation of the global structure in the
embedding.

We also evaluated an aggregated local-global score s. For each dataset, we normalized both metrics based
on the minimum and the maximum values observed across all methods. Let KNN,,i, and CPD,,;, denote
the lowest (worst) KNN and CPD scores across all methods for a given dataset, and KNN,.x and CPDpax
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Table 1: Datasets used in our experiments with a description of their local and global structure. For MNIST
and Fashion MNIST, we only used the training set.

Name Description Global structure Local str. n
Tasic et al. scRNA-seq of mouse cortex major cell classes cell types 23822
Macosko et al| scRNA-seq of mouse retina major cell classes cell types 44808
Kanton et al|  scRNA-seq of human brain developmental trajectory cell types 20272
Wagner et al.|  scRNA-seq of zebrafish embryos  developmental trajectory cell types 63530
Packer et al. scRNA-seq of C. elegans developmental trajectory cell types 86 024
1000 Genomes human whole-genome sequencing continental ancestry populations 3450
Mammoth 3D Mammoth skeleton overall body shape bone structure 50000
Satellite satellite image crops soil color 6 soil types 6435
FMNIST images of fashion items shoes/bags/garments 10 classes 60 000
MNIST hand-written digits none digits 0-9 60000
CIFARI10 vehicle and animal images vehicles vs animals 10 classes 60000

denote the highest (best) scores. Given an embedding with specific KNN and CPD values, we define the
aggregated local-global score as
1 KNN — KNNpin CPD — CPDyin
7 2 \KNNypax — KNNpyiy  CPDjay — CPDpiy )

(5)

This score ranges from 0 (embedding has the worst local and the worst global scores) to 1 (embedding has
the best local and the best global scores) and allows direct comparison of embedding methods regarding their
combined local and global structure preservation. Note that it only produces a relative score as it depends
on the considered competitors. For an intuitive understanding of the local-global score, see

These metrics rely solely on the high-dimensional data X and its corresponding embedding ¥ and do not
make use of any metadata listed in[Table 1] In contrast, metrics like classification accuracy, or class separation
measured via the Silhouette score, or agreement between clusters and classes measured via the adjusted Rand
index, all require class labels.

5.2 Comparison methods

We validated DREAMS against several baseline and hybrid methods (always using the default hyperparam-
eter settings):

o t-SNE (van der Maaten and Hinton! |2008|) using the openTSNE implementation (Policar et al., [2024)
and UMAP (Mclnnes et al., |2018]) as baselines for local structure preservation;

o PCA and MDS using the SQuadMDS implementation (Lambert et al. [2022) as baselines for global
structure preservation;

o TriMap (Amid and Warmuth| 2019), PacMAP (Wang et al.| [2023]), and PHATE (Moon et al., [2019)
as methods that strive to preserve both local and global structure;

o and hybrid approaches SQuadMDS-hybrid (Lambert et all [2022) and StarMAP (Watanabe et al.|
2025)), which, like DREAMS, mix the local structure preservation of neighbor embeddings with
global methods.

We always report means and uncertainties (often barely perceptible) across four random seeds. All experi-
ments were conducted on a single Intel Xeon Gold 6226R CPU 2.90 GHz (16 cores, 32 threads), an NVIDIA
RTX A6000 GPU (48 GB VRAM, CUDA 12.7), and 377 GB system RAM, running on a Linux environ-
ment. Only experiments including DREAMS-CNE or DREAMS-CNE-Decoder utilized the GPU. Without
parallelization, the runtime of all experiments was about a week. For a runtime analysis of DREAMS and

its competitors, see
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Figure 2: Embeddings of the dataset. a: Spectrum of DREAMS embeddings for different
values of regularization strength A. b—e: Embeddings obtained by some of the competing methods. For all

embeddings, see

6 Results

6.1 DREAMS successfully combines the strengths of t-SNE and PCA

We first illustrate DREAMS using the dataset. When adjusting the regularization strength A,
DREAMS generates a continuum of embeddings between the two extremes of the locally focused ¢-SNE em-
bedding and the globally focused PCA embedding ) For small A values, the resulting embedding
resembled the t-SNE embedding, effectively capturing the local data structure and highlighting fine-grained
clusters and cell types. For larger A values, the embedding progressively shifted towards the PCA em-
bedding, emphasizing higher-level groupings, such as broad cell classes (inhibitory/excitatory neurons and
non-neuronal cells). At intermediate regularization strengths, DREAMS integrated both local and global
structures without visibly compromising either aspect of the data. Competing methods often missed much
of the global structure (Figure 2b,c) or showed less local structure (Figure 2c—e).

The quantitative metrics corroborated the ability of DREAMS to maintain both local and global structure
. On all datasets but Mammoth, ¢-SNE achieved the highest KNN value, providing the best
locally structured embedding. In contrast, PCA and MDS maintained global structure best, as reflected in
their CPD values being the highest. For nearly all regularization parameters A € [0,1] DREAMS yielded
embeddings with better local or global structure preservation than its competitors. On most datasets,
DREAMS with its default regularization strength (A = 0.15) simultaneously achieved KNN close to t-SNE’s
and CPD close to PCA’s. Across all datasets, DREAMS preserved the local structure much better than
StarMAP, which also combines neighbor embeddings with PCA. This is likely because DREAMS relies on
t-SNE, which preserves local structure better than UMAP, which is used in StarMAP.

UMAP generally performed poorly in our metrics, often preserving not only the local but also the global
structure worse than t-SNE, as measured by the CPD metric. This may be due to different default initializa-
tions of openTSNE and UMAP (PCA and Laplacian Eigenmaps, respectively). That said, note that UMAP
is known to perform well in clustering-based metrics (Espadoto et all [2019; Xiang et al., [2021; Lause et al.|
2024)), which we do not use for evaluation in this work.
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Figure 3: Quantitative evaluation of local and global structure preservation of different methods across
multiple datasets (Table 1). Spearman correlation of pairwise distances (CPD, global metric) is plotted
against kNN recall (KNN, local metric). For improved visual clarity different markers were used.

TriMap performed similarly well to StarMap (note that both use PCA as initialization), but still fell short
compared to DREAMS in terms of local structure preservation. PHATE and PacMAP yielded worse CPD
and worse KNN scores compared to DREAMS on all datasets.

On the MNIST dataset DREAMS was not able to maintain high global and local structure at the same
time, likely because this dataset does not have a prominent global structure in the first place (CPD values
were comparatively low for all methods including PCA and MDS). Similarly, on the pixel-valued CIFAR10
dataset, DREAMS incurred a clear trade-off between local and global structure. On this challenging dataset
all methods severely struggled

(Figure S16)). Nevertheless, even in these two cases, DREAMS was on par or
outperformed most other methods (Figure 3jk).

Using our aggregated local-global score, we could directly compare DREAMS to other methods along a
single dimension . The highest local-global score on every dataset was achieved by either DREAMS
or DREAMS-MDS, depending on whether PCA or MDS was capturing global structure more effectively in
terms of the CPD metric. Following DREAMS, SQuadMDS-hybrid was consistently the next best method.
It achieved scores comparable to DREAMS on three datasets, but on all remaining datasets, its score was
lower by at least 0.06 than the best performing DREAMS variant. On the datasets where DREAMS achieved
a good balance between local and global performance (all but MNIST and CIFAR10), all other methods had
scores lower by at least 0.09 than the best performing DREAMS variant.

6.2 DREAMS provides the best local-global spectrum

Next, we compared the local-global embedding spectrum of DREAMS to the local-global spectra of existing
methods and variants of DREAMS.

In SQuadMDS-hybrid, the spectrum of embeddings is obtained by specifying the learning rates of t-SNE
and MDS. For StarMAP, varying the regularization strength allows trading off local and global structure.
Furthermore, increasing the exaggeration parameter in openTSNE can emphasize global structure preservation
and also yields a local-global continuum of embeddings (Bohm et al., [2022]).
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Table 2: Aggregated local-global score. For each dataset, the methods within 0.05 of the highest score are
highlighted in bold. The order of the datasets is as in

Tas Mac Kan Wag Pac 1kG Mam Sat FMN MNI C10

DREAMS 0.88 0.85 0.88 084 062 0.89 095 0.95 0.83 0.61 0.66
DREAMS-MDS 0.87 078 0.90 0.90 0.83 0.93 0.95 0.94 0.87 0.64 0.62
SQuadMDS-hybrid 0.71 0.61 0.77 0.76 0.64 0.88 0.94 084 0.81 0.61 0.58

StarMAP 0.68 0.57 066 059 039 066 068 070 048 0.26 0.16
PHATE 025 042 040 039 029 035 001 047 014 019 0.03
PaCMAP 045 034 042 039 036 051 070 035 012 0.20 0.15
TriMap 0.66 055 056 058 051 055 068 058 024 010 0.25
UMAP 026 046 026 019 040 031 068 039 018 0.19 0.16
t-SNE 0.57 050 060 0.61 050 064 086 050 055 0.61 0.56
PCA 0.50 050 048 046 025 043 060 048 044 035 0.32
MDS 0.48 047 052 051 051 055 050 054 051 050 0.50

We observed that these spectra offered noticeably worse trade-offs than DREAMS, as illustrated on the Tasic
et al. dataset in [Figure 4h, where PCA produces the best global layout. Similarly, DREAMS-MDS achieves
a better trade-off than SQuadMDS-hybrid, as demonstrated on the [Packer et al.| dataset )7 where
MDS produces the best global layout.

Moreover, while DREAMS includes standard ¢-SNE and PCA/MDS as its corner cases for A\ =0 and A =1
(marked with stars in , neither SQuadMDS-hybrid nor StarMAP could reach MDS and PCA,
respectively, in their most global setting. Additionally, SQuadMDS-hybrid underperformed compared to
t-SNE in its most local configuration ,b). This outcome is expected for StarMAP, as its objective
continues to blend aspects of UMAP and PCA even at its highest regularization strength. For SQuadMDS-
hybrid, the reason is likely the normalization of the t-SNE and MDS gradients before combining them.

Switching the neighbor-embedding backend of DREAMS from openTSNE to contrastive neighbor embed-
dings (CNE; Damrich et all |2023)) with the InfoNCE loss decreased the KNN score, proportionally to the
difference in KNN score between t-SNE and its InfoNCE version InfoNC-t-SNE (Figure 4¢). Using the CNE
backend, we compared regularization using a precomputed PCA embedding (DREAMS-CNE) with linear
decoding regularization (DREAMS-CNE-Decoder) and observed only marginal improvements with the de-
coder approach . The MNIST dataset was the only one where the decoder approach performed
much better in terms of our metrics, but this did not translate into visible improvements of the embedding
structure. Although the decoder could reconstruct the PCA embedding and enhance global structure, it
introduces additional randomness and computational complexity. Moreover, with a precomputed global em-
bedding, we are more flexible to adjust the global layout, e.g., by switching from PCA to MDS. For these
reasons and especially due to the better local structure of openTSNE than InfoNC-¢-SNE, we prefer the simple
regularization using a precomputed embedding as in the openTSNE-based DREAMS variants.

7 Discussion

In this work, we introduced DREAMS, a dimensionality reduction method that adds a regularization term
to the t-SNE objective. This regularization term penalizes embedding points that deviate from their PCA
positions and thereby encourages global structure preservation throughout the optimization process. Our
approach addresses a critical shortcoming in conventional dimensionality reduction techniques, which often
prioritize one structural scale over the other. Through this simple yet effective regularization term and
a tunable hyperparameter \, DREAMS allows for a continuous spectrum of embeddings that transition
smoothly from the locally faithful structure of t~-SNE to the globally coherent and interpretable structure of
PCA. Furthermore, with its default regularization strength (A = 0.15), DREAMS provides an embedding
that successfully balances local and global structure preservation, outperforming competing methods.
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Figure 4: Trade-offs between local and global structure preservation in different methods. Spearman cor-
relation of pairwise distances is plotted against kNN recall. a: Performance of DREAMS compared with
other local-global spectra. b: Comparison of DREAMS-MDS and SQuadMDS-hybrid. ¢: Performance of
different DREAMS variants. Panels a and ¢ show results on the [Tasic et al.| dataset, while panel b is based
on the [Packer et al. dataset.

Across eleven real-world datasets, DREAMS or DREAMS-MDS with default A = 0.15 consistently achieved
the best performance in terms of the local-global score. This highlights its robustness and wide applicability,
especially to hierarchical datasets with multiple inherent structure scales. While multiscale structure is
common in real-world datasets, DREAMS is less useful in datasets without it, such as the MNIST dataset,
as there is less global structure to preserve. In particular, we do not have theoretical performance guarantees
ensuring that DREAMS will balance local and global structure well. The additional time to compute the
regularizer and its gradient led to DREAMS having slower runtime than most competitors (Figure [S2]).
Moreover, DREAMS introduces an additional hyperparameter, the regularization strength A, whose optimal
value can depend on the specific dataset and the intended use. Consequently, different datasets may require
tuning A to achieve the optimal balance between local and global structure preservation. That said, we found
that A = 0.15 worked well across all datasets.

Because the regularization enforces alignment with a predefined structure, any biases or limitations in the
PCA embedding would propagate into the final embedding. As demonstrated in cases where the MDS
embedding captures global structure more effectively than PCA, it can sometimes be beneficial to regularize
towards the MDS embedding, as in DREAMS-MDS. Thanks to its flexible and simple design, DREAMS
accommodates such substitutions, making it adaptable to the specific characteristics of different datasets.

Our alternative implementation DREAMS-CNE-Decoder performed worse than the default DREAMS due
to the lower local quality of sampling-based InfoNC-t-SNE. Therefore, we prefer our openTSNE-based imple-
mentation, even though the PyTorch implementation may be preferable in some use cases.

In conclusion, DREAMS successfully combines the local structure preservation strength of ¢-SNE with the
global structure of PCA. This makes visualizations of high-dimensional data more faithful and interpretable,
particularly for datasets with hierarchical structure.
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Appendix
A Datasets

All scRNA-seq datasets (except |Packer et al.) were preprocessed as in Bohm et al.| (2022) and Kobak and
Berens| (2019). After selecting the 1000 (3000 for [Macosko et al.) most variable genes, we normalized the
library sizes to the median library size in the dataset, log-transformed the normalized values with log,(z+1),
and finally reduced the dimensionality to 50 via PCA. The [Packer et al.| dataset was already preprocessed
to 100 principal components of which we used the first 50. The original data was downloaded following links
in the original publications.

The raw 1000 Genomes Project data (The 1000 Genomes Project Consortium, [2015)) is available at https:
//ftp.1000genomes.ebi.ac.uk. This dataset contains 3450 human genotypes. We got the preprocessed
data from |Diaz-Papkovich et al.| (2019; |2023)); this is in an integer-valued data matrix with 53 999 features,
containing values 0, 1, and 2, representing the number of alleles differing from a reference genome. We used
PCA to reduce the number of features to 50.

We used 50 000 unprocessed random samples of the Mammoth dataset (Smithsonian Institution,2020; Noichl,
2025) and likewise used the unprocessed Landsat Satellite (Srinivasan, [1993) dataset. For the Mammoth
dataset, cluster labels (solely used for coloring the visualizations) were obtained by applying Agglomerative
Clustering with 11 classes to the original data.

For the MNIST (Lecun et al., [1998), Fashion MNIST (Xiao et al., 2017)), and CIFAR10 (Krizhevsky et al.,
2009) datasets (downloaded using the torchvision API), we used the first 50 principal components. For
Fashion MNIST, we additionally rescaled the original data to the interval [0, 1] before computing the first
50 principal components.

B Role of global embedding scaling in the DREAMS loss

In the regularization term

R(Y) = -|[Y ~ aT (©)

the scaling parameter « is used to match the scale of the global reference embedding Y with that of Y. We
considered two scaling strategies:

1Yllr (Y, Y)r

Ap = —=—, p = = .
1Ylr Y115

(7)

By the Cauchy-Schwarz inequality, a,, > a,,, with equality if and only if Y is a positive rescaling of Y. The
first option, a,, rescales Y to match the scale of Y, preventing the regularization term from imposing an
artificial scale onto the scale-sensitive t-SNE embedding. The second option, ay,, is the o that minimizes the

regularization term R(Y) for a given Y and Y and is inspired by Procrustes analysis (Goodall, {1991} |Gower],
1975).

Experimentally, we found that oy, performed slightly worse than a,, on the Tasic et al.| dataset, leading to
reduced local structure preservation as measured by a smaller KNN value (Table. While the regularization
term was, by construction, smaller with a,, the KL divergence was slightly higher and the scale of the final
embedding was further from ¢-SNE’s than with a,, . Consequently, we chose to use the scaling
with a,, and conducted all subsequent experiments with this scaling method. Importantly, both scaling
strategies worked much better than not using scaling at all and fixing o = 1 (Figure S1} [Table S1)).

Treating v as a constant during optimization yields the gradient

VyR(Y) = % (Y - a?) : (8)
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Table S1: Comparison of DREAMS performance across various alignment approaches for matching Y and
Y on the [Tasic et al| dataset. We compare default DREAMS with DREAMS using a lower scaling factor
ap, additionally translationally aligned the global reference Y toY (treating the shift as constant), and full
Procrustes analysis, which also contains a rotational alignment. The smaller scaling with «;, was detrimental,
while translational and rotational alignment had no effect as the ¢-SNE loss is invariant to them.

Metric DREAMS (o) @,  «p + translation full Procrustes no scaling

KNN 0.37 0.35 0.35 0.35 0.27
CPD 0.89 0.89 0.89 0.89 0.53

which pulls Y towards the scaled global reference embedding aY. In contrast, using «,, scaling and allowing
the gradients to propagate through «, yields the gradient

VyR(Y) = i(y — ai/) — z(m — 1)1/, (9)

(Y.Y)
: : . . K IYIFlYe —
As mentioned above, since the t-SNE loss is scale-sensitive, we do not want the regularizer to have a bearing

on the scale of Y. Nevertheless, in the CNE variant of DREAMS, we propagated the gradient through «
and still obtained a good trade-off between the InfoNC-t-SNE and PCA performance . We also
verified that treating « as a constant during optimization in the CNE version did not lead to any noticeable
difference in performance.

with an additional second term that corresponds to a shrinkage of Y towards the origin, since

Regularization error KL divergence Scaling parameter a Embedding scale

150+ 71 450 k1 21k
100 51 300 k1 14 k| — ap-scaling
s T 5 % —— ap-scaling
& 1’ > = —— no scaling

501 S 3 150 k1 7K1 ---- no regularizer
\
0- 1- 1- 0-
0 250 500 750 0 250 500 750 0 250 500 750 0 250 500 750
Iteration Iteration Iteration Iteration

Figure S1: Regularization error, KL divergence, scaling parameter  and embedding scale of DREAMS
during optimization using different or no scaling methods. Results are reported as the mean over four
random seeds on the [Tasic et all dataset.

C Runtime analysis

DREAMS’ adds a small overhead for computing the gradients of the regularizer compared to openTSNE. As
a result, it runs bit slower than openTSNE and similarly fast as SQuadMDS-hybrid. The other methods were
faster than DREAMS (Figure [S2).
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Figure S2: Runtime comparison. The bars indicate the mean runtime and standard deviation across four
random seeds on the dataset. For DREAMS and DREAMS-MDS, the reported times also include
the runtime of the respective global reference embeddings (PCA and MDS).
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Figure S3: Spearman correlation of pairwise distances (CPD, global metric) is plotted against kNN recall
(local metric). The figure shows the spectrum of DREAMS-CNE, using a regularizer with precomputed PCA
embedding, and DREAMS-CNE-Decoder, using a regularizer with a linear decoder, across all eleven datasets.
The bigger scatter points display DREAMS-CNE and DREAMS-CNE-Decoder with their respective default
regularization strengths (which achieved the highest average local-global score across all data sets) and local
(InfoNC-t-SNE) and global (PCA) reference methods. Here, InfoNC-¢-SNE is used as the t-SNE backbone
and corresponds to the regularization strength of A = 0 while PCA corresponds to the maximal regularization
strength of A = 1. In panel j (MNIST) the scatter points of PCA and DREAMS-CNE-Decoder lie exactly
on top of each other.
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E Intuition of local-global score
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Figure S4: Spearman correlation of pairwise distances (CPD, global metric) is plotted against kNN recall
(KNN, local metric) for different methods with marked local-global score spectrum. The figure shows the
structure preservation results on the [Tasic et al.| and [Packer et al.| dataset.
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Figure S5: Local structure preservation metric and combined local-global score for different numbers of
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hybrid, the ranking of methods in terms of kNN recall is insensitive to the exact value of k.

F.1 Visualizations of all datasets

See next pages.
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Figure S6: Visualizations of the dataset with all considered methods.
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Figure S7: Visualizations of the dataset with all considered methods.
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Figure S8: Visualizations of the dataset with all considered methods.
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Figure S9: Visualizations of the dataset with all considered methods (hpf = hours post
fertilization).

22



Published in Transactions on Machine Learning Research (01/2026)

InfoNC-t-SNE e

openTSNE e

UMAP e

DREAMS e DREAMS-MDS e

KNN: 0.30
CPD: 0.79
s 0.83

KNN: 0.29
CPD: 0.66
s:0.62

KNN: 0.22
CPD: 0.67
5:0.52

PCA o

SQuadMDS e

SQuadMDS-hybrid e

KNN: 0.01
CPD: 0.69
s:0.25

CPD: 0.86
s: 0.51

TriMap e PaCMAP e

KNN (local)

KNN: 0.12
CPD: 0.65
s:0.36

0.4

0.3

o
N

0.1

0.0

DREAMS-CNE-Decoder e

StarMAP e

KNN: 0.11

CPD: 0.68
s: 0.39
@
L 3
-o-
- o
L 4
oo L 2
. L J
0.5 0.7 0.9
CPD (global)

Figure S10: Visualizations of the dataset with all considered methods.
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Figure S11: Visualizations of the 1000 Genomes Project dataset (The 1000 Genomes Project Consortiuml

2015)) with all considered methods.
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Figure S12: Visualizations of the Mammoth dataset (Smithsonian Institution) 2020} [Noichl, 2025) with all
considered methods. Colors represent cluster assignment of original data and are solely used for visual clarity
but do not correspond to any ground truth labels.
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Figure S13: Visualizations of the Landsat Satellite dataset (Srinivasan, [1993) with all considered methods.
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Figure S14: Visualizations of the Fashion MNIST dataset (Xiao et all [2017) with all considered methods.
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Figure S15: Visualizations of the MNIST dataset (Lecun et all, [1998)) with all considered methods.

28



Published in Transactions on Machine Learning Research (01/2026)

openTSNE e UMAP e InfoNC-t-SNE e

Embedding legend

e airplane e dog
® automobile ¢ frog
e bird ® horse
e cat ¢ ship
e deer ®  truck
KNN: 0.02
CPD: 0.69
N s:0.16
DREAMS e DREAMS-MDS e DREAMS-CNE e DREAMS-CNE-Decoder e

PCA o SQuadMDS e SQuadMDS-hybrid e StarMAP e

KNN: 0.01 KNN: 0.01 - KNN: 0.15

s: 0.50

CPD: 0.78 CPD: 0.86 CPD: 0.73
5:0.32 s:0.50 5:0.58
TriMap e PHATE e PaCMAP o 0.25
0.20 * o
RS
5015 -
3 °
=2
Z20.10 °
[ ]
KNN: 0.02 KNN: 0.02 0.05
CPD: 0.64 CPD: 0.69
510,03 s:0.15 o % o .
0.00 hd
0.60 0.75
CPD (global)

Figure S16: Visualizations of the CIFAR10 dataset (Krizhevsky et al. 2009) with all considered metho
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