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ABSTRACT

Adversarial training attains strong empirical robustness to specific adversarial
attacks by training on concrete adversarial perturbations, but it produces neural
networks that are not amenable to strong robustness certificates through neural
network verification. On the other hand, earlier certified training schemes directly
train on bounds from network relaxations to obtain models that are certifiably
robust, but display sub-par standard performance. Recent work has shown that
state-of-the-art trade-offs between certified robustness and standard performance
can be obtained through a family of losses combining adversarial outputs and
neural network bounds. Nevertheless, differently from empirical robustness,
verifiability still comes at a significant cost in standard performance. In this work,
we propose to leverage empirically-robust teachers to improve the performance of
certifiably-robust models through knowledge distillation. Using a versatile feature-
space distillation objective, we show that distillation from adversarially-trained
teachers consistently improves on the state-of-the-art in certified training for ReLU
networks across a series of robust computer vision benchmarks.

1 INTRODUCTION

Deep learning systems deployed in safety-critical applications must be robust to adversarial
examples (Biggio et al., 2013; Szegedy et al., 2014; Goodfellow et al., 2015): imperceptible input
perturbations that induce unintended behaviors such as misclassifications. Formal robustness
certificates can be obtained through neural network verification algorithms (Tjeng et al., 2019;
Lomuscio & Maganti, 2017; Ehlers, 2017). However, these techniques have a worst-case runtime that
is exponential in network size even on piecewise-linear models (Katz et al., 2017). While empirical
robustness to specific adversarial attacks can be attained by training against adversarial inputs (Madry
et al., 2018), a technique known as adversarial training, neural network verifiers fail to provide
robustness certificates on the resulting networks in a reasonable time. This is in spite of sustained
progress in verification algorithms, which now couple specialized network convex relaxations (Zhang
et al., 2018; Xu et al., 2021; Wong & Kolter, 2018; De Palma et al., 2024a) with efficient divide and
conquer strategies (Bunel et al., 2020b; Henriksen & Lomuscio, 2021) within hardware-accelerated
branch-and-bound frameworks (Wang et al., 2021; Ferrari et al., 2022; De Palma et al., 2021).

Networks amenable to robustness certificates through neural network verification can be obtained
using so-called certified training schemes. Earlier approaches (Wong & Kolter, 2018; Zhang et al.,
2020; Gowal et al., 2019; Mirman et al., 2018) proposed to train networks by computing the loss on
neural network bounds obtained from convex relaxations, effectively deploying a building block of
network verifiers within the training loop. Counter-intuitively, and owing to their relative smoothness
and continuity, the loosest relaxations were found to outperform the others in this context (Jovanović
et al., 2022; Lee et al., 2021). While the resulting networks enjoy strong verifiability using the same
relaxations employed at training time, this is achieved at a significant cost in standard performance.
Relying on branch-and-bound frameworks to perform post-training verification, a more recent line of
works has shown that better trade-offs between certified robustness and standard performance can be
obtained by combining methods based on convex relaxations with adversarial training (Balunovic &
Vechev, 2020; De Palma et al., 2022; Müller et al., 2023; Mao et al., 2023). This was then formalized
into the notion of expressivity (De Palma et al., 2024b), which entails the ability of a certified training
loss to span a continuous range of trade-offs between pure adversarial training and the earlier losses
based on convex relaxations, and can be easily implemented through convex combinations.
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While, as attested by a recent study (Mao et al., 2025), networks trained through expressive losses
produce state-of-the-art certifiably-robust models, their standard performance is still far from
ideal. Noting that empirically-robust models display significantly better standard performance
than certifiably-robust models (Croce et al., 2021), we believe they could be directly employed
to improve the certified training process. Specifically, we aim to produce better certifiably-robust
models by performing knowledge distillation (Hinton et al., 2015; Romero et al., 2015) from an
empirically-robust teacher to the target model, leading to the following contributions:

• We introduce a novel and versatile feature-space distillation loss, which can transfer the
knowledge of a teacher onto any convex combination between adversarial student features and
bounds from its convex relaxations (§3.2).

• We tightly couple the proposed distillation objective with an existing expressive certified training
loss, calling the CC-Dist the resulting algorithm (§3.3). We show that CC-Dist can successfully
learn from an adversarially-trained teacher while at the same time significantly surpassing it in
terms of certified robustness (§5.2).

• We present a comprehensive experimental evaluation of CC-Dist across medium and larger-scale
vision benchmarks from the certified training literature, and show that the novel distillation loss en-
hances both standard performance and certified robustness across all considered benchmarks (§5.1).
In particular, CC-Dist attains a new state-of-the-art for ReLU architectures on all setups, with sig-
nificant improvements upon results from the literature on TinyImageNet and downscaled Imagenet.

We believe our work to be a further step towards bridging the ever-present gap between certified and
empirical adversarial robustness. Code for CC-Dist is provided as part of the supplementary material.

2 BACKGROUND

Let lowercase letters denote scalars (e.g., a ∈ R) boldface lowercase letters denote vectors (e.g.,
a ∈ Rn), uppercase letters denote matrices (e.g., A ∈ Rn×m), calligraphic letters denote sets
(e.g. A ⊂ Rn) and brackets denote intervals (e.g., [a,b]). Furthermore, let lowercase single-letter
subscripts denote vector indices (for instance, ai, or f(a)i for a vector-valued function f ), and let
the vector of all entries of a except its i-th entry be denoted by aī. We will write 1n ∈ Rn for the
unit vector, In ∈ Rn×n for the identity matrix, and jI

n ∈ Rn×n for a matrix whose j-th column
is the unit vector and filled with zeros otherwise. Abusing notation, given a vector-valued objective
function a(x) we will denote by minx∈A a(x) the vector storing the minimum of minx∈A a(x)i
in its i-th entry. Finally, we use the following shorthands: [A]+ := max{0, A}, [A]− := min{0, A},
Ja, bK := {a, a+ 1, . . . , b}. Appendix F provides further details on the employed notation.

Let (x, y) ∼ D be a k-way classification dataset with points x ∈ Rd and labels y ∈ J1, kK. We aim
to train a feed-forward ReLU neural network fθ : Rd → Rk with parameters θ ∈ Rp such that each
point x from D and the allowed adversarial perturbations Cϵ(x) := {x′ : ∥x′ − x∥∞ ≤ ϵ} around
it are correctly classified:

x′ ∈ Cϵ(x) =⇒ argmax
i

fθ(x)i = y. (1)

2.1 NEURAL NETWORK VERIFICATION

Neural network verification is used to check whether equation (1) holds on a given network fθ,
providing a deterministic robustness certificate. Let zfθ (x, y) denote the differences between the
ground truth logits and the other logits: zfθ (x, y) :=

(
fθ(x)y1

k − fθ(x)
)
. Verifiers solve the

following optimization problem:

zCϵ

fθ
(x, y) := min

x′∈Cϵ(x)
zfθ (x

′, y). (2)

If all entries of zCϵ

fθ
(x, y)ȳ are positive, then equation (1) holds, implying that the network is

guaranteed to be robust to any given attack in Cϵ(x). An algorithm computing zCϵ

fθ
(x, y) exactly

is called a complete verifier: this is typically done through branch-and-bound (Bunel et al., 2018;
De Palma et al., 2024a; Wang et al., 2021; Ferrari et al., 2022; Henriksen & Lomuscio, 2021). As
this was shown to be NP-complete (Katz et al., 2017), a series of algorithms propose to compute
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less expensive lower bounds
¯
zCϵ

fθ
(x, y) ≤ zCϵ

fθ
(x, y) (Zhang et al., 2018; Wong & Kolter, 2018;

Dvijotham et al., 2018; Singh et al., 2019) by operating on network relaxations (incomplete verifiers),
with

¯
zCϵ

fθ
(x, y)ȳ > 0 successfully providing a robustness certificate. The least expensive incomplete

verifier is called Interval Bound Propagation (IBP) (Gowal et al., 2019; Mirman et al., 2018), which
is obtained by applying interval arithmetics (Sunaga, 1958; Hickey et al., 2001) to the network
operators. We refer the reader to appendix A for further details.

2.2 CERTIFIED TRAINING

In principle, a network can be trained for verified robustness (certified training) by replacing the
employed classification loss L : Rk × J1, kK → R (e.g., cross-entropy) with its worst-case across
the adversarial perturbations (Madry et al., 2018):

LCϵ

fθ
(x, y) := max

x′∈ Cϵ(x)
L(fθ(x′), y). (3)

However, computing LCϵ

fθ
(x, y) exactly is as hard as solving problem (2), and is hence typically

replaced by an approximation. Let xadv denote the output of an adversarial attack, for instance
PGD (Madry et al., 2018), on the network fθ. Lower bounds to LCϵ

fθ
(x, y) can be obtained by

evaluating the loss at xadv:

L̄Cϵ

fθ
(x, y) := L(fθ(xadv), y) ≤ LCϵ

fθ
(x, y). (4)

Networks trained using L(fθ(xadv), y) (adversarial training) typically enjoy strong empirical
robustness to the same types of attacks employed during training, but are not amenable to
formal guarantees, which are the focus of this work. Assume the loss is monotonically in-
creasing with respect to the non-ground-truth network logits and that it is translation-invariant:
L(−zfθ (x, y), y) = L(fθ(x), y) (Wong & Kolter, 2018). This holds for common losses such as
cross-entropy. Given bounds

¯
zCϵ

fθ
(x, y) from an incomplete verifier, and setting

¯
zCϵ

fθ
(x, y)y = 0, an

upper bound to LCϵ

fθ
(x, y) can then be obtained as:

L̄Cϵ

fθ
(x, y) := L(−

¯
zCϵ

fθ
(x, y), y) ≥ LCϵ

fθ
(x, y). (5)

While networks trained via L(−
¯
zCϵ

fθ
(x, y), y) display strong verifiability through the same incomplete

verifiers used to compute the
¯
zCϵ

fθ
(x, y) bounds, the most successful option being IBP (Jovanović et al.,

2022), they display sub-par standard performance. More recent and successful methods rely on losses
featuring a combination between adversarial attacks and bounds from incomplete verifiers (De Palma
et al., 2022; Balunovic & Vechev, 2020; Mao et al., 2023; Müller et al., 2023), pairing better standard
performance with stronger verifiability through branch-and-bound. In particular, the ability of a
loss function to span a continuous range of trade-offs between lower and upper bounds to LCϵ

fθ
(x, y),

termed expressivity, was found to be crucial to maximize performance (De Palma et al., 2024b).
Nevertheless, the best-performing certifiably-robust models still display worse robustness-accuracy
trade-offs than empirically-robust models (De Palma et al., 2024b; Croce et al., 2021).

2.3 KNOWLEDGE DISTILLATION

Knowledge distillation (Hinton et al., 2015) was introduced as a method to transfer the predictive
ability of a large teacher model tθt : Rd → Rk onto the target model fθ, termed the student. Let
KLT : Rk × Rk → R denote a KL divergence incorporating a softmax operation with temperature
T . In its standard form, knowledge distillation pairs the employed classification loss with a KL
divergence term where the teacher logits, termed soft labels, act as target distribution:

LKD
fθ

(λ;x, y) := L(fθ(x), y) + T 2λ KLT (fθ(x), tθt(x)). (6)

In order to provide more granular teacher information to the student, a series of works perform
knowledge distillation on the intermediate activations (Romero et al., 2015; Zagoruyko & Komodakis,
2017; Heo et al., 2019): this is referred to as feature-space distillation. Let us write both the teacher
and the student as the composition of a classification head with a feature map: tθt := gtθt

g
◦ ht

θt
h

and fθ := gθg ◦ hθh
, respectively, where θt = [θt

h,θ
t
g]

T and θ = [θh,θg]
T . In its simplest form,

3
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when the feature spaces of the teacher and student share the same dimensionality w, feature-space
distillation encourages similarity between teacher and student features through a squared ℓ2 term:

LF-KD
fθ

(λ;x, y) := L(fθ(x), y) + λ
∥∥∥hθh

(x)− ht
θt
h
(x)

∥∥∥2
2
.

Both LKD
fθ

(λ;x, y) and LF-KD
fθ

(λ;x, y) were originally designed to transfer standard network
performance from teacher to student, and do not take robustness into account. Recent works
have therefore focused on designing specialized distillation schemes that transfer either empirical
adversarial robustness (Goldblum et al., 2020; Zhu et al., 2022; Zi et al., 2021; Muhammad
et al., 2021) or probabilistic certified robustness (Vaishnavi et al., 2022) from teacher to student.
Aiming to improve state-of-the-art trade-offs between deterministic certified robustness and
standard performance, we will present a novel training scheme that transfers knowledge from an
empirically-robust teacher through feature-space distillation.

3 KNOWLEDGE DISTILLATION FOR CERTIFIED ROBUSTNESS

We aim to leverage the empirical robustness of adversarially-trained networks to train better certifiably-
robust models. Owing to its state-of-the-art certified training performance, we will couple an existing
expressive loss function (§3.1) with a novel and versatile feature-space distillation term (§3.2).
Pseudo-code and proofs of technical results are respectively provided in appendices C and B.

3.1 EXPRESSIVE LOSSES: CC-IBP

De Palma et al. (2024b) define a parametrized loss function LCϵ

fθ
(α;x, y) to be expressive if: (i)

LCϵ

fθ
(0;x, y) = L̄Cϵ

fθ
(x, y) and LCϵ

fθ
(1;x, y) = L̄Cϵ

fθ
(x, y); (ii) L̄Cϵ

fθ
(x, y) ≤ LCϵ

fθ
(α;x, y) ≤ L̄Cϵ

fθ
(x, y)

∀ α ∈ [0, 1]; (iii) LCϵ

fθ
(α;x, y) is continuous and monotonically increasing for α ∈ [0, 1].

As demonstrated by the empirical performance of three different expressive losses obtained through
convex combinations between adversarial and incomplete verification terms, expressivity results in
state-of-the-art certified training performance (De Palma et al., 2024b). We here focus on CC-IBP,
which implements an expressive loss by evaluating L on convex combinations between adversarial
logit differences zfθ (xadv) and lower bounds

¯
zCϵ

fθ
(x, y) to the logit differences computed via IBP:

CCLCϵ

fθ
(α;x, y) := L

(
− CCzCϵ

fθ
(α;x, y), y

)
,

where: CCzCϵ

fθ
(α;x, y) := (1− α) zfθ (xadv, y) + α

¯
zCϵ

fθ
(x, y).

(7)

As we will show in §3.3, CC-IBP can be tightly coupled with a specialized distillation loss, which we
present in the next subsection.

3.2 DISTILLATION LOSS

Certified training is concerned with worst-case network behavior. Mirroring the robust loss in §2.2,
a worst-case feature-space distillation loss over the perturbations would take the following form:

RCϵ

fθ
(x, y) := max

x′∈Cϵ(x)

∥∥∥hθh
(x′)− ht

θt
h
(x)

∥∥∥2
2
. (8)

However, as for LCϵ

fθ
(x, y), computing RCϵ

fθ
(x, y) exactly amounts to solving a non-convex

optimization problem over the features. As for equation (4), a lower bound R̄Cϵ

fθ
(x, y) can be

obtained by evaluating the left-hand side of equation (8) at the adversarial input xadv:

R̄Cϵ

fθ
(x, y) :=

∥∥∥hθh
(xadv)− ht

θt
h
(x)

∥∥∥2
2
≤ RCϵ

fθ
(x, y).

Similarly to L̄Cϵ

fθ
(x, y), an upper bound R̄Cϵ

fθ
(x, y) can be instead computed resorting to IBP.

Proposition 3.1. Let
¯
hCϵ

θh
(x) and h̄Cϵ

θh
(x) respectively denote IBP lower and upper bounds to the

student features:

¯
hCϵ

θh
(x) ≤ hθh

(x′) ≤ h̄Cϵ

θh
(x), ∀x′ ∈ Cϵ(x).

4
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The loss function R̄Cϵ

fθ
(x, y) :=

∑
i max

{(
¯
hCϵ

θh
(x)i − ht

θt
h
(x)i

)2

,
(
h̄Cϵ

θh
(x)i − ht

θt
h
(x)i

)2
}

is an

upper bound to the worst-case distillation loss from equation (8): R̄Cϵ

fθ
(x, y) ≥ RCϵ

fθ
(x, y).

In order to preserve the greatest degree of flexibility, and mirroring expressive losses (§3.1), we aim to
design a parametrized feature-space distillation loss CCRCϵ

fθ
(α;x, y) that can span a continuous range

of trade-offs between R̄Cϵ

fθ
(x, y) and R̄Cϵ

fθ
(x, y). Let us denote by CCh̄Cϵ

θh
(α;x) and CC

¯
hCϵ

θh
(α;x) con-

vex combinations of the adversarial student features hθh
(xadv) with h̄Cϵ

θh
(x) and

¯
hCϵ

θh
(x), respectively:

CCh̄Cϵ

θh
(α;x) := (1− α) hθh

(xadv) + α h̄Cϵ

θh
(x),

CC

¯
hCϵ

θh
(α;x) := (1− α) hθh

(xadv) + α
¯
hCϵ

θh
(x).

(9)

As we next show, CCRCϵ

fθ
(α;x, y) can be realized by distilling onto CCh̄Cϵ

θh
(α;x) and CC

¯
hCϵ

θh
(α;x).

Proposition 3.2. The loss function

CCRCϵ

fθ
(α;x, y) :=

∑
i

max

{(
CC

¯
hCϵ

θh
(α;x)i − ht

θt
h
(x)i

)2

,
(

CCh̄Cϵ

θh
(α;x)i − ht

θt
h
(x)i

)2
)

enjoys the following properties:

1. CCRCϵ

fθ
(0;x, y) = R̄Cϵ

fθ
(x, y) and CCRCϵ

fθ
(1;x, y) = R̄Cϵ

fθ
(x, y);

2. R̄Cϵ

fθ
(x, y) ≤ CCRCϵ

fθ
(α;x, y) ≤ R̄Cϵ

fθ
(x, y) ∀ α ∈ [0, 1];

3. CCRCϵ

fθ
(α;x, y) is continuous and monotonically increasing for α ∈ [0, 1].

3.3 CC-DIST

While we expect special cases CCRCϵ

fθ
(0;x, y) and CCRCϵ

fθ
(1;x, y) to work well on settings where

CC-IBP is employed with small or large α values, respectively, we aim to leverage the full flexibility
from proposition 3.2 to obtain consistent performance across setups.

We will now show that, if the student uses an affine classification head, the CC-IBP convex com-
binations CCzCϵ

fθ
(α;x, y) correspond to a simple affine function of CC

¯
hCϵ

θh
(α;x) and CCh̄Cϵ

θh
(α;x),

onto which distillation is performed. Consequently, we propose to employ the same α parameter for
both CCRCϵ

fθ
(α;x, y) and CCLCϵ

fθ
(α;x, y), thus tightly coupling our distillation loss with CC-IBP.

Lemma 3.3. Let the student classification head gθg
(a) be affine, and let g̃yθg

(a) := W̃na+ b̃n be
its composition with the operator performing the difference between logits. We can write the CC-IBP
convex combinations as:

CCzCϵ

fθ
(α;x, y) =

[
[W̃n]+ [W̃n]−

] [ CC
¯
hCϵ

θh
(α;x)

CCh̄Cϵ

θh
(α;x)

]
+ b̃n.

CC-Dist loss Let β be the distillation coefficient, determining the relative weight of the distillation
term. Omitting any regularization, the overall training loss for CC-Dist (short for CC-IBP Distillation)
takes the following form:

LCC-Dist(α, β;x, y) := CCLCϵ

fθ
(α;x, y) + β CCRCϵ

fθ
(α;x, y). (10)

In practice, denoting by w the dimensionality of the feature space, unless stated otherwise, we employ
β = 5/w in all reported experiments owing to its consistent performance across setups.

Teacher models We propose to use teacher models trained via pure adversarial training (see §2.2)
on the target task, employing the same architecture as the student. In order to comply with the
conditions of lemma 3.3, we define the features as the activations before the last affine network layer.

5
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Intuition We expect teachers to transfer part of their superior natural accuracy and empirical
robustness to the target models. While the teacher certified robustness will be significantly smaller
than for models trained via certified training, the CC-IBP term in equation (10) is employed to
preserve student verifiability, hence increasing its certified robustness. Experimental evidence is
provided in §5.2 and appendix E.1.

4 RELATED WORK

Owing to its favorable optimization properties (Jovanović et al., 2022), the relatively loose IBP
(§2.1) is the method of choice (Mao et al., 2024a) when computing lower bounds to equation (2)
to be employed for certified training. Tighter techniques are however preferred within branch-
and-bound-based complete verifiers. Branch-and-bound (Bunel et al., 2018) couples a bounding
algorithm with a strategy to refine the network relaxations by iteratively splitting problem (2) into
subproblems (branching), which typically operates by splitting piecewise linearities into their linear
components (De Palma et al., 2021; Henriksen & Lomuscio, 2021; Ferrari et al., 2022; Bunel
et al., 2020b). Earlier bounding algorithms relied on linear network relaxations (Bunel et al.,
2018; Ehlers, 2017; Anderson et al., 2020), with more effective techniques operating in the dual
space (Dvijotham et al., 2018; Bunel et al., 2020a; De Palma et al., 2024a). State-of-the-art branch-
and-bound frameworks have since converged to using fast bounds based on propagating couples
of linear bounds through the network (Zhang et al., 2018; Singh et al., 2019; Xu et al., 2021) with
Lagrangian relaxations employed to capture additional constraints (Wang et al., 2021; Ferrari et al.,
2022; Zhang et al., 2022c; Zhou et al., 2024).

Earlier certified training works add geometric regularizers to the standard adversarial training
loss (Xiao et al., 2019; Croce et al., 2019; Liu et al., 2021). Recent certified training schemes mix
adversarial training with bounds from network relaxations to obtain strong post-training verifiability
using branch-and-bound (see §2.2). Balunovic & Vechev (2020) perform adversarial attacks over
latent-space over-approximations. The good performance of the latter at lower perturbation radii
was matched through a regularizer on the area of network relaxations (De Palma et al., 2022),
IBP-R, and later refined by connecting the gradients of the over-approximation with those of the
attack (TAPS) (Mao et al., 2023). Another work, named SABR, proposed to compute network
relaxations over a subset of Cϵ and to tune the subset size for each benchmark. This was then
generalized into the notion of expressive losses (De Palma et al., 2024b) (see §3.1), which includes
losses based on convex combinations forming the basis of this work. All the above methods train
standard feedforward ReLU networks using convex relaxations, with IBP bounds being the most
prevalent among them. Recent work has highlighted the superior representational power of networks
trained via tighter relaxations (Baader et al., 2024; Mao et al., 2024b), and sought to overcome the
associated optimization challenges (Balauca et al., 2025). Certifiably-robust networks can also be
obtained by training 1-Lipschitz models using alternative architectures (Zhang et al., 2021; 2022a),
the best-performing being SortNet (Zhang et al., 2022b). These were also shown to benefit from
additional generated data (Altstidl et al., 2024), whose use is beyond the focus of our work. While we
here concentrate on ℓ∞ perturbations and deterministic certificates, 1-Lipschitz architectures (Prach
et al., 2024; Meunier et al., 2022) and Lipschitz regularization (Hu et al., 2023; Leino et al.) are
very effective when Cϵ is defined using the ℓ2 norm, setting under which probabilistic robustness
certificates can be effectively obtained using randomised smoothing (Cohen et al., 2019).

Many specialized knowledge distillation schemes designed to transfer empirical robustness focus
on modifying the logit-space distillation loss from equation (6). Assuming an adversarially-trained
teacher, ARD (Goldblum et al., 2020) proposes to modify the KL term from equation (6) to evaluate
the student on an adversarially-perturbed input. IAD (Zhu et al., 2022), instead, replaces the cross-
entropy loss with a KL term between the student’s perturbed and unperturbed outputs, weighted
according to the teacher’s inability to correctly classify the adversarial input. RSLAD (Zi et al., 2021)
removes the dynamic weighting and trains with two KL terms between teacher and student: one
using clean inputs, the other where the student is evaluated on a perturbation seeking to maximize the
distance from the clean teacher output. In this context, less attention has been devoted to feature-space
distillation methods (Muhammad et al., 2021). CRD (Vaishnavi et al., 2022) presented a logit-space
distillation loss designed to transfer probabilistic certified robustness, relying on a sum of the student
cross-entropy loss with an ℓ2 term on the models softmax outputs, all evaluated on random Gaussian
perturbations. The focus of all the above works is to transfer some of the performance of larger
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and more capable models onto smaller and less expensive architectures. However, it was shown
that training a network for a given task, and then re-using it to distill knowledge onto a second
model with the same architecture and training goal can improve performance through regularization.
This was observed both in the context of standard training (Furlanello et al., 2018), and of pure
adversarial training for empirical robustness (Chen et al., 2020). Finally, closely-related works at
the intersection between knowledge distillation and deterministic certified robustness include: (i)
investigating how robustness guarantees obtained on a student can be transferred from a distilled
student to its teacher (Indri et al., 2024), and (ii) distilling a non-robust perceptual similarity metric
onto a 1-Lipschitz architecture to obtain a certifiably-robust perceptual similarity metric (Ghazanfari
et al., 2024). In this work, targeting supervised classification tasks from the robust vision literature and
using techniques based on convex relaxations, we aim to leverage an empirically-robust yet hard-to-
verify teacher to improve the deterministic certified robustness of a student with the same architecture.

Table 1: Evaluation of the effect of CC-Dist compared to pure CC-IBP (De Palma et al., 2024b) when training for
certified robustness against ℓ∞ norm perturbations. Literature results are provided as a reference. We highlight
in bold the entries corresponding to the largest standard or certified accuracy for each benchmark, and, when
they do not coincide, underline the best accuracies for ReLU-based architectures.

Dataset ϵ Method Source Standard acc. [%] Certified acc. [%]

CIFAR-10

2
255

CC-DIST this work 81.55 64.60
CC-IBP this work 79.51 63.50

CC-IBP De Palma et al. (2024b) 80.09 63.78
MTL-IBP† Mao et al. (2025) 78.82 64.41

STAPS Mao et al. (2023) 79.76 62.98
SABR† Mao et al. (2024a) 79.89 63.28

SORTNET Zhang et al. (2022b) 67.72 56.94
IBP-R† Mao et al. (2024a) 80.46 62.03

IBP† Mao et al. (2024a) 68.06 56.18
CROWN-IBP† Mao et al. (2025) 67.60 53.97

8
255

CC-DIST this work 55.13 35.52
CC-IBP this work 54.46 35.42

CC-IBP De Palma et al. (2024b) 53.71 35.27
MTL-IBP† Mao et al. (2025) 54.28 35.41

STAPS Mao et al. (2023) 52.82 34.65
SABR† Mao et al. (2025) 52.71 35.34

SORTNET Zhang et al. (2022b) 54.84 40.39
IBP-R De Palma et al. (2022) 52.74 27.55

IBP Shi et al. (2021) 48.94 34.97
CROWN-IBP† Mao et al. (2025) 48.25 32.59

TinyImageNet 1
255

CC-DIST this work 43.78 27.88
CC-IBP this work 41.28 26.53

EXP-IBP De Palma et al. (2024b) 38.71 26.18
MTL-IBP† Mao et al. (2025) 35.97 27.73

STAPS† Mao et al. (2025) 30.63 22.31
SABR† De Palma et al. (2024b) 38.68 25.85

SORTNET Zhang et al. (2022b) 25.69 18.18
IBP† Mao et al. (2025) 26.77 19.82

CROWN-IBP† Mao et al. (2025) 28.44 22.14

ImageNet64 1
255

CC-DIST this work 28.17 13.96
CC-IBP this work 25.94 13.69

EXP-IBP De Palma et al. (2024b) 22.73 13.30
SABR† De Palma et al. (2024b) 20.33 12.39

SORTNET Zhang et al. (2022b) 14.79 9.54
CROWN-IBP Xu et al. (2020) 16.23 8.73

IBP Gowal et al. (2019) 15.96 6.13

†Evaluation from later work attaining a larger standard or certified accuracy than reported in the original work.
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5 EXPERIMENTAL EVALUATION

This section presents an experimental evaluation of the proposed distillation scheme, focusing on
image classification datasets from the certified training literature. We first present results on the
effectiveness of our novel distillation loss (§5.1), followed by a comparison of the trained models with
their teachers (§5.2), and by an analysis of the effect of the distillation coefficient on CC-Dist (§5.3).

In line with previous work (Müller et al., 2023; Mao et al., 2023; Shi et al., 2021; De Palma et al.,
2024b), all the models trained via CC-Dist in this evaluation are based a 7-layer convolutional archi-
tecture named CNN-7, regularized using an ℓ1 term. The teacher models are trained via adversarial
training based on a 10-step PGD adversary (Madry et al., 2018) and ℓ1 regularization. As this was
found to be beneficial in practice, we employ the CNN-7 architecture for the teacher model too.
We implemented CC-Dist in PyTorch (Paszke et al., 2019) similarly to the expressive losses code-
base (De Palma et al., 2024b), also relying on auto_LiRPA (Xu et al., 2020) to compute IBP bounds.
As common in the wider certified training literature (Müller et al., 2023; Mao et al., 2023), we employ
the custom regularization and initialization introduced by Shi et al. (2021). Post-training verification
is performed using the OVAL branch-and-bound framework (Bunel et al., 2018; 2020a; De Palma
et al., 2021) similarly to De Palma et al. (2022; 2024b), using a configuration based on α-β-CROWN
network bounds (Wang et al., 2021; Xu et al., 2021) and employing at most 600 seconds per image.
Additional details and supplementary experiments can be found in appendices D and E, respectively.

5.1 CC-DIST EVALUATION

We now evaluate the performance of CC-Dist (§3.3) with respect to pure CC-IBP (De Palma et al.,
2024b), and compare the resulting performance with results taken from the certified training literature.
For each method from the literature, we report the best attained performance across previous works
and network architectures. In order to isolate the effect of any modification within our codebase
and experimental setup, we report both CC-IBP results from our evaluations, and the literature results
corresponding to the best-performing expressive loss (CC-IBP, MTL-IBP, or Exp-IBP) from the
original work (De Palma et al., 2024b). Table 1 shows that the distillation loss improves on both the
standard and the certified accuracies of pure CC-IBP across all the considered CIFAR-10 (Krizhevsky
& Hinton, 2009), TinyImageNet (Le & Yang, 2015), and downscaled ImageNet (64×64) (Chrabaszcz
et al., 2017) benchmarks. Consequently, CC-Dist establishes a new state-of-the-art, improving on
both standard and certified accuracy compared to previusly-reported results, on all benchmarks except
CIFAR-10 with ϵ = 8/255. Differently from the other settings, the best certified accuracy on this
benchmark is attained by SortNet (Zhang et al., 2022b), which uses a specialized 1-Lipschitz network
architecture (see §4). Its performance on this setup can be further improved through the use of addi-
tional generated data (Altstidl et al., 2024), which is outside the scope of our work. While the sub-par
performance of ReLU networks on this benchmark is well known in the literature (Müller et al., 2023;
De Palma et al., 2024b), we are hopeful that distillation from empirically-robust teachers may be
beneficial to 1-Lipschitz networks too, and defer the investigation to future work. On TinyImageNet
and downscaled ImageNet we found that both the standard and certified accuracies of CC-IBP benefit
from a smaller α coefficient than those employed in De Palma et al. (2024b), explaining the difference
between our CC-IBP results and those reported in the original work. Owing to the combined effect of
this and of the benefits of our novel distillation loss, the difference between CC-Dist and the results
from the literature is particularly remarkable on these two larger-scale benchmarks.

Appendix E.1 sheds light on the success of our distillation technique by analyzing differences in
empirical robustness and IBP regularization between CC-IBP and CC-Dist. Appendices E.2, E.3
and E.8 demonstrate the wider potential of knowledge distillation for certified training by showing
(i) the effectiveness of special cases of the proposed distillation loss, (ii) that SABR, MTL-IBP, and
IBP-R benefit from a similar distillation process and (iii) that CC-Dist is effective on a different model
architecture and activation function. Appendices E.4 and E.9 respectively investigate the performance
of logit-based distillation, and of using earlier features for CCRCϵ

fθ
(α;x, y). Appendix E.10 shows

that employing clean teachers results in worse performance profiles, highlighting the importance
of robust representations.
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Table 2: Comparison between the CC-Dist student models from table 1 and the respective teacher models.

Dataset ϵ Method Standard acc. [%] AA acc. [%] Certified acc.† [%]

CIFAR-10

2
255

STUDENT 81.55 70.71 64.4
TEACHER 88.23 73.26 1.2

8
255

STUDENT 55.13 36.80 35.8
TEACHER 78.16 41.62 0.0

TinyImageNet 1
255

STUDENT 43.78 32.30 32.6
TEACHER 47.18 34.17 17.4

ImageNet64 1
255

STUDENT 28.17 17.87 5.6
TEACHER 40.30 25.34 0.0

†Certified accuracy reported over the first 500 test images.

5.2 TEACHER-STUDENT COMPARISON

In order to provide insights on the distillation process, we now present a comparison of the perfor-
mance of the CC-Dist models from table 1 with that of the respective teacher models. Owing to the
extremely large computational cost associated to running branch-and-bound on networks trained via
pure adversarial training (the teachers), we restrict the certified robustness comparison on the first 500
images of the test set of each benchmark. Table 2 shows a clear difference in terms of standard accu-
racy and empirical robustness to AutoAttack (Croce & Hein, 2020) between teacher and student, the
latter displaying worse performance as expected. On the other hand, the teachers fail to attain good cer-
tified robustness across any of the considered benchmarks, highlighting that the students significantly
surpass the respective teachers in terms of verifiability. In other words, the distillation process success-
fully exploits empirically-robust teachers to improve the state-of-the-art in certifiably-robust models.

5.3 SENSITIVITY TO DISTILLATION COEFFICIENT

We now present an empirical study of the effect of the distillation coefficient β on the performance
profiles of CC-Dist. As mentioned in §3.3, we keep β = 5/w throughout all the experiments, where
w denotes the dimensionality of the feature space. This is in order to avoid the introduction of an
additional hyper-parameter, and owing to its strong performance across the considered settings.
Figure 1 compares the behavior at β = 5/w from table 1, where both certified robustness via
branch-and-bound and standard performance are enhanced, with results for different distillation
coefficients. It reports standard performance, empirical adversarial robustness (measured through
the attacks within the employed branch-and-bound framework), and certified robustness (both using
branch-and-bound and the best results between incomplete verifiers CROWN (Zhang et al., 2018)
and IBP (Gowal et al., 2019)) across β values on the CIFAR-10 test set. For ϵ = 2/255, increasing
β leads to a steady increase in both standard accuracy and empirical robustness. At the same time,
verifiability increases until an intermediate β value, then steadily decreases, with the certified
accuracy via incomplete verifiers peaking at a lower value than when using branch-and-bound. This
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(a) ϵ = 2/255.
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(b) ϵ = 8/255.

Figure 1: Standard, empirical adversarial and certified accuracies (BaB and CROWN/IBP) under ℓ∞
perturbations of networks trained using CC-Dist under varying distillation coefficient β. The legend is reported
once for all subfigures in plot 1(b). Metrics are reported on the CIFAR-10 test set. The β value employed
throughout the paper (see §3.3) is marked by a dashed vertical line.
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is similar to the behavior of the α parameter in expressive losses such as CC-IBP (De Palma et al.,
2024b). As also visible in table 1, distillation appears to be less helpful for ϵ = 8/255, where standard
performance is enhanced only for intermediate β values. We explain this difference through the
larger degree of similarity between teacher and student on ϵ = 2/255: see table 2.

6 CONCLUSIONS

We presented a novel training scheme, named CC-Dist, that successfully leverages empirically-robust
models to train better certifiably-robust neural networks through knowledge distillation. Complement-
ing CC-IBP, CC-Dist relies on a versatile feature-space distillation loss that can operate on convex
combinations between bounds from student convex relaxations and adversarial student features. We
show that CC-Dist improves on both the standard and certified robust accuracies of CC-IBP on all con-
sidered benchmarks from the robust vision literature, in spite of the relatively low certified robustness
of the employed teacher models. As a result, CC-Dist attains a new state-of-the-art in certified training
across ReLU architectures, showcasing the potential of knowledge distillation for certified robustness.
While our work focuses on teachers that employ the same architecture as the student, we are hopeful
that further progress can be made by appropriately training teachers with larger effective capacity.

ETHICS STATEMENT

We do not anticipate any short-term negative impact of certifiably-robust networks. Indeed, we
believe that efficient certified training techniques should be primarily leveraged towards providing
guarantees to deep learning systems operating in safety-critical contexts. Nevertheless, we acknowl-
edge that adversarial attacks may have social utility when deployed against unethical systems, which
constitute unintended use of machine learning technologies, pointing to a potential shortcoming of
provable robustness. Effective mitigation strategies may include targeted regulations.

REPRODUCIBILITY STATEMENT

Code for CC-Dist is provided as part of the supplementary material, and pseudo-code is provided in
appendix C. Information to reproduce the experiments can be found in in §5 and appendix D, which
also includes details on the employed compute resources and software acknowledgments. Owing to
the large cost associated with the verification experiments (a timeout of 600 seconds per evaluation
image is employed), and complying with related previous works (De Palma et al., 2024b; Mao et al.,
2023; Müller et al., 2023; Mao et al., 2024a; 2025), we provide single-seed results. An indication of
experimental variability on a single dataset is nevertheless provided in appendix E.6.
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A INTERVAL BOUND PROPAGATION

We here provide details concerning the computations of IBP bounds omitted from §2.1. Assuming a
feed-forward network structure, let W j and bj respectively be the weight and bias of the j-th layer, and
let σ denote a monotonic element-wise activation function, which, as stated in §2, we assume to be the
ReLU activation in this work. Furthermore, let W̃n :=

(
yI

k − Ik
)
Wn and b̃n :=

(
yI

k − Ik
)
bn

denote the weight and bias corresponding to the composition of the last network layer and of
the difference between logits. IBP proceeds by first computing l̂1 = W 1x − ϵ

∣∣W 1
∣∣1 + b1 and

û1 = W 1x+ ϵ
∣∣W 1

∣∣1+ b1, and then derives
¯
zCϵ

fθ
(x, y) by iteratively computing lower and upper

bounds (̂lj , and ûj , respectively) to the network pre-activations at layer j:

¯
zCϵ

fθ
(x, y) = [W̃n]+ σ

(̂
ln−1

)
+ [W̃n]− σ

(
ûn−1

)
+ b̃n, where: l̂j = [W j ]+ σ

(̂
lj−1

)
+ 1

2 [W
j ]− σ

(
ûj−1

)
+ bj

ûj = [W j ]+ σ
(
ûj−1

)
+ 1

2 [W
j ]− σ

(̂
lj−1

)
+ bj

∀ j ∈ J2, n− 1K .
(11)

B PROOFS OF TECHNICAL RESULTS

We here provide the proofs omitted from §3.

Remark B.1. Let f : Rn → R. If A ≠ ∅ and A ⊆ B, then maxx∈A f(x) ≤ maxx∈B f(x).

Proposition 3.1. Let
¯
hCϵ

θh
(x) and h̄Cϵ

θh
(x) respectively denote IBP lower and upper bounds to the

student features:

¯
hCϵ

θh
(x) ≤ hθh

(x′) ≤ h̄Cϵ

θh
(x), ∀x′ ∈ Cϵ(x).

The loss function R̄Cϵ

fθ
(x, y) :=

∑
i max

{(
¯
hCϵ

θh
(x)i − ht

θt
h
(x)i

)2

,
(
h̄Cϵ

θh
(x)i − ht

θt
h
(x)i

)2
}

is an

upper bound to the worst-case distillation loss from equation (8): R̄Cϵ

fθ
(x, y) ≥ RCϵ

fθ
(x, y).

Proof. Let us start by upper bounding the worst-case distillation lossRCϵ

fθ
(x, y):

RCϵ

fθ
(x, y) = max

x′∈Cϵ(x)

∥∥∥hθh
(x′)− ht

θt
h
(x)

∥∥∥2
2
= max

x′∈Cϵ(x)

[∑
i

(
hθh

(x′)i − ht
θt
h
(x)i

)2
]

≤
∑
i

max
x′∈Cϵ(x)

(
hθh

(x′)i − ht
θt
h
(x)i

)2

.

Let Mi =

{
hθh

(x′)i

∣∣∣ x′ ∈ argmaxx′∈Cϵ(x)

(
hθh

(x′)i − ht
θt
h
(x)i

)2
}

. By the definition of the

IBP feature bounds
¯
hCϵ

θh
(x) and h̄Cϵ

θh
(x):

Mi ⊆
[
¯
hCϵ

θh
(x)i, h̄

Cϵ

θh
(x)i

]
.

Recalling remark B.1, we can hence further boundRCϵ

fθ
(x, y) as follows:

RCϵ

fθ
(x, y) ≤

∑
i

max
x′∈Cϵ(x)

(
hθh

(x′)i − ht
θt
h
(x)i

)2

=
∑
i

max
h∈Mi

(
h− ht

θt
h
(x)i

)2

≤
∑
i

max
h∈

[
¯
hCϵ
θh

(x)i,h̄
Cϵ
θh

(x)i
]
(
h− ht

θt
h
(x)i

)2

.

Let us note that (for any b, l, u ∈ R, l ≤ u):

max
x∈[l,u]

(x− b)
2
= max

{
(l − b)

2
, (u− b)

2
}
. (12)

We can hence writeRCϵ

fθ
(x, y) ≤ R̄Cϵ

fθ
(x, y).
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Proposition 3.2. The loss function

CCRCϵ

fθ
(α;x, y) :=

∑
i

max

{(
CC

¯
hCϵ

θh
(α;x)i − ht

θt
h
(x)i

)2

,
(

CCh̄Cϵ

θh
(α;x)i − ht

θt
h
(x)i

)2
)

enjoys the following properties:

1. CCRCϵ

fθ
(0;x, y) = R̄Cϵ

fθ
(x, y) and CCRCϵ

fθ
(1;x, y) = R̄Cϵ

fθ
(x, y);

2. R̄Cϵ

fθ
(x, y) ≤ CCRCϵ

fθ
(α;x, y) ≤ R̄Cϵ

fθ
(x, y) ∀ α ∈ [0, 1];

3. CCRCϵ

fθ
(α;x, y) is continuous and monotonically increasing for α ∈ [0, 1].

Proof. Let us define Iαi :=
[

CC
¯
hCϵ

θh
(α;x)i,

CCh̄Cϵ

θh
(α;x)i

]
. Owing to equation (12), we can write

the following alternative definition of CCRCϵ

fθ
(α;x, y):

CCRCϵ

fθ
(α;x, y) =

∑
i

max
h∈Iα

i

(
h− ht

θt
h
(x)i

)2

. (13)

Let us recall that CCh̄Cϵ

θh
(α;x) := (1 − α) hθh

(xadv) + α h̄Cϵ

θh
(x), and

CC
¯
hCϵ

θh
(α;x) := (1−α) hθh

(xadv)+α
¯
hCϵ

θh
(x). By pointing out that hθh

(xadv) ∈
[
¯
hCϵ

θh
(x), h̄Cϵ

θh
(x)

]
,

we can see that, ∀α ∈ [0, 1]:

¯
hCϵ

θh
(x) ≤ CC

¯
hCϵ

θh
(α;x) ≤ hθh

(xadv), hθh
(xadv) ≤ CCh̄Cϵ

θh
(α;x) ≤ h̄Cϵ

θh
(x).

Consequently, ∀α ∈ [0, 1] and ∀i ∈ J1,mK (m being the dimensionality of the feature space):

I0i = {hθh
(xadv)i} ⊆ Iαi ⊆

[
¯
hCϵ

θh
(x)i, h̄

Cϵ

θh
(x)i

]
= I1i .

And hence, as per remark B.1:∑
i

max
h∈I0

i

(
h− ht

θt
h
(x)i

)2

≤
∑
i

max
h∈Iα

i

(
h− ht

θt
h
(x)i

)2

≤
∑
i

max
h∈I1

i

(
h− ht

θt
h
(x)i

)2

. (14)

Using equation (13) with α = 0 we can see that:

CCRCϵ

fθ
(0;x, y) =

∑
i

max
h∈I0

i

(
h− ht

θt
h
(x)i

)2

=
∑
i

(
hθh

(xadv)i − ht
θt
h
(x)i

)2

=
∥∥∥hθh

(xadv)− ht
θt
h
(x)

∥∥∥2
2
= R̄Cϵ

fθ
(x, y).

Using it again with α = 1 and recalling equation (12), we obtain:

CCRCϵ

fθ
(1;x, y) =

∑
i

max
h∈I1

i

(
h− ht

θt
h
(x)i

)2

=

=
∑
i

max

{(
¯
hCϵ

θh
(x)i − ht

θt
h
(x)i

)2

,
(
h̄Cϵ

θh
(x)i − ht

θt
h
(x)i

)2
}

= R̄Cϵ

fθ
(x, y),

Hence proving the first point of the proposition.

The second point can be now proved by again using equation (13) within equation (14):

R̄Cϵ

fθ
(x, y) = CCRCϵ

fθ
(0;x, y) ≤ CCRCϵ

fθ
(α;x, y) ≤ CCRCϵ

fθ
(1;x, y) = R̄Cϵ

fθ
(x, y).

Concerning the third point, the continuity of CCRCϵ

fθ
(α;x, y) for α ∈ [0, 1] can be proved by pointing

out that CCRCϵ

fθ
(α;x, y) is composed of operators preserving continuity (pointwise max), linear

combinations and compositions of continuous functions of α. In order to prove monotonicity, note that,
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for any α, α′ ∈ [0, 1] with α ≤ α′, CCh̄Cϵ

θh
(α′;x) ≥ CCh̄Cϵ

θh
(α;x) and CC

¯
hCϵ

θh
(α′;x) ≤ CC

¯
hCϵ

θh
(α;x),

implying Iαi ⊆ Iα
′

i . Hence, recalling remark B.1, for any α, α′ ∈ [0, 1] with α ≤ α′, we have:

CCRCϵ

fθ
(α;x, y) =

∑
i

max
h∈Iα

i

(
h− ht

θt
h
(x)i

)2

≤
∑
i

max
h∈Iα′

i

(
h− ht

θt
h
(x)i

)2

= CCRCϵ

fθ
(α′;x, y),

which proves that CCRCϵ

fθ
(α;x, y) is monotonically increasing for α ∈ [0, 1].

Lemma 3.3. Let the student classification head gθg
(a) be affine, and let g̃yθg

(a) := W̃na+ b̃n be
its composition with the operator performing the difference between logits. We can write the CC-IBP
convex combinations as:

CCzCϵ

fθ
(α;x, y) =

[
[W̃n]+ [W̃n]−

] [ CC
¯
hCϵ

θh
(α;x)

CCh̄Cϵ

θh
(α;x)

]
+ b̃n.

Proof. We can write the student logit differences as: zfθ (x, y) = W̃nhθh
(x) + b̃n. Hence, given

IBP bounds to the student features
¯
hCϵ

θh
(x) and h̄Cϵ

θh
(x) (corresponding to σ

(̂
ln−1

)
and σ

(
ûn−1

)
in equation (11), respectively), we can compute the logit differences lower bounds

¯
zCϵ

fθ
(x, y) as per

equation (11):

¯
zCϵ

fθ
(x, y) = [W̃n]+

¯
hCϵ

θh
(x) + [W̃n]−h̄

Cϵ

θh
(x) + b̃n.

Let us write the adversarial logit differences zfθ (xadv, y) as a function of the adversarial
student features:

zfθ (xadv, y) = W̃nhθh
(xadv) + b̃n =

(
[W̃n]+ + [W̃n]−

)
hθh

(xadv) + b̃n.

Replacing the above two equations in the definition of the CC-IBP convex combinations
CCzCϵ

fθ
(α;x, y) (see §3.1) we get:

CCzCϵ

fθ
(α;x, y) = (1− α) zfθ (xadv, y) + α

¯
zCϵ

fθ
(x, y)

= (1− α)
[(

[W̃n]+ + [W̃n]−

)
hθh

(xadv)
]
+ α

(
[W̃n]+

¯
hCϵ

θh
(x) + [W̃n]−h̄

Cϵ

θh
(x)

)
+ b̃n

= [W̃n]+

[
(1− α)hθh

(xadv) + α
¯
hCϵ

θh
(x)

]
+ [W̃n]−

[
(1− α)hθh

(xadv) + αh̄Cϵ

θh
(x)

]
+ b̃n.

Recalling that CCh̄Cϵ

θh
(α;x) := (1 − α) hθh

(xadv) + α h̄Cϵ

θh
(x), and

CC
¯
hCϵ

θh
(α;x) := (1− α) hθh

(xadv) + α
¯
hCϵ

θh
(x), we get:

CCzCϵ

fθ
(α;x, y) = [W̃n]+

CC

¯
hCϵ

θh
(α;x) + [W̃n]−

CCh̄Cϵ

θh
(α;x) + b̃n,

which concludes the proof.

C PSEUDO-CODE

We here provide pseudo-code for CC-Dist: see algorithm 1.
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Algorithm 1 CC-Dist training loss LCC-Dist(α, 5/w;x, y)

1: Input: Student fθ = gθg ◦ hθh
, teacher feature map ht

θt
h

, loss function L, data point (x, y),
perturbation set Cϵ(x), hyper-parameter α

2: Compute xadv via an adversarial attack on Cϵ(x)
3: Compute

¯
hCϵ

θh
(x), h̄Cϵ

θh
(x) and

¯
zCϵ

fθ
(x, y) via IBP

4: CCh̄Cϵ

θh
(α;x)← (1− α) hθh

(xadv) + α h̄Cϵ

θh
(x)

5: CC
¯
hCϵ

θh
(α;x)← (1− α) hθh

(xadv) + α
¯
hCϵ

θh
(x)

6: zfθ (xadv, y)←
(
gθg (hθh

(xadv))y 1
k − gθg (hθh

(xadv))
)

7: CCLCϵ

fθ
(α;x, y)← L

(
−
[
(1− α) zfθ (xadv, y) + α

¯
zCϵ

fθ
(x, y)

]
, y
)

8: CCRCϵ

fθ
(α;x, y)←

∑
i max

{(
CC
¯
hCϵ

θh
(α;x)i − ht

θt
h
(x)i

)2

,
(

CCh̄Cϵ

θh
(α;x)i − ht

θt
h
(x)i

)2
)

9: return CCLCϵ

fθ
(α;x, y) + 5/w CCRCϵ

fθ
(α;x, y)

D EXPERIMENTAL DETAILS

This appendix provides experimental details omitted from §5.

D.1 EXPERIMENTAL SETUP

Experiments were each carried out on an internal cluster using a single GPU and employing from 6
to 12 CPU cores. GPUs belonging to the following models were employed: Nvidia GTX 1080 Ti,
Nvidia RTX 2080 Ti, Nvidia RTX 6000, Nvidia RTX 8000, Nvidia V100. CPU memory was capped
at 10 GB for the training experiments, and at 100 GB for the verification experiments. The runtime of
training runs ranges from roughly 5 hours for CIFAR-10, to roughly 4 days for downscaled ImageNet.
For verification experiments, runtime ranges from below 8 hours for CIFAR-10 with ϵ = 8/255 to
roughly 12 days for downscaled ImageNet.

D.2 TRAINING SETUP AND HYPER-PARAMETERS

We now report the details of the employed training setup and hyper-parameters.

D.2.1 DATASETS

As stated in §5.1, the experiments were carried out on the following datasets: CIFAR-10 (Krizhevsky
& Hinton, 2009), TinyImageNet (Le & Yang, 2015), and downscaled ImageNet (64×64) (Chrabaszcz
et al., 2017). For all three, we train using random horizontal flips, random crops, and normalization
as done in (De Palma et al., 2024b). The employed dataset splits comply with previous work in the
area (De Palma et al., 2024b; Mao et al., 2023; Müller et al., 2023). Specifically, for CIFAR-10, which
consists of 32× 32 RGB images divided into 10 classes, we trained on the original 50, 000 training
points, and evaluated on the original 10, 000 test points. For TinyImageNet, consisting of 64× 64
RGB images and 200 classes, we trained on the original 100, 000 training points, and evaluated on
the original 10, 000 validation images. Finally, for downscaled ImageNet, which consists of 64× 64
RGB images and 1000 classes, we employed the original training set of 1, 281, 167 images, and
evaluated on the original 50, 000 validation images.

D.2.2 TRAINING SCHEDULES AND IMPLEMENTATION DETAILS

For CC-IBP, CC-Dist models and their teachers, trained networks are initialized using the specialized
scheme by Shi et al. (2021), which reduces the magnitude of the IBP bounds. Teachers for CC-Dist
are trained using pure adversarial training, relying on a 10-step PGD attack (Madry et al., 2018)
with step size η = 0.25ϵ. Complying with De Palma et al. (2024b), xadv for CC-Dist and CC-IBP
models is computed using a single-step PGD attack with uniform random initialization and step size
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η = 10.0ϵ on all setups except for CIFAR-10 with ϵ = 2/255, which instead relies on a 8-step PGD
attack with step size η = 0.25ϵ′ run on a larger effective input perturbation (ϵ′ = 2.1ϵ). All methods
use a batch size of 128 throughout the experiments, and gradient clipping with norm equal to 10. We
do not perform any early stopping.

As relatively common in the adversarial training literature (Andriushchenko & Flammarion, 2020;
de Jorge et al., 2022), teachers for CC-Dist are trained using the SGD optimizer (with momentum
set to 0.9), shorter schedules and a cyclic learning rate, which linearly increases the learning rate
from 0 to 0.2 during the first half of the training, and then decreases it back to 0. As a longer number
of teacher training epochs was found to be beneficial on TinyImageNet, we report it among the
hyper-parameters in table 3. As instead common in the certified training literature, CC-Dist and
CC-IBP models are trained using the Adam optimizer (Kingma & Ba, 2015) with longer training
schedules and a learning rate of 5 × 10−4, which is decayed twice by a factor 0.2. Their training
starts with one epoch of “warm-up”, where the certified training loss is replaced by the standard
cross entropy on the clean inputs, and proceeds with a “ramp-up” phase, during which the training
perturbation radius ϵ is gradually increased from 0 to its target value, and the IBP regularization
from Shi et al. (2021) is added to the training loss (with coefficient λ = 0.5 on CIFAR-10, and
λ = 0.2 for TinyImageNet and downscaled ImageNet). Benchmark-specific details for CC-Dist
models and CC-IBP, which are in accordance with De Palma et al. (2024b), follow:

• CIFAR-10 with ϵ = 2/255: the CC-IBP and CC-Dist training schedule is 160-epochs long, with 80
epochs of ramp-up, and with the learning rate decayed at epochs 120 and 140.

• CIFAR-10 with ϵ = 8/255: 260 epochs, with 80 epochs of ramp-up, and with the learning rate
decayed at epochs 180 and 220.

• TinyImageNet: 160 epochs, with 80 ramp-up epochs, and decaying the learning rate at epochs
120 and 140.

• Downscaled ImageNet: 80 epochs, with 20 epochs of ramp-up, and decaying the learning rate at
epochs 60 and 70.

In order to separate the effect of distillation from any other potential implementation detail, the CC-
IBP evaluations from table 1 were obtained by employing the CC-Dist implementation with β = 0.

D.2.3 NETWORK ARCHITECTURE

The employed CNN-7 architecture is left unvaried with respect to previous work (De Palma et al.,
2024b; Müller et al., 2023; Mao et al., 2023; 2025) except on downscaled ImageNet, where we
applied a small modification to the linear layers. Specifically, in order to make sure that the feature
space employed for distillation is larger than the network output space, we set the output size of the
penultimate layer (and the input size of the last) equal to 1024, instead of 512 as for the other datasets
and in De Palma et al. (2024b). As originally suggested by Shi et al. (2021) to improve performance,
and complying with previous work (De Palma et al., 2024b; Müller et al., 2023; Mao et al., 2023;
2025), we employ batch normalization (BatchNorm) after every network layer except the last. In
our implementation, adversarial attacks are carried out with the network in evaluation mode, hence
using the current BatchNorm running statistics. Except during the warm-up phase, where we also
perform an evaluation on the unperturbed data points, the network is exclusively evaluated on the
computed adversarial inputs xadv, which hence dominate the computed running statistics for most of
the training and for the final network. Finally, except for the clean loss during warm-up, which is
computed using the unperturbed current batch statistics, all the training loss computations (including
those requiring IBP bounds) are carried out using the batch statistics from the computed adversarial
inputs (hence in training mode).

D.2.4 HYPER-PARAMETERS

Table 3 reports a list of the main method and regularization hyper-parameter values for our evaluations
from table 1. As done in previous work (Gowal et al., 2019; Zhang et al., 2020; Shi et al., 2021;
Müller et al., 2023; De Palma et al., 2024b; Mao et al., 2025), and hence ensuring a fair comparison in
table 1, tuning was carried out directly on the evaluation sets. The details of the CC-Dist and CC-IBP
training schedules, taken from De Palma et al. (2024b), are instead reported in appendix D.2.2.
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Table 3: Hyper-parameter settings for the CC-Dist models from table 1, their respective teachers, and for our
CC-IBP evaluations reported in the same table.

Dataset ϵ Method α ℓ1 Teacher n. epochs Teacher ℓ1

CIFAR-10

2
255

CC-DIST 10−2 3 × 10−6 30 10−5

CC-IBP 10−2 3 × 10−6 / /

8
255

CC-DIST 0.5 0 30 5 × 10−6

CC-IBP 0.5 0 / /

TinyImageNet 1
255

CC-DIST 5 × 10−3 5 × 10−5 100 5 × 10−5

CC-IBP 3 × 10−3 5 × 10−5 / /

ImageNet64 1
255

CC-DIST 5 × 10−3 10−5 30 5 × 10−6

CC-IBP 5 × 10−3 10−5 / /

As explained in §3.3, we advocate for a constant distillation coefficient: we noticed that β = 5/w
yielded good performance across our earlier CIFAR-10 experiments, and then decided to keep it to the
same value across all evaluations. On CIFAR-10, we did not tune the α coefficient for either method:
it was set to be the CC-IBP α coefficient employed in De Palma et al. (2024b). Complying with
common practice in the certified training literature (De Palma et al., 2024b; Müller et al., 2023; Mao
et al., 2025), ℓ1 regularization is applied on top of the employed training losses: the corresponding
values for CC-Dist and CC-IBP models were not tuned but taken from the CC-IBP values reported
in the expressive losses work (De Palma et al., 2024b). On TinyImageNet and ImageNet64, we
found that both the standard performance and the certified accuracy of CC-IBP could be significantly
improved compared to the original results from De Palma et al. (2024b), which respectively employ
α = 10−2 and α = 5× 10−2 for CC-IBP on TinyImageNet and ImageNet64, by decreasing α. In
particular, we selected the smallest α value resulting in strictly better robustness-accuracy trade-
offs (i.e., before certified accuracy started decreasing with lower α values). We trained a series of
potential teachers for CC-Dist with varying ℓ1 coefficient and number of training epochs, and selected
the teacher depending on the performance of the resulting CC-Dist model. On all datasets except
TinyImageNet, where longer schedules were beneficial to CC-Dist performance, we found a teacher
trained with the relatively short 30-epoch schedule to result in strong CC-Dist performance. Finally,
generally speaking, we advocate for the re-use of the selected CC-IBP α coefficient for CC-Dist.
On TinyImageNet, the only setting where the employed α values for the reported models differ
across CC-Dist and CC-IBP, we found a larger CC-Dist α to result in simultaneously better standard
performance and certified robustness compared to all results from the literature. Nevertheless, re-using
α = 3× 10−3 for CC-Dist produced a model with 44.08% standard accuracy and 27.40% certified
accuracy (compare with table 1), which, albeit not improving on both metrics at once compared to
the MTL-IBP results from (Mao et al., 2025), significantly improves upon the overall performance
trade-offs seen in the literature.

Unless otherwise stated, all hyper-parameters throughout the experimental evaluations comply with
those reported in table 3.

D.3 VERIFICATION SETUP

The employed verification setup is analogous to the one from De Palma et al. (2024b). As stated
in §5, we use the open source OVAL verification framework (Bunel et al., 2018; 2020a; De Palma
et al., 2021), which performs branch-and-bound, and a configuration based on alpha-beta-CROWN
bounds (Wang et al., 2021). Before running branch-and-bound, we try verifying the property via
IBP and CROWN bounds from auto_LiRPA (Xu et al., 2020), or to falsify it through a PGD
attack (Madry et al., 2018). Differently from De Palma et al. (2024b), we use a timeout of 600
seconds (as opposed to 1800 seconds). We perform verification by running the framework to compute
mini z

Cϵ

fθ
(x, y)i, where the min operator is converted into an equivalent auxiliary ReLU network to

append to zfθ (x, y) (Bunel et al., 2020b; De Palma et al., 2024b). For TinyImageNet and downscaled
ImageNet, differently from De Palma et al. (2024b), in order to reduce the size of the auxiliary
network, we exclude from the min operator all the logit differences that were already proved to
be positive by the IBP or CROWN bounds computed before running branch-and-bound. Finally,
the configuration employed to verify the TinyImageNet and downscaled ImageNet teacher models
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(results reported in table 2) computes looser pre-activation bounds (using CROWN (Zhang et al.,
2018) as opposed to 5 iterations of alpha-CROWN (Xu et al., 2021)) at the root of branch-and-bound:
this was found to be a more effective verifier for networks trained via pure adversarial training.

D.4 SOFTWARE ACKNOWLEDGMENTS AND LICENSES

As described above, our code relies on the OVAL verification framework to verify the models, which
was released under an MIT license. The training codebase is analogous to the one from the expressive
losses work (De Palma et al., 2024b), also released under an MIT license: this was in turn based on
the codebase from Shi et al. (2021), released under a 3-Clause BSD license. Both above repositories,
and hence our codebase, rely on the auto_LiRPA (Xu et al., 2020) framework for incomplete
verification, which has a 3-Clause BSD license. Concerning datasets: downscaled ImageNet was ob-
tained from the ImageNet website (https://www.image-net.org/download.php), and
TinyImageNet from the website of the CS231n Stanford class (http://cs231n.stanford.
edu/TinyImageNet-200.zip). MNIST and CIFAR-10 were instead downloaded using
torchvision.datasets (Paszke et al., 2019).

E SUPPLEMENTARY EXPERIMENTS

This appendix reports experimental results omitted from the main paper.

E.1 EFFECT OF DISTILLATION

Aiming to shed further light behind the effect of knowledge distillation in this context, we here
present a more detailed experimental comparison between the CC-IBP and CC-Dist models from
table 1, presenting AutoAttack (Croce & Hein, 2020) accuracy to measure empirical robustness,
and the IBP loss to measure the ease of verifiability. As we can conclude from table 4, the use of
knowledge distillation improves trade-offs between standard accuracy and certified robustness by:

1. transferring some of the superior natural accuracy and empirical robustness of the teacher
onto the student through the distillation term;

2. preserving a large degree of verifiability through the CC-IBP term within the CC-Dist loss.

Table 4: Detailed analysis of the effect on distillation onto CC-IBP.

Dataset ϵ Method Standard acc. [%] AA acc. [%] Certified acc. [%] IBP loss

CIFAR-10

2
255

CC-DIST 81.55 70.71 64.60 29.05
CC-IBP 79.51 68.56 63.50 27.46

8
255

CC-DIST 55.13 36.80 35.52 1.865
CC-IBP 54.46 36.59 35.42 1.862

TinyImageNet 1
255

CC-DIST 43.78 32.30 27.88 59.63
CC-IBP 41.28 30.12 26.53 39.39

ImageNet64 1
255

CC-DIST 28.17 17.87 13.96 50.46
CC-IBP 25.94 16.51 13.69 30.66

E.2 OTHER SPECIAL CASES OF THE PROPOSED DISTILLATION LOSS

As seen in proposition 3.2, when choosing α ∈ [0, 1], the proposed distillation loss CCRCϵ

fθ
(α;x, y)

can continuously interpolate between lower and upper bounds to the worst-case feature-space distilla-
tion loss in equation (8). While §3.3 advocates for the use of the same α coefficient employed by
CC-IBP in order to closely mirror its loss (see lemma 3.3), we expect other choices of the α coefficient
to work well on selected benchmarks. We here evaluate the behavior of two training schemes that
correspond to other special cases of the proposed parametrized distillation loss. Specifically, we
consider the use of CCRCϵ

fθ
(0;x, y) = R̄Cϵ

fθ
(x, y) and CCRCϵ

fθ
(1;x, y) = R̄Cϵ

fθ
(x, y) on top of CC-IBP,
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calling the resulting training schemes CC-Dist0 and CC-Dist1, respectively:

LCC-Dist0(α, β;x, y) := CCLCϵ

fθ
(α;x, y) + β CCRCϵ

fθ
(0;x, y),

LCC-Dist1(α, β;x, y) := CCLCϵ

fθ
(α;x, y) + β CCRCϵ

fθ
(1;x, y).

Keeping ℓ1 regularization and the α coefficient of the CC-IBP loss fixed, we first tested different dis-
tillation coefficients β while using the teachers employed for the CC-Dist models (see tables 2 and 3),
finding that β = 5/w yields the largest natural accuracy improvement for both methods on ϵ = 8/255,
and a strong trade-off between certified robustness and standard performance for CC-Dist0 on
ϵ = 2/255. We found β = (5×10−4)/w to work better for CC-Dist1 on ϵ = 2/255. Then, using the
above distillation coefficients, and similarly to what done for CC-Dist (see appendix D.2.4), we tested
the two methods using teachers with varying ℓ1 regularization and trained for 30 epochs. Aiming to
compare them with CC-Dist, Table 5 reports results for the best-performing CC-Dist0 and CC-Dist1
models from the above procedure that display similar performance profiles with CC-Dist.

Table 5 shows that both CC-Dist0 and CC-Dist1 work well across the considered CIFAR-10 settings.
As we would expect considering the low employed α coefficient (see table 3), CC-Dist0 strictly
outperforms CC-Dist1 on ϵ = 2/255, where both methods nevertheless improve on both the standard
performance and the certified accuracy of CC-IBP. While CC-Dist0 displays performance comparable
to CC-Dist in this setting, CC-Dist1 performs markedly worse. On ϵ = 8/255, where the employed α
coefficient is instead relatively large (see table 3), CC-Dist1 strictly outperforms CC-Dist0 on both
reported performance profiles, indicating the benefit of distilling onto feature IBP bounds in this
context. Nevertheless, both methods can produce models improving on CC-IBP for both metrics on
ϵ = 8/255, with the corresponding CC-Dist0 model strictly outperformed by CC-Dist.

We believe that the above results further confirm the effectiveness of using empirically-robust models
to improve certified training via knowledge distillation. As the relative performance of CC-Dist0
and CC-Dist1 varies depending on the experimental setting, we advocate for the use of CC-Dist as
described in §3.3 due to its adaptive nature. Nevertheless, given that most considered benchmarks
require relatively low α coefficients (see table 3), we expect CC-Dist0 to be a valid alternative to
CC-Dist on TinyImageNet and downscaled ImageNet.

E.3 DISTILLATION ONTO OTHER CERTIFIED TRAINING SCHEMES

In order to showcase the wider applicability of knowledge distillation from empirically-robust teach-
ers, we here present results on applying such distillation process onto other certified training schemes,
focusing on SABR (Müller et al., 2023), MTL-IBP (De Palma et al., 2024b), and IBP-R (De Palma
et al., 2022). While the first two algorithms are expressive losses (De Palma et al., 2024b) like
CC-IBP, which is the focus of this paper, IBP-R does not fit into the relative framework. As described
in §4, SABR computes IBP bounds over a subset of Cϵ, termed a “small box”. We propose to employ
a distillation loss of the form of CCRCϵ

fθ
(1;x, y), yet using IBP bounds computed on the small box,

calling the resulting algorithm SABR-Dist. For MTL-IBP, which takes convex combinations between
L̄Cϵ

fθ
(x, y) and L̄Cϵ

fθ
(x, y), we employ the same distillation loss used for CC-Dist: CCRCϵ

fθ
(1;x, y).

Table 5: Comparison between the CC-Dist models from table 1 and other special cases of the proposed
parametrized distillation loss.

Dataset ϵ Method β Teacher ℓ1 Standard acc. [%] Certified acc. [%]

CIFAR-10

2
255

CC-DIST 5/w 10−5 81.55 64.60
CC-DIST0 5/w 10−5 81.74 64.22
CC-DIST1

(
5×10−4

)
/w 5 × 10−5 79.84 63.93

CC-IBP 0 / 79.51 63.50

8
255

CC-DIST 5/w 5 × 10−6 55.13 35.52
CC-DIST0 5/w 2 × 10−5 55.63 35.08
CC-DIST1 5/w 2 × 10−6 55.91 35.35
CC-DIST0 2/w 5 × 10−6 54.65 35.46
CC-DIST1 2/w 5 × 10−6 54.87 35.55

CC-IBP 0 / 54.46 35.42
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Table 6: Effect of distillation from empirically-robust teachers onto SABR (Müller et al., 2023), MTL-
IBP (De Palma et al., 2024b), and IBP-R (De Palma et al., 2022).

Dataset ϵ Method Std. acc. [%] PGD-40 acc. [%] Cert. acc. [%]

CIFAR-10 2
255

SABR-Dist 81.18 71.13 64.54
SABR 79.55 69.49 63.94

MTL-IBP-Dist 81.58 71.88 64.09
MTL-IBP 79.71 69.67 63.16

IBP-R-Dist 81.13 70.28 61.76
IBP-R 79.68 69.98 61.43

Similarly to CC-Dist, and in spite of the lack of the coupling provided by lemma 3.2, we re-use the
same α coefficient as for MTL-IBP. We note, nevertheless, that, for any given α, the MTL-IBP loss
upper bounds the CC-IBP loss (De Palma et al., 2024b, proposition 4.2). For IBP-R, we instead use
CCRCϵ

fθ
(0;x, y) as distillation loss (see appendix E.2). Various teachers and distillation coefficients

were tested for IBP-R, whereas we only varied β and kept the same teacher as table 2 for SABR and
MTL-IBP. β = 5/w was chosen for all methods. For IBP-R a teacher with ℓ1 coefficient of 2× 10−5

was selected. Table 6 shows that the distillation process successfully improves both the standard
accuracy and the certified robustness of all the three considered methods, demonstrating the wider
potential of distillation from adversarially-trained teachers towards certified training.

E.4 LOGIT-BASED DISTILLATION

We now compare the results of our proposed distillation loss from §3.2 with a loss that instead seeks
to directly distill onto the CC-IBP convex combinations CCzCϵ

fθ
(α;x, y). Specifically, it employs

a KL term between CCzCϵ

fθ
(α;x, y) and the teacher logit differences ztθt (x, y), resulting in the

following training loss:

CCLCϵ

fθ
(α;x, y) + T 2β KLT

(
− CCzCϵ

fθ
(α;x, y),−ztθt (x, y)

)
. (15)

Keeping all other hyper-parameters fixed (including the teacher model) to the values reported in
table 3, we tested different distillation coefficients β, using T = 20. We found that, compared
to CC-IBP, the best performance profile using equation (15) were obtained using β = (104)/w for
both considered CIFAR-10 setups, whose results are reported in table 7. CC-Dist outperforms the
logit-space distillation loss in both settings. We ascribe this to the more informative content of the
model features, and to the inherent difference between the training goals of the teacher and the student,
which are respectively trained for empirical and certified adversarial robustness. Allowing the student
to learn a markedly different classification head from the teacher may be beneficial in this context.

E.5 PREACTRESNET18 TEACHERS

We now present a preliminary evaluation of the effect of employing a PreActResNet18 (PRN18)
architecture (He et al., 2016) as teacher for CC-Dist. In order to ensure that the feature space of
the teacher is set to the output of a ReLU, in compliance with the student model, we place the
PreActResNet18 average pooling layer before the last ReLU and batch normalization (the standard
PreActResNet18 architecture places it instead before the last linear layer). Focusing on TinyImageNet,
and keeping α = 3× 10−3 and the ℓ1 coefficient to 5× 10−5 as for the CC-IBP model on this setup
(see table 3), we tested various PRN18 teachers trained for 30 epochs with varying ℓ1 regularization
as CC-Dist teachers. Table 8 compares the performance of the ensuing CC-Dist model having the

Table 7: Comparison between the logit-space distillation from equation (15) and the CC-Dist models from table 1.

Dataset ϵ Method Standard acc. [%] Certified acc. [%]

CIFAR-10

2
255

CC-DIST 81.55 64.60
EQ. (15) 80.61 63.65

8
255

CC-DIST 55.13 35.52
EQ. (15) 54.76 35.20
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Table 8: Evaluation of the effect of PreActResNet18 (PRN18) teachers (tch.) on the TinyImageNet performance
of CC-Dist, compared to teachers with the same architecture as the student.

Dataset ϵ Tch. arch. Std. acc. [%] Cert. acc. [%] Tch. std. acc. [%] Tch. PGD-40 acc. [%]

TinyImageNet 1
255

CNN-7 44.08 27.40 47.18 36.07
PRN18 43.03 26.09 50.90 39.98

largest natural accuracy with the best model obtained through same-architecture teachers for these
hyper-parameters, and the respective teachers. CC-Dist draws no benefit from the PRN18 teacher
(which was trained with ℓ1 coefficient equal to 5× 10−5), in spite of the fact that it displays stronger
performance than the CNN-7 teacher. While we are hopeful that better CC-Dist results could be
obtained by training PRN18 teachers for longer (the considered teachers are trained for 30 epochs, as
opposed to the 100 epochs employed for the CNN-7 teacher), we leave this for future work.

E.6 EXPERIMENTAL VARIABILITY

Owing to the large cost of repeatedly training and verifying certifiably-robust models (the worst-case
per-image verification runtime is 600 seconds: see appendices D.1 and D.3), and as common in the
area (De Palma et al., 2024b; Mao et al., 2023; Müller et al., 2023; Mao et al., 2024a; 2025), all the
experiments were run using a single seed. In order to provide an indication of experimental variability,
table 9 presents aggregated CIFAR-10 results over 4 repetitions for CC-Dist and CC-IBP. These
include the CC-Dist and CC-IBP results reported in table 1 and 3 further repetitions of the associated
experiment, consisting of training and the ensuing verification using branch-and-bound. We found
experimental variability to be relatively low on ϵ = 2/255, and more noticeable on ϵ = 8/255. On
the latter setting, distillation markedly improves the average standard accuracy while leaving certified
robustness roughly unvaried. For ϵ = 2/255, CC-Dist instead produces a significant improvement
on both average metrics at once. In both cases, the cumulative (signed) improvement across the two
averaged metrics is similar to the one reported in table 1.

E.7 RUNTIME MEASUREMENTS

In order to assess the training overhead associated with our distillation scheme, we here present
runtime measurements and estimates for CC-Dist and CC-IBP. Specifically, we provide the training
runtime of both methods, separately including also the teacher training runtime for CC-Dist, and
estimates of the verification runtimes for the trained models from table 1. These experiments were
carried out using an Nvidia RTX 8000 GPU, and 6 cores of an AMD EPIC 7302 CPU. Table 10
shows that, under the training schedules of appendix D.2.2 and when training teachers for 30 epochs
as per table D.2.4, CC-Dist is associated with minimal training overhead on the considered CIFAR-10
settings. This overhead increases to respectively almost 70% and 40% for TinyImageNet and down-
scaled ImageNet, where stronger teachers are required in order to maximize performance. Finally, the
increased certified accuracy of the CC-Dist models (see table 1) comes with an increased verification
runtime, as expected from the increases IBP loss resulting from the distillation process (see table 4).

Table 9: Experimental variability of CC-Dist and CC-IBP on CIFAR-10: maximal and minimal values, the mean
and its standard error (SEM) across 4 repetitions are reported.

Dataset ϵ Method Standard acc. [%] Certified acc. [%]

Mean SEM Max Min Mean SEM Max Min

CIFAR-10

2
255

CC-DIST 81.58 0.08 81.72 81.38 64.46 0.14 64.61 64.03
CC-IBP 79.68 0.08 79.90 79.51 63.41 0.10 63.65 63.21

8
255

CC-DIST 55.22 0.07 55.40 55.09 34.88 0.24 35.52 34.40
CC-IBP 54.12 0.19 54.62 53.73 34.89 0.23 35.42 34.34
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Table 10: Training runtime measurements for CC-Dist, their respective teachers (trained for 30 epochs), and
CC-IBP under the training schedules of appendix D.2.2.

Dataset ϵ Method Training runtime [s] Teacher training runtime [s] Estimated† verification runtime [s]

CIFAR-10

2
255

CC-DIST 1.605 × 104 2.225 × 103 1.097 × 105

CC-IBP 1.568 × 104 / 7.089 × 104

8
255

CC-DIST 1.653 × 104 2.223 × 103 1.090 × 104

CC-IBP 1.600 × 104 / 6.238 × 103

TinyImageNet 1
255

CC-DIST 5.432 × 104 3.470 × 104 2.778 × 105

CC-IBP 5.246 × 104 / 1.608 × 105

ImageNet64 1
255

CC-DIST 3.228 × 105 1.089 × 105 1.210 × 106

CC-IBP 3.095 × 105 / 7.794 × 105

†Extrapolated from measurements over the first 500 test images.

E.8 DIFFERENT ARCHITECTURE AND ACTIVATION FUNCTION

The main results focus on the CNN-7 architecture owing to its state-of-the-art performance and
prevalence in the relevant literature (De Palma et al., 2024b; Mao et al., 2023; Müller et al., 2023; Shi
et al., 2021). We here investigate whether the distillation process is beneficial beyond this context by
studying the relative performance of CC-Dist on a different activation function and on a different
architecture for both the teacher and the model, focussing on CIFAR-10 with ϵ = 2/255. For the
activation experiment, we modify CNN-7 to employ the hyperbolic tangent (tanh), testing different
teachers trained for 100 epochs (choosing a teacher ℓ1 coefficient of 2× 10−5), and varying β values
(settling for β = 5/w as for the experiments in table 1). For the architecture experiment, we use
PreActResNet18 (PRN18) for both the teacher and the student, testing different teachers trained for
30 epochs (settling on a teacher with ℓ1 coefficient of 5× 10−6), and using β = 5/w. In both cases,
owing to the lack of support for either model from the OVAL branch-and-bound framework (Bunel
et al., 2018; 2020a; De Palma et al., 2021) employed throughout the paper, we use CROWN (Zhang
et al., 2018) from auto_LiRPA (Xu et al., 2020) as post-training verification algorithm. Table 11
shows that CC-Dist successfully improves robustness-accuracy trade-offs for both the considered
settings, demonstrating the wider applicability of the proposed distillation technique.

E.9 DISTILLATION ON EARLIER LATENTS

Throughout the paper, we define the feature space as the activations before last affine network layer,
in accordance with the conditions of lemma 3.2. We here investigate the effect of computing on the
distillation loss CCRCϵ

fθ
(α;x, y) on an earlier feature space, corresponding to the activations before

the penultimate affine layer of CNN-7. In particular, we focus on CIFAR-10 with ϵ = 2/255, keeping
the teacher model fixed to the one used for tables 1 and 2 and varying the β coefficient to account for
the change in the feature space: we found β = 2/w to yield the maximize performance in this context.
Table 12 shows that distillation for the last affine layer yields strictly better robustness-accuracy
trade-offs than those presented in table 5.1. As distilling on earlier layers implies that a larger
portion of the network is exclusively trained using the CC-IBP loss, we ascribe this to insufficient
teacher-student coupling.

E.10 CLEAN TEACHERS

In spite of our focus on learning from adversarially-trained teachers, the proposed distillation loss
CCRCϵ

fθ
(α;x, y) only makes use of the clean features of the teacher model. In order to investigate

Table 11: Effect of distillation beyond CNN-7 students on CIFAR-10 with ϵ = 2/255.

(a) Modified CNN-7with tanh activation functions.

Method Std. acc. [%] CROWN acc. [%]

CC-Dist 72.38 49.42
CC-IBP 71.29 47.39

(b) PreActResNet18 architecture.

Method Std. acc. [%] CROWN acc. [%]

CC-Dist 74.01 53.63
CC-IBP 73.40 52.88
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Table 12: Effect of computing the distillation loss CCRCϵ
fθ
(α;x, y) on an earlier feature space.

Dataset ϵ Feature space Std. acc. [%] Cert. acc. [%]

CIFAR-10 2
255

Last 81.55 64.60
Penultimate 80.84 63.11

whether the empirical robustness of the teacher is indeed necessary for an effective distillation process,
we here study the effect of employing standard-trained teachers. In particular, focusing on CIFAR-10
with ϵ = 2/255, we keep β = 2/w and test the use of SGD-trained teachers trained with varying ℓ1
regularization coefficients (5× 10−6 being the chosen ℓ1 coefficient). Table 13 shows that the use of
standard teachers markedly worsens the certified accuracy of the student, which is now inferior to the
one associated to CC-IBP (see table 1). These results demonstrate that a robust teacher representation
is a key requirement for the success of the distillation process.

F DETAILS ON THE EMPLOYED NOTATION

We here provide additional details on the employed notation.

Student and teacher models Input-to-logits maps are denoted using the letter f , defined as the
composition of a feature map, denoted using the letter h, and classification heads, denoted using the
letter g. We employ a subscript to denote the parameters of these (sub-)networks, here written as a
function of their inputs only. Network parameters, denoted θ throughout this work, are subscripted
to denote the subsets of θ corresponding to the feature map θh, and to the classification head, θg,
respectively. The (sub-)networks for the teacher model, and their parameters, are denoted by the use
of the t superscript (e.g, θt

h or ht
θt
h

).

Bounds to worst-case quantities The worst-case classification loss, equation (3), and the worst-
case distillation loss, equation (8), are superscripted by the relative local perturbation set Cϵ around
the input x. Lower and upper bounds to both quantities are denoted through lower and upper bars,
respectively (e.g., L̄Cϵ

fθ
(x, y)), with the superscript preserved to stress their local validity. A similar

notation is employed for the local bounds to the worst-case logit differences (e.g,
¯
zCϵ

fθ
(x, y), which

lower bounds equation 2. Convex combinations between lower and upper bounds, parametrized
by α, are denoted by left-superscript CC standing for Convex Combination (e.g., CCRCϵ

fθ
(α;x, y)),

without any bars. For all these worst-case quantities, lower bounds corresponding to evaluations on
concrete inputs from adversarial attacks, and the upper bounds are obtained through network convex
relaxations (specifically, IBP).

Bounds to the student features We again employ a similar notation when bounding the student
features hθh

(x), defined in proposition 3.1. In this context, both the lower and the upper bounds are
obtained through IBP. Convex combinations between the adversarial student latents hθh

(xadv) and
the IBP lower and upper bounds, as defined in equation 9, are denoted by the left-superscript CC and
lower and upper bars, respectively (e.g., CCh̄Cϵ

θh
(α;x)).

Table 13: Effect of performing distillation from clean teachers.

Dataset ϵ Teacher training Std. acc. [%] Cert. acc. [%]

CIFAR-10 2
255

PGD-10 81.55 64.60
Standard 81.48 62.52
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