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Abstract

We tackle the Metro Network Expansion Problem (MNEP), a subset of the Transport Net-
work Design Problem (TNDP), which focuses on expanding metro systems to satisfy travel
demand. Traditional methods rely on exact and heuristic approaches that require expert-
defined constraints to reduce the search space. Recently, deep reinforcement learning (Deep
RL) has emerged due to its effectiveness in complex sequential decision-making processes
— it remains, however, computationally expensive, environmentally costly and require ad-
ditional engineering to interpret. We show that MNEP problems are small enough to not
require Deep RL methods. Reformulating the MNEP as a Non-Markovian Rewards De-
cision Process (NMRDP), we use tabular Q-Learning to achieve similar performance with
significantly fewer training episodes, additionally offering greater interpretability. Addition-
ally, we incorporate social equity criteria into the reward functions, focusing on efficiency
and fairness, highlighting the versatility of our method. Evaluated in real-world settings
— Xi’an and Amsterdam — our method reduces total episodes by a factor of 18 and total
carbon emissions by a factor of 12 on average, while remaining competitive with Deep RL.
This approach offers a replicable, modular, interpretable, and resource-efficient solution with
potential applications to other combinatorial optimization problems.

1 Introduction

Public transport is fundamental to modern, fast-paced lifestyles, as it enables citizens to participate in em-
ployment, education, healthcare, and social activities (Martens, 2016). However, planning public transport
networks is especially challenging due to physical, social, economic and legal constraints that complicate the
creation of new transport routes, or the expansion of existing ones. Additionally, sustainability and equity
are values that increasingly shape the design of public transport networks. Modern transport systems must
be accessible, ensuring that citizens of all locations, socioeconomic statuses, and ages can benefit from these
services (Martens, 2016). They also need to be efficient, as they must cover actual demand for mobility rather
than being designed arbitrarily. Efficiency is also vital for sustainability: buses with low passenger loads
can have a higher environmental impact per passenger than cars (Lowe et al., 2009), and low ridership can
degrade the quality of transit systems over time (Mohring, 1972). These trade-offs add further complexity
to transport design problems, leading to the need for increasingly sophisticated solutions.

The Transport Network Design Problem (TNDP) is an NP-hard combinatorial optimization problem that
addresses the design of public transport, by maximizing total travel demand satisfaction (Farahani et al.,
2013). For metro systems, a specific subset of TNDP, known as the Metro Network Expansion Problem
(MNEP), is central to expanding existing metro lines within cities (Wei et al., 2020; Wang et al., 2023; Su
et al., 2024). Metro networks are especially important in modern cities for their speed, reliability, and high
passenger capacity compared to other traditional modes of public transport (Wang et al., 2023).

MNEPs focus on expanding an existing metro network in a city. Metro lines generally cover long distances,
cross multiple urban zones, and are typically designed as relatively straight routes without excessive mean-
dering (Wei et al., 2020). As a distinct sub-problem within TNDP, MNEP introduces additional constraints
specific to metro network design.
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Traditionally, TNDP problems have been approached with integer optimization and heuristic algorithms
(Laporte & Pascoal, 2015; Owais & Osman, 2018), which require extensive expert-defined constraints to
reduce the search space for tractability. Recently, the Metro Network Expansion Problem (MNEP) has been
framed as a sequential decision-making problem, leveraging Reinforcement Learning (RL) to derive optimal
solutions (Wei et al., 2020). RL is well-suited for sequential decision-making with multiple objectives, such as
efficiency and fairness, and has been successfully applied to combinatorial optimization problems (Darwish
et al., 2020; Raman et al., 2021; Jullien et al., 2022). Unlike traditional methods, RL can explore the search
space flexibly by optimizing a reward function, avoiding the need for exponentially increasing constraints.

Given the large state-action spaces in many problems, the complexity of Reinforcement Learning (RL) may
seem justified. Recently, Deep Reinforcement Learning (Deep RL) has shown promise in scaling combinatorial
optimization, learning policy representations that autonomously identify key features and achieving state-
of-the-art results in real-world problems (Mazyavkina et al., 2021; Neustroev et al., 2022; Xu et al., 2022).

While advances in computing power and algorithmic research suggest that RL could transform problems
like MNEP, we argue that Deep RL is not always the ideal solution. Its substantial training time and
environmental costs are becoming increasingly significant with the widespread deployment of AI systems
(Anthony et al., 2020; Strubell et al., 2020; Patterson et al., 2021; Krishnan et al., 2022). Although MNEPs
involve complex solution spaces, they are fundamentally static optimization problems with limited input
features. Their scalability is inherently constrained—metro lines are typically spaced 1–3 kilometers apart
(Giang et al., 2023) and are restricted in placement, shape, and other design factors. Complex neural network
structures, which excel at capturing complex patterns in high-dimensional feature spaces, may not therefore
be necessary for effective policy training. This is supported by findings in other machine learning domains
(Cuccu et al., 2019).

In this paper, we argue that traditional RL methods can effectively tackle complex problems like MNEP
when properly framed. We demonstrate that a tabular approach achieves competitive performance against
deep-learning methods while significantly reducing training time in two real-world environments (Xi’an and
Amsterdam). Additionally, our new formulation, in combination with tabular RL, offers greater interpretabil-
ity than black-box deep-learning models.

To further showcase the potential of tabular RL, we explore social equity in MNEP by incorporating diverse
reward functions based on various notions of social good. We extend the state-of-the-art RL formulation of
MNEP to integrate fairness criteria. Our key contributions are the following: we reformulate the Transport
Network Design and Metro Network Expansion problems as Non-Markovian Reward Decision Processes,
significantly reducing the state-action space. We bridge machine learning and transport planning research
by extending the RL framework to integrate considerations of social good, with both efficiency and fairness-
based objectives. We propose a Monte Carlo Tabular Reinforcement Learning algorithm for MNEP, designed
to require fewer training episodes than deep learning models. We validate our method in two real-world
settings—Xi’an, China, and Amsterdam, Netherlands—demonstrating comparable performance to state-of-
the-art Deep RL methods, with an 18-fold reduction in training episodes and a 12-fold reduction in CO2
emissions. We provide all code, datasets, and hyperparameter settings to replicate our results and enable
application to other combinatorial optimization problems1.

The remainder of the paper is structured as follows: First, we position our work in the context of previous
research (Section 2) and re-formulate the MNEP (Section 3). We continue by describing the tabular model
and the proposed social-welfare reward functions (Section 4) and the real-world environments used in our
experiments (Section 5). Finally, we present and discuss our results (Section 6).

2 Related Work

We outline previous work on the TNDP, reinforcement learning for combinatorial optimization, and the
analysis of fairness in transportation.

1Github: https://github.com/*****/ (retracted for anonymous submission)
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2.1 Transport Network Design Problem

Traditionally, the Transport Network Design Problem (TNDP) has been approached through a combination
of integer optimization techniques and heuristic methods, including the use of pre-defined or dynamically
discovered corridors (Laporte & Pascoal, 2015; Zarrinmehr et al., 2016; Gutiérrez-Jarpa et al., 2018), sim-
ulated annealing (Fan & Machemehl, 2006; Ahern et al., 2022), bee colony optimization (Yang et al., 2007;
Szeto & Jiang, 2014), and genetic algorithms (Owais & Osman, 2018; Nayeem et al., 2018).

While these approaches have produced promising results in early studies, they have notable limitations. To
make the problem tractable, they restrict the search space by either enforcing a long list of environment-
specific constraints or by setting a predefined set of corridors. This restriction provides obstacles in appli-
cation in large, real-world urban environments with diverse characteristics. More critically, narrowing the
search space in this manner can exclude high-quality solutions that lie outside of these constraints.

2.2 Reinforcement Learning for Transport Network Design

Reinforcement Learning (RL) has proven effective for optimal long-term sequential decisions. Through
straightforward reward mechanisms, an agent learns to understand its impact on the environment via trial-
and-error, making RL well-suited for tackling real-world NP-hard combinatorial optimization tasks by lever-
aging demonstration and experience, without the need for expert prior knowledge (Mazyavkina et al., 2021;
Wang & Tang, 2021; Bengio et al., 2021; Jullien et al., 2022; Darvariu et al., 2024). Although combinatorial
optimization problems can also be approached with Supervised Learning (SL), recent studies have shown that
RL can generalize more effectively than SL in common problems such as the Travelling Salesman Problem
(Bello et al., 2017; Deudon et al., 2018) and Vehicle Routing (Nazari et al., 2018; Kool et al., 2018).

Despite the growing utility of RL in combinatorial optimization, its application to transport network design
has only recently gained attention. Darwish et al. (2020) employed a policy gradient method to design bus
lines, exploring the Pareto front between customer satisfaction and operational costs. Similarly, Wei et al.
(2020) used a pointer-based model to address the Transit Network Design Problem (TNDP), demonstrating
superior performance in demand satisfaction. More recently, Alkilane & Lee (2024) integrated Graph Neural
Networks with a Monte Carlo Tree Search (MCTS) algorithm, leveraging network connectivity to enhance
feature learning. Darvariu et al. (2023) also applied MCTS for graph expansion in existing metro networks,
albeit without directly addressing the MNEP. Furthermore, Multi-objective Reinforcement Learning has
been used in TNDP to balance efficiency with accessibility (Zhang et al., 2024; Michailidis et al., 2023).

Most work on the Transit Network Design Problem (TNDP) and the closely related Metro Network Expansion
Problem (MNEP) has focused on complex deep reinforcement learning (Deep RL) models. This paper,
however, challenges the necessity of such black-box models for problems where interpretability is crucial for
decision-makers. We reformulate the problem to significantly reduce the action space without restricting the
solution space, enabling a simpler, Monte Carlo-based tabular reinforcement learning approach. Our method
is then benchmarked against the state-of-the-art Deep RL approach for MNEP (Wei et al., 2020).

2.3 Social Equity in Transport Network Design

Adopting notions of social equity in transport network design is challenging to optimize due to its multi-
dimensional nature (Behbahani et al., 2019) and the inherent moral judgments involved (van Wee, 2011).
Drawing on prior research in urban transport, we identify three key decisions necessary to incorporate
fairness: utility measure, dimension, and fairness theory.

Utility measure: This is commonly achieved by establishing accessibility metrics, such as the number of
reachable opportunities (Pereira et al., 2019; van der Veen et al., 2020; Hernandez, 2018), the affordability
of accessing them (Farber et al., 2014), or a combination of both (El-Geneidy et al., 2016).

Dimension: Fairness can be assessed along spatial dimensions, where disparities are evaluated across differ-
ent geographic or administrative units (Pereira et al., 2019; Delmelle & Casas, 2012), or through group-based
measures, where groups are defined by socio-economic characteristics (e.g., income, race) (van der Veen et al.,
2020; Pyrialakou et al., 2016; Cheng et al., 2021).
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Fairness theory: Multiple theories of fairness and equity inform transport network design (Behbahani
et al., 2019). Most approaches fall under horizontal fairness—aiming for equal utility across all units or
groups—or vertical fairness, which prioritizes groups or areas in greater need (van Wee, 2011).

Despite these theoretical analyses, comprehensive application of fairness frameworks within machine learning
for TNDP remains limited. Nonetheless, prior work has made initial attempts to integrate equity considera-
tions. For example, Ramachandran et al. (2021) explore the efficiency-equity trade-off in graph augmentation
using RL, applying their approach to Chicago’s transport network (Ramachandran et al., 2021). Tedjop-
urnomo et al. (2022) compare bus line designs for advantaged and disadvantaged groups, though not using
RL (Tedjopurnomo et al., 2022). Wei et al. (2020) account for equity by designing a weighted reward that
balances travel demand with an area’s development index, though this measure is implemented within the
reward function and analyzed only minimally for its impact. The same approach is used by Zhang et al.
(2024), who add one more component to the reward function.

Our paper presents the first attempt to bridge the gap between transport fairness research and RL-based
transport network design in a comprehensive framework. We design fairness-based rewards based on Behba-
hani et al. (2019) definition, which targets an equitable distribution of benefits introduced by new transport
lines. This framework is adaptable to various utility measures; in this study, we focus on Origin-Destination
flows due to their relevance for mobility demand, rather than accessibility. Our analysis is done on a socio-
economic group dimension, and we provide diverse reward functions that cover different fairness notions.

Figure 1: Two real-world case studies where the Metro Network Expansion Problem (MNEP) can be applied.
The left side features Amsterdam, Netherlands, with each grid cell representing aggregate origin-destination
demand (visualized using a blue colormap in panel A), along with the city’s existing metro lines and housing
price quintiles (panel B). On the right, similar data is displayed for Xi’an, China.

3 The Metro Network Expansion Problem

The Metro Network Expansion Problem (MNEP) is a subproblem of the Transport Network Design Prob-
lem (TNDP). Within the TNDP framework, the main objective is to expand the transport network by
constructing a new line that maximizes the captured travel demand left unmet by the existing network.

In traditional formulations of TNDP and MNEP, the city is modeled as a two-dimensional grid environment
with n rows and m columns, Hn×m. The aim is to identify a set of adjacent cells Z = {z1, z2, . . . , zT | zi ∈
H, ∀i = 1, 2, . . . , T}, which sequentially connect to form a new metro line, in order to maximize the total
captured demand. This demand is represented by an Origin-Destination (OD) matrix, OD|H|×|H| (Guihaire
& Hao, 2008; Farahani et al., 2013). Here, OD[i, j] denotes the travel demand from grid cell i to grid cell j.
In the MNEP, the OD matrix is assumed to be symmetric and deterministic, remaining constant throughout
the optimization process.

The size of set Z is limited by a construction budget B , and a maximum number of stations T . We define
a function U(Z) that calculates the total added benefit of the generated line Z. In the traditional MNEP,
U(Z) is defined as the total sum of satisfied demand. The optimization problem is then defined as follows.
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Find the set of connected cells Z, such that:

max U(Z) =
∑

i

∑
j

OD[zi, zj ], i ̸= j

s.t. cost(Z) ≤ B

|Z| ≤ T

(1)

Here, the constraints B and T are strict, meaning that the new metro line must not exceed the specified
budget or the total number of allowable stations.

The structural configuration of the metro line depends on the type of transport, which can be directed, as
in bus or tram networks, or undirected, as is typical in metro systems. The focus of our paper is the design
of metro networks, hence we tackle the Metro Network Expansion Problem (MNEP) (Wei et al., 2020).

3.1 Social Equity in the Metro Network Expansion Problem

The traditional MNEP primarily seeks to maximize total demand coverage, often overlooking the equitable
distribution of benefits across various communities within the city. Prior work on reinforcement learning
(RL) in this context also tends to prioritize efficiency and adopt a predominantly utilitarian approach (Wei
et al., 2020). Here, we demonstrate that RL can effectively optimize for a wider array of objectives that
encompass essential principles of social equity, as defined in transport planning literature. In addition to
utilitarianism (Equation (1)), we emphasize two additional equity principles: equal sharing of benefits and
Rawlsian justice as articulated by Rawls’ theory of justice (Behbahani et al., 2019). Our focus centers on
ensuring fairness in the allocation of satisfied Origin-Destination demand facilitated by the new line, paying
particular attention to its distribution across different socioeconomic groups.

We first define a set of groups G, based on socioeconomic indicators such as income, development index,
and education. Each cell h ∈ Hn×m in the environment is associated with a group g ∈ G. We adjust the
objective function for each fairness notion accordingly, defining a utility function U(Z, g) for each group
g ∈ G, which returns the satisfied OD demand of line Z for group g.

Equal Sharing: This egalitarian objective aims to equalize the added benefits of the transport line among
groups in a city, commonly referred to as horizontal equity. In theory, equal sharing is achieved by minimizing
the absolute differences between group utilities:

min
∑

i

∑
j

|U(Z, gi)− U(Z, gj)|, gi, gj ∈ G, i ̸= j (2)

To implement fairness objectives in practice, we need to also incorporate total reward as, theoretically,
Equation (2) could be minimized when all group utilities are 0. To address this, we encapsulate the equal-
sharing notion using the Generalized Gini Index (GGI) (Siddique et al., 2020).

U(Z) = GGI(Z, W ) =
|G|∑

i

WiU(Z, σ(G)i), (3)

where σ is a permutation that sorts the groups in G in descending order based on their utility prior to line
creation, and Wi are strictly decreasing weights (i.e., W1 > W2 > · · · > W |G|) normalized to sum to 1.

Rawls’ Theory of Justice: This approach aims to maximize benefits for the most disadvantaged group.

max(U(Z, gmin)), (4)

where gmin represents the most disadvantaged group within G. In this paper, we define groups based on a
house-price index as a proxy for area development, with gmin as the group with the lowest house price index.
Lower house price indexes are used as a proxy to identify the poorer areas of a city.

To apply this notion, we set the reward function as U(Z) = U(Z, gmin). In Figure 1, we illustrate the
real-world cities of Amsterdam and Xi’an where we apply our method. We detail the environments in
Section 5.

5



Under review as submission to TMLR

Figure 2: In the Metro Network Expansion Problem (MNEP), a reinforcement learning (RL) agent se-
quentially adds transport segments to the network. Each action represents the addition of a segment at a
specific location, with rewards based on the demand met by that segment. The objective is to maximize the
cumulative reward from all added segments.

4 Methods

We define the Metro Network Expansion Problem (MNEP) as a Non-Markovian Reward Decision Process
(NMRDP) (Section 4.1) and describe the Tabular Q-Learning algorithm we use to solve it (Section 4.2).

4.1 Metro Network Expansion Non-Markovian Reward Decision Process

Recent approaches to the MNEP apply reinforcement learning (RL) by encoding each city grid cell as a
potential action for the agent, resulting in an action space that scales linearly with the grid size (|A| = |H|)
(Wei et al., 2020; Su et al., 2024), with a time complexity of O(n ×m). While physical constraints mask
certain actions to limit selectable cells at each timestep, this masking occurs only after the forward pass,
immediately before the softmax layer (Wei et al., 2020; Su et al., 2024). As a result, the policy network must
still process all potential cells in every state.

We argue that this complexity is unnecessary. Instead, we propose a two-stage approach: first, the agent
selects a starting cell—the initial location for placing the first station on a metro line. The agent then
navigates the grid by choosing among eight possible movement directions (north, south, east, west, and the
four diagonal directions). Each movement forms a segment of the metro line, with the newly entered cell
designated as the next station location.

With our approach, the initial cell selection and the subsequent episode steps are decoupled, substantially
reducing the action space to 8, regardless of the grid size, reducing the time complexity at each step (except
for the first) to O(1). Additionally, we simplify the state representation to be the agent’s current location,
which can be efficiently encoded in a table with rows corresponding to the number of cells in the grid. How-
ever, this new formulation violates the Markov property, since the agent’s current location alone does not
encapsulate the previously placed stations. Future rewards depend on the sequence of past actions (Gaon
& Brafman, 2020). Consequently, the decision process deviates from the Markov assumption that all neces-
sary information is contained in the present state. Nonetheless, as in prior work addressing combinatorial
optimization problems like the Travelling Salesman Problem (Bello et al., 2017; Kool et al., 2018), this de-
parture from a strict Markovian framework is intentional and acceptable for our purposes. Our goal is to
efficiently tackle the static MNEP by generating high-quality solutions rather than to satisfy all theoretical
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properties of sequential decision making. And as we show in this paper, this relaxation does not lead to
lower performance.

The Metro Network Expansion Problem (MNEP) can be formulated as a Non-Markovian Reward Deci-
sion Process (NMRDP), an extension of the Markov Decision Process (Gaon & Brafman, 2020), M =
⟨S,A,P,R, γ, µ⟩ as follows:

S is the state space, where each state st = (xt, yt) ∈ S represents the agent’s current location in the
two-dimensional city grid.

A = {N, S, E, W, NE, NW, SE, SW} is the action space, corresponding to the eight movement directions:
North, South, East, West, and the four diagonals. The action taken at time t is denoted as at ∈ A.

R : S ×A×S ×H → R is the reward function, which encodes the demand satisfied by constructing a metro
line segment from st to st+1. Since the reward depends on the history of visited states H = {s0, s1, ..., st}, it
is non-Markovian and cannot be fully determined by the current state-action pair alone. The reward received
at time t is rt = R(st, at, st+1,H).

µ : S → [0, 1] is the probability distribution over the starting state s0, which can be predefined, learned, or
randomly sampled.

Given the discrete and episodic nature of the problem, we set the discount factor γ = 1, and the transition
function P is deterministic. Figure 2 illustrates this formulation.

The action space in any state is further constrained by feasibility rules F (Zt), which enforce: no re-visiting
of previously occupied cells, no movement beyond grid boundaries and no reversing direction or forming
cycles. These constraints refine the set of allowable actions to adhere to the constraints of a metro line.
More details on feasibility rules are provided in Appendix A, the accompanying code, and prior work (Wei
et al., 2020; Zhang et al., 2024).

The reward function R : S × A × S × H → R expresses the demand covered by the new metro segment,
calculated in two steps. First, the direct demand between the new station and all previously existing stations
on the line is computed (we use Zt to express the history H — the previously placed stations). Additionally,
if connections between the new metro line and existing lines are identified, the reward is increased by the
additional transfer demand between each station of the existing line and each station of the extended line
(Wei et al., 2020). The total reward is the sum of these two components.

Rt = U(Zt)︸ ︷︷ ︸
direct demand

+
∑
l∈L

1connect(Zt, l) · U(l × Zt)︸ ︷︷ ︸
transfer demand

, (5)

where Zt = z1, ..., zt is the set of all stations in the current line up to time t, L is the set of all existing metro
lines, Sl is the set of stations in existing line l, 1connect(zt, l) is an indicator function that equals 1 if station
zt connects with line l (shares a cell), and 0 otherwise.

4.2 Tabular Q-Learning for MNEP

We propose a tabular Q-learning algorithm for metro network expansion, in which a single reinforcement
learning (RL) agent operates in two stages. We apply a Monte Carlo-based method to iteratively update
the V and Q-tables through repeated environment interactions.

Selecting the Initial Cell An episode begins with the agent selecting the initial state S0 (starting point
for the metro line) using an ϵ-greedy approach. When exploring, it picks a random cell; when exploiting,
it picks the cell maximizing the expected return. The value of each cell as a starting position is given by
Vstart(S0) ∈ R|H|, which estimates the expected return for beginning an episode at S0.

Action Selection and Transition The agent selects actions using ϵ-greedy approach. After choosing an
action At, the agent observes a reward Rt and deterministically transitions to a new state S′. This transition
(St, At, Rt) is stored in an episodic list, tracking the agent’s path, which is later used to perform Monte Carlo
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updates. Episodes end when one of three terminal conditions is met: (a) no available directions remain, (b)
the budget is exhausted, or (c) the maximum number of allowed stations is reached.

Monte-Carlo Returns and Policy Update At the end of each episode, the agent updates the V and
Q-values using Monte Carlo estimation. First, the total discounted return, denoted by J (we use J here to
avoid confusion with the group set G, departing slightly from standard RL notation), is calculated. Using
this return J , the agent then updates the value functions accordingly.

Q(St, At)← Q(St, At) + α[J −Q(St, At)]
Vstart(S0)← Vstart(S0) + α[J − Vstart(S0)]

(6)

In Algorithm 1 we show the pseudocode of the proposed method.

Algorithm 1 Tabular Metro Network Expansion with Monte-Carlo Updates
1: Parameters: B, T , α, γ ▷ Budget, total stations, RL parameters
2: Initialize Q(s, a), Vstart for all s, actions a, empty Episode, TotalCost← 0, and ActionMask of ones.
3: for each episode do
4: Select S0 via ϵ-greedy from Vstart; add S0 to Z
5: for each step t do
6: Choose At with ϵ-greedy, considering ActionMask
7: Execute A, receive reward R, observe next state S′

8: Append (S, A, R) to Episode, add zt to Z, update TotalCost, ActionMask, S ← S′

9: if SUM(ActionMask) = 0 OR TotalCost ≥ B OR t ≥ T then break
10: end if
11: end for
12: Initialize J ← 0
13: for each step (St, At, Rt) in Episode from last to first do
14: J ← γJ + Rt

15: if (St, At) is first in Episode then
16: Q(St, At)← Q(St, At) + α(J −Q(St, At))
17: end if
18: end for
19: Update Vstart(S0)← α(J − Vstart(S0))
20: Reset TotalCost, Episode, Z, and ActionMask
21: end for

5 Experiments

We ran and evaluated the model in two real-world case study cities: Xi’an and Amsterdam. To facilitate
introducing directional constraints and to provide higher granularity, both cities are split into grids of
equally-sized cells, rather than relying on census tracts (this assumption can be relaxed).

Xi’an environment preparation

Wei et al. (2020) created and publicly released the Xi’an environment 2. The city is organized into a H29×29

grid, comprising 1km2 cells. An origin-destination (OD) demand matrix was generated from GPS data
collected over one month from 25 million mobile phones. Each cell is linked to an average house price
index — we categorize them to five quintiles to create groups. We selected the average house price as a
proxy for neighborhood development, as it is widely available across various cities and raises no privacy
concerns. While our group definitions rely on this metric, they could also incorporate other attributes, such
as those based on protected categories. The environment already includes two existing metro lines, and our
experiments focus on expanding the network by designing a third line. This setting provides a wealth of
mobility demand data, contrasting with the case study in Amsterdam discussed below.

2https://github.com/weiyu123112/City-Metro-Network-Expansion-with-RL

8



Under review as submission to TMLR

Amsterdam environment preparation

The Amsterdam environment is organized into a H35×47 grid of 0.5km2 cells. This cell size was chosen to
maintain similar problem complexity in all cities, taking into account the smaller size of Amsterdam. Since
GPS data are unavailable, we estimate the origin-destination (OD) demand using the recently published
universal law of human mobility, which indicates that the total mobility flow between two areas i and j is
determined by their distance and visitation frequency (Schläpfer et al., 2021). We provide details on the
estimation on Appendix B. As in the Xi’an environment, each cell is associated with an average house price
sourced from the publicly available statistical bureau of the Netherlands 3. The groups are defined as five
quintiles based on this price.

5.1 Evaluation

We evaluate our proposed TabularMNEP algorithm against the state-of-the-art Deep Reinforcement Learning
(DeepRL) method for Transport Network Design (Wei et al., 2020), as well as a Genetic Algorithm (GA)
(Owais & Osman, 2018) and a Greedy Search Algorithm (GS) (Yang et al., 2007).

The methods are tested on four distinct reward functions: a utilitarian reward, maximizing total captured
travel demand (Max Efficiency); two equal-sharing rewards using the Generalized Gini Index with weights
of 1/2i (GGI(2)) and 1/4i (GGI(4)); and a Rawlsian reward that maximizes demand from the lowest house
price quintile. We conducted a Bayesian hyperparameter search across 100 runs, selecting the top five
configurations, running each five times, and choosing the one with the best average performance. More
details on Appendix C. DeepRL was trained over 3,500 epochs (128 episodes per epoch, totaling 448,000
episodes), while TabularRL required only 25,000 episodes—a reduction of 18-fold in total training episodes.

To estimate emissions (kg CO2 equivalent), we consider GPU electricity consumption (kWh), total training
hours, and the carbon emissions per kWh based on the 2024 monthly average for COUNTRY4, using the formula:
CO2 = Watt ∗ TrainingHours ∗ CarbonFactor(Lacosteet al., 2019).

Model training used two types of in-house GPUs, the RTX 6000 Ada Generation (300 Watt) and GTX
1080Ti (250 Watt), depending on availability. Although our tabular method does not require a GPU, we
report emissions based on GPU usage since a GPU-equipped node was reserved for model runs.

Figure 3: We demonstrate that the proposed TabularMNEP model achieves similar performance while
requiring 18 times fewer episodes (x-axis is in log-scale).

6 Results

We ran both algorithms using 5 random seeds and provide code to replicate our results5. This section presents
three key analyses: (1) a comparison of our proposed Tabular-TNDP method against recent approaches
including Deep-RL, a Genetic Algorithm, and a Greedy Algorithm (Section 6.1); (2) a demonstration of

3https://www.cbs.nl/nl-nl/maatwerk/2019/31/kerncijfers-wijken-en-buurten-2019
4Country name retracted for anonymous submission.
5https://github.com/*****/****
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Xi’an Amsterdam
Max. Efficiency GGI(2) GGI(4) Rawls Max. Efficiency GGI(2) GGI(4) Rawls

Greedy Search (Laporte et al., 2005) 33.8± 0.00 4.47± 0.00 2.16± 0.00 6.73± 0.00 6.17± 0.00 1.00± 0.00 0.38± 0.00 3.83± 0.00
Genetic Algorithm (Owais & Osman, 2018) 43.2± 1.51 6.05± 0.22 3.87± 0.62 11.07± 0.85 26.1± 1.43 2.66± 0.16 1.35± 0.19 8.80± 0.68
DeepRL (Wei et al., 2020) 62.7± 2.86 8.70± 0.41 5.63± 0.88 16.41± 0.95 35.7± 0.06 2.37± 0.12 0.76± 0.01 11.57± 0.67
TabularMNEP (Ours) 57.9± 3.89 8.13± 0.58 4.55± 0.32 14.65± 1.05 29.9± 2.12 2.53± 0.39 0.98± 0.10 9.75± 1.10

Table 1: Results on Xi’an and Amsterdam for 10 seeds.

Xi’an Amsterdam
Max. Efficiency GGI(2) GGI(4) Rawls Max. Efficiency GGI(2) GGI(4) Rawls

DeepRL 1.21 1.38 1.61 1.17 1.23 1.21 1.22 1.14
TabularMNEP (Ours) 0.05 0.13 0.13 0.12 0.06 0.28 0.28 0.10

Table 2: Estimated average emissions in kg CO2 equivalent for each model’s training.

TabularMNEP’s versatility across multiple social-good rewards (Section 6.2); and (3) a justification for
choosing TabularMNEP in scenarios where interpretability is crucial (Section 6.3).

6.1 TabularMNEP performs on par with DeepRL methods

Our proposed TabularMNEP method significantly outperforms both the Greedy Search (Laporte et al., 2005)
and the Genetic Algorithm (Owais & Osman, 2018) baselines for most rewards. TabularMNEP achieves
comparable performance to DeepRL across both the Xi’an and Amsterdam environments, considering both
traditional and social good objectives defined in Section 3. Detailed averages and confidence intervals for all
methods are presented in Table 1.

Notably, TabularMNEP achieves results within the confidence interval of DeepRL with substantially greater
training efficiency, requiring only 25k episodes compared to DeepRL’s 450k episodes (3500 epochs × 128
episodes). This 18× reduction in training episodes is visualized in Figure 3 using a logarithmic x-axis.

In Table 2, we report the average CO2 equivalent emissions from running our models across the four proposed
reward functions. We observe that TabularMNEP requires, on average, 12× fewer emissions to achieve
performance comparable to the Deep RL baseline.

6.2 TabularMNEP effectively optimizes diverse rewards

As with Deep RL methods, TabularMNEP is capable of optimizing diverse rewards. Figure 4 shows the
generated metro lines and the reward distribution among groups for both environments. The Max Efficiency
reward function achieves the highest overall satisfied origin-destination flows, but we can observe that the
rewards are distributed unequally among the five groups. In both Xi’an and Amsterdam, the highest quintiles
exhibit greater satisfaction than the lowest quintiles, with inequality more pronounced in Amsterdam. This
is due to the spatial distribution: in Xi’an, groups are more uniformly distributed, and segregation is lower,
while in Amsterdam, the city center is dominated by higher-priced areas.

In contrast, the equality-based reward functions result in a more balanced distribution. Both GGI with
w = 2 and w = 4 effectively equalize the rewards across groups. When w = 4, the rewards are distributed
more equally, at the cost of overall efficiency. The Rawls reward prioritizes the lowest quintile in both
environments, maximizing its satisfied demand. As intended, it directs the agent to optimize exclusively for
the lowest quintile.

An additional insight from the Rawls reward function is its ability to reveal how isolated the lowest-utility
group is. In Xi’an, maximizing for the lowest quintile creates “trickle-up” effects, benefiting other groups as
well. However, in Amsterdam, where the lowest quintile is more segregated in the southeast, the generated
line primarily benefits this group alone. This is further demonstrated in the spatial distribution of the lines,
as shown in Figure 4.
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(a) Generated Lines and Distribution of Benefits (Xi’an)

(b) Generated Lines and Distribution of Benefits (Amsterdam)

Figure 4: We present the results of applying various reward functions to design transport lines in Xi’an (a)
and Amsterdam (b). The left column displays the generated lines for each city, while the right column shows
the distribution of satisfied demand across the five groups for the selected models.

6.3 Reduced state-space and TabularMNEP leads to more interpretable policies

Our new formulation, that reduces the state-space to be the grid, offers a key advantage in solving the Metro
Network Expansion Problem (MNEP): inherent interpretability of the policies. As illustrated in Figure 5, we
can visualize three critical aspects: (a) the optimal policy generating the metro line, (b) the average reward
distribution across initial grid locations, and (c) the final Q-values with their corresponding best actions,
which provide a direct interpretation for the best metro segment direction from each possible departing
state. While similar visualizations could be produced for the previously proposed deep RL methods, there
is a fundamental difference in how these values are stored and accessed. In Deep RL, policies are embedded
within high-dimensional, latent representations, making it difficult to extract direct mappings from states
to actions without additional processing, such as feature visualization or network probing. In contrast, our
method explicitly stores values for each state-action pair, allowing for transparent inspection and direct
modification, even during training. This interpretability provides decision-makers with insights beyond the
model’s output, enabling them to understand the relationship between actions and rewards, identify over-and
under-explored areas in the city, and allowing genearting alternative routes to those produced by black-box
models.

Transparency in this domain is particularly valuable as real-world metro planning often requires multiple
alternative policies rather than a single solution. Additionally, tabular MNEP allows for incorporating
spatial constraints after training, once the model has thoroughly explored the solution space. This post-
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training constraint application enables the model’s ability to discover diverse solutions, while still capable of
accommodating practical limitations.

Figure 5: TabularRL provides better interpretability compared to DeepRL. In Panel (a), the metro line of
a trained model optimized for maximum efficiency is illustrated. Panel (b) shows the average achievable
reward from various starting points within the city, while Panel (c) displays the learned Q-values for each
cell when the agent selects the action associated with the highest Q-value. Higher Q-values indicate more
favorable locations for placing a metro station.

7 Conclusion

We demonstrate that simple, tabular-based reinforcement learning methods can effectively tackle complex
combinatorial optimization problems with diverse objectives, such as the Transport Network Design and
Metro Network Expansion problems. Our approach reformulates the problem to reduce the action space and
employs distinct Q-tables for different action types.

We show that well-engineered problem reformulation, combined with established methods, can yield compet-
itive results while requiring significantly less computational power. Our method runs efficiently on standard
personal computers without a GPU and achieves performance comparable to state-of-the-art deep reinforce-
ment learning techniques, despite using far fewer resources and requiring substantially less training time.
Moreover, our approach enhances interpretability and flexibility in policy selection.

Our findings highlight that effective computational policy-making in real-world applications is achievable
without relying on complex, black-box models. We hope this work encourages a re-evaluation of simpler
models for other optimization challenges as well, such as link rewiring, which offers a similar setup (Yang
et al., 2023). However, we acknowledge that tabular methods require encoding every possible state in the
state space, which can pose scalability limitations. While our approach performs well in the Metro Network
Expansion problem by constraining the state space, it may not generalize to problems with inherently large-
scale state representations.

We would like to note that Reinforcement Learning in urban planning can enhance decision efficiency, but
without careful consideration of the reward function, it can reinforce existing biases, favoring developed
areas and deepening mobility inequities. Automated decision-making also risks reducing transparency and
public engagement. Thus, the proposed models require human oversight, fairness considerations, and policy
constraints for ethical deployment.

References
Zeke Ahern, Alexander Paz, and Paul Corry. Approximate multi-objective optimization for integrated bus

route design and service frequency setting. Transportation Research Part B: Methodological, 155:1–25,
January 2022. ISSN 0191-2615. doi: 10.1016/j.trb.2021.10.007. URL https://www.sciencedirect.com/
science/article/pii/S0191261521001910.

12

https://www.sciencedirect.com/science/article/pii/S0191261521001910
https://www.sciencedirect.com/science/article/pii/S0191261521001910


Under review as submission to TMLR

Khaled Alkilane and Der-Horng Lee. Metrozero: Deep reinforcement learning and monte carlo tree search
for optimized metro network expansion. IEEE Transactions on Intelligent Transportation Systems, 2024.

Lasse F. Wolff Anthony, Benjamin Kanding, and Raghavendra Selvan. Carbontracker: Tracking and pre-
dicting the carbon footprint of training deep learning models, 2020. URL https://arxiv.org/abs/2007.
03051.

Hamid Behbahani, Sobhan Nazari, Masood Jafari Kang, and Todd Litman. A conceptual framework to for-
mulate transportation network design problem considering social equity criteria. Transportation Research
Part A: Policy and Practice, 125:171–183, July 2019. ISSN 0965-8564. doi: 10.1016/j.tra.2018.04.005.
URL https://www.sciencedirect.com/science/article/pii/S0965856417308030.

Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural Combinatorial
Optimization with Reinforcement Learning. arXiv:1611.09940 [cs, stat], January 2017. URL http://
arxiv.org/abs/1611.09940. arXiv: 1611.09940.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization: A
methodological tour d’horizon. European Journal of Operational Research, 290(2):405–421, April 2021.
ISSN 03772217. doi: 10.1016/j.ejor.2020.07.063. URL https://linkinghub.elsevier.com/retrieve/
pii/S0377221720306895.

Wenting Cheng, Jiahui Wu, William Moen, and Lingzi Hong. Assessing the spatial accessibility and spatial
equity of public libraries’ physical locations. Library & Information Science Research, 43(2):101089, April
2021. ISSN 0740-8188. doi: 10.1016/j.lisr.2021.101089. URL https://www.sciencedirect.com/science/
article/pii/S0740818821000190.

Giuseppe Cuccu, Julian Togelius, and Philippe Cudre-Mauroux. Playing atari with six neurons, 2019. URL
https://arxiv.org/abs/1806.01363.

Victor-Alexandru Darvariu, Stephen Hailes, and Mirco Musolesi. Planning spatial networks with monte
carlo tree search. Proceedings of the Royal Society A, 479(2269):20220383, 2023.

Victor-Alexandru Darvariu, Stephen Hailes, and Mirco Musolesi. Graph reinforcement learning for combi-
natorial optimization: A survey and unifying perspective. arXiv preprint arXiv:2404.06492, 2024.

Ahmed Darwish, Momen Khalil, and Karim Badawi. optimising Public Bus Transit Networks Using
Deep Reinforcement Learning. In 2020 IEEE 23rd International Conference on Intelligent Transporta-
tion Systems (ITSC), pp. 1–7, Rhodes, Greece, September 2020. IEEE. ISBN 978-1-72814-149-7. doi:
10.1109/ITSC45102.2020.9294710. URL https://ieeexplore.ieee.org/document/9294710/.

Elizabeth Cahill Delmelle and Irene Casas. Evaluating the spatial equity of bus rapid transit-based acces-
sibility patterns in a developing country: The case of Cali, Colombia. Transport Policy, 20:36–46, March
2012. ISSN 0967-070X. doi: 10.1016/j.tranpol.2011.12.001. URL https://www.sciencedirect.com/
science/article/pii/S0967070X11001338.

Michel Deudon, Pierre Cournut, Alexandre Lacoste, Yossiri Adulyasak, and Louis-Martin Rousseau. Learning
Heuristics for the TSP by Policy Gradient. In Willem-Jan van Hoeve (ed.), Integration of Constraint
Programming, Artificial Intelligence, and Operations Research, Lecture Notes in Computer Science, pp.
170–181, Cham, 2018. Springer. ISBN 978-3-319-93031-2. doi: 10.1007/978-3-319-93031-2_12.

Ahmed El-Geneidy, David Levinson, Ehab Diab, Genevieve Boisjoly, David Verbich, and Charis Loong. The
cost of equity: Assessing transit accessibility and social disparity using total travel cost. Transportation
Research Part A: Policy and Practice, 91:302–316, September 2016. ISSN 0965-8564. doi: 10.1016/j.tra.
2016.07.003. URL https://www.sciencedirect.com/science/article/pii/S0965856416305924.

Wei Fan and Randy B. Machemehl. Using a Simulated Annealing Algorithm to Solve the Transit Route Net-
work Design Problem. Journal of Transportation Engineering, 132(2):122–132, February 2006. ISSN 0733-
947X. doi: 10.1061/(ASCE)0733-947X(2006)132:2(122). URL https://ascelibrary.org/doi/abs/10.
1061/%28ASCE%290733-947X%282006%29132%3A2%28122%29. Publisher: American Society of Civil Engi-
neers.

13

https://arxiv.org/abs/2007.03051
https://arxiv.org/abs/2007.03051
https://www.sciencedirect.com/science/article/pii/S0965856417308030
http://arxiv.org/abs/1611.09940
http://arxiv.org/abs/1611.09940
https://linkinghub.elsevier.com/retrieve/pii/S0377221720306895
https://linkinghub.elsevier.com/retrieve/pii/S0377221720306895
https://www.sciencedirect.com/science/article/pii/S0740818821000190
https://www.sciencedirect.com/science/article/pii/S0740818821000190
https://arxiv.org/abs/1806.01363
https://ieeexplore.ieee.org/document/9294710/
https://www.sciencedirect.com/science/article/pii/S0967070X11001338
https://www.sciencedirect.com/science/article/pii/S0967070X11001338
https://www.sciencedirect.com/science/article/pii/S0965856416305924
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-947X%282006%29132%3A2%28122%29
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-947X%282006%29132%3A2%28122%29


Under review as submission to TMLR

Reza Zanjirani Farahani, Elnaz Miandoabchi, W. Y. Szeto, and Hannaneh Rashidi. A review of urban trans-
portation network design problems. European Journal of Operational Research, 229(2):281–302, Septem-
ber 2013. ISSN 0377-2217. doi: 10.1016/j.ejor.2013.01.001. URL https://www.sciencedirect.com/
science/article/pii/S0377221713000106.

Steven Farber, Keith Bartholomew, Xiao Li, Antonio Páez, and Khandker M. Nurul Habib. Assessing social
equity in distance based transit fares using a model of travel behavior. Transportation Research Part A:
Policy and Practice, 67:291–303, September 2014. ISSN 0965-8564. doi: 10.1016/j.tra.2014.07.013. URL
https://www.sciencedirect.com/science/article/pii/S0965856414001785.

Maor Gaon and Ronen Brafman. Reinforcement Learning with Non-Markovian Rewards. Proceedings of the
AAAI Conference on Artificial Intelligence, 34(04):3980–3987, April 2020. doi: 10.1609/aaai.v34i04.5814.
URL https://ojs.aaai.org/index.php/AAAI/article/view/5814.

Vu Thi Thuy Giang, Than Dinh Vinh, Nguyen Thanh Huyen, Dang Thi Nga, Nguyen Manh Hung, et al.
Connectivity of metro station location with urban space–a study of hanoi metro line n° 2.3. In E3S Web
of Conferences, volume 403, pp. 07008. EDP Sciences, 2023.

Valérie Guihaire and Jin-Kao Hao. Transit network design and scheduling: A global review. Transportation
Research Part A: Policy and Practice, 42(10):1251–1273, 2008.

Gabriel Gutiérrez-Jarpa, Gilbert Laporte, and Vladimir Marianov. Corridor-based metro network design
with travel flow capture. Computers & Operations Research, 89:58–67, January 2018. ISSN 0305-
0548. doi: 10.1016/j.cor.2017.08.007. URL https://www.sciencedirect.com/science/article/pii/
S0305054817302137.

Diego Hernandez. Uneven mobilities, uneven opportunities: Social distribution of public transport accessi-
bility to jobs and education in Montevideo. Journal of Transport Geography, 67:119–125, 2018. ISSN 0966-
6923. doi: 10.1016/j.jtrangeo.2017.08.017. URL https://www.sciencedirect.com/science/article/
pii/S0966692316303556.

Sami Jullien, Mozhdeh Ariannezhad, Paul Groth, and Maarten de Rijke. A simulation environment and
reinforcement learning method for waste reduction. arXiv preprint arXiv:2205.15455, 2022.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In International
Conference on Learning Representations, 2018.

Srivatsan Krishnan, Maximilian Lam, Sharad Chitlangia, Zishen Wan, Gabriel Barth-Maron, Aleksandra
Faust, and Vijay Janapa Reddi. Quarl: Quantization for fast and environmentally sustainable reinforce-
ment learning, 2022. URL https://arxiv.org/abs/1910.01055.

Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dandres. Quantifying the carbon
emissions of machine learning, 2019. URL https://arxiv.org/abs/1910.09700.

Gilbert Laporte and Marta M. B. Pascoal. Path based algorithms for metro network design. Computers
& Operations Research, 62:78–94, October 2015. ISSN 0305-0548. doi: 10.1016/j.cor.2015.04.007. URL
https://www.sciencedirect.com/science/article/pii/S0305054815000878.

Gilbert Laporte, Juan A. Mesa, Francisco A. Ortega, and Ignacio Sevillano. Maximizing Trip Coverage in the
Location of a Single Rapid Transit Alignment. Annals of Operations Research, 136(1):49–63, April 2005.
ISSN 1572-9338. doi: 10.1007/s10479-005-2038-0. URL https://doi.org/10.1007/s10479-005-2038-0.

Marcy Lowe, Bengu Aytekin, and Gary Gereffi. Public Transit Buses: A Green Choice Gets Greener. October
2009.

Karel Martens. Transport Justice: Designing fair transportation systems. Routledge, July 2016. ISBN
978-1-317-59958-6. Google-Books-ID: m0yTDAAAQBAJ.

14

https://www.sciencedirect.com/science/article/pii/S0377221713000106
https://www.sciencedirect.com/science/article/pii/S0377221713000106
https://www.sciencedirect.com/science/article/pii/S0965856414001785
https://ojs.aaai.org/index.php/AAAI/article/view/5814
https://www.sciencedirect.com/science/article/pii/S0305054817302137
https://www.sciencedirect.com/science/article/pii/S0305054817302137
https://www.sciencedirect.com/science/article/pii/S0966692316303556
https://www.sciencedirect.com/science/article/pii/S0966692316303556
https://arxiv.org/abs/1910.01055
https://arxiv.org/abs/1910.09700
https://www.sciencedirect.com/science/article/pii/S0305054815000878
https://doi.org/10.1007/s10479-005-2038-0


Under review as submission to TMLR

Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. Reinforcement learning for com-
binatorial optimization: A survey. Computers & Operations Research, 134:105400, October 2021. ISSN
0305-0548. doi: 10.1016/j.cor.2021.105400. URL https://www.sciencedirect.com/science/article/
pii/S0305054821001660.

Dimitris Michailidis, Willem Röpke, Sennay Ghebreab, Diederik M Roijers, and Fernando P Santos. Fair-
ness in Transport Network Design - A Multi-Objective Reinforcement Learning Approach. Adaptive and
Learning Agents Workshop, 2023.

Herbert Mohring. Optimization and scale economies in urban bus transportation. The American Economic
Review, 62(4):591–604, 1972.

Muhammad Ali Nayeem, Md Monirul Islam, and Xin Yao. Solving transit network design problem using
many-objective evolutionary approach. IEEE Transactions on Intelligent Transportation Systems, 20(10):
3952–3963, 2018.

MohammadReza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takac. Reinforcement learn-
ing for solving the vehicle routing problem. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems, vol-
ume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
9fb4651c05b2ed70fba5afe0b039a550-Paper.pdf.

Grigory Neustroev, Sytze P. E. Andringa, Remco A. Verzijlbergh, and Mathijs M. De Weerdt. Deep Re-
inforcement Learning for Active Wake Control. In Proceedings of the 21st International Conference on
Autonomous Agents and Multiagent Systems, AAMAS ’22, pp. 944–953, Richland, SC, May 2022. Inter-
national Foundation for Autonomous Agents and Multiagent Systems. ISBN 978-1-4503-9213-6.

Mahmoud Owais and Mostafa K. Osman. Complete hierarchical multi-objective genetic algorithm for transit
network design problem. Expert Systems with Applications, 114:143–154, December 2018. ISSN 0957-
4174. doi: 10.1016/j.eswa.2018.07.033. URL https://www.sciencedirect.com/science/article/pii/
S0957417418304573.

David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild, David
So, Maud Texier, and Jeff Dean. Carbon emissions and large neural network training, 2021. URL https:
//arxiv.org/abs/2104.10350.

Rafael H. M. Pereira, David Banister, Tim Schwanen, and Nate Wessel. Distributional effects of transport
policies on inequalities in access to opportunities in Rio de Janeiro. Journal of Transport and Land Use, 12
(1):741–764, 2019. ISSN 1938-7849. URL https://www.jstor.org/stable/26911287. Publisher: Journal
of Transport and Land Use.

V. Dimitra Pyrialakou, Konstantina Gkritza, and Jon D. Fricker. Accessibility, mobility, and realized travel
behavior: Assessing transport disadvantage from a policy perspective. Journal of Transport Geography,
51:252–269, February 2016. ISSN 0966-6923. doi: 10.1016/j.jtrangeo.2016.02.001. URL https://www.
sciencedirect.com/science/article/pii/S0966692316000144.

Govardana Sachithanandam Ramachandran, Ivan Brugere, Lav R. Varshney, and Caiming Xiong. GAEA:
Graph Augmentation for Equitable Access via Reinforcement Learning. arXiv:2012.03900 [cs], April 2021.
URL http://arxiv.org/abs/2012.03900. arXiv: 2012.03900.

Naveen Raman, Sanket Shah, and John Dickerson. Data-Driven Methods for Balancing Fairness and Effi-
ciency in Ride-Pooling. arXiv:2110.03524 [cs], October 2021. URL http://arxiv.org/abs/2110.03524.
arXiv: 2110.03524.

Markus Schläpfer, Lei Dong, Kevin O’Keeffe, Paolo Santi, Michael Szell, Hadrien Salat, Samuel Anklesaria,
Mohammad Vazifeh, Carlo Ratti, and Geoffrey B. West. The universal visitation law of human mobility.
Nature, 593(7860):522–527, May 2021. ISSN 1476-4687. doi: 10.1038/s41586-021-03480-9. URL https://
www.nature.com/articles/s41586-021-03480-9. Number: 7860 Publisher: Nature Publishing Group.

15

https://www.sciencedirect.com/science/article/pii/S0305054821001660
https://www.sciencedirect.com/science/article/pii/S0305054821001660
https://proceedings.neurips.cc/paper/2018/file/9fb4651c05b2ed70fba5afe0b039a550-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/9fb4651c05b2ed70fba5afe0b039a550-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S0957417418304573
https://www.sciencedirect.com/science/article/pii/S0957417418304573
https://arxiv.org/abs/2104.10350
https://arxiv.org/abs/2104.10350
https://www.jstor.org/stable/26911287
https://www.sciencedirect.com/science/article/pii/S0966692316000144
https://www.sciencedirect.com/science/article/pii/S0966692316000144
http://arxiv.org/abs/2012.03900
http://arxiv.org/abs/2110.03524
https://www.nature.com/articles/s41586-021-03480-9
https://www.nature.com/articles/s41586-021-03480-9


Under review as submission to TMLR

Umer Siddique, Paul Weng, and Matthieu Zimmer. Learning Fair Policies in Multiobjective (Deep) Rein-
forcement Learning with Average and Discounted Rewards. arXiv:2008.07773 [cs], August 2020. URL
http://arxiv.org/abs/2008.07773. arXiv: 2008.07773.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for modern deep
learning research. Proceedings of the AAAI Conference on Artificial Intelligence, 34(09):13693–13696, Apr.
2020. doi: 10.1609/aaai.v34i09.7123. URL https://ojs.aaai.org/index.php/AAAI/article/view/
7123.

Hongyuan Su, Yu Zheng, Jingtao Ding, Depeng Jin, and Yong Li. Metrognn: Metro network expansion with
reinforcement learning. In Companion Proceedings of the ACM on Web Conference 2024, pp. 650–653,
2024.

W. Y. Szeto and Y. Jiang. Transit route and frequency design: Bi-level modeling and hybrid artificial bee
colony algorithm approach. Transportation Research Part B: Methodological, 67:235–263, 2014. ISSN
0191-2615. doi: 10.1016/j.trb.2014.05.008. URL https://www.sciencedirect.com/science/article/
pii/S0191261514000812.

David Tedjopurnomo, Zhifeng Bao, Farhana Choudhury, Hui Luo, and A. K. Qin. Equitable Public Bus Net-
work Optimization for Social Good: A Case Study of Singapore. In 2022 ACM Conference on Fairness, Ac-
countability, and Transparency, pp. 278–288, Seoul Republic of Korea, June 2022. ACM. ISBN 978-1-4503-
9352-2. doi: 10.1145/3531146.3533092. URL https://dl.acm.org/doi/10.1145/3531146.3533092.

Anne S. van der Veen, Jan Anne Annema, Karel Martens, Bart van Arem, and Gonçalo Homem de Almeida
Correia. Operationalizing an indicator of sufficient accessibility – a case study for the city of Rotterdam.
Case Studies on Transport Policy, 8(4):1360–1370, 2020. ISSN 2213-624X. doi: 10.1016/j.cstp.2020.09.007.
URL http://www.sciencedirect.com/science/article/pii/S2213624X20301024.

Bert van Wee. Discussing Equity and Social Exclusion in Accessibility Evaluations. pp. 18, 2011.

Lebing Wang, Jian Gang Jin, Gleb Sibul, and Yi Wei. Designing Metro Network Expansion: Deterministic
and Robust Optimization Models. Networks and Spatial Economics, 23(1):317–347, March 2023. ISSN
1572-9427. doi: 10.1007/s11067-022-09584-7. URL https://doi.org/10.1007/s11067-022-09584-7.

Qi Wang and Chunlei Tang. Deep reinforcement learning for transportation network combinatorial
optimization: A survey. Knowledge-Based Systems, 233:107526, December 2021. ISSN 0950-7051.
doi: 10.1016/j.knosys.2021.107526. URL https://www.sciencedirect.com/science/article/pii/
S0950705121007887.

Yu Wei, Minjia Mao, Xi Zhao, Jianhua Zou, and Ping An. City Metro Network Expansion with Reinforcement
Learning. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 2646–2656, Virtual Event CA USA, August 2020. ACM. ISBN 978-1-4503-7998-4. doi:
10.1145/3394486.3403315. URL https://dl.acm.org/doi/10.1145/3394486.3403315.

Ziyi Xu, Xue Cheng, and Yangbo He. Performance of Deep Reinforcement Learning for High Frequency
Market Making on Actual Tick Data. In Proceedings of the 21st International Conference on Autonomous
Agents and Multiagent Systems, AAMAS ’22, pp. 1765–1767, Richland, SC, May 2022. International
Foundation for Autonomous Agents and Multiagent Systems. ISBN 978-1-4503-9213-6.

Shanchao Yang, MA KAILI, Baoxiang Wang, Tianshu Yu, and Hongyuan Zha. Learning to boost resilience
of complex networks via neural edge rewiring. Transactions on Machine Learning Research, 2023.

Zhongzhen Yang, Bin Yu, and Chuntian Cheng. A parallel ant colony algorithm for bus network optimization.
Computer-Aided Civil and Infrastructure Engineering, 22(1):44–55, 2007.

Amirali Zarrinmehr, Mahmoud Saffarzadeh, Seyedehsan Seyedabrishami, and Yu Marco Nie. A path-based
greedy algorithm for multi-objective transit routes design with elastic demand. Public Transport, 8:261–
293, 2016.

16

http://arxiv.org/abs/2008.07773
https://ojs.aaai.org/index.php/AAAI/article/view/7123
https://ojs.aaai.org/index.php/AAAI/article/view/7123
https://www.sciencedirect.com/science/article/pii/S0191261514000812
https://www.sciencedirect.com/science/article/pii/S0191261514000812
https://dl.acm.org/doi/10.1145/3531146.3533092
http://www.sciencedirect.com/science/article/pii/S2213624X20301024
https://doi.org/10.1007/s11067-022-09584-7
https://www.sciencedirect.com/science/article/pii/S0950705121007887
https://www.sciencedirect.com/science/article/pii/S0950705121007887
https://dl.acm.org/doi/10.1145/3394486.3403315


Under review as submission to TMLR

Liqing Zhang, Leong Hou U, Shaoquan Ni, Dingjun Chen, Zhenning Li, Wenxian Wang, and Weizhi Xian.
City metro network expansion based on multi-objective reinforcement learning. Transportation Research
Part C: Emerging Technologies, 169:104880, 2024. ISSN 0968-090X. doi: https://doi.org/10.1016/j.trc.
2024.104880. URL https://www.sciencedirect.com/science/article/pii/S0968090X24004017.

A Appendix – Feasibility Rules

The feasibility rules applied in this paper closely resemble those in previous studies (Wei et al., 2020; Zhang
et al., 2024). The agent’s actions are constrained using an ActionMask, which is updated at each timestep
based on the agent’s current location and prior positions. This approach ensures that the agent moves
forward, avoids cyclical paths, and does not revisit locations where a station has already been placed.

Our method optimizes this process by maintaining a constant action mask length of 8, representing all
possible directions (including diagonals), rather than the entire grid size. The agent’s movement direction
is established by its initial longitudinal and latitudinal steps. For example, if the agent begins by moving
north, southward actions will be masked out to enforce forward progression. If the agent subsequently moves
east, only actions corresponding to the north, east, and northeast directions remain available, with all other
actions masked. Figure 6 illustrates how these feasibility rules are applied through the action mask during
an episode.

Figure 6: A snapshot of an episode, where the action mask created by feasibility rules constraints the next
available actions to the agent.

B Appendix – Amsterdam environment preparation

GPS data is unavailable for Amsterdam, so we estimate the origin-destination (OD) demand using the
recently published universal law of human mobility, which indicates that the total mobility flow between
two areas i and j is determined by their distance and visitation frequency (Schläpfer et al., 2021). The
calculation is as follows:

ODij = µjKi/d2
ij ln(fmax/fmin) (7)

Here, Ki is the total area of the origin location i, d2
ij is the (Manhattan) distance between i and j, and µj

represents the magnitude of flows, computed as:

µj ≈ ρpop(j)rad2
jfmax (8)
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Where rad2
j is the radius of area j. We estimate the flows over a week by setting fmin, fmax to 1/7 and 7

respectively. The grid cells are of equal size, Ki and can be omitted from the calculation.

C Appendix – Hyperparameter Tuning and Selection

Greedy Search (GS) — Greedy search is a simple greedy algorithm that begins by adding the segment
with the largest OD flow, and then greedily expanding the network from this segment, while following the
feasibility rules.

Genetic Algorithm (GA) — We conducted experiments using two sets of hyperparameters: one based
on Wei et al., which included a population size of 500, and crossover and mutation probabilities of 0.9, and
another set based on Owais & Osman, which used a population size of 500, a crossover probability of 0.6,
and a mutation probability of 0.05. We chose the second set of hyperparameters, as they are directly taken
from the original source and are more commonly used in Genetic Algorithms. To ensure a fair comparison
with the Tabular Q-learning method, we trained the Genetic Algorithm for a total of 25,000 episodes, which
consisted of 50 iterations, each with 500 generated solutions.

Deep Reinforcement Learning (DeepRL) — We conducted experiments using the hyperparameters
reported by Wei et al., which, at the time of writing the paper, were considered state-of-the-art methodology.
The hyperparameters are as follows:

• Hidden size: 128

• Static size: 2

• Dynamic size: 1

• Number of layers: 1

• Dropout: 0.1

• Max epochs: 3500

• Training size: 128

• Actor learning rate: 0.001

• Critic learning rate: 0.001

Tabular Q-learning (TabularMNEP) — To select the hyperparameter values for TabularMNEP, we
performed multiple sweeps of parameters and methods, using a bayesian optimization approach, via the
Weights & Biases library 6. In Table 3 we show the ranges we used for each hypeparameter. Additionally
to the Monte-Carlo update method we used in our final experiments, we also tried Temporal-Difference and
Upper Confidence Bound methods. In the code we provide the commands to replicate our results.

For Xi’an, the final experiments were conducted with 47 stations. The Max. Efficiency setting used a single
group, while the Rawls, GGI4, and GGI2 settings used five groups (for calculating fairness). All experiments
ran for 25000 training episodes with an epsilon decay over 16000 steps, a warmup of 3000 steps, and a single
test episode. The initial and final epsilon values were set to 1 and 0.01, respectively, with a learning rate
(α) of 0.1 and a discount factor (γ) of 1. Exploration followed an epsilon-greedy strategy, and updates were
done via Monte Carlo methods.

For Amsterdam, the final experiments were conducted with 21 stations. The Max. Efficiency experiments
used a single group, with 14000 epsilon decay steps, 0 warmup steps, and learning rate (α) set to 0.1.
The Rawls, GGI4, and GGI2 experiments used five groups, with epsilon decay set to 14,000 steps and no
warmup steps. All experiments ran for 25,000 training episodes, with an initial epsilon of 1, a final epsilon
of 0.01, a discount factor (γ) of 1. The exploration followed an epsilon-greedy strategy, and updates were
also performed using Monte Carlo methods.

6https://wandb.ai/site/
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Parameter Values
alpha 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1

final_epsilon 0.05, 0.1, 0.01
gamma 0.0, 0.7, 0.8, 0.9, 0.95, 0.99, 1

initial_epsilon 1, 0, 0.1, 0.2, 0.3, 0.4
train_episodes 1000, 2000, 4000, 5000, 7000, 10000, 15000, 20000, 25000, 30000

epsilon_warmup_steps 0, 200, 500, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 9000, 10000
epsilon_decay_steps 2000, 3000, 4000, 5000, 6000, 7000, 8000, 10000, 12000, 14000, 16000, 18000, 20000

exploration_type egreedy, ucb, egreedy_constant
q_initial_value 0, 20, 40, 60, 80, 100, 120, 140

V_start_initial_value 0, 20, 40, 60, 80, 100, 120, 140
ucb_c_q 0, 2, 4, 8, 16, 32, 64, 128

ucb_c_qstart 0, 2, 4, 8, 16, 32, 64, 128
update_method td, mc

Table 3: Parameter values tried during hyperparameter search.
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