

000 GPS: GRAPH-GUIDED PROACTIVE INFORMATION 001 SEEKING IN LARGE LANGUAGE MODELS 002

003 **Anonymous authors**
004

005 Paper under double-blind review
006

007 ABSTRACT 008

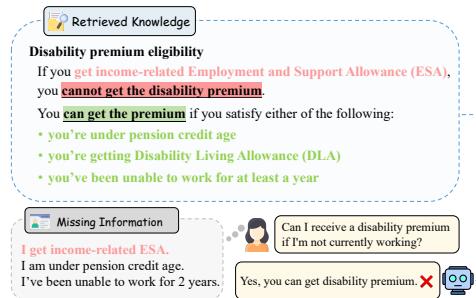
009 Equipping Large Language Models (LLMs) with the ability to proactively ask
010 clarifying questions is essential to mitigate ambiguity when faced with underspec-
011 ified user queries in retrieval-augmented generation (RAG) systems. However,
012 existing methods often neglect the rule-based reasoning structures embedded in
013 the retrieved knowledge that are central to ambiguity, making it challenging to
014 learn an effective and efficient question-asking strategy. To address these issues,
015 we introduce **GPS**, a two-stage framework for enhancing proactive information
016 seeking abilities of LLMs in RAG systems. In the reasoning stage, we propose
017 a Directed Acyclic Graph (DAG) reasoning structure with theoretical guarantees
018 of logical completeness, which facilitates capturing all conditional logic in the re-
019 trieval knowledge and supports effective clarification. In the clarification stage,
020 we design a traversal-based algorithm that dynamically prunes the DAG based
021 on user responses, enabling efficient clarification. To further enhance DAG con-
022 struction, we first propose a conditional paths guided data synthesis method to
023 address data scarcity challenge, then we apply a clarification-oriented reinforce-
024 ment learning method with a hybrid reward that jointly considers effectiveness
025 and efficiency to optimize the LLM. Experiments on three benchmarks demon-
026 strate that **GPS** outperforms baseline methods in both success rate and interaction
027 cost.
028

029 1 INTRODUCTION 030

031 Consider a user seeking information about disability
032 benefits eligibility and asks a question: “Am I eli-
033 gible for disability premium?” While this question
034 seems straightforward, the actual eligibility depends
035 on multiple unstated conditions: income level, dis-
036 ability severity, and age. Without this critical in-
037 formation, even the most advanced retrieval-augmented
038 generation (RAG) systems may provide incorrect or
039 misleading answers. This scenario, illustrated in
040 Figure 1, exemplifies a fundamental challenge in
041 real-world question-answering systems: *how can AI*
042 *systems proactively identify and gather missing in-*
043 *formation to provide accurate responses?*

044 The ambiguity stems from underspecified user
045 queries, which are common in real-world settings
046 due to users’ limited domain knowledge (Zhang
047 et al., 2024; Deng et al., 2023a; Kim et al., 2024) or natural tendency to omit seemingly obvious
048 details (Zipf, 1949). While existing RAG methods excel at retrieving relevant documents (Ren et al.,
049 2025; Lewis et al., 2020; Zhao et al., 2025), they *fundamentally assume that user queries contain*
050 *sufficient information, but this assumption often fails in practice.*

051 A promising solution is to equip Large Language Models (LLMs) in RAG systems with the ability
052 to proactively ask clarifying questions when faced with underspecified queries. Currently, there are
053 two main approaches: prompting and fine-tuning. Prompting methods (Deng et al., 2023b; Kuhn



054 Figure 1: An illustration of user underspecified
055 queries. The user asks information about
056 disability benefits eligibility. However, when
057 user queries lack sufficient information such
058 as income level, disability severity and age,
059 LLMs may generate incorrect responses.
060

054 et al., 2023; Hu et al., 2024; Kobalczyk et al., 2025) utilize the reasoning capabilities of LLMs to
 055 iteratively identify ambiguity and generate clarification questions. However, their performance is
 056 constrained by the capability of LLMs as small-scale LLMs often struggle to identify ambiguities
 057 (Zhang et al., 2024). The better way is to fine-tune LLMs by multi-turn clarification dialogue data
 058 collected through human annotation (Qian et al., 2024; Chen et al., 2024) or self-sampling strategies
 059 (Andukuri et al., 2024; Zhang et al., 2025). However, the former is costly to obtain, while the
 060 latter imposes no constraints on the clarification search space, potentially leading to irrelevant or
 061 redundant interactions. Therefore, it is necessary to develop an **effective** and **efficient** method to
 062 reach our goal.

063 We propose that the key to resolving ambiguity in underspecified queries lies in explicitly modeling
 064 the conditional reasoning structures within retrieved documents. Unlike existing methods that
 065 treat clarification as an open-ended dialogue problem, we observe that domain-specific documents
 066 typically encode knowledge as conditional rules—if-then statements that map combinations of con-
 067 ditions to conclusions. By extracting and representing these rules as a Directed Acyclic Graph
 068 (DAG), we can systematically identify all conditions relevant to the user’s query and guide clarifi-
 069 cation dialogues through efficient traversal strategies.

070 However, realizing this vision presents three fundamental challenges. **(C1) How can we design**
 071 **a reasoning structure that captures all logical dependencies while remaining computationally**
 072 **tractable?** The structure must be expressive enough to represent arbitrary Boolean functions yet ef-
 073 ficient enough for real-time interaction. **(C2) How can we train models to extract such structures**
 074 **when existing datasets lack annotations for conditional reasoning?** Current QA benchmarks
 075 rarely include underspecified queries or their missing conditions. **(C3) How can we optimize the**
 076 **extracted structures for both correctness and interaction efficiency?** Users will abandon systems
 077 that require excessive clarification rounds.

078 To address **(C1)**, we propose a conditional reasoning DAG structure, which is theoretically guaran-
 079 teed to be logically complete to express any Boolean function via disjunctive normal form (DNF).
 080 Besides, the DAG allows for subgraph sharing across reasoning paths and supports dynamic prun-
 081 ing based on user responses, enabling $O(r)$ average-case clarification complexity, where $r \ll k$
 082 is the average reasoning depth rather than the total number of conditions k . To address **(C2)**, we
 083 propose a conditional path guided data synthesis method to generate usable dataset for both training
 084 and evaluation. This method generates question-answer pairs with associated missing conditions
 085 along each conditional path from document. A filtering mechanism based on the necessity of the
 086 missing conditions is further applied to retain high-quality examples. To address **(C3)**, We propose
 087 a clarification-oriented reinforcement learning method to enhance LLM’s ability to extract DAG
 088 structures for effective and efficient clarification. We design a hybrid reward that encourages the
 089 LLM to prioritize DAG that leads to correct answer and requires fewer interaction.

090 Our main contributions can be summarized as follows:

- **Novel Framework:** We introduce **GPS** (Graph-guided Proactive Information Seeking), the first framework to explicitly model conditional reasoning structures for clarification in RAG systems.
- **Theoretical Foundation:** We prove that our DAG-based representation achieves logical completeness while enabling $O(r)$ average-case clarification complexity, where $r \ll k$ is the average reasoning depth rather than the total number of conditions k .
- **Practical System:** We develop a complete pipeline including (i) Conditional path guided synthetic data generation to address training data scarcity, (ii) clarification-oriented reinforcement learning that jointly optimizes for accuracy and efficiency, and (iii) dynamic traversal algorithms that reduce user interaction burden.
- **Empirical Validation:** Extensive experiments on three benchmarks demonstrate that **GPS** achieves average improvement of **7.5%** in success rate and **4.2%** in clarification efficiency over the best baseline method.

102

103 2 RELATED WORK

104

105 **Clarification in LLMs** Currently, there are two main approaches to enhance the ability of LLMs
 106 to proactively ask clarifying questions: prompting and fine-tuning. Prompting methods (Deng et al.,
 107 2023b; Kuhn et al., 2023) utilize the reasoning capabilities of LLMs to iteratively identify ambi-
 108 guity based on the conversation history and choose to either ask clarification questions or generate

108 response. However, their performance is constrained by the capability of LLMs as small-scale
 109 LLMs often struggle to identify ambiguities (Zhang et al., 2024), and as the conversation history
 110 grows longer, the risk of lost-in-the-middle increases (Liu et al., 2024). Another line of work is
 111 to fine-tune LLMs with multi-round conversation data (Qian et al., 2024; Chen et al., 2024). Yet
 112 these approaches rely on access to human-annotated conversation data, which is expensive to col-
 113 lect in practice. Some methods (Andukuri et al., 2024; Zhang et al., 2025) explore self-improve
 114 paradigm for sampling conversation data and use the accuracy of final responses to filter low-quality
 115 clarification data. Nevertheless, these methods typically imposes no constraints on the clarification
 116 search space, potentially leading to irrelevant or redundant interactions. Therefore, it is necessary to
 117 develop an **effective** and **efficient** method for proactive clarification.

118 **Graph-based Reasoning in NLP** Recent work has explored structured representations for multi-
 119 hop reasoning (Besta et al., 2024), knowledge graph integration (Ren et al., 2020; Li et al., 2025), and
 120 neural-symbolic reasoning (Xu et al., 2024). Query2Box (Ren et al., 2020) reasons over knowledge
 121 graphs by embedding multi-hop logical queries as geometric boxes in vector space. Li et al. (2025)
 122 proposes to inject LLMs with structured knowledge by encoding knowledge graphs via graph neural
 123 networks(GNNs). Xia et al. (2025) proposes a novel fine-tune framework stimulating the ability
 124 of LLMs to perform complex reasoning on knowledge graphs. However, these methods focus on
 125 reasoning over existing knowledge rather than proactive information seeking. Our work uniquely
 126 combines graph-based reasoning with interactive clarification.

128 3 PROBLEM FORMULATION

130 In this paper, we aim to enhance LLMs’ ability to proactively ask clarification questions when
 131 facing underspecified user query in RAG scenarios. Rigorously, given a user query q , the retrieved
 132 relevant document $d = \text{Retrieve}(q)$, and the user’s background context S which is not observable
 133 to the LLM, we denote by $C_d = \{c_1, \dots, c_k\}$ the set of user-specific condition variables in d , each
 134 condition variable c_i takes values from a finite value set \mathcal{V}_{c_i} .¹ We divide C_d into two disjoint subsets:
 135

- 136 • $C_{\text{known}}(q) \subseteq C_d$: the subset of **known condition variables** with values provided in query q .
- 137 • $C_{\text{miss}}(q) = C_d \setminus C_{\text{known}}(q)$: the subset of **missing condition variables** specific to query q , with
 138 values depend on the hidden user’s background S and are necessary to determine the answer.

140 Let $A = \{a_1, \dots, a_m\}$ denote the set of possible answers. The final answer $a \in A$ is determined by
 141 $C_{\text{miss}}(q)$ through a set of latent logical constraints \mathcal{R} encoded in d (e.g., eligibility rules). Our objec-
 142 tive is to enhance LLMs’ ability to proactively elicit the values of $C_{\text{miss}}(q)$, so that an unambiguous
 143 answer a can be inferred.

145 4 METHODOLOGY

147 In this section, we introduce **GPS**, a two-stage framework for proactive clarification. In the rea-
 148 soning stage, a Reasoner LLM Θ_R captures the conditional structure in documents as a DAG. In
 149 the clarification stage, a Clarifier LLM Θ_C interacts with a User-Simulator LLM Θ_U , dynamically
 150 pruning the DAG during traversal to elicit values of $C_{\text{miss}}(q)$. To further improve DAG quality, **GPS**
 151 employs the Conditional Path Guided Data Synthesis procedure to construct training dataset and uti-
 152 lizes Clarification-oriented Reinforcement Learning to optimize the Reasoner. The overall pipeline
 153 is illustrated in Figure 2.

154 4.1 CONDITIONAL REASONING DAG CONSTRUCTION

155 To construct a structure which is both logically complete and clarification-efficient, we define a
 156 conditional reasoning DAG structure $\mathcal{G} = (\mathcal{N}, \mathcal{E})$, where:

- 157 • Each non-terminal node $n_{c_i} \in \mathcal{N}$ represents a user condition variable $c_i \in C_d$, each terminal node
 158 $n_{a_m} \in \mathcal{N}$ represents a possible answer $a_m \in A$.

161 ¹For example, a condition variable $c_i = \text{“marital status”}$ may have $\mathcal{V}_{c_i} = \{\text{Single, Married, Divorced}\}$.

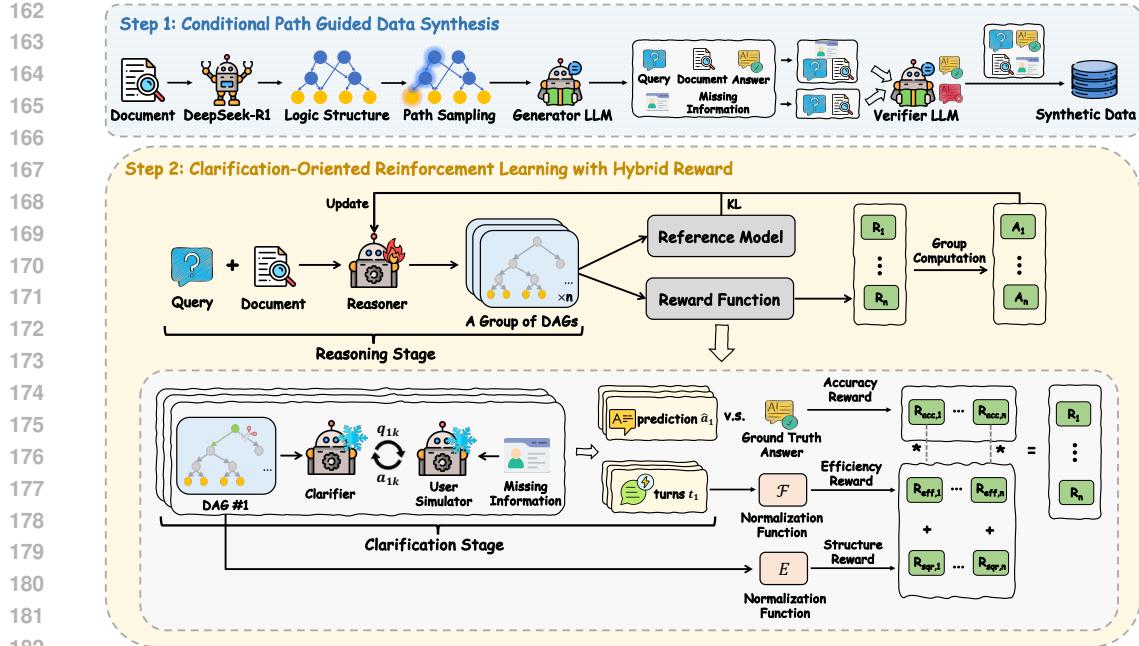


Figure 2: The overview of our method pipeline.

- Each edge $e_{i,j} = (n_{c_i}, n_{c_j}, \nu)$ is labeled with a condition value $\nu \in \mathcal{V}_{c_i}$, denoting a possible value of the predecessor node. The outgoing edges from each node are mutually exclusive and collectively exhaustive.
- If a node has a single predecessor node, it implicitly forms an **AND** relation with its predecessor condition. If a node has multiple predecessor nodes, it forms an **OR** relation over all predecessor conditions.

We first analyze the logical completeness of our proposed conditional reasoning DAG structure as follows. The clarification efficiency will be discussed in 4.2.

Proposition 1. For any finite-valued function $g : \prod_{i=1}^k V_i \rightarrow A$ over condition variables $\{c_i\}_{i=1}^k$, there exists a conditional reasoning DAG \mathcal{G} such that, for each $a_m \in A$, every root-to-leaf path ending at a_m corresponds to a conjunction in the disjunctive normal form (DNF) of the indicator function $\mathbf{1}[g(\cdot) = a_m]$, and the union of all such paths encodes the full DNF of $\mathbf{1}[g(\cdot) = a_m]$.

See Appendix A for a complete proof. The proposition theoretically guarantees that our conditional reasoning DAG structure is expressive enough to represent any finite-valued function, allowing for comprehensive detection of missing conditions and effective clarification.

In the reasoning stage, we prompt the Reasoner LLM Θ_R to construct a conditional reasoning DAG based on the user query and the retrieved document. The detailed prompt is provided in Appendix G.1.

4.2 DYNAMIC TRAVERSAL-BASED CLARIFICATION

Given the constructed conditional reasoning DAG $\mathcal{G} = (\mathcal{N}, \mathcal{E})$, we propose a dynamic traversal-based clarification approach that generates clarification questions in a topological order to prioritize essential conditions and dynamically prune inconsistent paths. Formally, let $\deg_{in}(n_i)$ denote the in-degree of node n_i , we define the candidate clarification set U :

$$\begin{aligned}
 U_1 &= \{n_i \in \mathcal{N} \mid \deg_{in}(n_i) = 0, i \notin C_{\text{known}}(q)\}, \\
 U_2 &= \{n_i \in \mathcal{N} \mid \exists (n_u, n_i, \nu) \in \mathcal{E}, u \in C_{\text{known}}(q), \deg_{in}(n_u) = 0\}, \\
 U &= U_1 \cup U_2
 \end{aligned} \tag{1}$$

216 Nodes in U are eligible for clarification as they are not blocked by unresolved predecessors. To
 217 determine the initial order of the candidate set, we estimate the expected cost based on the remaining
 218 depth for each $n_i \in U$:

$$\ell(n_i) = \frac{1}{|P_{n_i}|} \sum_{p \in P_{n_i}} \text{len}(p) \quad (2)$$

222 where P_{n_i} is a set of paths from n_i to leaf node, and $\text{len}(p)$ is the number of missing condition
 223 variables in path p .

224 Our dynamic traversal-based clarification consists of three steps:
 225

- 226 1. **Initialization:** construct the candidate set of missing conditions and start with empty dialogue
 227 history H ;
- 228 2. **Iterative clarification:** select the most informative condition, ask a clarification question via
 229 Θ_C , obtain a user-specific answer from Θ_U , and update H by following the consistent path;
- 230 3. **Final answering:** once a terminal condition is reached or no candidates remain, Θ_C produces
 231 the final answer \hat{a} conditioned on H .

232 Through dynamic traversal-based clarification process, the dialogue history H constitutes the
 233 elicited values for the missing condition set C_{miss} , which are required to resolve the ambiguity.
 234 We present the algorithmic pseudo-code of dynamic traversal-based clarification in Appendix C. We
 235 also analyze the efficiency of GPS and obtain that the expected number of clarification turns depends
 236 only on the small set of conditions along the true reasoning path, rather than the full set of conditions
 237 present in the document. Detailed analysis is provided in the Appendix B.

239 4.3 CLARIFICATION-ORIENTED REINFORCEMENT LEARNING

240 Enhancing the Reasoner LLM’s ability to construct accurate conditional reasoning DAG is essential
 241 for the overall performance of the **GPS** framework. To achieve this, we first propose a *Conditional*
 242 *Path Guided Data Synthesis* procedure to address the data scarcity challenge. Based on the synthetic
 243 dataset, we design a *Clarification-Oriented Reinforcement Learning* approach with a hybrid reward
 244 that integrates clarification effectiveness and efficiency, encouraging the Reasoner LLM to extract
 245 DAG structures that lead to correct answer and require fewer interaction.

247 4.3.1 CONDITIONAL PATH GUIDED DATA SYNTHESIS

248 We synthesize our dataset based on ConditionalQA (Sun et al., 2022), a reading comprehension
 249 dataset that includes long-context documents containing complex logic rules, along with well-
 250 specified and underspecified queries with human-annotated missing conditions. However, a key
 251 limitation of ConditionalQA dataset is that only 550 out of 2,247 samples (24.5%) are underspecified,
 252 making it difficult to train models that generalize well in proactive information seeking task. To
 253 address this, we propose *Conditional Path Guided Data Synthesis* method to augment high-quality
 254 underspecified training data. The synthesis process consists of two steps: **Problem Generation** and
 255 **Verification**.

256 **Problem Generation** First, we prompt advanced LLMs such as DeepSeek-R1 (DeepSeek-AI et al.,
 257 2025) to generate underspecified questions with multi-conditional reasoning paths from a document
 258 d . The prompt used for this task can be found in Appendix G.2. Each item contains three parts:

- 259 • An **underspecified question** q that admits multiple plausible answers;
- 260 • A set of **missing conditions** C with value domains $\{\mathcal{V}_c\}_{c \in C}$;
- 261 • A set of **conditional paths** $\mathcal{P} = \{(\mathbf{v}, a)\}$, where $\mathbf{v} \in \prod_{c \in C} \mathcal{V}_c$ is a complete assignment, $a \in A$
 262 is the *unique* answer determined by \mathbf{v} .

263 **Verification** Each synthetic data instance is represented as $(q_i, \mathbf{v}_i, d_i, a_i)$. To ensure data quality,
 264 we introduce a filtering mechanism based on the necessity of the missing conditions. For each
 265 instance, we prompt a Verifier LLM to predict the answer both with and without access to the
 266 missing conditions. We retain the instance only if the full-input prediction a_{full} matches the gold
 267 answer a_i , while the masked-input prediction a_{partial} does not. This filtering preserves cases where
 268 missing information is essential, yielding a high-quality dataset $\mathcal{D} = \{q_i, \mathbf{v}_i, d_i, a_i\}_{i=1}^n$.

270 4.3.2 HYBRID REWARD: EFFECTIVENESS, EFFICIENCY, AND ENTROPY
271

272 **Setup.** Our goal is to train the *Reasoner* LLM Θ_R to generate high-quality conditional reasoning
273 DAGs that enable a *fixed Clarifier* LLM Θ_C to complete proactive clarification with minimal interaction.
274 Motivated by recent progress of RL for reasoning (DeepSeek-AI et al., 2025), we formulate the
275 DAG-construction problem as a reinforcement learning task: the **policy** $\pi_\theta(o|q, d)$ autoregressively
276 generates and parses a DAG o given query q and document d (we write θ as the Reasoner parameters
277 Θ_R for brevity), the DAG deterministically induces a clarification trajectory (which condition to ask
278 next and which edge to follow), and yielding a scalar **reward**. We adopt GRPO (DeepSeek-AI et al.,
279 2025) algorithm to optimize π_θ .
280

280 **GRPO objective.** For each query q and retrieved document d , GRPO samples h DAGs $\{o_i\}_{i=1}^h \sim$
281 $\pi_{\theta_{\text{old}}}(\cdot|q, d)$ with rewards $\{r_i\}_{i=1}^h$, defines the advantage A_i as
282

$$283 A_i = \frac{r_i - \text{mean}(\{r_1, \dots, r_h\})}{\text{std}(\{r_1, \dots, r_h\})}, \quad (3)$$

285 and optimizes the clipped policy objective with a reference KL:

$$286 \mathcal{J}_{\text{GRPO}}(\Theta) = \mathbb{E}_{q \sim D, \{o_i\} \sim \pi_{\theta_{\text{old}}}(\cdot|q)} \frac{1}{h} \sum_{i=1}^h \left[\min\left(\frac{\pi_\theta(o_i|q)}{\pi_{\theta_{\text{old}}}(o_i|q)} A_i, \text{clip}\left(\frac{\pi_\theta}{\pi_{\theta_{\text{old}}}}, 1 - \epsilon, 1 + \epsilon\right) A_i\right) \right. \\ 287 \left. - \beta \mathbb{D}_{\text{KL}}(\pi_\theta \parallel \pi_{\text{ref}}) \right], \quad (4)$$

289 with

$$291 \mathbb{D}_{\text{KL}}(\pi_\theta \parallel \pi_{\text{ref}}) = \frac{\pi_{\text{ref}}(o_i|q)}{\pi_\theta(o_i|q)} - \log \frac{\pi_{\text{ref}}(o_i|q)}{\pi_\theta(o_i|q)} - 1. \quad (5)$$

293 GRPO calculates *group-relative* advantages within h samples $\{o_i\}_{i=1}^h$ for the same input, so higher-
294 reward generated DAG samples are upweighted and lower-reward ones are downweighted.
295

296 **Hybrid reward function.** To optimize the policy toward high-quality DAGs, we design a hy-
297 brid reward function that jointly promotes correctness, low interaction cost, and structurally non-
298 redundant.

299 • **Effectiveness reward** encourages correct final answers after clarification. Let \hat{a}_i be the predicted
300 answer after clarification based on DAG o_i and a_i the ground truth:

$$302 r_{\text{acc},i} = \begin{cases} 1, & \text{Evaluator}(\hat{a}_i, a_i) = \text{True}, \\ 0, & \text{Evaluator}(\hat{a}_i, a_i) = \text{False}. \end{cases} \quad (6)$$

304 • **Efficiency reward** encourages fewer clarification turns. Let t_i be the number of turns induced by
305 o_i , and $t_{\max} = \max_{j \in [1, h]} t_j$ within the GRPO group. We set the coefficient $\alpha = 0.5$:

$$307 r_{\text{eff},i} = 1 - \alpha \frac{t_i}{t_{\max}}, \quad (7)$$

308 • **Structural quality reward** $r_{\eta,i}$ measures how effectively a DAG converts intermediate branching
309 uncertainty into discriminative power over the final conclusions. We formalize this intuition using
310 an information-conversion efficiency measure.

312 **Forward probability propagation.** Let $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ be a clarification DAG with condition
313 nodes C and conclusion (leaf) nodes L . We assume *uniform branching*: at any condition node,
314 the outgoing probability mass is evenly split among all children. Let $R \subseteq C$ be condition roots
315 with no predecessors. Each root receives initial mass $1/|R|$. For any condition node $n \in C$, its
316 outgoing mass splits uniformly across children:

$$317 P(v) = \sum_{u:(u \rightarrow v) \in \mathcal{E}} \frac{P(u)}{|F(u)|}, \quad (8)$$

319 where $F(u)$ is the set of children of u .

320 This yields a forward-reachability distribution $P(n)$ over all nodes. We can obtain the mass $P(\ell)$
321 of any leaf node $\ell \in L$ and the normalized leaf distribution is:

$$323 \tilde{P}(\ell) = \frac{P(\ell)}{\sum_{\ell' \in L} P(\ell')}. \quad (9)$$

324 **Entropy of graph splits and leaf.** The *graph split entropy* reflects the total uncertainty injected
 325 by intermediate splits:

$$326 \quad H_{\text{graph}} = \sum_{n \in C} P(n) \log |F(n)|, \quad (10)$$

327 and the *leaf entropy* is the Shannon entropy of the normalized leaf distribution:

$$330 \quad H_{\text{leaf}} = - \sum_{\ell \in L} \tilde{P}(\ell) \log \tilde{P}(\ell). \quad (11)$$

333 **Information-conversion efficiency.** We define the structural quality reward $r_{\eta,i}$ as

$$335 \quad r_{\eta,i} = \begin{cases} \frac{H_{\text{leaf}}}{H_{\text{graph}}}, & H_{\text{graph}} > 0, \\ 1, & H_{\text{graph}} = 0 \wedge \exists \ell \in L : P(\ell) > 0, \\ 0, & \text{otherwise.} \end{cases} \quad (12)$$

340 We provide illustrative instances in Appendix H.3, demonstrating the rationality of the structural
 341 quality reward.

342 • **Overall reward.** The i th sample's total reward is calculated as follows:

$$344 \quad r_i = r_{\text{acc}_i} \cdot (r_{\text{eff}_i} + r_{\eta,i}) \quad (13)$$

346 We provide the pseudo-code of overall inference procedure of GPS in Appendix C and training
 347 procedure of the Reasoner in Appendix C, and additionally offer an illustrative example of the two-
 348 stage proactive information-seeking process in Appendix I.

350 5 EXPERIMENT

351 5.1 EXPERIMENTAL SETUP

355 **Dataset** We constructed the GPS training dataset based on ConditionalQA (Sun et al., 2022) and
 356 we test our method on the following three datasets. The detailed statistics of the datasets are intro-
 357 duced in Appendix L.

- 358 • **Synthetic** is the test split of our conditional path guided synthetic dataset, consisting entirely of
 359 underspecified queries.
- 360 • **ConditionalQA** (Sun et al., 2022) includes both well-specified queries and underspecified queries.
 361 It provides annotation for each question-answer pair along with the document and the correspond-
 362 ing missing conditions. For well-specified queries, the missing conditions are empty.
- 363 • **ShARC** (Verma et al., 2020) is a conversational QA dataset that also includes well-specified
 364 queries and underspecified queries based on rules expressed in natural language text. For under-
 365 specified queries, it provides annotated clarification dialogues. We concatenate the clarification
 366 dialogue as the missing conditions. Compared to typical datasets in RAG scenarios, ShARC fea-
 367 tures much shorter documents and a restricted answer space limited to *yes* or *no*. We use ShARC
 368 to evaluate the generalization ability of our method.

369 **Baselines** We adopt the following state-of-the-art approaches as our compared baselines.

- 370 • **Base Method** answers user query directly based on the relevant document, which can be consid-
 371 ered as fundamental framework in RAG.
- 372 • **ProCoT** (Deng et al., 2023b) is a prompt based method. It leverages a Chain of Thought prompt-
 373 ing scheme to judge whether the user query is underspecified and generate a clarification question
 374 if needed.
- 375 • **UoT** (Hu et al., 2024) proposes Uncertainty of Thought prompting, which enhances ILM reasoning
 376 by explicitly modeling and reducing uncertainty during the reasoning process.

- 378 • **BED-LLM** (Kobalczyk et al., 2025) uses Bayesian Experimental Design to pick the question
379 that maximizes information gain, replacing implicit LLM reasoning with explicit sampling-based
380 utility.
- 381 • **Adaptive-BED-LLM** is the ambiguity-adaptive variant of BED-LLM. We first generates a group
382 of initial answers and prompt an evaluator LLM to judge whether these answers are semantically
383 consistent. If consistent, the model answers directly; otherwise it proceeds with BED-based ques-
384 tion selection. The evaluation prompt is provided in Appendix G.3.
- 385 • **Clarify-DPO** (Zhang et al., 2025) is a fine-tuning based method. It leverages a self-improve
386 method to collect training data and filter data by gold answer.
- 387 • **Adaptive-Clarify-DPO** extends Clarify-DPO with an ambiguity-adaptive mechanism based on
388 the *Clarify-or-Direct Answer* strategy proposed in (Zhang et al., 2025). The model learns to
389 choose either generating a clarification question or directly answering.

391 **Models** We evaluate the performance using Llama3-8B-Instruct (Grattafiori et al., 2024) and
392 Qwen2.5-7B-Instruct (Qwen et al., 2025) as backbone models.
393

394 **Evaluation Metrics** We evaluate the model’s proactive information seeking ability using the fol-
395 lowing four metrics:

- 396 • **Success Rate (SR)**. Following previous studies(Hu et al., 2024; Qian et al., 2024), we use this
397 metric measures the **effectiveness** of clarification process by computing the proportion of the cor-
398 rect predictions after clarification. We employ an evaluator LLM to judge the semantic alignment
399 between the predicted answer and the ground-truth answer. The evaluation prompt we use is
400 provided in Appendix G.
- 401 • **Mean Clarification Turns (MCT)**. This metric measures the efficiency of clarification process
402 by computing the average number of clarification questions asked before generating the predicted
403 answer (Hu et al., 2024; Qian et al., 2024).
- 404 • **Weighted Clarification Turns (WCT)**. The desired behavior of a proactive information seeking
405 model is to prioritize correct clarification before optimizing efficiency, while MCT alone cannot
406 capture **success-conditioned efficiency**. Inspired by prior evaluation protocols (Yokoyama et al.,
407 2021), we introduce the Weighted Clarification Turns (WCT):

$$409 \quad WCT = p_{\text{success}} \cdot MCT_{\text{success}} + p_{\text{failed}} \cdot T_{\text{max}}, \quad (14)$$

410 where p_{success} and p_{failed} denote the proportions of successful and failed samples, MCT_{success} is the
411 mean clarification turns over successful samples, and $T_{\text{max}} = 10$ is the maximum clarification-
412 turn budget in our experiment. Lower WCT reflects more efficient clarification while preserving
413 success rate.

- 414 • **F1 score** for Clarification Need Prediction Accuracy (CNP). Following previous studies (Deng
415 et al., 2023b; Zhang et al., 2025), we compute the F1 score of CNP for evaluating the model’s
416 ability to identify the necessity of clarification.

418 5.2 PERFORMANCE COMPARISON

420 Table 1 presents the performance comparison of different methods across three benchmarks: Syn-
421 thetic, ConditionalQA, and ShARC. We summarize key findings below:

422 **Training for proactive information seeking is essential.** The Base Method yields low success
423 rates (SR) on the Synthetic and ShARC datasets, where the proportion of underspecified queries is
424 substantially higher than in ConditionalQA dataset. This suggests that the Base Method struggles
425 to handle underspecified queries. Baseline methods equipped with proactive clarification consis-
426 tently improve SR over the Base Method. However, purely prompt-based methods sometimes fail
427 to surpass the Base Method. For example, **ProCoT**, which introduces proactive clarification at the
428 prompting level, occasionally results in degraded performance. This degradation is likely due to the
429 limited capacity of backbone models and the inherent complexity of conditional reasoning required
430 by the documents, consistent with observations reported by (Zhang et al., 2024).

431 **GPS achieves the best balance between effectiveness and efficiency.** Compared to existing base-
432 lines, **GPS** consistently improves SR. With LLaMA-3-8B-Instruct as the backbone, **GPS** achieves

432 **Table 1: Performance comparison on three datasets.** Columns report SR (Success Rate, %), Mean
 433 Clarification Turns(MCT), **WCT (Weighted Clarification Turns)**, and F1 score (%). **Bold** indicates
 434 the best result, while underline denotes the second-best results.

Method	Synthetic				ConditionalQA				ShARC			
	SR (↑)	MCT	WCT (↓)	F1 (↑)	SR (↑)	MCT	WCT (↓)	F1 (↑)	SR (↑)	MCT	WCT (↓)	F1 (↑)
<i>Qwen2.5-7B-Instruct</i>												
Base Method	21.2	0.0	7.88	0.0	70.3	0.0	2.98	0.0	49.3	0.0	5.08	0.0
ProCoT	42.5	<u>0.43</u>	6.07	50.9	71.6	0.33	<u>2.95</u>	10.4	62.6	0.67	4.06	51.3
UoT	32.8	1.10	7.05	89.2	60.3	0.56	4.25	28.2	70.5	0.52	3.25	<u>83.8</u>
BED-LLM	40.9	1.45	6.41	100.0	52.8	1.22	5.26	37.6	62.2	0.80	4.22	66.7
Adaptive-BED-LLM	34.6	1.26	6.89	95.2	50.2	0.93	5.58	28.6	59.4	0.90	4.56	71.0
Clarify-DPO	<u>59.2</u>	1.0	4.67	100.0	<u>72.0</u>	1.0	3.52	37.6	<u>78.5</u>	1.0	<u>2.93</u>	66.7
Adaptive-Clarify-DPO	32.6	0.94	7.04	96.2	69.9	0.02	3.02	0.0	70.0	0.01	2.99	0.0
GPS	60.2	1.35	4.59	<u>96.4</u>	73.4	0.78	2.91	<u>36.7</u>	79.3	0.89	2.41	87.5
<i>LLaMA3-8B-Instruct</i>												
Base Method	30.8	0.0	6.92	0.0	62.8	0.0	3.72	0.0	56.6	0.0	4.34	0.0
ProCoT	28.3	0.26	7.62	29.2	66.3	0.36	3.58	25.7	53.7	0.86	5.16	35.6
UoT	29.7	1.20	7.36	90.9	64.6	0.90	4.03	<u>31.7</u>	68.3	0.76	3.67	<u>69.9</u>
BED-LLM	39.6	1.50	6.53	100.0	47.2	1.50	6.02	37.6	64.0	0.98	4.20	66.7
Adaptive-BED-LLM	35.6	1.36	6.84	96.2	44.5	1.03	5.90	<u>31.4</u>	67.8	0.46	3.49	67.0
Clarify-DPO	<u>53.2</u>	1.0	<u>5.21</u>	100.0	66.3	1.0	4.03	37.6	82.7	1.0	2.55	66.7
Adaptive-Clarify-DPO	31.3	0.91	7.16	95.5	<u>67.7</u>	0.02	<u>3.23</u>	0.0	68.8	0.0	3.12	0.0
GPS	56.5	1.12	5.02	<u>96.2</u>	74.6	0.81	2.89	28.0	<u>75.8</u>	0.58	<u>2.79</u>	82.5

456 an average relative improvement of 10.4% over the second-best method on SR across three datasets.
 457 When using Qwen2.5-7B-Instruct as the backbone, **GPS** also yields an average relative improvement
 458 of 4.5% over the corresponding second-best SR. Importantly, when considering **WCT**, which
 459 jointly reflects success rate and efficiency, **GPS achieves the lowest WCT in nearly all settings**,
 460 demonstrating that the model achieves higher correctness with lower effective clarification cost.

461 **Strong generalization to ShARC.** **GPS** also generalizes well to the ShARC dataset, where it consistently outperforms prompt-based methods and Base Method, and achieves performance comparable to the **Clarify-DPO** method, despite the fact that **Clarify-DPO** is trained directly on ShARC. This highlights the strong generalization ability of **GPS** across different benchmarks.

466 5.3 ABLATION STUDY

467 To evaluate the contribution of each component in **GPS**, we conduct an ablation study using
 468 Qwen2.5-7B-Instruct as the backbone LLM. Results are reported in Table 2 on both the Synthetic
 469 and ConditionalQA datasets.

470 The full **GPS** method achieves the best performance across all metrics. Removing the reinforcement
 471 learning objective (**w/o RL**) leads to a clear drop in SR on the **Synthetic** dataset from 60.2 to 52.2,
 472 confirming the effectiveness of policy optimization. Ablating the **Efficient Reward** and **Structural**
 473 **quality Reward** design both harms performance, decreasing SR and increasing both WCT and
 474 MCT on **Synthetic** dataset, indicating the necessity of jointly modeling correctness and efficiency.
 475 Finally, disabling the dynamic traversal mechanism (**w/o Dynamic Traversal**) leads to performance
 476 degradation on both datasets, especially increased MCT from 1.35 to 1.84 on **Synthetic** dataset and
 477 from 0.78 to 0.86 on **ConditionalQA** dataset, suggesting its role in optimizing clarification paths.

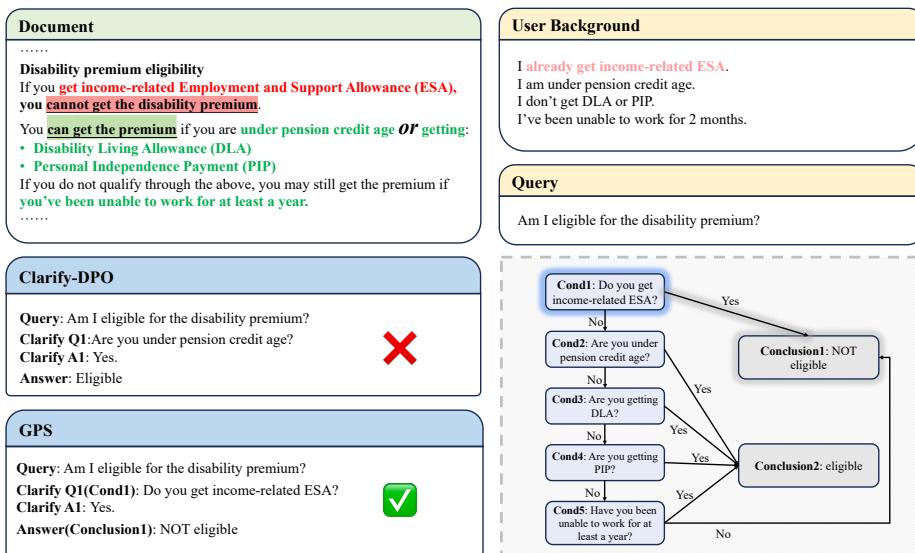
480 5.4 QUALITATIVE ANALYSIS

481 Figure 3 presents comparison between a strong baseline Clarify-DPO and our method GPS on an
 482 underspecified query about policy eligibility. Clarify-DPO selects clarification questions based on
 483 implicit reasoning, which leads to missing essential condition about income-related ESA, and the
 484 resulting clarification path does not cover all necessary branches. This omission causes the model
 485 to produce an incorrect final answer.

486
487
488
489 Table 2: Ablation results of GPS with Qwen2.5-7B-Instruct.
490
491
492
493
494
495

Method	Synthetic				CondQA			
	SR↑	MCT	WCT↓	F1↑	SR↑	MCT	WCT↓	F1↑
GPS	60.2	1.35	4.59	96.4	73.4	0.78	2.91	36.7
w/o RL	52.2	1.43	5.57	96.8	67.7	0.56	3.63	23.1
w/o Efficient Reward	59.0	1.43	5.06	97.1	70.7	0.73	3.58	28.9
w/o Structural quality Reward	56.1	1.42	5.32	96.3	70.3	0.81	3.61	29.1
w/o Dynamic Traversal	59.6	1.84	5.19	96.4	71.2	0.86	3.63	22.2

496
497
498
499 In contrast, GPS first constructs a conditional reasoning DAG that explicitly enumerates all relevant
500 conditions. The dynamic traversal module then identifies the most informative condition to clarify,
501 removes inconsistent branches based on user responses, and narrows the search to the uniquely valid
502 leaf node. This produces a clarification trajectory that is both minimal and logically complete. For
503 more qualitative analysis, please refer to Appendix H.



530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
1999
2000
2001
2002
2003
2004
2005
2006
2007
200

540 REFERENCES
541

542 Chinmaya Andukuri, Jan-Philipp Fränken, Tobias Gerstenberg, and Noah D. Goodman. Star-gate:
543 Teaching language models to ask clarifying questions. *CoRR*, abs/2403.19154, 2024. doi: 10.
544 48550/ARXIV.2403.19154. URL <https://doi.org/10.48550/arXiv.2403.19154>.

545 Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michał Podstawski, Lukas Giani-
546 nazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczek, and Torsten Hoe-
547 fler. Graph of thoughts: solving elaborate problems with large language models. In *Proceedings*
548 *of the Thirty-Eighth AAAI Conference on Artificial Intelligence and Thirty-Sixth Conference on*
549 *Innovative Applications of Artificial Intelligence and Fourteenth Symposium on Educational Ad-*
550 *vances in Artificial Intelligence*, AAAI'24/IAAI'24/EAAI'24. AAAI Press, 2024. ISBN 978-1-
551 57735-887-9. doi: 10.1609/aaai.v38i16.29720. URL <https://doi.org/10.1609/aaai.v38i16.29720>.

553 Maximillian Chen, Ruoxi Sun, Sercan Ö. Arik, and Tomas Pfister. Learning to clarify: Multi-turn
554 conversations with action-based contrastive self-training. *CoRR*, abs/2406.00222, 2024. doi: 10.
555 48550/ARXIV.2406.00222. URL <https://doi.org/10.48550/arXiv.2406.00222>.

556 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
557 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
558 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
559 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
560 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
561 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
562 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
563 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
564 Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
565 Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
566 Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
567 Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
568 R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhua Chen, Shengfeng
569 Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
570 Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
571 Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
572 Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
573 Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
574 aoshua Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
575 Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
576 Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
577 Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
578 Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
579 Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
580 Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
581 Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
582 Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
583 Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
584 ment learning, 2025. URL <https://arxiv.org/abs/2501.12948>.

585 Yang Deng, Wenqiang Lei, Minlie Huang, and Tat-Seng Chua. Rethinking conversational agents
586 in the era of llms: Proactivity, non-collaborativity, and beyond. In Qingyao Ai, Yiqin Liu, Alis-
587 tair Moffat, Xuanjing Huang, Tetsuya Sakai, and Justin Zobel (eds.), *Annual International ACM*
588 *SIGIR Conference on Research and Development in Information Retrieval in the Asia Pacific Re-*
589 *gion, SIGIR-AP 2023, Beijing, China, November 26-28, 2023*, pp. 298–301. ACM, 2023a. doi:
10.1145/3624918.3629548. URL <https://doi.org/10.1145/3624918.3629548>.

590 Yang Deng, Lizi Liao, Liang Chen, Hongru Wang, Wenqiang Lei, and Tat-Seng Chua. Prompt-
591 ing and evaluating large language models for proactive dialogues: Clarification, target-
592 guided, and non-collaboration. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Find-*
593 *ings of the Association for Computational Linguistics: EMNLP 2023, Singapore, Decem-*
594 *ber 6-10, 2023*, pp. 10602–10621. Association for Computational Linguistics, 2023b. doi:

594 10.18653/V1/2023.FINDINGS-EMNLP.711. URL <https://doi.org/10.18653/v1/2023.findings-emnlp.711>.
 595
 596

597 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 598 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
 599 Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
 600 renov, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
 601 Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,
 602 Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
 603 Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
 604 Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
 605 Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
 606 AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
 607 Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
 608 tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
 609 vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,
 610 Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
 611 hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Janya Lee, Jeremy Fu,
 612 Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
 613 soo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasudevan Alwala,
 614 Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
 615 El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhota, Lauren
 616 Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
 617 Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
 618 Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
 619 Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
 620 mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
 621 chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
 622 Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
 623 Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ra-
 624 mon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Ro-
 625 hit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
 626 Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell,
 627 Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparth, Sheng
 628 Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
 629 Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,
 630 Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mi-
 631 haylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor
 632 Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vítor Albiero, Vladan Petrovic, Weiwei
 633 Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang
 634 Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
 635 schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning
 636 Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
 637 Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria,
 638 Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein,
 639 Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, An-
 640 drew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, An-
 641 nie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
 642 Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leon-
 643 hardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu
 644 Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Mon-
 645 talvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao
 646 Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia
 647 Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide
 Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
 Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
 Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smo-
 thers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni,
 Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia

648 Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
 649 Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harri-
 650 son Rudolph, Helen Suk, Henry Aspegen, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,
 651 Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
 652 Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
 653 nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang,
 654 Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Jun-
 655 jie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy
 656 Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang,
 657 Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell,
 658 Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa,
 659 Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias
 660 Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
 661 Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
 662 Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
 663 Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan
 664 Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong,
 665 Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent,
 666 Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar,
 667 Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Ro-
 668 driguez, Rafi Ayub, Raghatham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
 669 Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin
 670 Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon,
 671 Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ra-
 672 maswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
 673 Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal,
 674 Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-
 675 field, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj
 676 Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
 677 Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
 678 Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Ku-
 679 mar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov,
 680 Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiao-
 681 jian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
 682 Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao,
 683 Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhao-
 duo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL
<https://arxiv.org/abs/2407.21783>.
 684

685 Zhiyuan Hu, Chumin Liu, Xidong Feng, Yilun Zhao, See-Kiong Ng, Anh Tuan Luu, Junxian
 686 He, Pang Wei W. Koh, and Bryan Hooi. Uncertainty of thoughts: Uncertainty-aware plan-
 687 ning enhances information seeking in llms. In Amir Globersons, Lester Mackey, Danielle
 688 Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), *Ad-
 689 vances in Neural Information Processing Systems 38: Annual Conference on Neural Infor-
 690 mation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 -
 691 15, 2024*, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/2b0e14abd8128e6bf98b6b0bec1cfcbf-Abstract-Conference.html.
 692

693 Hyuhng Joon Kim, Youna Kim, Cheonbok Park, Junyeob Kim, Choonghyun Park, Kang Min Yoo,
 694 Sang-goo Lee, and Taeuk Kim. Aligning language models to explicitly handle ambiguity. In
 695 *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*,
 696 pp. 1989–2007, Miami, Florida, USA, November 2024. Association for Computational Linguis-
 697 tics. doi: 10.18653/v1/2024.emnlp-main.119. URL <https://aclanthology.org/2024.emnlp-main.119/>.
 698

699 Kasia Kobalczyk, Nicolás Astorga, Tennison Liu, and Mihaela van der Schaar. Active task dis-
 700 ambiguation with llms. In *The Thirteenth International Conference on Learning Represen-
 701 tations, ICLR 2025, Singapore, April 24-28, 2025*. OpenReview.net, 2025. URL <https://openreview.net/forum?id=JAMxRSXLfZ>.

702 Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Clam: Selective clarification for ambiguous
 703 questions with generative language models. In *ICML Workshop on Deployable Generative AI*,
 704 2023. URL <https://openreview.net/forum?id=VQWuqgSoVN#all>.

705 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
 706 Goyal, Heinrich Kütter, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel,
 707 and Douwe Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks. In
 708 H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neu-
 709 ral Information Processing Systems*, volume 33, pp. 9459–9474. Curran Associates, Inc.,
 710 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf.

711

712 Zichao Li, Zong Ke, and Puning Zhao. Injecting structured knowledge into LLMs via graph neural
 713 networks. In Hao Fei, Kewei Tu, Yuhui Zhang, Xiang Hu, Wenjuan Han, Zixia Jia, Zilong Zheng,
 714 Yixin Cao, Meishan Zhang, Wei Lu, N. Siddharth, Lilja Øvreliid, Nianwen Xue, and Yue Zhang
 715 (eds.), *Proceedings of the 1st Joint Workshop on Large Language Models and Structure Modeling
 716 (XLLM 2025)*, pp. 16–25, Vienna, Austria, August 2025. Association for Computational Linguis-
 717 tics. ISBN 979-8-89176-286-2. URL <https://aclanthology.org/2025.xllm-1.3/>.

718

719 Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
 720 Percy Liang. Lost in the middle: How language models use long contexts. *Transactions of the
 721 Association for Computational Linguistics*, 12:157–173, 2024. doi: 10.1162/tacl_a_00638. URL
 722 <https://aclanthology.org/2024.tacl-1.9/>.

723

724 Cheng Qian, Bingxiang He, Zhong Zhuang, Jia Deng, Yujia Qin, Xin Cong, Zhong Zhang, Jie
 725 Zhou, Yankai Lin, Zhiyuan Liu, and Maosong Sun. Tell me more! towards implicit user in-
 726 tention understanding of language model driven agents. In Lun-Wei Ku, Andre Martins, and
 727 Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Com-
 728 putational Linguistics (Volume 1: Long Papers)*, pp. 1088–1113, Bangkok, Thailand, August
 729 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.61. URL
 730 <https://aclanthology.org/2024.acl-long.61/>.

731

732 Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 733 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 734 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 735 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
 736 Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
 737 Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
 738 URL <https://arxiv.org/abs/2412.15115>.

739

740 Hongyu Ren, Weihua Hu, and Jure Leskovec. Query2box: Reasoning over knowledge graphs in
 741 vector space using box embeddings. In *8th International Conference on Learning Repre-
 742 sentations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020*. OpenReview.net, 2020. URL
 743 <https://openreview.net/forum?id=BJgr4kSFDS>.

744

745 Ruiyang Ren, Yuhao Wang, Yingqi Qu, Wayne Xin Zhao, Jing Liu, Hua Wu, Ji-Rong Wen,
 746 and Haifeng Wang. Investigating the factual knowledge boundary of large language mod-
 747 els with retrieval augmentation. In Owen Rambow, Leo Wanner, Marianna Apidianaki, Hend
 748 Al-Khalifa, Barbara Di Eugenio, and Steven Schockaert (eds.), *Proceedings of the 31st In-
 749 ternational Conference on Computational Linguistics, COLING 2025, Abu Dhabi, UAE, Jan-
 750 uary 19-24, 2025*, pp. 3697–3715. Association for Computational Linguistics, 2025. URL
 751 <https://aclanthology.org/2025.coling-main.250/>.

752

753 Haitian Sun, William Cohen, and Ruslan Salakhutdinov. ConditionalQA: A complex reading com-
 754 prehension dataset with conditional answers. In Smaranda Muresan, Preslav Nakov, and Aline
 755 Villavicencio (eds.), *Proceedings of the 60th Annual Meeting of the Association for Com-
 756 putational Linguistics (Volume 1: Long Papers)*, pp. 3627–3637, Dublin, Ireland, May 2022. As-
 757 sociation for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.253. URL <https://aclanthology.org/2022.acl-long.253/>.

758

759 Nikhil Verma, Abhishek Sharma, Dhiraj Madan, Danish Contractor, Harshit Kumar, and Sachindra
 760 Joshi. Neural conversational qa: Learning to reason v.s. exploiting patterns, 2020. URL <https://arxiv.org/abs/1909.03759>.

756 Tianle Xia, Liang Ding, Guojia Wan, Yibing Zhan, Bo Du, and Dacheng Tao. Improving com-
 757 plex reasoning over knowledge graph with logic-aware curriculum tuning. In Toby Walsh, Julie
 758 Shah, and Zico Kolter (eds.), *AAAI-25, Sponsored by the Association for the Advancement of*
 759 *Artificial Intelligence, February 25 - March 4, 2025, Philadelphia, PA, USA*, pp. 12881–12889.
 760 AAAI Press, 2025. doi: 10.1609/AAAI.V39I12.33405. URL <https://doi.org/10.1609/aaai.v39i12.33405>.

762 Jundong Xu, Hao Fei, Liangming Pan, Qian Liu, Mong-Li Lee, and Wynne Hsu. Faithful log-
 763 ical reasoning via symbolic chain-of-thought. In Lun-Wei Ku, Andre Martins, and Vivek
 764 Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Compu-
 765 tational Linguistics (Volume 1: Long Papers)*, pp. 13326–13365, Bangkok, Thailand, August
 766 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.720. URL
 767 <https://aclanthology.org/2024.acl-long.720/>.

768 Naoki Yokoyama, Sehoon Ha, and Dhruv Batra. Success weighted by completion time: A
 769 dynamics-aware evaluation criteria for embodied navigation. In *2021 IEEE/RSJ Interna-
 770 tional Conference on Intelligent Robots and Systems (IROS)*, pp. 1562–1569. IEEE Press, 2021. doi:
 771 10.1109/IROS51168.2021.9636743. URL <https://doi.org/10.1109/IROS51168.2021.9636743>.

772 Michael Jq Zhang, W. Bradley Knox, and Eunsol Choi. Modeling future conversation turns to
 773 teach llms to ask clarifying questions. In *The Thirteenth International Conference on Learn-
 774 ing Representations, ICLR 2025, Singapore, April 24-28, 2025*. OpenReview.net, 2025. URL
 775 <https://openreview.net/forum?id=kwuSAR7EKd>.

776 Tong Zhang, Peixin Qin, Yang Deng, Chen Huang, Wenqiang Lei, Junhong Liu, Dingnan Jin, Hon-
 777 gru Liang, and Tat-Seng Chua. CLAMBER: A benchmark of identifying and clarifying ambigu-
 778 ous information needs in large language models. In *Proceedings of the 62nd Annual Meeting of*
 779 *the Association for Computational Linguistics (Volume 1: Long Papers)*, ACL 2024, Bangkok,
 780 Thailand, August 11-16, 2024, pp. 10746–10766. Association for Computational Linguistics,
 781 2024. doi: 10.18653/V1/2024.ACL-LONG.578. URL <https://doi.org/10.18653/v1/2024.acl-long.578>.

782 Xuejiao Zhao, Siyan Liu, Su-Yin Yang, and Chunyan Miao. Medrag: Enhancing retrieval-
 783 augmented generation with knowledge graph-elicited reasoning for healthcare copilot. In *Pro-
 784 ceedings of the ACM on Web Conference 2025*, WWW '25, pp. 4442–4457, New York, NY, USA,
 785 2025. Association for Computing Machinery. ISBN 9798400712746. doi: 10.1145/3696410.
 786 3714782. URL <https://doi.org/10.1145/3696410.3714782>.

787 George Kingsley Zipf. *Human behavior and the principle of least effort*. 1949.

A PROOF OF PROPOSITION 1

794 **Proposition 1.** *For any finite-valued function $g : \prod_{i=1}^k \mathcal{V}_i \rightarrow A$ over condition variables $\{c_i\}_{i=1}^k$,*
 795 *there exists a conditional reasoning DAG \mathcal{G} such that, for each $a_m \in A$, every root-to-leaf path*
 796 *ending at a_m corresponds to a conjunction in the disjunctive normal form (DNF) of the indicator*
 797 *function $\mathbf{1}[g(\cdot) = a_m]$, and the union of all such paths encodes the full DNF of $\mathbf{1}[g(\cdot) = a_m]$.*

798
 799 *Proof.* Let $g : \prod_{i=1}^k \mathcal{V}_i \rightarrow A$ be a total function over a finite domain, where each condition variable
 800 c_i takes values in a finite set \mathcal{V}_i . For an arbitrary value $a_m \in A$, we define the indicator function:

$$802 \quad f(\mathbf{v}) = \mathbf{1}[g(\mathbf{v}) = a_m], \quad \mathbf{v} \in \prod_{i=1}^k \mathcal{V}_i. \quad (15)$$

803 Since the domain of g is finite, f can be expressed in disjunctive normal form (DNF):

$$804 \quad f(\mathbf{v}) = \bigvee_{\mathbf{v} \in \mathcal{C}_{a_m}} \left(\bigwedge_{i=1}^k (c_i = v_i) \right), \quad \text{where } \mathcal{C}_{a_m} = \{\mathbf{v} \mid g(\mathbf{v}) = a_m\}. \quad (16)$$

805 We construct a conditional reasoning DAG $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ such that:

810 • Each internal node corresponds to a condition variable c_i ;
 811
 812 • Each edge from a node c_i is labeled by a value $v \in \mathcal{V}_i$;
 813
 814 • Each root-to-leaf path encodes a conjunction $\bigwedge_{i=1}^k (c_i = v_i)$ for some $\mathbf{v} \in \mathcal{C}_{a_m}$;
 815
 816 • Each leaf node is labeled with a_m .

817 Formally, for each $\mathbf{v} = (v_1, \dots, v_k) \in \mathcal{C}_{a_m}$, we construct a path $P_{\mathbf{v}} = (n_0, n_1, \dots, n_k)$ where:

818 • n_0 is the root node,
 819
 820 • for each $j = 1, \dots, k$, node n_j is labeled with $c_{\pi(j)}$ for some fixed total order π over $[k]$,
 821
 822 • edge (n_{j-1}, n_j) is labeled by $v_{\pi(j)}$,
 823
 824 • the final node n_k connects to a terminal node labeled with a_m .

825 By construction, the union of all such root-to-leaf paths exactly encodes the DNF of $\mathbf{1}[g(\cdot) = a_m]$. \square

827 B ANALYSIS OF CLARIFICATION EFFICIENCY.

830 To analyze the efficiency of our clarification strategy, we note that the worst-case number of clarifications is bounded by the total number of condition variables k . However, in practice, each conclusion typically depends on only a small subset of these variables. We denote the average number of conditions along a valid reasoning path as $r \ll k$. Our dynamic traversal algorithm prunes inconsistent branches based on user responses, and selects the most cost-effective clarification at each step. As a result, the expected number of clarification turns is reduced to $O(r)$. Moreover, the DAG structure allows for node sharing across multiple paths, which enables information reuse and further reduces the overall number of clarification turns below r in settings with high condition overlap across paths.

838 C ALGORITHM OF DYNAMIC TRAVERSAL-BASED CLARIFICATION

841 Alg. 1 shows the detailed procedure of dynamic traversal-based clarification.

843 Algorithm 1 Dynamic Traversal-Based Clarification

844 **Require:** DAG $\mathcal{G} = (\mathcal{N}, \mathcal{E})$, Clarifier LLM Θ_C , User Simulator LLM Θ_U with access to back-
 845 ground S , known condition set $C_{\text{known}}(q)$
 846 **Ensure:** Final answer \hat{a}
 847 1: Initialize dialogue history $H \leftarrow \emptyset$
 848 2: Compute candidate set U according to Eq. 1
 849 3: **while** $U \neq \emptyset$ **do**
 850 4: Select n_i according to Eq. 2
 851 5: Generate clarification question $q_{n_i} \sim \Theta_C(n_i)$
 852 6: Obtain user response $a_{n_i} \sim \Theta_U(q_{n_i}, S)$
 853 7: **if** $\exists (n_i, n_j, \nu) \in \mathcal{E}, \nu \equiv a_{n_i}$ **then**
 854 8: Record (q_{n_i}, a_{n_i}) into H
 855 9: Continue traversal to n_j
 856 10: **else**
 857 11: Remove n_i from U and continue with next candidate
 858 12: **end if**
 859 13: **end while**
 860 14: **return** $\hat{a} \leftarrow \Theta_C(H)$

863 D ALGORITHM OF GPS INFERENCE PROCESS

864 Alg. 2 shows the overall inference pipeline of GPS, which consists of conditional reasoning DAG
 865 construction and dynamic traversal-based clarification (Alg. 1).
 866

867 **Algorithm 2 GPS Inference: Graph-guided Proactive Clarification**

868 **Require:** User query q , retrieved document d , Reasoner LLM Θ_R , Clarifier LLM Θ_C , User (or
 869 Simulator) Θ_U with background S
 870 **Ensure:** Final answer \hat{a}

871 1: // Reasoning stage: DAG construction
 872 2: Construct a DAG-extraction prompt $P_{\text{DAG}}(q, d)$ (see Appendix G.1).
 873 3: Generate a structured DAG description $y \sim \Theta_R(P_{\text{DAG}}(q, d))$.
 874 4: Parse y into a conditional reasoning DAG $\mathcal{G} = (\mathcal{N}, \mathcal{E}) = \text{PARSE}(y)$.
 875 5: // Clarification stage: dynamic traversal (Alg. 1)
 876 6: Identify the known condition set $C_{\text{known}}(q) \leftarrow \Theta_C(q, d, \mathcal{G})$.
 877 7: $\hat{a} \leftarrow \text{DYNAMICTRAVERSALCLARIFICATION}(\mathcal{G}, \Theta_C, \Theta_U, C_{\text{known}}(q), S)$
 878 8: **return** \hat{a}

880

881 **E ALGORITHM OF THE REASONER TRAINING PROCESS**

882 Alg. 3 summarizes the clarification-oriented reinforcement learning procedure used to train the Rea-
 883 soner LLM Θ_R with hybrid rewards over synthetic conditional-path data.

884 **Algorithm 3 Clarification-Oriented RL for DAG Extraction**

885 **Require:** Document collection \mathcal{D} , data synthesis module SYNTH , initial Reasoner LLM $\Theta_R^{(0)}$, Clar-
 886 ifier LLM Θ_C , User Simulator Θ_U , RL iterations T .
 887 **Ensure:** Trained Reasoner LLM $\Theta_R^{(T)}$.

888 1: // Conditional-path guided data synthesis
 889 2: $\mathcal{S} \leftarrow \text{SYNTH}(\mathcal{D})$
 890 3: **for** $t = 1$ to T **do**
 891 4: Sample a minibatch $\mathcal{B} \subset \mathcal{S}$
 892 5: **for** each $(q, d, a, C_{\text{miss}}) \in \mathcal{B}$ **do**
 893 6: // DAG extraction by current Reasoner
 894 7: $\mathcal{G} = (\mathcal{N}, \mathcal{E}) \sim \Theta_R^{(t-1)}(q, d)$
 895 8: // Simulated clarification and answer prediction
 896 9: $\hat{a}, T_{\text{clar}} \leftarrow \text{DYNAMICTRAVERSALCLARIFICATION}(\mathcal{G}, \Theta_C, \Theta_U, C_{\text{known}}(q), S)$
 897 10: // Hybrid reward computation
 898 11: Compute total reward R as in Eq. 13
 899 12: Store (q, d, \mathcal{G}, R) for RL update
 900 13: **end for**
 901 14: // RL update of Reasoner
 902 15: $\Theta_R^{(t)} \leftarrow \text{RLUPDATE}(\Theta_R^{(t-1)}, \{(q, d, \mathcal{G}, R)\}_{(q, d, \cdot) \in \mathcal{B}})$
 903 16: **end for**
 904 17: **return** $\Theta_R^{(T)}$

905

906 **F THE USE OF LARGE LANGUAGE MODELS (LLMs)**

907 In this work, Large Language Models (LLMs) are mainly used as auxiliary tools rather than core
 908 components of the proposed method. Specifically, we leverage LLMs for two purposes: (i) gram-
 909 mar checking and language polishing of academic writing; and (ii) providing suggestions for code
 910 debugging, particularly in identifying possible causes of error messages and offering potential fixes.
 911 These uses of LLMs help streamline the writing and coding workflow, but they do not influence the
 912 methodological design or experimental results of this paper.

918 G PROMPTS
919920
921
922 This section presents the prompts used in our method, including DAG extraction prompt for clarifi-
923 cation, [conditional path guided data synthesis prompt](#), [self-reflection prompt for DAG construction](#)
924 and evaluation prompt.
925926
927
928
929
930 G.1 DAG EXTRACTION PROMPT FOR CLARIFICATION
931
932933 ***DAG extraction prompt for clarification***
934935 Given a user question and a relevant document that are useful
936 for answering the question, your task is to:937 1. Based on the passage, decide whether the user question
938 has multiple conditional answers that are only applicable when
939 certain user-specific conditions apply.
940 2. Then, build a graph (DAG) to represent all possible
941 conditional reasoning paths. The node and edge of the DAG
942 should be json format as follows:943 **Node format:**944 {
945 "node id": unique integer ID.
946 "node type": either "Condition" or "Conclusion", "Conclusion"
947 nodes must be terminal nodes with no outgoing edges.
948 "node content": if the current node is Condition node, the
949 content should be a clarification question about the conditional
950 judgement; if the current node is Conclusion node, the content
951 should be a statement about the final answer to the user's
952 question.
953 "pre node id": a list of the predecessor nodes of the current
954 node, if a node has multiple predecessor nodes, the predecessor
955 nodes are in OR relationship.
956 }957 **Edge format:**958 {
959 "from": the starting node id of the edge, must be a Condition
960 node.
961 "to": the ending node id of the edge.
962 "label": the label of the edge, should be the answer of the
963 starting Condition node's clarification question.
964 }965 Your output must contain only two parts:
966 [nodes] A list of all nodes. Each node must follow json format
967 above. [nodes]
968 [edges] A list of all edges. Each edge must follow json format
969 above. [edges]970 Notice: Your output must include the above two parts with
971 complete and properly closed tags.
972 Now, let's begin:

973 The user question is: [query here]

974 The document is: [document here]

975 Output:

972
973

G.2 CONDITIONAL PATH GUIDED DATA SYNTHESIS PROMPT

974
975**DAG extraction prompt for data synthesis**

976

Your task is to extract structured decision problems from the following policy document. These problems must meet the following criteria:

977

1. The question has multiple possible answers (not just yes/no).
2. The answer depends on two or more user-specific conditions.
3. Different combinations of these conditions lead to different answers.

978

For each decision problem you identify, extract the following fields:

979

- "question": A concise question that summarizes the decision in the first person.
- "conditions": A list of all relevant condition checks in natural language. These should be simple yes/no-type evaluations.
- "outputs": A list of reasoning paths. Each path should contain:

980

- a combination of condition values (e.g. "A": "Yes", "B": "No")
- the resulting answer
- a brief natural language explanation of the reasoning

981

Use the following output format:

982

```
[
  {
    "question": "...",
    "conditions": [...],
    "outputs": [
      {
        "combination": {"...": "...", "...": "..."},
        "answer": "...",
        "reason": "..."
      }
    ]
  }
]
```

983

Notice: Your output must contain only the list with no other words!

984

Now process the following document and extract all such multi-conditional decision problems. The document is:

985

[document here]

986

987

G.3 EVALUATION PROMPT

988

Evaluation prompt

989

Given a question, a candidate answer, and a ground truth answer, your task is to determine whether the candidate answer is semantically consistent with the ground truth answer based on the following criteria:

990

Semantic Consistency Rules

991

1. If the ground truth answer contains a single definite conclusion, the candidate answer should express the same conclusion.

992

1026 2. The candidate answer must not introduce any conclusions that
 1027 contradict the ground truth answer.
 1028 **Output Format**
 1029 Your output should consist of two parts: a reasoning part and
 1030 a conclusion part. The reasoning part should explain your
 1031 judgment process. The conclusion part's content is "yes" if
 1032 two answers are considered semantically consistent, otherwise
 1033 "no".
 1034 The question is: [question here]
 1035 The ground truth answer is: [ground truth answer here]
 1036 The candidate answer is: [candidate answer here]

G.4 SELF-REFLECTION PROMPT

DAG construction error-correction prompt

You previously attempted to generate a decision graph (DAG) for a given question and document, but the output contained structural or logical errors. Before regenerating the DAG, you must carefully reflect on the causes of failure and identify how to correct them.

Reflection before regeneration. You must think deeply about the following aspects:

1. Conditional-path reasoning errors:

- Did you correctly identify all conditional branches in the passage?
- Are condition nodes logically valid and derived from the passage?
- Do edge labels correspond to answers of the associated condition questions?
- Are all condition--conclusion paths represented?
- Reflection: Did you misinterpret which conditions lead to which conclusions?

2. Graph-structure extraction errors:

- Are node fields (node_id, node_type, node_content, pre_node_id) valid?
- Do Conclusion nodes have no outgoing edges?
- Does pre_node_id contain only direct parents?
- Does the graph remain a valid DAG (acyclic)?
- Are all node references in edges valid?
- Reflection: Did you structure the graph incorrectly?

3. Error analysis:

- Review the error information below and identify the root cause.
- State explicitly what you will change to avoid repeating the mistake.

Specific error information:

{error_description}

Error message:

{error_message}

Your previous output:

{previous_output}

Now regenerate the DAG with great caution, following the requirements below.

1. Decide whether the question admits multiple answers depending on user-specific conditions.
2. Construct a DAG representing all conditional branches. Use the following formats:

```

1080
1081 node format:
1082 {
1083     "node id": unique integer ID.
1084     "node type": either "Condition" or "Conclusion", "Conclusion"
1085     nodes must be terminal nodes with no outgoing edges.
1086     "node content": if the current node is Condition node, the
1087     content should be a clarification question about the conditional
1088     judgement; if the current node is Conclusion node, the content
1089     should be a statement about the final answer to the user's
1090     question.
1091     "pre node id": a list of the predecessor nodes of the current
1092     node, if a node has multiple predecessor nodes, the predecessor
1093     nodes are in OR relationship.
1094 }
1095 Edge format:
1096 {
1097     "from": the starting node id of the edge, must be a Condition
1098     node.
1099     "to": the ending node id of the edge.
1100     "label": the label of the edge, should be the answer of the
1101     starting Condition node's clarification question.
1102 }
1103 3. Your output must contain exactly three parts:
1104 <think> Describe the errors you identified and how you will
1105 avoid them. Also list all possible answers and their logical
1106 branches. </think>
1107 <nodes> A list of all nodes (using the JSON format above).
1108 </nodes>
1109 <edges> A list of all edges (using the JSON format above).
1110 </edges>
1111 Do not omit the surrounding brackets [] in either list. All
1112 tags must be complete and properly closed.
1113 The user question is:
1114 {original_query}
1115 The passage context is:
1116 {original_passage}
1117 Output:
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

```

H CASE STUDY

H.1 QUALITATIVE COMPARISON BETWEEN GPS AND BASELINE METHODS

Figure 4 illustrates the different clarification processes adopted by GPS and ProCoT on the same underspecified query from the **Synthetic** dataset. GPS successfully identifies the correct conditional rules from the document (highlighted in red) and constructs a conditional reasoning DAG to guide the clarification process through traversal, ultimately leading to the correct answer. In contrast, ProCoT is distracted by irrelevant information in the document (highlighted in orange), asks unrelated clarification question, and consequently derives an incorrect answer.

Figure 5 illustrates that GPS provides a more reliable clarification process than UoT. UoT selects clarification questions based on uncertainty signals but lacks an explicit representation of the full decision structure. As a result, it checks only the first two conditions and stops once uncertainty appears reduced, which causes it to miss a decisive eligibility factor and produce an incorrect conclusion. In contrast, GPS constructs the conditional reasoning DAG, queries all necessary conditions through dynamic traversal, and therefore arrives at the correct final answer.

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

Document

You can apply for help with the costs of further and higher education if all of the following are true:

- one of your parents died as a result of their service in the armed forces
- your parent died on or after 1 January 1990
- you're 16 or over and in full-time education
- you or a surviving parent receive bereavement benefits from the Armed Forces Compensation scheme, War Pension scheme or Armed Forces Attributable Benefits scheme

.....
You can use the money to pay tuition fees and your maintenance for:

- a further education course of up to 3 years
- your first undergraduate course at a UK university or other higher education institution (such as a college or art school) - this can include study abroad if it's part of the course
- a higher level technical education course at qualification levels 4, 5 or 6

Query

I am 18 years old, and I am a student at a college and in full-time education. My father died on the 20th July 2021.
Will I be eligible for any scholarship for the university?

User Background

My father died as a result of his service in the armed forces. Neither my mother nor I receive bereavement benefits from the Armed Forces Compensation scheme, War Pension...

Proactive_coc

Query: ...Will I be eligible for any scholarship for the university?

Clarify Q1: Are you planning to apply for a higher education scholarship, such as an undergraduate degree from a UK university?

Clarify A1: Output: Yes, I am planning to apply for a higher education scholarship...I want to make the most of my education opportunities and ensure I can focus fully on my studies without undue financial stress.

Answer: Yes, you would be eligible for the scholarship. However, you need to confirm your eligibility with the benefits you are receiving

GPS

Query: ...Will I be eligible for any scholarship for the university?

(Cond1): Is your parent a veteran who died as a result of their service in the armed forces? => Yes

(Cond2): Did your parent die on or after 1 January 1990? => Yes

(Cond3): Are you 16 or over and in full-time education? => Yes

Clarify Q(Cond4): Do you or a surviving parent receive bereavement benefits from the Armed Forces Compensation scheme, War Pension scheme or Armed Forces Attributable Benefits scheme?

Clarify A: No

Answer(Conclusion1): You are not eligible for the scholarship.

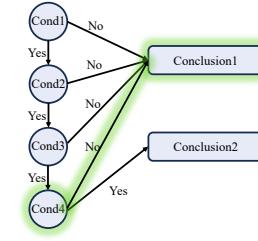


Figure 4: Comparison of GPS and ProCoT on an underspecified query from the **Synthetic** dataset. GPS extracts the correct conditional rules and uses the resulting DAG to ask the necessary clarification and reach the correct answer, whereas ProCoT focuses on irrelevant details and asks an unrelated question, leading to an incorrect conclusion.

Document

.....

If your circumstances change

You must cancel Marriage Allowance if any of the following apply:

- your relationship ends - because you've divorced, ended ('dissolved') your civil partnership or legally separated
- your income changes and you're no longer eligible
- you no longer want to claim

How to cancel

.....

User Background

I've been reflecting on my current situation and wanted to ensure everything is in order. **My relationship is stable**: there hasn't been any divorce, dissolution, or legal separation. Additionally, **my income remains the same**, so I'm still eligible for the benefits I've been receiving. I also **continue to want to claim** these benefits as they provide essential support for the child and me. I just want to make sure that all my details are up to date and that I'm still meeting all the requirements.

UoT

Query: Must I cancel my Marriage Allowance?

Clarify Q1(Cond2): Have there been any changes to your income that make you ineligible for Marriage Allowance?

Clarify A1: No

Clarify Q2(Cond1): Has your relationship ended due to divorce, dissolution of a civil partnership, or legal separation?

Clarify A2: No

Answer: No, you do not necessarily have to cancel your Marriage Allowance.

Missing Cond3

GPS

Query: Must I cancel my Marriage Allowance?

Clarify Q1(Cond1): Has your relationship ended due to divorce, dissolution of civil partnership, or legal separation?

Clarify A1: No

Clarify Q2(Cond2): Has your income changed, making you no longer eligible for Marriage Allowance?

Clarify A2: No

Clarify Q3(Cond3): Do you no longer wish to claim Marriage Allowance?

Clarify A3: Yes

Answer(Conclusion2): Yes, you must cancel Marriage Allowance.

Query

Must I cancel my Marriage Allowance?

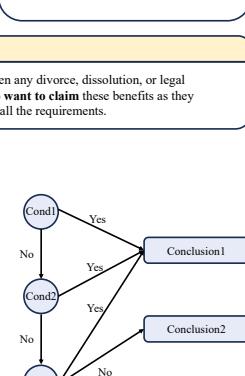


Figure 5: GPS provides a more reliable clarification process than UoT. UoT queries only part of the relevant conditions and terminates prematurely, which causes it to miss a decisive eligibility factor and produce an incorrect conclusion. GPS constructs the full conditional reasoning DAG, queries all necessary conditions through structured traversal, and therefore arrives at the correct final answer.

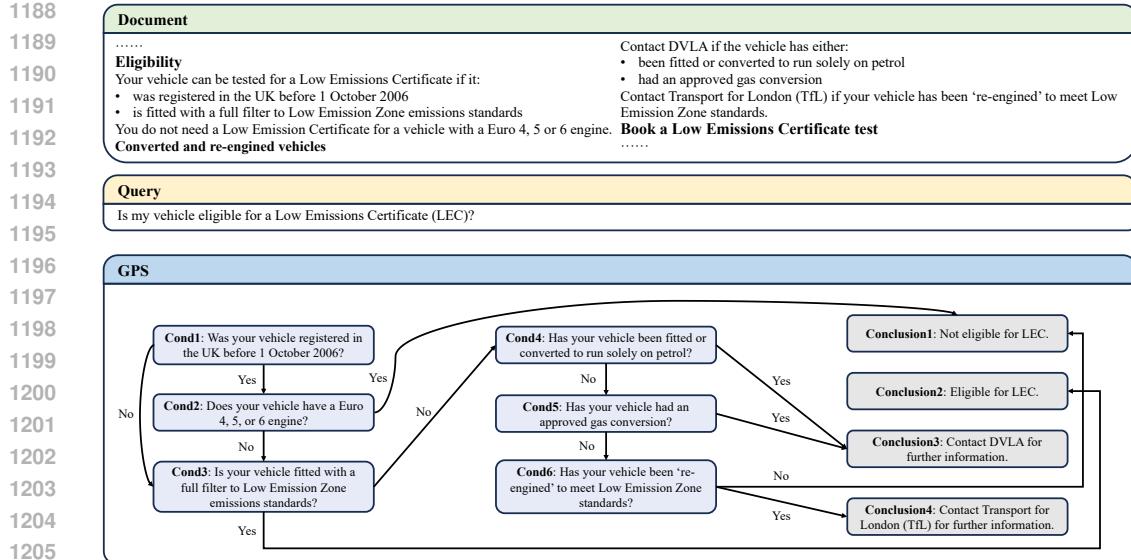


Figure 6: GPS successfully models a multi-layer nested logical hierarchy: conjunctive chains, disjunctive branches, and deeper sub-rules are all represented in a unified DAG structure.

H.2 CAPABILITY OF GPS IN MODELING NESTED CONDITIONAL LOGIC

Figure 6 demonstrates that the underlying rule structure is not a flat sequence of conditions but a genuinely nested logical hierarchy. The eligibility decision depends on multiple interacting sub-rules: an initial branch based on registration date, a second layer involving engine standard, and a third layer contingent on the presence of a filter. In parallel, a separate subtree handles converted or re-engined vehicles, further routing to different authorities depending on subsequent conditions. These rule blocks depend on one another in a layered manner, where the outcome of one condition determines which deeper sub-rule becomes applicable—a defining characteristic of nested logic.

Under our framework, such hierarchical dependencies map cleanly into a DAG. Conjunctive dependencies appear as chained edges, disjunctive alternatives as branching nodes, and intermediate outcomes naturally serve as parent nodes for deeper conditional layers. As stated in Proposition 1, any finite conditional rule system with nested structure can be transformed into such a DAG without loss of logical fidelity. The figure illustrates this concretely: GPS successfully captures all nested branches in a structurally precise DAG, confirming that the method faithfully models and traverses multi-level logical hierarchies rather than only simple condition–conclusion patterns.

H.3 IMPACT OF STRUCTURAL QUALITY REWARDS ON DAG CONSTRUCTION

Figure 7 illustrates how the proposed structural quality reward r_η distinguishes between well-structured and poorly-structured clarification DAGs. The left DAG generated by GPS forms a clean hierarchical decision structure: each clarification introduces meaningful discrimination, branches do not recombine, and each split contributes directly to narrowing the final conclusions. As a result, its split entropy is fully converted into leaf-level discriminative power, yielding $r_\eta = 1$.

In contrast, the right DAG generated by backbone model exhibits redundant branching: several clarifications produce splits that later merge, creating patterns where injected uncertainty does not contribute to distinguishing final leaves. This causes the graph-level split entropy H_{graph} to increase while the leaf entropy H_{leaf} remains low, yielding a substantially reduced score of $r_\eta = 0.46$.

This case demonstrates that the structural quality reward effectively penalizes DAGs whose intermediate clarifications do not help refine the final conclusion space, and correspondingly encourages models to produce non-redundant clarification structures.

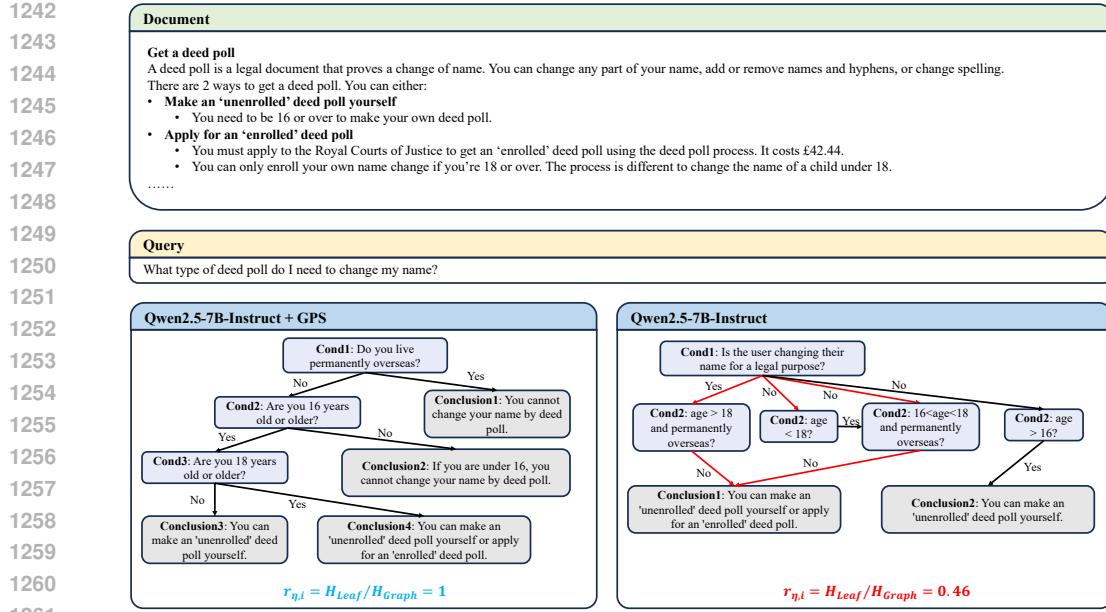


Figure 7: Comparison of structural quality between two clarification DAGs. The GPS-generated structure (left) forms clean, monotonic decision refinement and achieves $r_{\eta} = 1$. The baseline (right) contains redundant branching and split-merge patterns, which inflate H_{graph} without increasing H_{leaf} , resulting in a low $r_{\eta} = 0.46$. The structural quality reward explicitly captures this efficiency gap and drives learning toward well-structured clarification DAGs.

I ILLUSTRATION OF THE OVERALL GPS REASONING AND CLARIFICATION WORKFLOW

Figure 8 provides a concise end-to-end illustration of the GPS framework. Given a user query and its associated document, the Reasoner first extracts all condition-dependent rules and generates a conditional reasoning DAG, where internal nodes represent clarification conditions and leaf nodes represent possible conclusions. Based on this DAG, the Clarifier interacts with the user in a traversal manner, issuing only the condition queries necessary to eliminate incompatible branches. As user responses progressively constrain the DAG, the traversal converges to a unique conclusion, from which the final answer is produced.

This example illustrates how GPS combines document-grounded rule extraction with adaptive clarification to resolve underspecified query effectively.

J ANALYSIS OF PERFORMANCE ON TWO TYPES OF QUERIES

Table 3 reports the SR (%) of different methods on ConditionalQA and ShARC, separately for underspecified and well-specified queries. On ConditionalQA, **GPS** consistently outperforms all baselines, achieving the highest SR in both well-specified (72.7) and underspecified (81.1), demonstrating the effectiveness of DAG-guided clarification. **ProCoT** also performs competitively on underspecified queries (69.8), surpassing Base Method and Clarify-DPO. In contrast, **BED-LLM** shows consistently poor performance, especially in well-specified queries (46.6). On ShARC, **Clarify-DPO** achieves the best performance on underspecified queries (91.4), while **GPS** remains strong and balanced across both settings (71.6/80.0). Interestingly, Base Method and **ProCoT** collapse on ShARC underspecified queries (32.3), suggesting limited cross-domain generalization. Overall, these results highlight the robustness of **GPS** in identifying and resolving ambiguity.

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

Figure 8: Overview of the GPS workflow. The Reasoner first extracts condition-dependent rules from the query–document pair and produces a conditional reasoning DAG. The Clarifier then performs multi-turn clarification by traversing the DAG, pruning incompatible branches based on user responses, and converging to a valid conclusion.

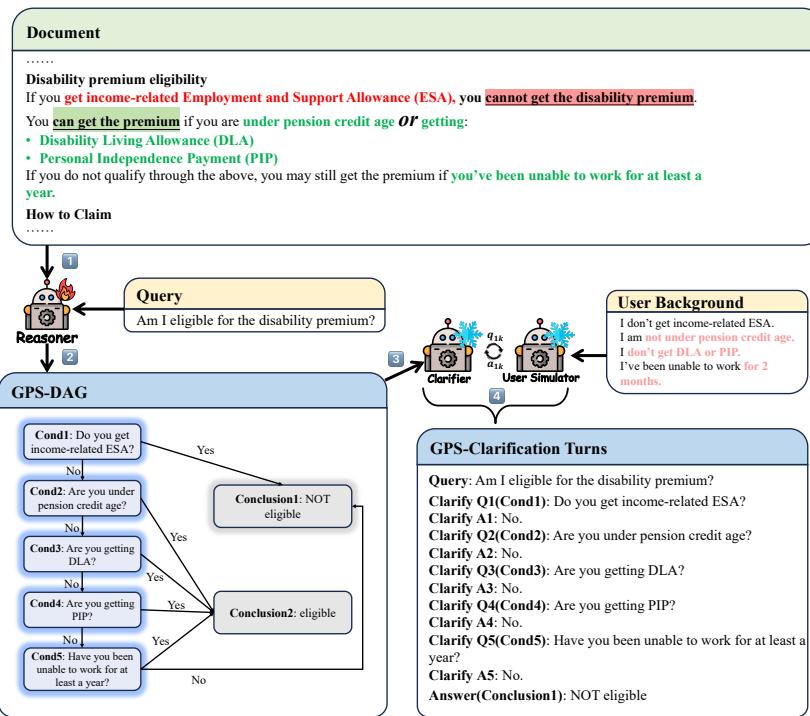


Table 3: Success Rate (SR, %) on well-specified vs. underspecified queries across ConditionalQA and ShARC with the LLaMA backbone. **Bold** denotes the best result and underline the second-best.

Method	ConditionalQA		ShARC	
	Well-specified	Underspecified	Well-specified	Underspecified
Base Method	63.6	60.4	80.9	32.3
UoT	64.8	32.9	69.1	67.7
Clarify-DPO	<u>68.2</u>	53.9	74.1	91.4
ProCoT	65.3	<u>69.8</u>	<u>75.2</u>	32.3
BED-LLM	46.6	40.5	64.4	63.6
GPS	72.7	81.1	71.6	<u>80.0</u>

1350 **K IMPLEMENTATION DETAILS**
13511352 The experiments are conducted on a machine equipped with 8 NVIDIA A800 GPUs. For GRPO,
1353 we apply LoRA and set the rank of LoRA to 64. The training epoch is set to 1, the batch size is set
1354 to 32 and the learning rate is set to 3e-6. The hyperparameter α in the hybrid reward is set to 0.5.
13551356 **L DATASET DETAILS**
13571358 We present the detailed size of our training dataset and three evaluation benchmark datasets in Table
1359 4.
13601361 **Table 4: Dataset Statistics.**
1362

Sources	<i>Underspecified</i>	<i>Well-specified</i>	<i>Total</i>
Training	3250	0	3250
Synthetic	744	0	744
ConditionalQA	229	176	53
ShARC	675	675	1350