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ABSTRACT

Equipping Large Language Models (LLMs) with the ability to proactively ask
clarifying questions is essential to mitigate ambiguity when faced with underspec-
ified user queries in retrieval-augmented generation (RAG) systems. However,
existing methods often neglect the rule-based reasoning structures embedded in
the retrieved knowledge that are central to ambiguity, making it challenging to
learn an effective and efficient question-asking strategy. To address these issues,
we introduce GPS, a two-stage framework for enhancing proactive information
seeking abilities of LLMs in RAG systems. In the reasoning stage, we propose
a Directed Acyclic Graph (DAG) reasoning structure with theoretical guarantees
of logical completeness, which facilitates capturing all conditional logic in the re-
trieved knowledge and supports effective clarification. In the clarification stage,
we design a traversal-based algorithm that dynamically prunes the DAG based
on user responses, enabling efficient clarification. To further enhance DAG con-
struction, we first propose a conditional paths guided data synthesis method to
address data scarcity challenge, then we apply a clarification-oriented reinforce-
ment learning method with a hybrid reward that jointly considers effectiveness
and efficiency to optimize the LLM. Experiments on three benchmarks demon-
strate that GPS outperforms baseline methods in both success rate and interaction
cost.

1 INTRODUCTION

Disability premium eligibility
If you get income-related Employment and Support Allowance (ESA), 
you cannot get the disability premium.

You can get the premium if you satisfy either of the following:
• you’re under pension credit age 
• you’re getting Disability Living Allowance (DLA)
• you’ve been unable to work for at least a year

Retrieved Knowledge

Can I receive a disability premium 
if I'm not currently working?

Yes, you can get disability premium.

I get income-related ESA. 
I am under pension credit age. 
I’ve been unable to work for 2 years. ❌

Missing Information

Figure 1: An illustration of user underspeci-
fied queries. The user asks information about
disability benefits eligibility. However, when
user queries lack sufficient information such
as income level, disability severity and age,
LLMs may generate incorrect responses.

Consider a user seeking information about disability
benefits eligibility and asks a question: “Am I eli-
gible for disability premium?” While this question
seems straightforward, the actual eligibility depends
on multiple unstated conditions: income level, dis-
ability severity, and age. Without this critical infor-
mation, even the most advanced retrieval-augmented
generation (RAG) systems may provide incorrect or
misleading answers. This scenario, illustrated in
Figure 1, exemplifies a fundamental challenge in
real-world question-answering systems: how can AI
systems proactively identify and gather missing in-
formation to provide accurate responses?

The ambiguity stems from underspecified user
queries, which are common in real-world settings
due to users’ limited domain knowledge (Zhang
et al., 2024; Deng et al., 2023a; Kim et al., 2024) or natural tendency to omit seemingly obvious
details (Zipf, 1949). While existing RAG methods excel at retrieving relevant documents (Ren et al.,
2025; Lewis et al., 2020; Zhao et al., 2025), they fundamentally assume that user queries contain
sufficient information, but this assumption often fails in practice.

A promising solution is to equip Large Language Models (LLMs) in RAG systems with the ability
to proactively ask clarifying questions when faced with underspecified queries. Currently, there are
two main approaches: prompting and fine-tuning. Prompting methods (Deng et al., 2023b; Kuhn
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et al., 2023; Hu et al., 2024; Kobalczyk et al., 2025) utilize the reasoning capabilities of LLMs to
iteratively identify ambiguity and generate clarification questions. However, their performance is
constrained by the capability of LLMs as small-scale LLMs often struggle to identify ambiguities
(Zhang et al., 2024). The better way is to fine-tune LLMs by multi-turn clarification dialogue data
collected through human annotation (Qian et al., 2024; Chen et al., 2024) or self-sampling strategies
(Andukuri et al., 2024; Zhang et al., 2025). However, the former is costly to obtain, while the
latter imposes no constraints on the clarification search space, potentially leading to irrelevant or
redundant interactions. Therefore, it is necessary to develop an effective and efficient method to
reach our goal.

We propose that the key to resolving ambiguity in underspecified queries lies in explicitly model-
ing the conditional reasoning structures within retrieved documents. Unlike existing methods that
treat clarification as an open-ended dialogue problem, we observe that domain-specific documents
typically encode knowledge as conditional rules—if-then statements that map combinations of con-
ditions to conclusions. By extracting and representing these rules as a Directed Acyclic Graph
(DAG), we can systematically identify all conditions relevant to the user’s query and guide clarifi-
cation dialogues through efficient traversal strategies.

However, realizing this vision presents three fundamental challenges. (C1) How can we design
a reasoning structure that captures all logical dependencies while remaining computationally
tractable? The structure must be expressive enough to represent arbitrary Boolean functions yet ef-
ficient enough for real-time interaction. (C2) How can we train models to extract such structures
when existing datasets lack annotations for conditional reasoning? Current QA benchmarks
rarely include underspecified queries or their missing conditions. (C3) How can we optimize the
extracted structures for both correctness and interaction efficiency? Users will abandon systems
that require excessive clarification rounds.

To address (C1), we propose a conditional reasoning DAG structure, which is theoretically guaran-
teed to be logically complete to express any Boolean function via disjunctive normal form (DNF).
Besides, the DAG allows for subgraph sharing across reasoning paths and supports dynamic prun-
ing based on user responses, enabling O(r) average-case clarification complexity, where r ≪ k
is the average reasoning depth rather than the total number of conditions k. To address (C2), we
propose a conditional path guided data synthesis method to generate usable dataset for both training
and evaluation. This method generates question-answer pairs with associated missing conditions
along each conditional path from document. A filtering mechanism based on the necessity of the
missing conditions is further applied to retain high-quality examples. To address (C3), We propose
a clarification-oriented reinforcement learning method to enhance LLM’s ability to extract DAG
structures for effective and efficient clarification. We design a hybrid reward that encourages the
LLM to prioritize DAG that leads to correct answer and requires fewer interaction.

Our main contributions can be summarized as follows:
• Novel Framework: We introduce GPS (Graph-guided Proactive Information Seeking), the first

framework to explicitly model conditional reasoning structures for clarification in RAG systems.
• Theoretical Foundation: We prove that our DAG-based representation achieves logical com-

pleteness while enabling O(r) average-case clarification complexity, where r ≪ k is the average
reasoning depth rather than the total number of conditions k.

• Practical System: We develop a complete pipeline including (i) Conditional path guided syn-
thetic data generation to address training data scarcity, (ii) clarification-oriented reinforcement
learning that jointly optimizes for accuracy and efficiency, and (iii) dynamic traversal algorithms
that reduce user interaction burden.

• Empirical Validation: Extensive experiments on three benchmarks demonstrate that GPS
achieves average improvement of 7.5% in success rate and 4.2% in clarification efficiency over
the best baseline method.

2 RELATED WORK

Clarification in LLMs Currently, there are two main approaches to enhance the ability of LLMs
to proactively ask clarifying questions: prompting and fine-tuning. Prompting methods (Deng et al.,
2023b; Kuhn et al., 2023) utilize the reasoning capabilities of LLMs to iteratively identify ambi-
guity based on the conversation history and choose to either ask clarification questions or generate
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response. However, their performance is constrained by the capability of LLMs as small-scale
LLMs often struggle to identify ambiguities (Zhang et al., 2024), and as the conversation history
grows longer, the risk of lost-in-the-middle increases (Liu et al., 2024). Another line of work is
to fine-tune LLMs with multi-round conversation data (Qian et al., 2024; Chen et al., 2024). Yet
these approaches rely on access to human-annotated conversation data, which is expensive to col-
lect in practice. Some methods (Andukuri et al., 2024; Zhang et al., 2025) explore self-improve
paradigm for sampling conversation data and use the accuracy of final responses to filter low-quality
clarification data. Nevertheless, these methods typically imposes no constraints on the clarification
search space, potentially leading to irrelevant or redundant interactions. Therefore, it is necessary to
develop an effective and efficient method for proactive clarification.

Graph-based Reasoning in NLP Recent work has explored structured representations for multi-
hop reasoning (Besta et al., 2024), knowledge graph integration (Ren et al., 2020; Li et al., 2025), and
neural-symbolic reasoning (Xu et al., 2024). Query2Box (Ren et al., 2020) reasons over knowledge
graphs by embedding multi-hop logical queries as geometric boxes in vector space. Li et al. (2025)
proposes to inject LLMs with structured knowledge by encoding knowledge graphs via graph neural
networks(GNNs). Xia et al. (2025) proposes a novel fine-tune framework stimulating the ability
of LLMs to perform complex reasoning on knowledge graphs. However, these methods focus on
reasoning over existing knowledge rather than proactive information seeking. Our work uniquely
combines graph-based reasoning with interactive clarification.

3 PROBLEM FORMULATION

In this paper, we aim to enhance LLMs’ ability to proactively ask clarification questions when
facing underspecified user query in RAG scenarios. Rigorously, given a user query q, the retrieved
relevant document d = Retrieve(q), and the user’s background context S which is not observable
to the LLM, we denote by Cd = {c1, . . . , ck} the set of user-specific condition variables in d, each
condition variable ci takes values from a finite value set Vci .1 We divide Cd into two disjoint subsets:

• Cknown(q) ⊆ Cd: the subset of known condition variables with values provided in query q.

• Cmiss(q) = Cd \ Cknown(q): the subset of missing condition variables specific to query q, with
values depend on the hidden user’s background S and are necessary to determine the answer.

Let A = {a1, . . . , am} denote the set of possible answers. The final answer a ∈ A is determined by
Cmiss(q) through a set of latent logical constraintsR encoded in d (e.g., eligibility rules). Our objec-
tive is to enhance LLMs’ ability to proactively elicit the values of Cmiss(q), so that an unambiguous
answer a can be inferred.

4 METHODOLOGY

In this section, we introduce GPS, a two-stage framework for proactive clarification. In the rea-
soning stage, a Reasoner LLM ΘR captures the conditional structure in documents as a DAG. In
the clarification stage, a Clarifier LLM ΘC interacts with a User-Simulator LLM ΘU , dynamically
pruning the DAG during traversal to elicit values of Cmiss(q). To further improve DAG quality, GPS
employs the Conditional Path Guided Data Synthesis procedure to construct training dataset and uti-
lizes Clarification-oriented Reinforcement Learning to optimize the Reasoner. The overall pipeline
is illustrated in Figure 2.

4.1 CONDITIONAL REASONING DAG CONSTRUCTION

To construct a structure which is both logically complete and clarification-efficient, we define a
conditional reasoning DAG structure G = (N , E), where:

• Each non-terminal node nci ∈ N represents a user condition variable ci ∈ Cd, each terminal node
nam

∈ N represents a possible answer am ∈ A.

1For example, a condition variable ci = “marital status” may have Vci = {Single,Married,Divorced}.
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Step 1: Conditional Path Guided Data Synthesis
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Step 2: Clarification-Oriented Reinforcement Learning with Hybrid Reward
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Figure 2: The overview of our method pipeline.

• Each edge ei,j = (nci , ncj , ν) is labeled with a condition value ν ∈ Vci , denoting a possible
value of the predecessor node. The outgoing edges from each node are mutually exclusive and
collectively exhaustive.

• If a node has a single predecessor node, it implicitly forms an AND relation with its predecessor
condition. If a node has multiple predecessor nodes, it forms an OR relation over all predecessor
conditions.

We first analyze the logical completeness of our proposed conditional reasoning DAG structure as
follows. The clarification efficiency will be discussed in 4.2.

Proposition 1. For any finite-valued function g :
∏k

i=1 Vi → A over condition variables {ci}ki=1,
there exists a conditional reasoning DAG G such that, for each am ∈ A, every root-to-leaf path
ending at am corresponds to a conjunction in the disjunctive normal form (DNF) of the indicator
function 1[g(·) = am], and the union of all such paths encodes the full DNF of 1[g(·) = am].

See Appendix A for a complete proof. The proposition theoretically guarantees that our conditional
reasoning DAG structure is expressive enough to represent any finite-valued function, allowing for
comprehensive detection of missing conditions and effective clarification.

In the reasoning stage, we prompt the Reasoner LLM ΘR to construct a conditional reasoning DAG
based on the user query and the retrieved document. The detailed prompt is provided in Appendix
G.1.

4.2 DYNAMIC TRAVERSAL-BASED CLARIFICATION

Given the constructed conditional reasoning DAG G = (N , E), we propose a dynamic traversal-
based clarification approach that generates clarification questions in a topological order to prioritize
essential conditions and dynamically prune inconsistent paths. Formally, let degin(ni) denote the
in-degree of node ni, we define the candidate clarification set U :

U1 = {ni ∈ N | degin(ni) = 0, i /∈ Cknown(q)},
U2 = {ni ∈ N | ∃(nu, ni, ν) ∈ E , u ∈ Cknown(q), degin(nu) = 0} ,
U = U1 ∪ U2 (1)

4
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Nodes in U are eligible for clarification as they are not blocked by unresolved predecessors. To
determine the initial order of the candidate set, we estimate the expected cost based on the remaining
depth for each ni ∈ U :

ℓ(ni) =
1

|Pni
|
∑

p∈Pni

len(p) (2)

where Pni
is a set of paths from ni to leaf node, and len(p) is the number of missing condition

variables in path p.

Our dynamic traversal-based clarification consists of three steps:

1. Initialization: construct the candidate set of missing conditions and start with empty dialogue
history H;

2. Iterative clarification: select the most informative condition, ask a clarification question via
ΘC , obtain a user-specific answer from ΘU , and update H by following the consistent path;

3. Final answering: once a terminal condition is reached or no candidates remain, ΘC produces
the final answer â conditioned on H .

Through dynamic traversal-based clarification process, the dialogue history H constitutes the
elicited values for the missing condition set Cmiss, which are required to resolve the ambiguity.
We present the algorithmic pseudo-code of dynamic traversal-based clarification in Appendix C. We
also analyze the efficiency of GPS and obtain that the expected number of clarification turns depends
only on the small set of conditions along the true reasoning path, rather than the full set of conditions
present in the document. Detailed analysis is provided in the Appendix B.

4.3 CLARIFICATION-ORIENTED REINFORCEMENT LEARNING

Enhancing the Reasoner LLM’s ability to construct accurate conditional reasoning DAG is essential
for the overall performance of the GPS framework. To achieve this, we first propose a Conditional
Path Guided Data Synthesis procedure to address the data scarcity challenge. Based on the synthetic
dataset, we design a Clarification-Oriented Reinforcement Learning approach with a hybrid reward
that integrates clarification effectiveness and efficiency, encouraging the Reasoner LLM to extract
DAG structures that lead to correct answer and require fewer interaction.

4.3.1 CONDITIONAL PATH GUIDED DATA SYNTHESIS

We synthesize our dataset based on ConditionalQA (Sun et al., 2022), a reading comprehension
dataset that includes long-context documents containing complex logic rules, along with well-
specified and underspecified queries with human-annotated missing conditions. However, a key
limitation of ConditionalQA dataset is that only 550 out of 2,247 samples (24.5%) are underspeci-
fied, making it difficult to train models that generalize well in proactive information seeking task. To
address this, we propose Conditional Path Guided Data Synthesis method to augment high-quality
underspecified training data. The synthesis process consists of two steps: Problem Generation and
Verification.

Problem Generation First, we prompt advanced LLMs such as DeepSeek-R1 (DeepSeek-AI et al.,
2025) to generate underspecified questions with multi-conditional reasoning paths from a document
d. The prompt used for this task can be found in Appendix G.2. Each item contains three parts:

• An underspecified question q that admits multiple plausible answers;

• A set of missing conditions C with value domains {Vc}c∈C ;

• A set of conditional paths P = {(v, a)}, where v ∈
∏

c∈C Vc is a complete assignment, a ∈ A
is the unique answer determined by v.

Verification Each synthetic data instance is represented as (qi,vi, di, ai). To ensure data quality,
we introduce a filtering mechanism based on the necessity of the missing conditions. For each
instance, we prompt a Verifier LLM to predict the answer both with and without access to the
missing conditions. We retain the instance only if the full-input prediction afull matches the gold
answer ai, while the masked-input prediction apartial does not. This filtering preserves cases where
missing information is essential, yielding a high-quality dataset D = {qi,vi, di, ai}ni=1.

5
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4.3.2 HYBRID REWARD: EFFECTIVENESS, EFFICIENCY, AND ENTROPY

Setup. Our goal is to train the Reasoner LLM ΘR to generate high-quality conditional reasoning
DAGs that enable a fixed Clarifier LLM ΘC to complete proactive clarification with minimal interac-
tion. Motivated by recent progress of RL for reasoning(DeepSeek-AI et al., 2025), we formulate the
DAG-construction problem as a reinforcement learning task: the policy πθ(o | q, d) autoregressively
generates and parses a DAG o given query q and document d (we write θ as the Reasoner parameters
ΘR for brevity), the DAG deterministically induces a clarification trajectory (which condition to ask
next and which edge to follow), and yielding a scalar reward. We adopt GRPO (DeepSeek-AI et al.,
2025) algorithm to optimize πθ.

GRPO objective. For each query q and retrieved document d, GRPO samples h DAGs {oi}hi=1∼
πθold(·|q, d) with rewards {ri}hi=1, defines the advantage Ai as

Ai =
ri −mean({r1, . . . , rh})

std({r1, . . . , rh})
, (3)

and optimizes the clipped policy objective with a reference KL:

JGRPO(Θ) = Eq∼D, {oi}∼πθold
(·|q)

1

h

h∑
i=1

[
min

( πθ(oi|q)
πθold(oi|q)

Ai, clip
(

πθ
πθold

, 1− ϵ, 1 + ϵ
)
Ai

)
(4)

− β DKL(πθ ∥πref)
]
,

with
DKL(πθ ∥πref) =

πref(oi|q)
πθ(oi|q)

− log
πref(oi|q)
πθ(oi|q)

− 1. (5)

GRPO calculates group-relative advantages within h samples {oi}hi=1 for the same input, so higher-
reward generated DAG samples are upweighted and lower-reward ones are downweighted.

Hybrid reward function. To optimize the policy toward high-quality DAGs, we design a hy-
brid reward function that jointly promotes correctness, low interaction cost, and structurally non-
redundant.

• Effectiveness reward encourages correct final answers after clarification. Let âi be the predicted
answer after clarification based on DAG oi and ai the ground truth:

racc,i =

{
1, Evaluator(âi, ai) = True,

0, Evaluator(âi, ai) = False.
(6)

• Efficiency reward encourages fewer clarification turns. Let ti be the number of turns induced by
oi, and tmax = maxj∈[1,h] tj within the GRPO group. We set the coefficient α = 0.5:

reff,i = 1− α
ti

tmax
, (7)

• Structural quality reward rη,i measures how effectively a DAG converts intermediate branching
uncertainty into discriminative power over the final conclusions. We formalize this intuition using
an information–conversion efficiency measure.

Forward probability propagation. Let G = (N , E) be a clarification DAG with condition
nodes C and conclusion (leaf) nodes L. We assume uniform branching: at any condition node,
the outgoing probability mass is evenly split among all children. Let R ⊆ C be condition roots
with no predecessors. Each root receives initial mass 1/|R|. For any condition node n ∈ C, its
outgoing mass splits uniformly across children:

P (v) =
∑

u:(u→v)∈E

P (u)

|F (u)|
, (8)

where F (u) is the set of children of u.
This yields a forward-reachability distribution P (n) over all nodes. We can obtain the mass P (ℓ)
of any leaf node ℓ ∈ L and the normalized leaf distribution is:

P̃ (ℓ) =
P (ℓ)∑

ℓ′∈L P (ℓ′)
. (9)

6
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Entropy of graph splits and leaf. The graph split entropy reflects the total uncertainty injected
by intermediate splits:

Hgraph =
∑
n∈C

P (n) log |F (n)|, (10)

and the leaf entropy is the Shannon entropy of the normalized leaf distribution:

Hleaf = −
∑
ℓ∈L

P̃ (ℓ) log P̃ (ℓ). (11)

Information-conversion efficiency. We define the structural quality reward rη,i as

rη,i =


Hleaf

Hgraph
, Hgraph > 0,

1, Hgraph = 0 ∧ ∃ ℓ ∈ L : P (ℓ) > 0,

0, otherwise.

(12)

We provide illustrative instances in Appendix H.3, demonstrating the rationality of the structural
quality reward.

• Overall reward. The ith sample’s total reward is calculated as follows:

ri = racci · (reffi + rη,i) (13)

We provide the pseudo-code of overall inference procedure of GPS in Appendix C and training
procedure of the Reasoner in Appendix C, and additionally offer an illustrative example of the two-
stage proactive information-seeking process in Appendix I.

5 EXPERIMENT

5.1 EXPERIMENTAL SETUP

Dataset We constructed the GPS training dataset based on ConditionalQA (Sun et al., 2022) and
we test our method on the following three datasets. The detailed statistics of the datasets are intro-
duced in Appendix L.

• Synthetic is the test split of our conditional path guided synthetic dataset, consisting entirely of
underspecified queries.

• ConditionalQA (Sun et al., 2022) includes both well-specified queries and underspecified queries.
It provides annotation for each question-answer pair along with the document and the correspond-
ing missing conditions. For well-specified queries, the missing conditions are empty.

• ShARC (Verma et al., 2020) is a conversational QA dataset that also includes well-specified
queries and underspecified queries based on rules expressed in natural language text. For under-
specified queries, it provides annotated clarification dialogues. We concatenate the clarification
dialogue as the missing conditions. Compared to typical datasets in RAG scenarios, ShARC fea-
tures much shorter documents and a restricted answer space limited to yes or no. We use ShARC
to evaluate the generalization ability of our method.

Baselines We adopt the following state-of-the-art approaches as our compared baselines.

• Base Method answers user query directly based on the relevant document, which can be consid-
ered as fundamental framework in RAG.

• ProCoT (Deng et al., 2023b) is a prompt based method. It leverages a Chain of Thought prompt-
ing scheme to judge whether the user query is underspecified and generate a clarification question
if needed.

• UoT (Hu et al., 2024) proposes Uncertainty of Thought prompting, which enhances llm reasoning
by explicitly modeling and reducing uncertainty during the reasoning process.

7
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• BED-LLM (Kobalczyk et al., 2025) uses Bayesian Experimental Design to pick the question
that maximizes information gain, replacing implicit LLM reasoning with explicit sampling-based
utility.

• Adaptive-BED-LLM is the ambiguity-adaptive variant of BED-LLM. We first generates a group
of initial answers and prompt an evaluator LLM to judge whether these answers are semantically
consistent. If consistent, the model answers directly; otherwise it proceeds with BED-based ques-
tion selection. The evaluation prompt is provided in Appendix G.3.

• Clarify-DPO (Zhang et al., 2025) is a fine-tuning based method. It leverages a self-improve
method to collect training data and filter data by gold answer.

• Adaptive-Clarify-DPO extends Clarify-DPO with an ambiguity-adaptive mechanism based on
the Clarify-or-Direct Answer strategy proposed in (Zhang et al., 2025). The model learns to
choose either generating a clarification question or directly answering.

Models We evaluate the performance using Llama3-8B-Instruct (Grattafiori et al., 2024) and
Qwen2.5-7B-Instruct (Qwen et al., 2025) as backbone models.

Evaluation Metrics We evaluate the model’s proactive information seeking ability using the fol-
lowing four metrics:

• Success Rate (SR). Following previous studies(Hu et al., 2024; Qian et al., 2024), we use this
metric measures the effectiveness of clarification process by computing the proportion of the cor-
rect predictions after clarification. We employ an evaluator LLM to judge the semantic alignment
between the predicted answer and the ground-truth answer. The evaluation prompt we use is
provided in Appendix G.

• Mean Clarification Turns (MCT). This metric measures the efficiency of clarification process
by computing the average number of clarification questions asked before generating the predicted
answer (Hu et al., 2024; Qian et al., 2024).

• Weighted Clarification Turns (WCT). The desired behavior of a proactive information seeking
model is to prioritize correct clarification before optimizing efficiency, while MCT alone cannot
capture success-conditioned efficiency. Inspired by prior evaluation protocols (Yokoyama et al.,
2021), we introduce the Weighted Clarification Turns (WCT):

WCT = psuccess ·MCTsuccess + pfailed · Tmax, (14)

where psuccess and pfailed denote the proportions of successful and failed samples, MCTsuccess is the
mean clarification turns over successful samples, and Tmax = 10 is the maximum clarification-
turn budget in our experiment. Lower WCT reflects more efficient clarification while preserving
success rate.

• F1 score for Clarification Need Prediction Accuracy (CNP). Following previous studies (Deng
et al., 2023b; Zhang et al., 2025), we compute the F1 score of CNP for evaluating the model’s
ability to identify the necessity of clarification.

5.2 PERFORMANCE COMPARISON

Table 1 presents the performance comparison of different methods across three benchmarks: Syn-
thetic, ConditionalQA, and ShARC. We summarize key findings below:

Training for proactive information seeking is essential. The Base Method yields low success
rates (SR) on the Synthetic and ShARC datasets, where the proportion of underspecified queries is
substantially higher than in ConditionalQA dataset. This suggests that the Base Method struggles
to handle underspecified queries. Baseline methods equipped with proactive clarification consis-
tently improve SR over the Base Method. However, purely prompt-based methods sometimes fail
to surpass the Base Method. For example, ProCoT, which introduces proactive clarification at the
prompting level, occasionally results in degraded performance. This degradation is likely due to the
limited capacity of backbone models and the inherent complexity of conditional reasoning required
by the documents, consistent with observations reported by (Zhang et al., 2024).

GPS achieves the best balance between effectiveness and efficiency. Compared to existing base-
lines, GPS consistently improves SR. With LLaMA-3-8B-Instruct as the backbone, GPS achieves
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Table 1: Performance comparison on three datasets. Columns report SR (Success Rate, %), Mean
Clarification Turns(MCT), WCT (Weighted Clarification Turns), and F1 score (%). Bold indicates
the best result, while underline denotes the second-best results.

Method Synthetic ConditionalQA ShARC
SR (↑) MCT WCT (↓) F1 (↑) SR (↑) MCT WCT (↓) F1 (↑) SR (↑) MCT WCT (↓) F1 (↑)

Qwen2.5-7B-Instruct

Base Method 21.2 0.0 7.88 0.0 70.3 0.0 2.98 0.0 49.3 0.0 5.08 0.0
ProCoT 42.5 0.43 6.07 50.9 71.6 0.33 2.95 10.4 62.6 0.67 4.06 51.3
UoT 32.8 1.10 7.05 89.2 60.3 0.56 4.25 28.2 70.5 0.52 3.25 83.8
BED-LLM 40.9 1.45 6.41 100.0 52.8 1.22 5.26 37.6 62.2 0.80 4.22 66.7
Adaptive-BED-LLM 34.6 1.26 6.89 95.2 50.2 0.93 5.58 28.6 59.4 0.90 4.56 71.0
Clarify-DPO 59.2 1.0 4.67 100.0 72.0 1.0 3.52 37.6 78.5 1.0 2.93 66.7
Adaptive-Clarify-DPO 32.6 0.94 7.04 96.2 69.9 0.02 3.02 0.0 70.0 0.01 2.99 0.0
GPS 60.2 1.35 4.59 96.4 73.4 0.78 2.91 36.7 79.3 0.89 2.41 87.5

LLaMA3-8B-Instruct

Base Method 30.8 0.0 6.92 0.0 62.8 0.0 3.72 0.0 56.6 0.0 4.34 0.0
ProCoT 28.3 0.26 7.62 29.2 66.3 0.36 3.58 25.7 53.7 0.86 5.16 35.6
UoT 29.7 1.20 7.36 90.9 64.6 0.90 4.03 31.7 68.3 0.76 3.67 69.9
BED-LLM 39.6 1.50 6.53 100.0 47.2 1.50 6.02 37.6 64.0 0.98 4.20 66.7
Adaptive-BED-LLM 35.6 1.36 6.84 96.2 44.5 1.03 5.90 31.4 67.8 0.46 3.49 67.0
Clarify-DPO 53.2 1.0 5.21 100.0 66.3 1.0 4.03 37.6 82.7 1.0 2.55 66.7
Adaptive-Clarify-DPO 31.3 0.91 7.16 95.5 67.7 0.02 3.23 0.0 68.8 0.0 3.12 0.0
GPS 56.5 1.12 5.02 96.2 74.6 0.81 2.89 28.0 75.8 0.58 2.79 82.5

an average relative improvement of 10.4% over the second-best method on SR across three datasets.
When using Qwen2.5-7B-Instruct as the backbone, GPS also yields an average relative improve-
ment of 4.5% over the corresponding second-best SR. Importantly, when considering WCT, which
jointly reflects success rate and efficiency, GPS achieves the lowest WCT in nearly all settings,
demonstrating that the model achieves higher correctness with lower effective clarification cost.

Strong generalization to ShARC. GPS also generalizes well to the ShARC dataset, where it consis-
tently outperforms prompt-based methods and Base Method, and achieves performance comparable
to the Clarify-DPO method, despite the fact that Clarify-DPO is trained directly on ShARC. This
highlights the strong generalization ability of GPS across different benchmarks.

5.3 ABLATION STUDY

To evaluate the contribution of each component in GPS, we conduct an ablation study using
Qwen2.5-7B-Instruct as the backbone LLM. Results are reported in Table 2 on both the Synthetic
and ConditionalQA datasets.

The full GPS method achieves the best performance across all metrics. Removing the reinforcement
learning objective (w/o RL) leads to a clear drop in SR on the Synthetic dataset from 60.2 to 52.2,
confirming the effectiveness of policy optimization. Ablating the Efficient Reward and Structural
quality Reward design both harms performance, decreasing SR and increasing both WCT and
MCT on Synthetic dataset, indicating the necessity of jointly modeling correctness and efficiency.
Finally, disabling the dynamic traversal mechanism (w/o Dynamic Traversal) leads to performance
degradation on both datasets, especially increased MCT from 1.35 to 1.84 on Synthetic dataset and
from 0.78 to 0.86 on ConditionalQA dataset, suggesting its role in optimizing clarification paths.

5.4 QUALITATIVE ANALYSIS

Figure 3 presents comparison between a strong baseline Clarify-DPO and our method GPS on an
underspecified query about policy eligibility. Clarify-DPO selects clarification questions based on
implicit reasoning, which leads to missing essential condition about income-related ESA, and the
resulting clarification path does not cover all necessary branches. This omission causes the model
to produce an incorrect final answer.
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Table 2: Ablation results of GPS with Qwen2.5-7B-Instruct.

Method Synthetic CondQA

SR↑ MCT WCT↓ F1↑ SR↑ MCT WCT↓ F1↑
GPS 60.2 1.35 4.59 96.4 73.4 0.78 2.91 36.7
w/o RL 52.2 1.43 5.57 96.8 67.7 0.56 3.63 23.1
w/o Efficient Reward 59.0 1.43 5.06 97.1 70.7 0.73 3.58 28.9
w/o Structural quality Reward 56.1 1.42 5.32 96.3 70.3 0.81 3.61 29.1
w/o Dynamic Traversal 59.6 1.84 5.19 96.4 71.2 0.86 3.63 22.2

In contrast, GPS first constructs a conditional reasoning DAG that explicitly enumerates all relevant
conditions. The dynamic traversal module then identifies the most informative condition to clarify,
removes inconsistent branches based on user responses, and narrows the search to the uniquely valid
leaf node. This produces a clarification trajectory that is both minimal and logically complete. For
more qualitative analysis, please refer to Appendix H.

Document

Query

Am I eligible for the disability premium?

Clarify-DPO

······
Disability premium eligibility
If you get income-related Employment and Support Allowance (ESA), 
you cannot get the disability premium.

You can get the premium if you are under pension credit age or getting:
• Disability Living Allowance (DLA)
• Personal Independence Payment (PIP)
If you do not qualify through the above, you may still get the premium if 
you’ve been unable to work for at least a year.
······

GPS

User Background

I already get income-related ESA. 
I am under pension credit age. 
I don’t get DLA or PIP. 
I’ve been unable to work for 2 months.

Query: Am I eligible for the disability premium?
Clarify Q1(Cond1): Do you get income-related ESA? 
Clarify A1: Yes.
Answer(Conclusion1): NOT eligible

Query: Am I eligible for the disability premium?
Clarify Q1:Are you under pension credit age? 
Clarify A1: Yes.
Answer: Eligible

Cond1: Do you get 
income-related ESA?

Conclusion1: NOT 
eligible

Conclusion2: eligible

Cond2: Are you under 
pension credit age?

Cond3: Are you getting 
DLA?

Cond4: Are you getting 
PIP?

Cond5: Have you been 
unable to work for at 

least a year?

Yes

No

No

No

No

No

Yes

Yes

Yes

Yes

❌

✅

Figure 3: Comparison of Clarify-DPO and GPS on a policy eligibility example. Clarify-DPO asks
an incomplete set of clarification questions and reaches an incorrect answer. GPS constructs the
conditional reasoning DAG and identifies the correct clarification path, producing the correct con-
clusion.

6 CONCLUSION

In this paper, we propose GPS, a a two-stage framework for enhancing proactive information seek-
ing abilities of LLMs in RAG systems. In the reasoning stage, we propose a Directed Acyclic Graph
(DAG) reasoning structure with theoretical guarantees of both logical completeness and clarification
efficiency. In the clarification stage, we design a traversal-based algorithm that dynamically prunes
the DAG based on user responses, enabling efficient clarification. To further enhance DAG con-
struction, we first propose a conditional path guided data synthesis method to address data scarcity
challenge, then we apply a clarification-oriented reinforcement learning method with a hybrid re-
ward that jointly considers effectiveness and efficiency to optimize the LLM. Extensive experiments
on three benchmarks demonstrate the effectiveness and efficiency of GPS in handling underspecified
queries.
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A PROOF OF PROPOSITION 1

Proposition 1. For any finite-valued function g :
∏k

i=1 Vi → A over condition variables {ci}ki=1,
there exists a conditional reasoning DAG G such that, for each am ∈ A, every root-to-leaf path
ending at am corresponds to a conjunction in the disjunctive normal form (DNF) of the indicator
function 1[g(·) = am], and the union of all such paths encodes the full DNF of 1[g(·) = am].

Proof. Let g :
∏k

i=1 Vi → A be a total function over a finite domain, where each condition variable
ci takes values in a finite set Vi. For an arbitrary value am ∈ A, we define the indicator function:

f(v) = 1[g(v) = am], v ∈
k∏

i=1

Vi. (15)

Since the domain of g is finite, f can be expressed in disjunctive normal form (DNF):

f(v) =
∨

v∈Cam

(
k∧

i=1

(ci = vi)

)
, where Cam

= {v | g(v) = am}. (16)

We construct a conditional reasoning DAG G = (N , E) such that:
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• Each internal node corresponds to a condition variable ci;

• Each edge from a node ci is labeled by a value v ∈ Vi;

• Each root-to-leaf path encodes a conjunction
∧k

i=1(ci = vi) for some v ∈ Cam ;

• Each leaf node is labeled with am.

Formally, for each v = (v1, . . . , vk) ∈ Cam
, we construct a path Pv = (n0, n1, . . . , nk) where:

• n0 is the root node,

• for each j = 1, . . . , k, node nj is labeled with cπ(j) for some fixed total order π over [k],

• edge (nj−1, nj) is labeled by vπ(j),

• the final node nk connects to a terminal node labeled with am.

By construction, the union of all such root-to-leaf paths exactly encodes the DNF of 1[g(·) = am].

B ANALYSIS OF CLARIFICATION EFFICIENCY.

To analyze the efficiency of our clarification strategy, we note that the worst-case number of clarifica-
tions is bounded by the total number of condition variables k. However, in practice, each conclusion
typically depends on only a small subset of these variables. We denote the average number of con-
ditions along a valid reasoning path as r ≪ k. Our dynamic traversal algorithm prunes inconsistent
branches based on user responses, and selects the most cost-effective clarification at each step. As a
result, the expected number of clarification turns is reduced to O(r). Moreover, the DAG structure
allows for node sharing across multiple paths, which enables information reuse and further reduces
the overall number of clarification turns below r in settings with high condition overlap across paths.

C ALGORITHM OF DYNAMIC TRAVERSAL-BASED CLARIFICATION

Alg. 1 shows the detailed procedure of dynamic traversal-based clarification.

Algorithm 1 Dynamic Traversal-Based Clarification

Require: DAG G = (N , E), Clarifier LLM ΘC , User Simulator LLM ΘU with access to back-
ground S, known condition set Cknown(q)

Ensure: Final answer â
1: Initialize dialogue history H ← ∅
2: Compute candidate set U according to Eq. 1
3: while U ̸= ∅ do
4: Select ni according to Eq. 2
5: Generate clarification question qni

∼ ΘC(ni)
6: Obtain user response ani

∼ ΘU (qni
, S)

7: if ∃(ni, nj , ν) ∈ E , ν ≡ ani
then

8: Record (qni
, ani

) into H
9: Continue traversal to nj

10: else
11: Remove ni from U and continue with next candidate
12: end if
13: end while
14: return â← ΘC(H)

D ALGORITHM OF GPS INFERENCE PROCESS
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Alg. 2 shows the overall inference pipeline of GPS, which consists of conditional reasoning DAG
construction and dynamic traversal-based clarification (Alg. 1).

Algorithm 2 GPS Inference: Graph-guided Proactive Clarification

Require: User query q, retrieved document d, Reasoner LLM ΘR, Clarifier LLM ΘC , User (or
Simulator) ΘU with background S

Ensure: Final answer â
1: // Reasoning stage: DAG construction
2: Construct a DAG-extraction prompt PDAG(q, d) (see Appendix G.1).
3: Generate a structured DAG description y ∼ ΘR(PDAG(q, d)).
4: Parse y into a conditional reasoning DAG G = (N , E) = PARSE(y).
5: // Clarification stage: dynamic traversal (Alg. 1)
6: Identify the known condition set Cknown(q)← ΘC(q, d,G).
7: â← DYNAMICTRAVERSALCLARIFICATION

(
G,ΘC ,ΘU , Cknown(q), S

)
8: return â

E ALGORITHM OF THE REASONER TRAINING PROCESS

Alg. 3 summarizes the clarification-oriented reinforcement learning procedure used to train the Rea-
soner LLM ΘR with hybrid rewards over synthetic conditional-path data.

Algorithm 3 Clarification-Oriented RL for DAG Extraction

Require: Document collectionD, data synthesis module SYNTH, initial Reasoner LLM Θ
(0)
R , Clar-

ifier LLM ΘC , User Simulator ΘU , RL iterations T .
Ensure: Trained Reasoner LLM Θ

(T )
R .

1: // Conditional-path guided data synthesis
2: S ← SYNTH(D)
3: for t = 1 to T do
4: Sample a minibatch B ⊂ S
5: for each (q, d, a, Cmiss) ∈ B do
6: // DAG extraction by current Reasoner
7: G = (N , E) ∼ Θ

(t−1)
R (q, d)

8: // Simulated clarification and answer prediction
9: â, Tclar ← DYNAMICTRAVERSALCLARIFICATION

(
G,ΘC ,ΘU , Cknown(q), S

)
10: // Hybrid reward computation
11: Compute total reward R as in Eq. 13
12: Store (q, d,G, R) for RL update
13: end for
14: // RL update of Reasoner
15: Θ

(t)
R ← RLUPDATE(Θ

(t−1)
R , {(q, d,G, R)}(q,d,·)∈B)

16: end for
17: return Θ

(T )
R

F THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, Large Language Models (LLMs) are mainly used as auxiliary tools rather than core
components of the proposed method. Specifically, we leverage LLMs for two purposes: (i) gram-
mar checking and language polishing of academic writing; and (ii) providing suggestions for code
debugging, particularly in identifying possible causes of error messages and offering potential fixes.
These uses of LLMs help streamline the writing and coding workflow, but they do not influence the
methodological design or experimental results of this paper.
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G PROMPTS

This section presents the prompts used in our method, including DAG extraction prompt for clarifi-
cation, conditional path guided data synthesis prompt, self-reflection prompt for DAG construction
and evaluation prompt.

G.1 DAG EXTRACTION PROMPT FOR CLARIFICATION

DAG extraction prompt for clarification
Given a user question and a relevant document that are useful
for answering the question, your task is to:
1. Based on the passage, decide whether the user question
has multiple conditional answers that are only applicable when
certain user-specific conditions apply.
2. Then, build a graph (DAG) to represent all possible
conditional reasoning paths. The node and edge of the DAG
should be json format as follows:
Node format:
{
"node id": unique integer ID.
"node type": either "Condition" or "Conclusion", "Conclusion"

nodes must be terminal nodes with no outgoing edges.
"node content": if the current node is Condition node, the

content should be a clarification question about the conditional
judgement; if the current node is Conclusion node, the content
should be a statement about the final answer to the user’s
question.
"pre node id": a list of the predecessor nodes of the current

node, if a node has multiple predecessor nodes, the predecessor
nodes are in OR relationship.
}
Edge format:
{
"from": the starting node id of the edge, must be a Condition

node.
"to": the ending node id of the edge.
"label": the label of the edge, should be the answer of the

starting Condition node’s clarification question.
}
Your output must contain only two parts:
[nodes] A list of all nodes. Each node must follow json format
above. [nodes]
[edges] A list of all edges. Each edge must follow json format
above. [edges]
Notice: Your output must include the above two parts with
complete and properly closed tags.
Now, let’s begin:
The user question is: [query here]
The document is: [document here]
Output:
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G.2 CONDITIONAL PATH GUIDED DATA SYNTHESIS PROMPT

DAG extraction prompt for data synthesis
Your task is to extract structured decision problems from
the following policy document. These problems must meet the
following criteria:
1. The question has multiple possible answers (not just
yes/no).
2. The answer depends on two or more user-specific conditions.
3. Different combinations of these conditions lead to different
answers.
For each decision problem you identify, extract the following
fields:
- "question": A concise question that summarizes the decision
in the first person.
- "conditions": A list of all relevant condition checks
in natural language. These should be simple yes/no-type
evaluations.
- "outputs": A list of reasoning paths. Each path should
contain:
- a combination of condition values (e.g. "A": "Yes", "B":

"No")
- the resulting answer
- a brief natural language explanation of the reasoning

Use the following output format:
[
{
"question": "...",
"conditions": ["..."],
"outputs":
[
{
"combination": {"...": "...", "...": "..."},
"answer": "...",
"reason": "..."
}

]
}

]
Notice: Your output must contain only the list with no other
words!
Now process the following document and extract all such
multi-conditional decision problems. The document is:
[document here]

G.3 EVALUATION PROMPT

Evaluation prompt
Given a question, a candidate answer, and a ground truth answer,
your task is to determine whether the candidate answer is
semantically consistent with the ground truth answer based on
the following criteria:
Semantic Consistency Rules
1. If the ground truth answer contains a single definite
conclusion, the candidate answer should express the same
conclusion.
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2. The candidate answer must not introduce any conclusions that
contradict the ground truth answer.
Output Format
Your output should consist of two parts: a reasoning part and
a conclusion part. The reasoning part should explain your
judgment process. The conclusion part’s content is "yes" if
two answers are considered semantically consistent, otherwise
"no".
The question is: [question here]
The ground truth answer is: [ground truth answer here]
The candidate answer is: [candidate answer here]

G.4 SELF-REFLECTION PROMPT

DAG construction error-correction prompt
You previously attempted to generate a decision graph (DAG)
for a given question and document, but the output contained
structural or logical errors. Before regenerating the DAG, you
must carefully reflect on the causes of failure and identify how
to correct them.
Reflection before regeneration. You must think deeply about the
following aspects:
1. Conditional-path reasoning errors:
- Did you correctly identify all conditional branches in the
passage?
- Are condition nodes logically valid and derived from the
passage?
- Do edge labels correspond to answers of the associated
condition questions?
- Are all condition--conclusion paths represented?
- Reflection: Did you misinterpret which conditions lead to
which conclusions?
2. Graph-structure extraction errors:
- Are node fields (node id, node type, node content, pre node id)
valid?
- Do Conclusion nodes have no outgoing edges?
- Does pre node id contain only direct parents?
- Does the graph remain a valid DAG (acyclic)?
- Are all node references in edges valid?
- Reflection: Did you structure the graph incorrectly?
3. Error analysis:
- Review the error information below and identify the root
cause.
- State explicitly what you will change to avoid repeating the
mistake.
Specific error information:
{error description}
Error message:
{error message}
Your previous output:
{previous output}
Now regenerate the DAG with great caution, following the
requirements below.
1. Decide whether the question admits multiple answers
depending on user-specific conditions.
2. Construct a DAG representing all conditional branches. Use
the following formats:
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node format:
{
"node id": unique integer ID.
"node type": either "Condition" or "Conclusion", "Conclusion"

nodes must be terminal nodes with no outgoing edges.
"node content": if the current node is Condition node, the

content should be a clarification question about the conditional
judgement; if the current node is Conclusion node, the content
should be a statement about the final answer to the user’s
question.
"pre node id": a list of the predecessor nodes of the current

node, if a node has multiple predecessor nodes, the predecessor
nodes are in OR relationship.
}
Edge format:
{
"from": the starting node id of the edge, must be a Condition

node.
"to": the ending node id of the edge.
"label": the label of the edge, should be the answer of the

starting Condition node’s clarification question.
}
3. Your output must contain exactly three parts:
<think> Describe the errors you identified and how you will
avoid them. Also list all possible answers and their logical
branches. </think>
<nodes> A list of all nodes (using the JSON format above).
</nodes>
<edges> A list of all edges (using the JSON format above).
</edges>
Do not omit the surrounding brackets [] in either list. All
tags must be complete and properly closed.
The user question is:
{original query}
The passage context is:
{original passage}
Output:

H CASE STUDY

H.1 QUALITATIVE COMPARISON BETWEEN GPS AND BASELINE METHODS

Figure 4 illustrates the different clarification processes adopted by GPS and ProCoT on the same
underspecified query from the Synthetic dataset. GPS successfully identifies the correct conditional
rules from the document (highlighted in red) and constructs a conditional reasoning DAG to guide
the clarification process through traversal, ultimately leading to the correct answer. In contrast, Pro-
CoT is distracted by irrelevant information in the document (highlighted in orange), asks unrelated
clarification question, and consequently derives an incorrect answer.

Figure 5 illustrates that GPS provides a more reliable clarification process than UoT. UoT selects
clarification questions based on uncertainty signals but lacks an explicit representation of the full
decision structure. As a result, it checks only the first two conditions and stops once uncertainty
appears reduced, which causes it to miss a decisive eligibility factor and produce an incorrect con-
clusion. In contrast, GPS constructs the conditional reasoning DAG, queries all necessary conditions
through dynamic traversal, and therefore arrives at the correct final answer.
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Document

Query

Proactive_coc GPS

You can apply for help with the costs of further and higher education if all of the 
following are true:
• one of your parents died as a result of their service in the armed forces
• your parent died on or after 1 January 1990
• you’re 16 or over and in full-time education
• you or a surviving parent receive bereavement benefits from the Armed Forces 

Compensation scheme, War Pension scheme or Armed Forces Attributable Benefits 
scheme

······
You can use the money to pay tuition fees and your maintenance for:
• a further education course of up to 3 years
• your first undergraduate course at a UK university or other higher education 

institution (such as a college or art school) - this can include study abroad if it’s part 
of the course

• a higher level technical education course at qualification levels 4, 5 or 6
······

I am 18 years old, and I am a student at a college and in full-time education. My father died on the 20th July 2021. 
Will I be eligible for any scholarship for the university?

Cond1

Cond2

Cond3

Cond4

User Background
My father died as a result of his service in the armed forces. Neither my mother nor I receive bereavement benefits from the Armed Forces Compensation scheme, War Pension...

Query: …Will I be eligible for any scholarship for 
the university?
Clarify Q1: Are you planning to apply for a higher 
education scholarship, such as an undergraduate 
degree from a UK university?
Clarify A1: Output: Yes, I am planning to apply for a 
higher education scholarship…I want to make the 
most of my education opportunities and ensure I can 
focus fully on my studies without undue financial 
stress. 
Answer: Yes, you would be eligible for the 
scholarship. However, you need to confirm your 
eligibility with the benefits you are receiving

Query: …Will I be eligible for any scholarship for the 
university?
(Cond1): Is your parent a veteran who died as a result 
of their service in the armed forces?  => Yes
(Cond2): Did your parent die on or after 1 January 
1990? => Yes
(Cond3): Are you 16 or over and in full-time education? 
=> Yes
Clarify Q(Cond4): Do you or a surviving parent 
receive bereavement benefits from the Armed 
Forces Compensation scheme, War Pension scheme 
or Armed Forces Attributable Benefits scheme?
Clarify A: No
Answer(Conclusion1): You are not eligible for the 
scholarship.

Conclusion1

Conclusion2

Yes

Yes

Yes
Yes

No

No

No

No

Figure 4: Comparison of GPS and ProCoT on an underspecified query from the Synthetic dataset.
GPS extracts the correct conditional rules and uses the resulting DAG to ask the necessary clar-
ification and reach the correct answer, whereas ProCoT focuses on irrelevant details and asks an
unrelated question, leading to an incorrect conclusion.

Must I cancel my Marriage Allowance?

Document Query

UoT GPS

······
If your circumstances change
You must cancel Marriage Allowance if any of the following apply:
• your relationship ends - because you’ve divorced, ended (‘dissolved’) your civil partnership or legally separated
• your income changes and you’re no longer eligible
• you no longer want to claim
How to cancel
······

Cond1

Cond2

Cond3

User Background

I've been reflecting on my current situation and wanted to ensure everything is in order. My relationship is stable; there hasn't been any divorce, dissolution, or legal 
separation. Additionally, my income remains the same, so I'm still eligible for the benefits I've been receiving. I also continue to want to claim these benefits as they 
provide essential support for the child and me. I just want to make sure that all my details are up to date and that I’m still meeting all the requirements.

Query: Must I cancel my Marriage Allowance?
Clarify Q1(Cond2): Have there been any changes to 
your income that make you ineligible for Marriage 
Allowance?
Clarify A1: No
Clarify Q2(Cond1): Has your relationship ended due 
to divorce, dissolution of a civil partnership, or legal 
separation?
Clarify A2: No
Answer: No, you do not necessarily have to cancel 
your Marriage Allowance.

Query: Must I cancel my Marriage Allowance?
Clarify Q1(Cond1): Has your relationship ended due 
to divorce, dissolution of civil partnership, or legal 
separation?
Clarify A1: No
Clarify Q2(Cond2): Has your income changed, 
making you no longer eligible for Marriage 
Allowance?
Clarify A2: No
Clarify Q3(Cond3): Do you no longer wish to claim 
Marriage Allowance?
Clarify A3: Yes
Answer(Conclusion2): Yes, you must cancel 
Marriage Allowance.

Conclusion1

Conclusion2

No

Yes

Yes

Yes

Missing Cond3

No

No

Figure 5: GPS provides a more reliable clarification process than UoT. UoT queries only part of the
relevant conditions and terminates prematurely, which causes it to miss a decisive eligibility factor
and produce an incorrect conclusion. GPS constructs the full conditional reasoning DAG, queries all
necessary conditions through structured traversal, and therefore arrives at the correct final answer.
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Document

Query

······
Eligibility
Your vehicle can be tested for a Low Emissions Certificate if it:
• was registered in the UK before 1 October 2006
• is fitted with a full filter to Low Emission Zone emissions standards
You do not need a Low Emission Certificate for a vehicle with a Euro 4, 5 or 6 engine.
Converted and re-engined vehicles

Contact DVLA if the vehicle has either:
• been fitted or converted to run solely on petrol
• had an approved gas conversion
Contact Transport for London (TfL) if your vehicle has been ‘re-engined’ to meet Low 
Emission Zone standards.
Book a Low Emissions Certificate test
······

Is my vehicle eligible for a Low Emissions Certificate (LEC)?

GPS

Cond1: Was your vehicle registered in 
the UK before 1 October 2006?

Cond2: Does your vehicle have a Euro 
4, 5, or 6 engine?

Cond3: Is your vehicle fitted with a 
full filter to Low Emission Zone 

emissions standards?

Cond4: Has your vehicle been fitted or 
converted to run solely on petrol?

Cond5: Has your vehicle had an 
approved gas conversion?

Cond6: Has your vehicle been ‘re-
engined’ to meet Low Emission Zone 

standards?

Conclusion1: Not eligible for LEC.

Conclusion2: Eligible for LEC.

Conclusion3: Contact DVLA for 
further information.

Conclusion4: Contact Transport for 
London (TfL) for further information.

Yes

No

Yes

No

Yes

No

YesNo

Yes

No

Yes

No

Figure 6: GPS successfully models a multi-layer nested logical hierarchy: conjunctive chains, dis-
junctive branches, and deeper sub-rules are all represented in a unified DAG structure.

H.2 CAPABILITY OF GPS IN MODELING NESTED CONDITIONAL LOGIC

Figure 6 demonstrates that the underlying rule structure is not a flat sequence of conditions but a
genuinely nested logical hierarchy. The eligibility decision depends on multiple interacting sub-
rules: an initial branch based on registration date, a second layer involving engine standard, and a
third layer contingent on the presence of a filter. In parallel, a separate subtree handles converted
or re-engined vehicles, further routing to different authorities depending on subsequent conditions.
These rule blocks depend on one another in a layered manner, where the outcome of one condition
determines which deeper sub-rule becomes applicable—a defining characteristic of nested logic.

Under our framework, such hierarchical dependencies map cleanly into a DAG. Conjunctive de-
pendencies appear as chained edges, disjunctive alternatives as branching nodes, and intermediate
outcomes naturally serve as parent nodes for deeper conditional layers. As stated in Proposition 1,
any finite conditional rule system with nested structure can be transformed into such a DAG without
loss of logical fidelity. The figure illustrates this concretely: GPS successfully captures all nested
branches in a structurally precise DAG, confirming that the method faithfully models and traverses
multi-level logical hierarchies rather than only simple condition–conclusion patterns.

H.3 IMPACT OF STRUCTURAL QUALITY REWARDS ON DAG CONSTRUCTION

Figure 7 illustrates how the proposed structural quality reward rη distinguishes between well-
structured and poorly-structured clarification DAGs. The left DAG generated by GPS forms a clean
hierarchical decision structure: each clarification introduces meaningful discrimination, branches do
not recombine, and each split contributes directly to narrowing the final conclusions. As a result, its
split entropy is fully converted into leaf-level discriminative power, yielding rη = 1.

In contrast, the right DAG generated by backbone model exhibits redundant branching: several
clarifications produce splits that later merge, creating patterns where injected uncertainty does not
contribute to distinguishing final leaves. This causes the graph-level split entropy Hgraph to increase
while the leaf entropy Hleaf remains low, yielding a substantially reduced score of rη = 0.46.

This case demonstrates that the structural quality reward effectively penalizes DAGs whose inter-
mediate clarifications do not help refine the final conclusion space, and correspondingly encourages
models to produce non-redundant clarification structures.
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Document

Query
What type of deed poll do I need to change my name?

Qwen2.5-7B-Instruct + GPS

Cond1: Do you live 
permanently overseas?

Cond2: Are you 16 years 
old or older?

No

Get a deed poll
A deed poll is a legal document that proves a change of name. You can change any part of your name, add or remove names and hyphens, or change spelling.
There are 2 ways to get a deed poll. You can either:
• Make an ‘unenrolled’ deed poll yourself

• You need to be 16 or over to make your own deed poll.
• Apply for an ‘enrolled’ deed poll

• You must apply to the Royal Courts of Justice to get an ‘enrolled’ deed poll using the deed poll process. It costs £42.44. 
• You can only enroll your own name change if you’re 18 or over. The process is different to change the name of a child under 18.

······

Cond3: Are you 18 years 
old or older?

Yes

Conclusion3: You can 
make an 'unenrolled' deed 

poll yourself.

Conclusion4: You can make an 
'unenrolled' deed poll yourself or apply 

for an 'enrolled' deed poll.

Conclusion2: If you are under 16, you 
cannot change your name by deed poll.

Conclusion1: You cannot 
change your name by deed 

poll.

Yes

Qwen2.5-7B-Instruct

Cond1: Is the user changing their 
name for a legal purpose?

Cond2: age 
< 18?

Yes

Conclusion2: You can make an 
'unenrolled' deed poll yourself.

No

No Yes

Cond2: age > 18 
and permanently 

overseas?

Cond2: age 
> 16?

Cond2: 16<age<18 
and permanently 

overseas?

NoNo No
Yes

Yes

Conclusion1: You can make an 
'unenrolled' deed poll yourself or apply 

for an 'enrolled' deed poll.

No
No

𝒓𝜼,𝒊 = 𝑯𝑳𝒆𝒂𝒇 𝑯𝑮𝒓𝒂𝒑𝒉 = 𝟏⁄ 𝒓𝜼,𝒊 = 𝑯𝑳𝒆𝒂𝒇 𝑯𝑮𝒓𝒂𝒑𝒉 = 𝟎. 𝟒𝟔⁄

Figure 7: Comparison of structural quality between two clarification DAGs. The GPS-generated
structure (left) forms clean, monotonic decision refinement and achieves rη = 1. The baseline (right)
contains redundant branching and split–merge patterns, which inflate Hgraph without increasing
Hleaf , resulting in a low rη = 0.46. The structural quality reward explicitly captures this efficiency
gap and drives learning toward well-structured clarification DAGs.

I ILLUSTRATION OF THE OVERALL GPS REASONING AND CLARIFICATION
WORKFLOW

Figure 8 provides a concise end-to-end illustration of the GPS framework. Given a user query and
its associated document, the Reasoner first extracts all condition-dependent rules and generates a
conditional reasoning DAG, where internal nodes represent clarification conditions and leaf nodes
represent possible conclusions. Based on this DAG, the Clarifier interacts with the user in a traversal
manner, issuing only the condition queries necessary to eliminate incompatible branches. As user
responses progressively constrain the DAG, the traversal converges to a unique conclusion, from
which the final answer is produced.

This example illustrates how GPS combines document-grounded rule extraction with adaptive clar-
ification to resolve underspecified query effectively.

J ANALYSIS OF PERFORMANCE ON TWO TYPES OF QUERIES

Table 3 reports the SR (%) of different methods on ConditionalQA and ShARC, separately for un-
derspecified and well-specified queries. On ConditionalQA, GPS consistently outperforms all base-
lines, achieving the highest SR in both well-specified (72.7) and underspecified (81.1), demonstrat-
ing the effectiveness of DAG-guided clarification. ProCoT also performs competitively on under-
specified queries (69.8), surpassing Base Method and Clarify-DPO. In contrast, BED-LLM shows
consistently poor performance, especially in well-specified queries (46.6). On ShARC, Clarify-
DPO achieves the best performance on underspecified queries (91.4), while GPS remains strong
and balanced across both settings (71.6/80.0). Interestingly, Base Method and ProCoT collapse
on ShARC underspecified queries (32.3), suggesting limited cross-domain generalization. Overall,
these results highlight the robustness of GPS in identifying and resolving ambiguity.
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Document

Query
Am I eligible for the disability premium?

GPS-DAG

Cond1: Do you get 
income-related ESA?

Conclusion1: NOT 
eligible

······
Disability premium eligibility
If you get income-related Employment and Support Allowance (ESA), you cannot get the disability premium.

You can get the premium if you are under pension credit age or getting:
• Disability Living Allowance (DLA)
• Personal Independence Payment (PIP)
If you do not qualify through the above, you may still get the premium if you’ve been unable to work for at least a 
year.
How to Claim
······

Conclusion2: eligible

Cond2: Are you under 
pension credit age?

Cond3: Are you getting 
DLA?

Cond4: Are you getting 
PIP?

Cond5: Have you been 
unable to work for at 

least a year?

Reasoner

GPS-Clarification Turns

Clarifier User Simulator

𝒒𝟏𝒌

𝒂𝟏𝒌

User Background
I don’t get income-related ESA. 
I am not under pension credit age. 
I don’t get DLA or PIP. 
I’ve been unable to work for 2 
months.

Query: Am I eligible for the disability premium?
Clarify Q1(Cond1): Do you get income-related ESA? 
Clarify A1: No.
Clarify Q2(Cond2): Are you under pension credit age? 
Clarify A2: No.
Clarify Q3(Cond3): Are you getting DLA?
Clarify A3: No.
Clarify Q4(Cond4): Are you getting PIP?
Clarify A4: No.
Clarify Q5(Cond5): Have you been unable to work for at least a 
year? 
Clarify A5: No.
Answer(Conclusion1): NOT eligible

Yes

No

No

No

No

No

Yes

Yes

Yes

Yes

1⃣

2⃣ 3⃣

4⃣

Figure 8: Overview of the GPS workflow. The Reasoner first extracts condition-dependent rules
from the query–document pair and produces a conditional reasoning DAG. The Clarifier then per-
forms multi-turn clarification by traversing the DAG, pruning incompatible branches based on user
responses, and converging to a valid conclusion.

Table 3: Success Rate (SR, %) on well-specified vs. underspecified queries across ConditionalQA
and ShARC with the LLaMA backbone. Bold denotes the best result and underline the second-best.

Method ConditionalQA ShARC

Well-specified Underspecified Well-specified Underspecified

Base Method 63.6 60.4 80.9 32.3
UoT 64.8 32.9 69.1 67.7
Clarify-DPO 68.2 53.9 74.1 91.4
ProCoT 65.3 69.8 75.2 32.3
BED-LLM 46.6 40.5 64.4 63.6
GPS 72.7 81.1 71.6 80.0
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K IMPLEMENTATION DETAILS

The experiments are conducted on a machine equipped with 8 NVIDIA A800 GPUs. For GRPO,
we apply LoRA and set the rank of LoRA to 64. The training epoch is set to 1, the batch size is set
to 32 and the learning rate is set to 3e-6. The hyperparameter α in the hybrid reward is set to 0.5.

L DATASET DETAILS

We present the detailed size of our training dataset and three evaluation benchmark datasets in Table
4.

Table 4: Dataset Statistics.

Sources Underspecified Well-specified Total

Training 3250 0 3250
Synthetic 744 0 744

ConditionalQA 229 176 53
ShARC 675 675 1350
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