
Foundation Models for Decision Making Workshop at Neural Information Processing Systems, 2022.

SMART: SELF-SUPERVISED MULTI-TASK PRETRAIN-
ING WITH CONTROL TRANSFORMERS

Yanchao Sun⋆, Shuang Ma†, Ratnesh Madaan†, Rogerio Bonatti†,
Furong Huang⋆ and Ashish Kapoor†

∗{ycs, furongh}@umd.edu
†{shuama, ratnesh.madaan, rbonatti ,akapoor}@microsoft.com

ABSTRACT

Self-supervised pretraining has been extensively studied in language and vision
domains, where a unified model can be easily adapted to various downstream
tasks by pretraining representations without explicit labels. When it comes to
sequential decision-making tasks, however, it is difficult to properly design such
a pretraining approach that can cope with both high-dimensional perceptual in-
formation and the complexity of sequential control over long interaction hori-
zons. The challenge becomes combinatorially more complex if we want to pre-
train representations amenable to a large variety of tasks. To tackle this problem,
in this work, we formulate a general pretraining-finetuning pipeline for sequen-
tial decision making, under which we propose a generic pretraining framework
Self-supervised Multi-task pretrAining with contRol Transformer (SMART). By
systematically investigating pretraining regimes, we carefully design a Control
Transformer (CT) coupled with a novel control-centric pretraining objective in
a self-supervised manner. SMART encourages the representation to capture the
common essential information relevant to short-term control and long-term con-
trol, which is transferrable across tasks. We show by extensive experiments in
DeepMind Control Suite that SMART significantly improves the learning effi-
ciency among seen and unseen downstream tasks and domains under different
learning scenarios including Imitation Learning (IL) and Reinforcement Learning
(RL). Benefiting from the proposed control-centric objective, SMART is resilient
to distribution shift between pretraining and finetuning, and even works well with
low-quality pretraining datasets that are randomly collected.

1 INTRODUCTION

Self-supervised pretraining has been successful in a wide range of language and vision problems.
Examples include BERT (Devlin et al., 2019), GPT (Brown et al., 2020), MoCo (He et al., 2020),
and CLIP (Radford et al., 2021). These works demonstrate that one single pretrained model can
be easily finetuned to perform many downstream tasks, resulting in a simple, effective, and data-
efficient paradigm. When it comes to sequential decision making, however, it is not clear yet whether
the successes of pretraining approaches can be easily replicated.

There are research efforts that investigate application of pretrained vision models to facilitate control
tasks (Parisi et al., 2022; Radosavovic et al.). However, there are challenges unique to sequential
decision making and beyond the considerations of existing vision and language pretraining. We
highlight these challenges below: (1) Data distribution shift: Training data for decision making tasks
is usually composed of trajectories generated under some specific behavior policies. As a result, data
distributions during pretraining, downstream task finetuning and even during deployment can be
drastically different, resulting in a suboptimal performance (Lee et al., 2021). (2) Large discrepancy
between tasks: In contrast to language and vision where the underlying semantic information is
often shared across tasks, decision making tasks span a large variety of task-specific configurations,

∗University of Maryland, College Park, MD. This work was done when the first author was an intern at
Microsoft.

†Microsoft Redmond, WA

1



Foundation Models for Decision Making Workshop at Neural Information Processing Systems, 2022.

transition functions, rewards, as well as action and state spaces. Consequently, it is hard to obtain a
generic representation for multiple decision making tasks. (3) Long-term reward maximization: The
general goal of sequential decision making is to learn a policy that maximizes long-term reward.
Thus, a good representation for downstream policy learning should capture information relevant
for both immediate and long-term planning, which is usually hard in tasks with long horizons,
partial observability and continuous control. (4) Lack of supervision and high-quality data: Success
in representation learning often depends on the availability of high quality expert demonstrations
and ground-truth rewards (Lee et al., 2022; Stooke et al., 2021). However, for most real-world
sequential decision making tasks, high-quality data and/or supervisory signals are either non-existent
or prohibitively expensive to obtain.

Under these challenges, we strive for pretrained representations for control tasks that are
(1) Versatile so as to handle a wide variety of downstream control tasks and variable downstream
learning methods such as imitation and reinforcement learning (IL, RL) etc,
(2) Generalizable to unseen tasks and domains spanning multiple rewards and agent dynamics, and
(3) Resilient and robust to varying-quality pretraining data without supervision.

We propose a general pretraining framework named Self-supervised Multi-task pretrAining with
contRol Transformer (SMART), which aims to satisfy the above listed properties. We introduce
Control Transformer (CT) which models state-action interactions from high-dimensional observa-
tions through causal attention mechanism. Different from the recent transformer-based models for
sequential decision making Chen et al. (2021) which directly learn reward-based policies, CT is de-
signed to learn reward-agnostic representations, which enables it as a unified model to fit different
learning methods (e.g. IL and RL) and various tasks. Built upon CT, we propose a control-centric
pretraining objective that consists of three terms: forward dynamics prediction, inverse dynamics
prediction and random masked hindsight control. These terms focus on policy-independent transi-
tion probabilities, and encourage CT to capture dynamics information of both short-term and long-
term temporal granularities. In contrast with prior pretrained vision models (Oord et al., 2018;
Parisi et al., 2022) that primarily focus on learning object-centric semantics, SMART captures the
essential control-relevant information which is empirically shown to be more suitable for interactive
decision making. SMART produces superior performance than training from scratch and state-of-
the-art (SOTA) pretraining approaches on a large variety of tasks under both IL and RL. Our main
contributions are summarized as follows:

1. We propose SMART, a generic pretraining framework for multi-task sequential decision making.
2. We introduce the Control Transformer model and a control-centric pretraining objective to learn

representation from offline interaction data, capturing both perceptual and dynamics information
with multiple temporal granularities.

3. We conduct extensive experiments on DeepMind Control Suite (Tassa et al., 2018). By evalu-
ating SMART on a large variety of tasks under both IL and RL regimes, SMART demonstrates
its versatile usages for downstream applications. When adapting to unseen tasks and unseen do-
mains, SMART shows superior generalizability. SMART can even produce compelling results
when pretrained on low-quality data that is randomly collected, validating its resilience property.

2 RELATED WORKS

Offline Pretraining of Representation for Control. Many recent works investigate pretraining rep-
resentations and finetuning policies for the same task. Yang & Nachum (2021) investigate several
pretraining objectives on MuJoCo with vector state inputs. They find that many existing repre-
sentation learning objectives fail to improve the downstream task, while contrastive self-prediction
obtains the best results among all tested methods. Schwarzer et al. (2021) pretrain a convolutional
encoder with a combination of several self-supervised objectives, achieving superior performance
on the Atari 100K. However, these works just demonstrated the single-task pretraining scenario, it is
not clear yet whether the methods can be extended to multi-task control. Stooke et al. (2021) propose
ATC, a contrastive learning method with temporal augmentation. By pretraining an encoder on ex-
pert demonstrations from one or multiple tasks, ATC outperforms prior unsupervised representation
learning methods in downstream online RL tasks, even in tasks unseen during pretraining.

Pretrained Visual Representations for Control Tasks. Recent studies reveals that visual represen-
tations pretrained on control-free datasets can be transferred to control tasks. Shah & Kumar (2021)

2



Foundation Models for Decision Making Workshop at Neural Information Processing Systems, 2022.

Figure 1: Architecture of Control Transformer. In the pretraining phase, we use the control-centric objective
introduced in Section 5.2 to train representation over multiple tasks; in the finetuning phase where a specific
task is given, we learn a policy based on the pretrained representation (pretrained weights are shown in grey
blocks). The construction of the policy head can vary for different downstream datasets or learning methods.

show that that a ResNet encoder pretrained on ImageNet is effective for learning manipulation tasks.
Some recent papers also show that encoders pretrained with control-free datasets can generalize well
to RL settings (Nair et al., 2022; Seo et al., 2022; Parisi et al., 2022). However, the generalizability
of the visual encoder can be task-dependent. Kadavath et al. (2021) point out that ResNet pretrained
on ImageNet does not help in DMC (Tunyasuvunakool et al., 2020) environments.

Unsupervised RL. Unsupervised RL (URL) focuses on learning exploration policies (Pathak et al.,
2017; Liu & Abbeel, 2021), goal-conditioned policies (Andrychowicz et al., 2017; Mendonca et al.,
2021) or diverse skills (Eysenbach et al., 2019) in a task without external rewards, and finetuning the
policy later when reward is specified. The unsupervised learning phase of URL is usually interactive
and prolonged. Our goal, in contrast, is to train representations of states and actions from fixed
offline datasets, with a focus on capturing essential and important information from raw inputs.

Sequential Decision Making with Transformers. There is a growing body of work that uses Trans-
former (Vaswani et al., 2017) architectures to model and learn sequential decision making problems.
Chen et al. (2021) propose Decision Transformer (DT) for offline RL, which takes a sequence of
returns, observations and actions, and outputs action predictions. Trajectory Transformer (Janner
et al., 2021) also models the trajectory as a sequence of states, actions and rewards, while dis-
cretizing each dimension of state/actions. Bonatti et al. (2022) propose a pretraining scheme for
state-action representations in navigation scenarios using a causal transformer, which can then be
finetuned with imitation learning towards different tasks for the same robot. Furuta et al. (2022)
propose Generalized DT that unifies a family of algorithms for future information matching with
transformers. Zheng et al. (2022) extend DT to online learning by blending offline pretraining and
online finetuning. Transformers can also be used as world models for model-based RL (Chen et al.,
2022; Micheli et al., 2022). Recent studies show that transformer-based models can be scaled up
with diverse multi-task datasets to produce generalist agents (Reed et al., 2022; Lee et al., 2022).
Our proposed method has a similar structure that regards RL trajectories as sequential inputs. How-
ever, differently from most existing transformer models that learn policy from returns, our SMART
focuses on learning control-relevant representations with self-supervised pretraining.

3 PRELIMINARIES

Partially Observable Markov Decision Process. We model control tasks and environments as
a partially observable Markov decision process (POMDP) M = ⟨S,A,O, P,R,E⟩, which is a
generalization of Markov decision process (MDP). Here, S is the underlying state space, A is the
action space, O is the observation space, P is the transition kernal, R is the reward function, and
E is the observation emission function with E(o|s) being the probability of observing o given state
s. In practice, the observation space can be high dimensional. For example, for a mobile robot
navigating with camera sensors, the images are observations and its odometry (location, orientation,
and associated velocities) and the ground-truth obstacle locations form the underlying state.

3



Foundation Models for Decision Making Workshop at Neural Information Processing Systems, 2022.

Learning Agent and Controlling Policy. At every step t, the agent receives an observation ot
based on the underlying state st (hidden from the agent), takes action at, and obtains a reward rt
and the environment proceeds to the next state st+1. Given a history of observation-action pairs
of length L and the current observation, ht = (ot−L, at−L, ot−L+1, at−L+1, · · · , ot), the agent
executes action at according to policy π: at = π(ht). The agent’s goal is to learn an optimal policy
π∗ that maximizes the agent’s cumulative reward EP [

∑∞
t=1 γ

trt].

Reinforcement Learning (RL) and Imitation Learning (IL). RL (Sutton & Barto, 2018) is the
process where an agent seeks to maximize its policy returns. RL agents can learn in an online man-
ner by interacting with the environment, or learn from offline data with pre-collected interactions.
Differently from supervised learning, the training data for RL stems from policy-dependent inter-
actions with the environment, rendering a non-i.i.d. training regime. Another effective method for
learning control policies is IL (Hussein et al., 2017; Osa et al., 2018), where an agent obtains su-
pervision from expert demonstrations. For both RL and IL, there could be a discrepancy between
training and deployment data distributions due to the different distribution of states induced by the
imperfect policy and environment uncertainty.

4 PROBLEM SETUP: PRETRAINING AND FINETUNING PIPELINE

Multi-Task Control with Shared Representation. We consider a set of multiple tasks T with the
same dimensionality in observation space. In this work we select T from different environment in
DeepMind Control Suite (DMC) (Tassa et al., 2018), in which the agent observes an RGB image
of the current state. Tasks in T can have entirely different state spaces S, different action spaces A
and different environment dynamics (P,R,E). We also define the concept of domain to differentiate
tasks that have different state/action spaces. For example, in DMC, “hopper” and “walker” belong to
different domains because they posses distinct action spaces, while “walker-walk” and “walker-run”
are different tasks within the same domain. In this paper we use the term multi-task to refer tasks
spanning potentially multiple domains.

Table 1: A comparison between pretraining and finetuning.
Pretraining phase Finetuning phase
Learn generic representation Learn policy
Offline Offline or online
Multiple tasks One task, seen or unseen
Reward or expert demon-
stration may be absent

Has reward supervision or
expert demonstration

More samples Fewer samples

Pretraining-Finetuning Pipeline. Al-
though pretraining methods are widely
applied in many areas, it is not yet clear
what role pretraining should play in se-
quential decision making tasks, espe-
cially when considering the multi-task
setup. In this work, we follow ideas es-
tablished in vision and language com-
munity to explicitly define our pretraining and finetuning pipeline, which we summarize in Ta-
ble 1. Specifically, during the pretraining phase we train representations with a possibly large offline
dataset collected from a set of training tasks Tpre = {Mi}ni=1. Then, given a specific downstream
task M which may or may not be contained in Tpre, we attach a simple policy head on top of the
pretrained representation1 and train it with IL or with RL. The central tenet of pretraining is to learn
generic representations which allow downstream task finetuning to be simple, effective and efficient,
even under low-data regimes.

This pretraining-finetuning pipeline is a general extension of many prior settings of pretraining for
decision making. For example, Stooke et al. (2021) pretrain an encoder on one or multiple tasks, then
learn an RL policy in downstream tasks. Their pretraining dataset is composed of expert demon-
stration, and the finetuning process focuses on online RL. In addition, Schwarzer et al. (2021) learn
representations with offline datasets, but perform pretraining and finetuning within the same task.

5 OUR PRETRAINING MODEL AND APPROACH

We propose Self-supervised Multi-task pretrAining with contRol Transformer (SMART), a general
pretraining approach for multi-task sequential decision making. We first give an overview of the
proposed Control Transformer (CT) and illustrate how it fits in our pretraining-finetuning pipeline
in Section 5.1. Then, we introduce our control-centric pretraining objective in Section 5.2.

1The pretrained encoder can be either frozen or finetuned with the policy, depending on the task.

4



Foundation Models for Decision Making Workshop at Neural Information Processing Systems, 2022.

5.1 APPROACH OVERVIEW AND MODEL ARCHITECTURE

Model Architecture of Control Transformer. Inspired by the recent success of transformer models
in sequential modeling (Chen et al., 2021; Janner et al., 2021), we propose a Control Transformer
(CT). The input to the model is a control sequence of length 2L composed of observations and ac-
tions: (ot, at, ot+1, at+1, · · · , ot+L, at+L). Different from Decision Transformer (DT) (Chen et al.,
2021), we purposefully do not include the reward signal in the control sequence to keep our repre-
sentations reward-agnostic, as explained in the end of Section 5.1. Each element of the sequence is
embedded into a d-dimensional token, with a modality-specific tokenizer jointly trained with Trans-
former blocks. We also learn an additional positional embedding and sum it with each token. The
outputs of CT correspond to token embeddings representing each observation and action, and are
represented by ϕ(ot) and ϕ(at), respectively.2 Figure 1 depicts the CT architecture.

Pretraining of SMART. We generate an offline dataset for pretraining which contains control tra-
jectories generated by some behavior policies for a set of diverse tasks Tpre spanning multiple do-
mains. During pretraining, we append several prediction heads to the transformer output, and train
the entire model by minimizing the control-centric pretraining objective introduced in Section 5.2.
These prediction heads are used to learn desired representations, will be dropped in finetuning.

Downstream Finetuning of SMART. As discussed in Section 4, the pretrained representation can
be used to learn policies for different tasks. To do so, we append a policy head π to the observa-
tion representation, such that π(ϕ(ot)) predicts the proper action for observation ot. We can train
the policy head using both IL and RL. For our IL experiments we use behavior cloning with ex-
pert demonstrations, where we feed ϕ(ot) into a policy head to get action predictions. For RL we
use a return-to-go (RTG)-conditioned policy with trajectories that contain reward values. We feed
ϕ(ot) along with an RTG embedding to get the policy head’s action predictions. Online RL with
transformer-based models is still a novel field and is not the focus of this work. But we show advan-
tages of our pretraining method for online RL finetuning, following the same settings as online DT
presented by Zheng et al. (2022). See Appendix B.4 for more discussion and results.

Comparison with Prior Decision-making Transformers. Recent works leverage transformer ar-
chitectures for modeling sequential decision making problems (Chen et al., 2021; Janner et al., 2021;
Lee et al., 2022) as summarized in Section 2. Most of these models use reward information in the
input sequence, as their goal is to directly learn a policy for a specific task. In contrast, our goal is
to pretrain representations for various downstream tasks, and thus our CT uses reward-free control
sequence as the model input; rewards are only used for downstream task when needed. There are
several benefits of making representation agnostic to reward during pretraining. (1) A pretrained
model requiring reward input does not flexibly fit some downstream learning scenarios such as be-
havior cloning, while CT can be a unified model for various learning methods. A user can easily
learn a policy under different learning methods (IL or RL) without modifying transformer blocks.
(2) Reward distribution can be significantly different when the task or policy changes, making a
reward-dependent representation less resilient to distribution shift. We show in Section 6.3 that
utilizing reward during pretraining may hurt the overall downstream performance.

5.2 CONTROL-CENTRIC SELF-SUPERVISED PRETRAINING OBJECTIVES

Our pretraining objective employs three terms: forward dynamics prediction, inverse dynamics pre-
diction, and random masked hindsight control. The first two terms focus on local and short-term
dynamics, while the third term is designed to capture more global and long-term temporal depen-
dence. As motivated in Section 5.1, these terms are based on control sequences and are reward-free,
such that they can be used for multiple tasks. Figure 2 illustrates each objective.

I. Forward Dynamics Prediction. For each observation-action pair (ot, at) in a control sequence,
we aim to predict the next immediate latent state. Let g be the observation tokenizer being trained.
We maintain a momentum encoder ḡ as the exponential moving average of g, to generate the target
latent state from the next observation ot+1, i.e., ŝt+1 := ḡ(ot+1). The idea of momentum encoder is
widely used when the target value is not fixed (He et al., 2020; Mnih et al., 2015), in order to make
training more stable. Then, we train a linear head to predict ŝt+1 based on (ϕ(ot), ϕ(at)). This
forward prediction captures the local transition information in the embedding space.

2The implementation details are provided in Appendix A.3.

5



Foundation Models for Decision Making Workshop at Neural Information Processing Systems, 2022.

Figure 2: The three terms of our proposed pretraining objective. The red shaded areas denote the attention
span, while the grey regions are masked.

II. Inverse Dynamics Prediction. For each consecutive observation pair (ot, ot+1), we learn to
recover the action that leads ot to ot+1 Note that in a causal transformer, at is visible to the model
when generating representation of ot+1 which can lead to trivial solutions, so we modify the original
causal mask and mask out at from the attention of ot+1. Therefore, the observation representation
is forced to contain information for relevant actions and transitions.

Both forward and inverse predictions focus on local dynamics induced by the transition kernel P .
However, fitting local dynamics only may result in collapsed representation, i.e., the model learns the
same representation for two semantically different observations (Rakelly et al., 2021). To perform
well in downstream tasks, long-term temporal dependence should also be captured in the represen-
tation. We achieve this by a novel random masked hindsight control term in pretraining.

III. Random Masked Hindsight Control. Given a control sequence h = (ot, at, · · · , ot+L, at+L),
we randomly mask k actions and k′ observations, and recover the masked actions based on the re-
maining incomplete sequence. This idea of masked token prediction is related to BERT (Devlin
et al., 2019) for language modeling, but note that we only predict the masked actions for the purpose
of control. The reason for dropping out k′ observations is to force the model to learn global tempo-
ral relations. More rationale behind the selection of k and k1 is explained in Appendix A.1. This
objective is akin to asking the question “what actions should I take to generate such a trajectory?”
Therefore, we replace the causal attention mask with a non-causal one, to temporarily allow the
model “see the future”, as shown in Figure 2(right). As a result, we encourage the model to learn
controllable embeddings, and to attend to the most essential representations for multi-step control.
The idea of our random masked hindsight control is also related to the multi-step inverse prediction
proposed by a concurrent work (Lamb et al., 2022), which predicts at given st and st+l for a ran-
dom interger l and theoretically shows the effectiveness of this method in discovering controllable
states. Our random masked hindsight control is different as it predicts multiple actions altogether
from randomly masked sequences with a transformer model, which can efficiently learn the control
information in large-scale tasks, and avoid ambiguity caused by different paths between states.

Finally, our pretraining objective is the summation of the above three terms with equal weights,
which in experiments renders good performance. Calibrating or learning the weights of these objec-
tives may lead to better results in practice, but it is out of the scope of this paper. The mathematical
formulations and implementation details of the objective are explained in Appendix A.1.

6 EXPERIMENTS

We provide empirical results to demonstrate the effectiveness of our proposed pretraining method,
while aiming to answer the following questions: (1) Can SMART effectively improve learning effi-
ciency and performance in a variety of downstream tasks under different learning methods? (2) How
well can SMART generalize to out-of-distribution tasks? (3) Is SMART resistant to low-quality pre-
training data? (4) How does SMART compare to state-of-the-art pretraining techniques? (5) How
do different pretraining objectives affect the downstream performance?

6



Foundation Models for Decision Making Workshop at Neural Information Processing Systems, 2022.

6.1 EXPERIMENTAL SETUP

We evaluate SMART on the DeepMind Control (DMC) suite (Tassa et al., 2018), which contains a
series of continuous control tasks with RGB image observations. There are multiple domains (phys-
ical models with different state and action spaces) and multiple tasks (associated with a particular
MDP) within each domain, which creates diverse scenarios for evaluating pretrained representa-
tions. Our experiments use 10 different tasks spanning over 6 domains. In pretraining, we use an
offline dataset collected over 5 tasks, while the other 5 tasks (with 2 unseen domains) are held out
to test the generalizability of SMART. A full list of tested domains and tasks is in Appendix A.2.

Pretraining Tasks and Datasets. We pretrain SMART on 5 tasks: cartpole-swingup, hopper-hop,
cheetah-run, walker-stand and walker-run. For each task, we adopt/train behavior policies to collect
the following two types of offline datasets. (Details of dataset collection are in Appendix A.2.)

• Random: Trajectories with random environment interactions, with 400K timesteps per task.
• Exploratory: Trajectories generated in the exploratory stage of multiple RL agents with dif-

ferent random seeds, with 400K timesteps per task.

Downstream Tasks, Learning Methods and Datasets. We evaluate the pretrained models in the
5 seen tasks and another 5 unseen tasks: cartpole-balance, hopper-stand, walker-walk, pendulum-
swingup and finger-spin. Note that last two tasks are from unseen domains with state-action spaces
different from tasks in the pretraining dataset. We consider two learning methods: return-to-go-
conditioned policy learning (RTG) and behavior cloning (BC). For RTG, we use the Sampled
Replay dataset containing randomly sampled trajectories from the full replay buffer collected by
learning agent. For BC, we use the Expert trajectories with the highest returns from the full replay
buffer of learning agents. The downstream dataset for every task only has 100K timesteps, making
it challenging to learn from scratch.

Implementation Details. Our implementation of CT is based on a GPT model (Radford et al., 2018)
with 8 layers and 8 attention heads. We use context length L = 30 and embedding size d = 256. As
explained in Appendix A.1, k and k′ are linearly increased from 1 to L and L/2, respectively.
The observation tokenizer is a standard 3-layer CNN. Action tokenizer, return tokenizer, and all
single-layer linear prediction heads. We found that freezing the pretrained weights in downstream
tasks works well in relatively simple environments, but fails in harder ones. Therefore, we finetune
the entire model including transformer blocks for all downstream tasks. Since actions in different
domains have different dimensions and physical meanings, we project the raw actions into a larger
common action space to train the action tokenizer. When there is a novel downstream task with
a different action space, we simply re-initialize the action tokenizer and finetune it. Please see
Appendix A.3 for more implementation and hyperparameter details.

Baselines. We compare SMART with the following transformer-based pretraining baselines:

• Scratch trains a policy with randomly initialized CT representation weights.
• ACL (Yang & Nachum, 2021) is a modified BERT (Devlin et al., 2019) that randomly masks and

predicts tokens with a contrastive loss, pretrained on the same dataset as SMART.
• DT (Chen et al., 2021) pretrained on the same dataset as ours but uses extra reward supervision.
• CT-single is a variant of SMART, which pretrains CT with a single-task dataset containing

trajectories from the downstream environment.

For fair comparisons, we use the same network architecture for the baseline models (except for DT
where we keep their original network structure with RTG as transformer inputs) and train them with
the same configurations. We also compare SMART with other state-of-the-art pretraining works,
such as CPC (Oord et al., 2018) and ATC (Stooke et al., 2021), using the same pretraining-finetuning
pipeline. However, as these approaches are built upon ResNet backbones, a direct comparison of a
Transformer against a ResNet could be not straightforward. Hence we refer readers to Appendix B.3
for more discussions and results.

Evaluation Metrics. To evaluate the quality of pretrained representations we report the average
cumulative reward obtained in downstream tasks after finetuning. We deploy the trained policies in
each environment for 50 episodes and report average returns. For evaluation of the RTG-conditioned
policies, we use the expert score of each task as the initial RTG, as done in DT (Chen et al., 2021).
Detailed evaluation settings as described in Appendix A.4.

7



Foundation Models for Decision Making Workshop at Neural Information Processing Systems, 2022.

R
T

G

0 5 10 15

0

200

400

600

800

Epoch

R
ew

ar
d

Cartpole Swingup: RTG-based Policy Learning

Scratch
CT-Single
SMART

0 5 10 15

0

200

400

600

Epoch

R
ew

ar
d

Cheetah Run: RTG-based Policy Learning

Scratch
CT-Single
SMART

0 5 10 15

0

20

40

60

Epoch

R
ew

ar
d

Hopper Hop: RTG-based Policy Learning

Scratch
CT-Single
SMART

0 5 10 15

200

400

600

800

Epoch

R
ew

ar
d

Walker Stand: RTG-based Policy Learning

Scratch
CT-Single
SMART

0 5 10 15

0

100

200

300

400

500

Epoch

R
ew

ar
d

Walker Run: RTG-based Policy Learning

Scratch
CT-Single
SMART

B
C

0 5 10 15

0

200

400

600

Epoch

R
ew

ar
d

Cartpole Swingup: Behavior Clone

Scratch
CT-Single
SMART

0 5 10 15

0

200

400

600

800

Epoch

R
ew

ar
d

Cheetah Run: Behavior Clone

Scratch
CT-Single
SMART

0 5 10 15

0

20

40

60

80

100

Epoch

R
ew

ar
d

Hopper Hop: Behavior Clone

Scratch
CT-Single
SMART

0 5 10 15

150

200

250

Epoch

R
ew

ar
d

Walker Stand: Behavior Clone

Scratch
CT-Single
SMART

0 5 10 15

100

200

300

Epoch

R
ew

ar
d

Walker Run: Behavior Clone

Scratch
CT-Single
SMART

Figure 3: Downstream learning rewards of SMART (red) compared with pretraining CT with single-task data
(blue) and training from scratch (gray). Results are averaged over 3 random seeds.

R
T

G

0 5 10 15

400

600

800

1,000

Epoch

R
ew

ar
d

Cartpole Balance: RTG-based Policy Learning

Scratch
CT-Single
SMART

0 5 10 15

0

50

100

Epoch

R
ew

ar
d

Hopper Stand: RTG-based Policy Learning

Scratch
CT-Single
SMART

0 5 10 15

0

200

400

600

800

Epoch

R
ew

ar
d

Walker Walk: RTG-based Policy Learning

Scratch
CT-Single
SMART

0 5 10 15

0

100

200

300

400

Epoch

R
ew

ar
d

Pendulum Swingup: RTG-based Policy Learning

Scratch
CT-Single
SMART

0 5 10 15

0

200

400

600

Epoch

R
ew

ar
d

Finger Spin: RTG-based Policy Learning

Scratch
CT-Single
SMART

B
C

0 5 10 15

500

600

700

800

900

1,000

Epoch

R
ew

ar
d

Cartpole Balance: Behavior Clone

Scratch
CT-Single
SMART

0 5 10 15

0

100

200

300

Epoch

R
ew

ar
d

Hopper Stand: Behavior Clone

Scratch
CT-Single
SMART

0 5 10 15

50

100

150

200

Epoch

R
ew

ar
d

Walker Walk: Behavior Clone

Scratch
CT-Single
SMART

0 5 10 15

0

20

40

60

80

100

Epoch

R
ew

ar
d

Pendulum Swingup: Behavior Clone

Scratch
CT-Single
SMART

0 5 10 15

0

200

400

600

800

Epoch

R
ew

ar
d

Finger Spin: Behavior Clone

Scratch
CT-Single
SMART

Figure 4: Downstream learning rewards in unseen tasks and domains of SMART (red) compared with pre-
training CT with single-task data (blue) and training from scratch (gray). Results are averaged over 3 seeds.

6.2 EXPERIMENTAL RESULTS

We first evaluate the versatility of SMART: 1) whether a single pretrained model can be finetuned
with different downstream learning methods (i.e. RTG and BC); and 2) whether the pretrained model
can adapt towards various downstream tasks. Figure 3 compares the the reward curve of SMART
with Scratch and CT-Single, where models are pretrained with Exploratory dataset. Mod-
els pretrained with Random dataset show similar trends, as can be seen in Appendix B.1. To avoid
overlapping of curves, comparison with ACL and DT is shown and discussed later in Figure 5. It
can be seen that pretrained CT from both single-task dataset (CT-single) and multi-task dataset
(SMART) can achieve much better results than training from scratch. In general, under both RTG-
conditioned finetuning and BC finetuning, pretrained models have a warm start, a faster convergence
rate, and a relatively better asymptotic performance in a variety of downstwream tasks. In most
cases, pretraining CT from multi-task dataset (SMART) yields better results than pretraining with
only in-task data (CT-single).

Next, we show the generalizability of SMART. Figure 4 shows the performance of SMART pre-
trained on Exploratory dataset3, compared to Scratch and CT-single on 5 unseen tasks:
cartpole-balance, hopper-stand, walker-walk, pendulum-swingup and finger-spin. Note that last
two tasks are from unseen domains with state-action spaces different from tasks in the pretrain-
ing dataset. We can see that SMART is able to generalize to unseen tasks and even unseen domains,
whose distributions have a larger discrepancy as compared to the pretraining dataset. Surprisingly,
SMART achieves better performance than CT-single in most tasks, even though CT-single
has already seen the downstream environments. This suggests that good generalization ability can
be obtained from learning underlying information which might be shared among multiple tasks and
domains, spanning a diverse set of distributions.

Next we evaluate the resilience of SMART by comparing with all aforementioned baselines, as visu-
alized in Figure 5. We aggregate the results in all tasks by averaging the normalized reward (dividing

3Results of the models pretrained with Random dataset are similar as shown in in Appendix B.1.

8



Foundation Models for Decision Making Workshop at Neural Information Processing Systems, 2022.

raw scores by expert scores) in both RTG and BC settings. When using the Exploratory dataset
for pretraining, SMART outperforms ACL, and is comparable to DT which has extra information
of reward. When pretrained with the Random dataset, SMART is significantly better than DT and
ACL, while ACL fails to outperform training from scratch. This result show that SMART is robust
to low-quality data as compared to other baseline methods.

Scratch CT-Single ACL DT SMART
0

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

R
ew

ar
d

RTG-conditioned Policy Learning

Scratch
Exploratory
Random

Scratch CT-Single ACL SMART
0

0.2

0.4

0.6

N
or

m
al

iz
ed

R
ew

ar
d

Behavior Cloning

Scratch
Exploratory
Random

Figure 5: Downstream learning rewards (normalized by expert score) of SMART compared with pretraining
baselines using Exploratory dataset and Random dataset. The gap between each pair of green and red bars
corresponds to the resilience of each method to pretraining data quality. Our SMART shows the best resilience
among all baselines.

w/o Mask-Ctl w/o Inverse w/o Forward SMART
0

0.1

0.2

0.3

R
el

at
iv

e
Im

pr
ov

em
en

t

Cheetah Run

(a) Exploratory Dataset
w/o Mask-Ctl w/o Inverse w/o Forward SMART
0

0.1

0.2

0.3

0.4

R
el

at
iv

e
Im

pr
ov

em
en

t

Walker Walk

(b) Exploratory Dataset
w/o Inverse SMART

0

0.1

0.2

0.3

R
el

at
iv

e
Im

pr
ov

em
en

t
Cheetah Run

(c) Random Dataset
w/o Inverse SMART

0

0.1

0.2

0.3

R
el

at
iv

e
Im

pr
ov

em
en

t

Walker Walk

(d) Random Dataset

Figure 6: Ablation study of pretraining objectives in two selected downstream tasks.

SMART + Reward SMART
0

0.1

0.2

0.3

R
el

at
iv

e
Im

pr
ov

em
en

t

Cheetah Run

SMART + Reward SMART
0

0.5

1

1.5

2

R
el

at
iv

e
Im

pr
ov

em
en

t

Walker Run

(a) Reward-based v.s. reward-free pretraining.

128 256 (our setting) 512
0.45

0.5

0.55

0.6

Embedding Size

A
ve

ra
ge

R
el

at
iv

e
Im

pr
ov

em
en

t

6 8 (our setting) 10
0.45

0.5

0.55

0.6

Number of Transformer Blocks

A
ve

ra
ge

R
el

at
iv

e
Im

pr
ov

em
en

t

(b) Overall performance v.s. model capacity.

Figure 7: Ablation study of the effect of reward in pretraining and comparison of various model capacity.

6.3 ABLATION AND DISCUSSION

Ablation of Pretraining Objectives. To investigate the effectiveness of each term of our proposed
objective, we conduct ablation studies over three of them. We evaluate SMART pretrained with
ablated objectives in two downstream tasks: cheetah-run (seen) and walker-walk (unseen). Figure 6
demonstrates their relative improvements wrt Scratch as defined in Appendix A.4. According to
Figure 6a and Figure 6b, we can see that forward prediction and random masked hindsight control
are both functional. Although removing the inverse prediction does not make much difference with
exploratory data, it is important when pretraining with random data as suggested by Figure 6c and
Figure 6d. This is because the inverse prediction helps the model understand per-step transition
dynamics, which is independent of the behavior policy and thus can better tolerate distribution shift.

Reward-free v.s. Reward-based Pretraining. As discussed in Section 5.1, including reward in-
formation in pretraining objectives is not necessarily helpful. We study the effects of rewards in
pretraining by adding two reward-based objectives in the pretraining phase: immediate reward pre-
diction and RTG-based action prediction. We evaluate this reward-based variant of SMART using

9



Foundation Models for Decision Making Workshop at Neural Information Processing Systems, 2022.

exploratory dataset and RTG-conditioned downstream learning. Note that the RTG-based action
prediction is used both in pretraining and finetuning of the reward-based variant, providing strong
supervision for the pretrained model. However, we (surprisingly) observe that such supervision does
not improve the downstream performance in many tasks, as shown in Figure 7a. A potential rea-
son is that reward-based objectives are more fragile to distribution shifts, which also explains the
non-ideal performance of DT pretrained from random data.

Discussion on Model Capacity. In large-scale training problems, performance usually benefits
from larger model capacity (Kaplan et al., 2020). We investigate if this also applies to sequential
decision making tasks by varying the embedding size (width) and the number of layers (depth) in
CT. The aggregated results averaged over all tasks are show in Figure 7b. From the comparison, we
can see that in general, increasing the model depth leads to a better performance. However, when
embedding size gets too large, the performance further drops, as a large representation space might
allow for irrelevant information. Per-task comparison is provided in Appendix B.2.

7 CONCLUSION

This paper studies how to pretrain a versatile, generalizable and resilient representation model for
multi-task sequential decision making. We propose a self-supervised and control-centric objective
that encourages the transformer-based model to capture control-relevant representation. Empirical
results in multiple domains and tasks demonstrate the effectiveness of the proposed method, as well
as its robustness to distribution shift and low-quality data. Future work includes strengthen the
attention mechanism on both spatial observation space and temporal state-observation interactions,
as well as investigating its potential generalization in a wider range of application scenarios.

REFERENCES

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. Advances in neural information processing systems, 30, 2017.

Rogerio Bonatti, Sai Vemprala, Shuang Ma, Felipe Frujeri, Shuhang Chen, and Ashish Kapoor.
Pact: Perception-action causal transformer for autoregressive robotics pre-training. arXiv preprint
arXiv:2209.11133, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Chang Chen, Yi-Fu Wu, Jaesik Yoon, and Sungjin Ahn. Transdreamer: Reinforcement learning
with transformer world models. arXiv preprint arXiv:2202.09481, 2022.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning
via sequence modeling. arXiv preprint arXiv:2106.01345, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–
4186. Association for Computational Linguistics, 2019. doi: 10.18653/v1/n19-1423. URL
https://doi.org/10.18653/v1/n19-1423.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. In International Conference on Learning Representa-
tions, 2019. URL https://openreview.net/forum?id=SJx63jRqFm.

Hiroki Furuta, Yutaka Matsuo, and Shixiang Shane Gu. Generalized decision transformer for offline
hindsight information matching. In International Conference on Learning Representations, 2022.
URL https://openreview.net/forum?id=CAjxVodl_v.

10

https://doi.org/10.18653/v1/n19-1423
https://openreview.net/forum?id=SJx63jRqFm
https://openreview.net/forum?id=CAjxVodl_v


Foundation Models for Decision Making Workshop at Neural Information Processing Systems, 2022.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9729–9738, 2020.

Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. Imitation learning:
A survey of learning methods. ACM Comput. Surv., 50(2), apr 2017. ISSN 0360-0300. doi:
10.1145/3054912. URL https://doi.org/10.1145/3054912.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34, 2021.

Saurav Kadavath, Samuel Paradis, and Brian Yao. Pretraining & reinforcement learning: Sharpening
the axe before cutting the tree. arXiv preprint arXiv:2110.02497, 2021.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Alex Lamb, Riashat Islam, Yonathan Efroni, Aniket Didolkar, Dipendra Misra, Dylan Foster, Lekan
Molu, Rajan Chari, Akshay Krishnamurthy, and John Langford. Guaranteed discovery of con-
trollable latent states with multi-step inverse models. arXiv preprint arXiv:2207.08229, 2022.

Kuang-Huei Lee, Ofir Nachum, Mengjiao Yang, Lisa Lee, Daniel Freeman, Winnie Xu, Sergio
Guadarrama, Ian Fischer, Eric Jang, Henryk Michalewski, et al. Multi-game decision transform-
ers. arXiv preprint arXiv:2205.15241, 2022.

Seunghyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin. Offline-to-online
reinforcement learning via balanced replay and pessimistic q-ensemble. In 5th Annual Conference
on Robot Learning, 2021. URL https://openreview.net/forum?id=AlJXhEI6J5W.

Hao Liu and Pieter Abbeel. Behavior from the void: Unsupervised active pre-training. Advances in
Neural Information Processing Systems, 34:18459–18473, 2021.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqY7.

Russell Mendonca, Oleh Rybkin, Kostas Daniilidis, Danijar Hafner, and Deepak Pathak. Discover-
ing and achieving goals via world models. Advances in Neural Information Processing Systems,
34, 2021.

Vincent Micheli, Eloi Alonso, and François Fleuret. Transformers are sample efficient world models.
arXiv preprint arXiv:2209.00588, 2022.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A univer-
sal visual representation for robot manipulation. arXiv preprint arXiv:2203.12601, 2022.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J Andrew Bagnell, Pieter Abbeel, Jan Peters, et al.
An algorithmic perspective on imitation learning. Foundations and Trends® in Robotics, 7(1-2):
1–179, 2018.

Simone Parisi, Aravind Rajeswaran, Senthil Purushwalkam, and Abhinav Gupta. The unsurprising
effectiveness of pre-trained vision models for control. arXiv preprint arXiv:2203.03580, 2022.

11

https://doi.org/10.1145/3054912
https://openreview.net/forum?id=AlJXhEI6J5W
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7


Foundation Models for Decision Making Workshop at Neural Information Processing Systems, 2022.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pp. 2778–2787.
PMLR, 2017.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
standing by generative pre-training. 2018.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning,
pp. 8748–8763. PMLR, 2021.

Ilija Radosavovic, Tete Xiao, Stephen James, Pieter Abbeel, Jitendra Malik, and Trevor Darrell.
Real world robot learning with masked visual pre-training. In 6th Annual Conference on Robot
Learning.

Kate Rakelly, Abhishek Gupta, Carlos Florensa, and Sergey Levine. Which mutual-
information representation learning objectives are sufficient for control? In M. Ran-
zato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances
in Neural Information Processing Systems, volume 34, pp. 26345–26357. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/file/
dd45045f8c68db9f54e70c67048d32e8-Paper.pdf.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al.
A generalist agent. arXiv preprint arXiv:2205.06175, 2022.

Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Charlin,
R Devon Hjelm, Philip Bachman, and Aaron C Courville. Pretraining representations for data-
efficient reinforcement learning. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and
J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34, pp.
12686–12699. Curran Associates, Inc., 2021. URL https://proceedings.neurips.
cc/paper/2021/file/69eba34671b3ef1ef38ee85caae6b2a1-Paper.pdf.

Younggyo Seo, Kimin Lee, Stephen James, and Pieter Abbeel. Reinforcement learning with action-
free pre-training from videos. arXiv preprint arXiv:2203.13880, 2022.

Rutav Shah and Vikash Kumar. Rrl: Resnet as representation for reinforcement learning. In Inter-
national Conference on Machine Learning. PMLR, 2021.

Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling representation learning
from reinforcement learning. In International Conference on Machine Learning, pp. 9870–9879.
PMLR, 2021.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv
preprint arXiv:1801.00690, 2018.

Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel,
Tom Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm control: Software and
tasks for continuous control. Software Impacts, 6:100022, 2020. ISSN 2665-9638. doi:
https://doi.org/10.1016/j.simpa.2020.100022. URL https://www.sciencedirect.com/
science/article/pii/S2665963820300099.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Mengjiao Yang and Ofir Nachum. Representation matters: offline pretraining for sequential decision
making. In International Conference on Machine Learning, pp. 11784–11794. PMLR, 2021.

12

https://proceedings.neurips.cc/paper/2021/file/dd45045f8c68db9f54e70c67048d32e8-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/dd45045f8c68db9f54e70c67048d32e8-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/69eba34671b3ef1ef38ee85caae6b2a1-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/69eba34671b3ef1ef38ee85caae6b2a1-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S2665963820300099
https://www.sciencedirect.com/science/article/pii/S2665963820300099


Foundation Models for Decision Making Workshop at Neural Information Processing Systems, 2022.

Qinqing Zheng, Amy Zhang, and Aditya Grover. Online decision transformer. In Kamalika
Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.),
Proceedings of the 39th International Conference on Machine Learning, volume 162 of Pro-
ceedings of Machine Learning Research, pp. 27042–27059. PMLR, 17–23 Jul 2022. URL
https://proceedings.mlr.press/v162/zheng22c.html.

13

https://proceedings.mlr.press/v162/zheng22c.html


Foundation Models for Decision Making Workshop at Neural Information Processing Systems, 2022.

Appendix

A IMPLEMENTATION DETAILS

A.1 IMPLEMENTATION OF PRETRAINING OBJECTIVES

I. Forward Dynamics Prediction.
For each observation-action pair (ot, at) in a control sequence, the forward prediction loss is con-
structed as follows. Let gθ be the observation tokenizer being trained where θ denotes the parameter-
ization. We maintain a momentum encoder ḡθ̄ whose parameters are updated by θ̄ = τ(θ̄)+(1−τ)θ.
With the next observation ot+1, we have ŝt+1 := SG(ḡθ̄(ot+1)), where SG refers to stop gradient.
Then the forward prediction loss is defined as:

Lfwd := MSE (ffwd(ϕ(ot), ϕ(at)), ŝt+1) , (1)

where ffwd is a linear prediction head.

II. Inverse Dynamics Prediction.
For each consecutive observation pair (ot, ot+1), inverse prediction tries to recover the action that
leads ot to ot+1, which gives the loss function

Linv := MSE (finv(ϕ(ot), ϕ(ot+1)), at) , (2)

where finv is a linear prediction head.

III. Random Masked Hindsight Control.
In our implementation, we use a predefined mask-token m = [−1, · · · ,−1] to replace the original
tokens. Let h̃ denote the masked control sequence, and 0 ≤ s1, s2, · · · , sk ≤ L be the selected
indices for masked actions. Then the loss function can be defined as:

Lmask-inv :=
∑k

i=1
l(si),

where l(si) =

{
MSE

(
fmask-inv(ϕM (mt+si); h̃), at+si

)
, if si < L

0 if si = L

(3)

where fmask-inv is a linear prediction head, and ϕM is the transformer model without a causal mask.
Note that we do not predict at+L as it is infeasible to recover it without future observations.

Schedule of Masking Size. Theoretically, it is possible to recover a full action sequence for a given
observation sequence, which implies that k = L is a reasonable setup. But in environments with
complex dynamics, directly recovering all actions is hard in the start of training. Hence, we adjust
the difficulty of random masked hindsight control in a curriculum way, by gradually increasing the
value of k in the following schedule:

k = max

(
1, int

(
L ∗ current epoch + 1

total epochs

))
(4)

On the other hand, if we predict actions from all observations, it is possible that the model mainly
relies on local dynamics, i.e., predict at mainly based on ot−1, ot−2, ot−3, conflicting with our desire
of learning long-term dependence. Therefore, we also mask a subset of observations with k1. In the
extreme case k1 = L, the objective becomes similar to goal-conditioned modeling with ot being
the start and ot+L is the goal. However, in a control environment, there usually exist multiple paths
from ot to ot+L, making the action prediction ambiguous. Schwarzer et al. (2021) uses a goal-
conditioned objective which finds the shortest path. However, extra value fitting and planning are
required, which may lead to higher cost and compounding errors. Therefore, we intentionally make
k1 smaller than the context length (half of L), such that the model is able to predict the masked
actions based on revealed subsequence of observations and actions. The schedule of k1 is as below.

k1 = max

(
1, int

(
L

2
∗ current epoch + 1

total epochs

))
. (5)

The overall pretraining objective is

min
ϕ,ffwd,finv,fmask-inv

Lfwd + Linv + Lmask-inv. (6)

14



Foundation Models for Decision Making Workshop at Neural Information Processing Systems, 2022.

A.2 ENVIRONMENT AND DATASET.

Table 2 lists all domains and tasks from DMC used in our experiments, and their relations are further
depicted in Figure 8.

Phase Domain Task Expert Score by SAC

Pretraining & Finetuning

cartpole swingup 875
hopper hop 200
cheetah run 850
walker stand 980
walker run 700

Finetuning only

cartpole balance 1000
hopper stand 900
walker walk 950

pendulum swingup 1000
finger spin 800

Table 2: A list of domains and tasks used in pretraining and finetuning. The first 5 tasks are used for pretraining.
In the finetuning phase, we use the pretrained model to learn policies in all 10 tasks, including the last 5 tasks
that are unseen during pretraining.

Figure 8: Graphical relations of all tasks involved.

To generate our datasets for pretraining and finetuning, we first train 5 agents (corresponding to
different random seeds) for each task with ground truth vector states using SAC (Haarnoja et al.,
2018) for 1M steps, and collect the full replay buffer with corresponding RGB images (3×84×84)
rendered by the physical simulator. Then, we divide the replay buffers and create the following
datasets of different qualities.
• Random: Randomly generated interaction trajectories. This dataset has 400K timesteps per task.
• Exploratory: The first 80K timesteps of each SAC learner, corresponding to the exploratory

stage. For all 5 agents, this leads to a cumulative of 400K timesteps per task.
Note that different tasks have different difficulties for the SAC agent to converge. For example, in
cartpole, the agent converges with much less samples than in walker. Therefore, we slightly adjust
the proportion of data from different tasks in multi-task pretraining to avoid overfitting to simple
tasks and underfitting to harder tasks. In pretraining, we use 40K timesteps from each cartpole
behavior agent (200K by 5 agents), and 90K timesteps from each walker behavior agent (450K by 5
agents), and 80K for all other agents (400K by 5 agents).

Datasets for downstream learning:
• Sampled Replay (for RTG): We randomly sample 10% trajectories from the full replay buffer

of 1 SAC agent, resulting in a dataset of size 100K per task, with diverse return distribution.
• Expert (for BC): We select 10% trajectories with the highest returns from the full replay buffer

of 1 SAC agent, resulting in an expert dataset of size 100K per task.

A.3 MODEL AND HYPERPARAMETERS.

Following the implementation of Decision Transformer (Chen et al., 2021), our transformer back-
bone is based on the minGPT implementation https://github.com/karpathy/minGPT with the default

15

https://github.com/karpathy/minGPT


Foundation Models for Decision Making Workshop at Neural Information Processing Systems, 2022.

AdamW optimizer (Loshchilov & Hutter, 2019). For both pretraining and finetuning, the learning
rate is set to be 6× 10−4 and batch size 256. For learning rate, linear warmup and cosine decay are
used. A context length 30 is used in all tasks for both training and execution. We tested different
context lengths in preliminary experiments, and a shorter context length (5/10/20) does not work as
well as 30 when training from scratch. We use 8 attention heads, 8 layer attention blocks, and an
embedding size 256 in all experiments, for both our model and baselines. There are 10.8 M train-
able parameters in the model. We test SMART with varying layer numbers and embedding sizes in
Appendix B.2.

For the execution of learned RTG-conditioned policies, we set the expected RTG as the expert scores
in Table 2. Tuning the RTG setting may further increase the results. But since our focus is to show
the effectiveness of pretraining, we did not explore other possibilities.

All models are trained for 10 epochs in pretraining, and 20 epochs for each downstream task. The
performance of the best checkpoint is reported, as detailed in the next section.

A.4 EVALUATION METRICS.

For both BC and RTG downstream learning, we report the average cumulative reward of the learned
policy by interacting with the environment for 50 episodes. In Figure 5, we calculate the normalized
reward based on expert scores.

In Figure 6 and Figure 7a, we report the relative improvement of each ablated method calculated by
the following formula.

relative improvement :=
method reward− scratch reward

scratch reward
, (7)

where the scratch reward is the best reward of training from scratch using the same learning config-
urations.

B ADDITIONAL EXPERIMENT RESULTS

B.1 FULL RESULTS OF DOWNSTREAM LEARNING

R
T

G

0 5 10 15

0

200

400

600

800

Epoch

R
ew

ar
d

Cartpole Swingup: RTG-based Policy Learning

Scratch
CT-Single
SMART

0 5 10 15

0

200

400

600

Epoch

R
ew

ar
d

Cheetah Run: RTG-based Policy Learning

Scratch
CT-Single
SMART

0 5 10 15

0

20

40

60

Epoch

R
ew

ar
d

Hopper Hop: RTG-based Policy Learning

Scratch
CT-Single
SMART

0 5 10 15

200

400

600

800

Epoch

R
ew

ar
d

Walker Stand: RTG-based Policy Learning

Scratch
CT-Single
SMART

0 5 10 15

100

200

300

400

Epoch

R
ew

ar
d

Walker Run: RTG-based Policy Learning

Scratch
CT-Single
SMART

B
C

0 5 10 15

0

200

400

600

Epoch

R
ew

ar
d

Cartpole Swingup: Behavior Clone

Scratch
CT-Single
SMART

0 5 10 15

0

200

400

600

Epoch

R
ew

ar
d

Cheetah Run: Behavior Clone

Scratch
CT-Single
SMART

0 5 10 15

0

20

40

60

80

100

Epoch

R
ew

ar
d

Hopper Hop: Behavior Clone

Scratch
CT-Single
SMART

0 5 10 15

150

200

250

Epoch

R
ew

ar
d

Walker Stand: Behavior Clone

Scratch
CT-Single
SMART

0 5 10 15

20

40

60

80

100

Epoch

R
ew

ar
d

Walker Run: Behavior Clone

Scratch
CT-Single
SMART

Figure 9: Downstream learning rewards of SMART (red) compared with pretraining CT with single-task data
(blue) and training from scratch (gray), using the Random pretraining dataset. Results are averaged over 3
random seeds.

The results in Figure 3 and Figure 4 are generated with the Exploratory pretraining dataset. Now,
we show the performance of models pretrained using the Random dataset in seen tasks and unseen
tasks in Figure 9 and Figure 10, respectively.

Although the single-task pretrained model consistently outperforms training from scratch when pre-
trained with the Exploratory dataset, it sometime gets worst-than-scratch downstream performance
when pretrained with the Random dataset. Therefore, it is challenging to overcome the distribu-
tion shift problem. In contrast, SMART still achieves much better performance than training from

16



Foundation Models for Decision Making Workshop at Neural Information Processing Systems, 2022.

R
T

G

0 5 10 15

400

600

800

1,000

Epoch

R
ew

ar
d

Cartpole Balance: RTG-based Policy Learning

Scratch
CT-Single
SMART

0 5 10 15

0

50

100

150

Epoch

R
ew

ar
d

Hopper Stand: RTG-based Policy Learning

Scratch
CT-Single
SMART

0 5 10 15

0

200

400

600

800

Epoch

R
ew

ar
d

Walker Walk: RTG-based Policy Learning

Scratch
CT-Single
SMART

0 5 10 15

0

200

400

600

Epoch

R
ew

ar
d

Finger Spin: RTG-based Policy Learning

Scratch
CT-Single
SMART

0 5 10 15

0

200

400

600

Epoch

R
ew

ar
d

Finger Spin: RTG-based Policy Learning

Scratch
CT-Single
SMART

B
C

0 5 10 15

500

600

700

800

900

Epoch

R
ew

ar
d

Cartpole Balance: Behavior Clone

Scratch
CT-Single
SMART

0 5 10 15

0

100

200

300

Epoch

R
ew

ar
d

Hopper Stand: Behavior Clone

Scratch
CT-Single
SMART

0 5 10 15

20

40

60

80

100

120

140

Epoch

R
ew

ar
d

Walker Walk: Behavior Clone

Scratch
CT-Single
SMART

0 5 10 15

0

200

400

600

800

Epoch

R
ew

ar
d

Finger Spin: Behavior Clone

Scratch
CT-Single
SMART

0 5 10 15

0

200

400

600

800

Epoch

R
ew

ar
d

Finger Spin: Behavior Clone

Scratch
CT-Single
SMART

Figure 10: Downstream learning rewards in unseen tasks and domains of SMART (red) compared with pre-
training CT with single-task data (blue) and training from scratch (gray), using the Random pretraining dataset.
Results are averaged over 3 random seeds.

scratch in all tested tasks, which verifies the resilience of SMART due to multi-task self-supervised
pretraining.

B.2 MODEL CAPACITY TEST

Figure 7b shows the results of varying model capacities averaged over tasks. To demonstrate the
influence of model capacity on different tasks, we provide the per-task comparison in Figure 11.

cartpole
swingup

cheetah
run

hopper
hop

walker
stand

walker
run

cartpole
balance

hopper
stand

walker
walk

0

1

2

R
el

at
iv

e
Im

pr
ov

em
en

t

Embedding Size=128
Embedding Size=256
Embedding Size=512

cartpole
swingup

cheetah
run

hopper
hop

walker
stand

walker
run

cartpole
balance

hopper
stand

walker
walk

0

1

2

R
el

at
iv

e
Im

pr
ov

em
en

t

Layer=6
Layer=8
Layer=10

Figure 11: Comparison of varying model capacities (embedding size and layer number) in different tasks in
terms of relative improvement wrt training from scratch.

B.3 COMPARISON WITH PRETRAINED RESNET MODELS

Our empirical evaluation is done for multiple transformer-based pretraining approaches. In parallel
to them, there are some existing pretraining paradigms that use large-capacity models as ResNet
instead of transformers as the backbones. Although it is hard to directly compare the performance
of totally different model architectures, we still provide the results of ResNet pretraining, to better
posit this work in literature and verify the significance of our results.

Baselines and Implementation Details. We use the following two state-of-the-art pretraining ap-
proaches.

• CPC (Oord et al., 2018) is a self-supervised representation learning approach with contrastive
predictive coding. It has been demonstrated success in many vision applications. When leveraging

17



Foundation Models for Decision Making Workshop at Neural Information Processing Systems, 2022.

it in sequential decision making, state representations can be pretrained by decoupled from policy
learning.

• ATC (Stooke et al., 2021) is another contrastive learning approach target on decision making
tasks. It also decouples representation learning from policy learning. Different from CPC which
performs InfoNCE (Oord et al., 2018) loss in a predictive manner, ATC propose an Augmented
Temporal Contrast to directly compute InfoNCE loss among temporally augmented clips.

For both CPC and ATC, we use 3D-ResNet18 as the encoder backbone. During pretraining, a 2-layer
2D-ConvNet is used as the prediction head for both CPC and ATC. For CPC, a single-layer Con-
vGRU is used as the aggregation network. Note that, during finetuning, both prediction heads and
aggregation network are dropped. Only the pretrained encoder (3D-ResNet18) is used to produce
the pretrained representations. During finetuning, we simply attach a single linear layer as the action
prediction head on top of the pretrained encoder, which is under the same setting with ours.

For a fair comparison, we pretrain and finetune both CPC and ATC with a context length of 30
such that all comparing models are seeing the same time horizon. Follow the widely used training
protocol in decision making tasks, we also leverage a frame stacking with stack size as 3 when
training both of them. We keep the other hyperparameters the same with our default setting.

Results. We compare our SMART with CPC and ATC in RTG and BC downstream tasks, with
Exploratory and Random dataset. The results are shown in Figure 12 and Figure 13, respec-
tively. Although training a transformer and training a ResNet model from scratch usually produces
different rewards in the same task, the results show that pretrained models are able to their cor-
responding train-from-scratch baselines. When using RTG downstream learning, we can see that
SMART outperforms CPC and ATC in all downstream tasks. When using BC as downstream learn-
ing method, the transformer backbone fails to get a high score and so does SMART pretrained mod-
els. But in remaining tasks, SMART is still significantly better than CPC and ATC. This suggests the
advantages of our pretraining framework SMART and the proposed model Control Transformer.

R
T

G

0 5 10 15

0

200

400

600

Epoch

R
ew

ar
d

Cartpole Swingup (RTG)

Transformer from Scratch ResNet from Scratch CPC (ResNet) ATC (ResNet) Ours (Transformer)

0 5 10 15

0

20

40

60

Epoch

R
ew

ar
d

Hopper Hop (RTG)

Transformer from Scratch
ResNet from Scratch
CPC (ResNet)
ATC (ResNet)
Ours (Transformer)

0 5 10 15

0

200

400

600

Epoch

R
ew

ar
d

Cheetah Run (RTG)

Transformer from Scratch
ResNet from Scratch
CPC (ResNet)
ATC (ResNet)
Ours (Transformer)

0 5 10 15

200

400

600

800

Epoch

R
ew

ar
d

Walker Stand (RTG)

Transformer from Scratch
ResNet from Scratch
CPC (ResNet)
ATC (ResNet)
Ours (Transformer)

0 5 10 15

0

200

400

600

800

Epoch

R
ew

ar
d

Walker Walk (RTG)

Transformer from Scratch
ResNet from Scratch
CPC (ResNet)
ATC (ResNet)
Ours (Transformer)

B
C

0 5 10 15

0

100

200

300

400

Epoch

R
ew

ar
d

Cartpole Swingup (BC)

Transformer from Scratch
ResNet from Scratch
CPC (ResNet)
ATC (ResNet)
Ours (Transformer)

0 5 10 15

0

20

40

60

80

100

Epoch

R
ew

ar
d

Hopper Hop (BC)

Transformer from Scratch
ResNet from Scratch
CPC (ResNet)
ATC (ResNet)
Ours (Transformer)

0 5 10 15

0

200

400

600

Epoch

R
ew

ar
d

Cheetah Run (BC)

Transformer from Scratch
ResNet from Scratch
CPC (ResNet)
ATC (ResNet)
Ours (Transformer)

0 5 10 15

200

400

600

800

Epoch

R
ew

ar
d

Walker Stand (BC)

Transformer from Scratch
ResNet from Scratch
CPC (ResNet)
ATC (ResNet)
Ours (Transformer)

0 5 10 15
0

200

400

600

Epoch

R
ew

ar
d

Walker Walk (BC)

Transformer from Scratch
ResNet from Scratch
CPC (ResNet)
ATC (ResNet)
Ours (Transformer)

Figure 12: Downstream learning rewards of SMART (red) compared with CPC (darkblue) and ATC (darkor-
ange), using the Exploratory pretraining dataset. CPC and ATC are based on ResNet, whose performance
of training from scratch is shown in darkgreen in comparison to training transformer from scratch (grey).

B.4 PRETRAIN CT FOR ONLINE FINETUNING

Similar to most transformer-based decision making models, we consider policy learning in the form
of IL and offline RL. For online RL, special care is needed due to the environment uncertainty and
the need of exploration. A recent work by Zheng et al. (2022) proposes online decision transformer
(ODT), which first pretrains the model with offline trajectories and then finetune the model in an
online manner. Zheng et al. (2022) demonstrate the effectiveness of ODT in a series of MuJoCo tasks
with groundtruth state being observations. It is shown that the offline pretraining phase is crucial
for online fintuning with transformer-based models. However, the pretraining phase of ODT is DT
with reward supervision. With the self-supervised control-centric pretraining objective (Lfwd, Linv,
Lmask-inv) proposed in this work, we would like to ask the following questions. (1) Can we replace

18



Foundation Models for Decision Making Workshop at Neural Information Processing Systems, 2022.

R
T

G

0 5 10 15

0

200

400

600

Epoch

R
ew

ar
d

Cartpole Swingup (RTG)

Transformer from Scratch ResNet from Scratch CPC (ResNet) ATC (ResNet) Ours (Transformer)

0 5 10 15

0

20

40

Epoch

R
ew

ar
d

Hopper Hop (RTG)

Transformer from Scratch
ResNet from Scratch
CPC (ResNet)
ATC (ResNet)
Ours (Transformer)

0 5 10 15

0

200

400

600

Epoch

R
ew

ar
d

Cheetah Run (RTG)

Transformer from Scratch
ResNet from Scratch
CPC (ResNet)
ATC (ResNet)
Ours (Transformer)

0 5 10 15

200

400

600

800

Epoch

R
ew

ar
d

Walker Stand (RTG)

Transformer from Scratch
ResNet from Scratch
CPC (ResNet)
ATC (ResNet)
Ours (Transformer)

0 5 10 15

0

200

400

600

Epoch

R
ew

ar
d

Walker Walk (RTG)

Transformer from Scratch
ResNet from Scratch
CPC (ResNet)
ATC (ResNet)
Ours (Transformer)

B
C

0 5 10 15
0

100

200

300

Epoch

R
ew

ar
d

Cartpole Swingup (BC)

Transformer from Scratch
ResNet from Scratch
CPC (ResNet)
ATC (ResNet)
Ours (Transformer)

0 5 10 15

0

20

40

60

80

Epoch

R
ew

ar
d

Hopper Hop (BC)

Transformer from Scratch
ResNet from Scratch
CPC (ResNet)
ATC (ResNet)
Ours (Transformer)

0 5 10 15

0

200

400

600

Epoch

R
ew

ar
d

Cheetah Run (BC)

Transformer from Scratch
ResNet from Scratch
CPC (ResNet)
ATC (ResNet)
Ours (Transformer)

0 5 10 15

200

400

600

800

Epoch

R
ew

ar
d

Walker Stand (BC)

Transformer from Scratch
ResNet from Scratch
CPC (ResNet)
ATC (ResNet)
Ours (Transformer)

0 5 10 15

0

200

400

600

Epoch

R
ew

ar
d

Walker Walk (BC)

Transformer from Scratch
ResNet from Scratch
CPC (ResNet)
ATC (ResNet)
Ours (Transformer)

Figure 13: Comparison with ResNet-based pretrained models using the Random pretraining dataset.

the supervised DT pretraining objective with our self-supervised pretraining objective that does not
require reward supervision? (2) Can we improve ODT by combining our objectives with it?

We follow the open-sourced implementation of ODT and evaluate our proposed objective using the
default model and hyperparameter settings of ODT. We first replace the DT pretraining loss with
our self-supervised losses. The results shown in Figure 14 suggests that even without any reward
information, pretraining ODT with our self-supervised losses can achieve comparable performance
with pretraining with reward supervisions. Although our pretrained model takes more steps to warm
up due to the lack of supervised pretraining, it quickly converges to similar results as ODT in online
finetuning. Therefore, in practical applications where only reward-free pretraining trajectories are
available, DT pretraining is infeasible while our pretraining can be used without sacrificing the
finetuning performance.

0 20 40 60 80 100 120

0

1,000

2,000

3,000

Epoch

R
ew

ar
d

hopper-medium-v2

Supervised Pretrain
Self-supervised Pretrain (ours)

0 20 40 60 80 100 120
0

200

400

600

800

1,000

Epoch

R
ew

ar
d

hopper-random-v2

Supervised Pretrain
Self-supervised Pretrain (ours)

0 20 40 60 80 100 120

0

1,000

2,000

3,000

Epoch

R
ew

ar
d

walker2d-medium-v2

Supervised Pretrain
Self-supervised Pretrain (ours)

0 20 40 60 80 100 120

0

200

400

600

Epoch

R
ew

ar
d

walker2d-random-v2

Supervised Pretrain
Self-supervised Pretrain (ours)

Figure 14: Comparison of our self-supervised pretraining objective and the supervised pretraining objective of
ODT in hopper and walker2d environments with medium and random pretraining dataset.

To answer the second question, we combine our pretraining objective with ODT. There are two
potential ways of such combination: (1) only combine in pretraining, and (2) add our self-supervised
losses during both pretraining and finetuning (the losses serve as auxiliary tasks in online finetuning).
We evaluate both versions in our experiments, as shown in Figure 15. The results suggest that
including our pretraining objective can improve the performance of ODT, especially when the data
quality is low ({task}-random dataset is used). However, when our objective is only used during
pretraining, it suffers from high variance in downstream learning. To address this issue, we find that
adding our objective as auxiliary loss in finetuning can effectively improve the result and decrease
the variance.

It is also interesting to see that the online learning performance of ODT depends on the quality of
pretraining dataset. When the random dataset is used, ODT converges to a suboptimal policy in
finetuning, although it could have explored better solutions. Adding our self-supervised pretraining
objective improves the performance, but it still cannot match the performance of models pretrained
in a higher-quality dataset. We hypothesize that this is due to a very large distribution shift between
the random dataset and the ideal dataset for online learning. That is, the model pretrained with
random data overfits to the random behavior and fails to further explore and exploit. How to make
a transformer-based model adapt to an online environment with low-quality pretraining data is still
an open problem that we aim to study in our future work.

19



Foundation Models for Decision Making Workshop at Neural Information Processing Systems, 2022.

0 10 20 30 40 50 60

1,500

2,000

2,500

3,000

Epoch

R
ew

ar
d

hopper medium

ODT
ODT + Ours
ODT + Ours (Auxiliary)

0 20 40 60 80 100 120
0

200

400

600

800

1,000

Epoch

R
ew

ar
d

hopper random

ODT
ODT + Ours
ODT + Ours (Auxiliary)

0 10 20 30 40 50 60

1,500

2,000

2,500

3,000

3,500

4,000

Epoch

R
ew

ar
d

walker medium

ODT
ODT + Ours
ODT + Ours (Auxiliary)

0 20 40 60 80 100 120

200

400

600

Epoch

R
ew

ar
d

walker random

ODT
ODT + Ours
ODT + Ours (Auxiliary)

Figure 15: Combining our pretraining objectives with ODT produces better results, especially when the pre-
training dataset has low quality. Results are averaged over 5 random seeds.

20


	Introduction
	Related works
	Preliminaries
	Problem Setup: Pretraining and Finetuning Pipeline
	Our Pretraining Model and Approach
	Approach Overview and Model Architecture
	Control-centric Self-supervised Pretraining Objectives

	Experiments
	Experimental Setup
	Experimental Results
	Ablation and Discussion

	Conclusion
	Implementation Details
	Implementation of Pretraining Objectives
	Environment and Dataset.
	Model and Hyperparameters.
	Evaluation Metrics.

	Additional Experiment Results
	Full Results of Downstream Learning
	Model Capacity Test
	Comparison with Pretrained ResNet Models
	Pretrain CT for Online Finetuning


