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Abstract

Current approaches for open-vocabulary scene graph generation (OVSGG) use
vision-language models such as CLIP and follow a standard zero-shot pipeline –
computing similarity between the query image and the text embeddings for each
category (i.e., text classifiers). In this work, we argue that the text classifiers
adopted by existing OVSGG methods, i.e., category-/part-level prompts, are scene-
agnostic as they remain unchanged across contexts. Using such fixed text classifiers
not only struggles to model visual relations with high variance, but also falls short
in adapting to distinct contexts. To plug these intrinsic shortcomings, we devise
SDSGG, a scene-specific description based OVSGG framework where the weights
of text classifiers are adaptively adjusted according to the visual content. In
particular, to generate comprehensive and diverse descriptions oriented to the
scene, an LLM is asked to play different roles (e.g., biologist and engineer) to
analyze and discuss the descriptive features of a given scene from different views.
Unlike previous efforts simply treating the generated descriptions as mutually
equivalent text classifiers, SDSGG is equipped with an advanced renormalization
mechanism to adjust the influence of each text classifier based on its relevance
to the presented scene (this is what the term “specific” means). Furthermore, to
capture the complicated interplay between subjects and objects, we propose a
new lightweight module called mutual visual adapter. It refines CLIP’s ability to
recognize relations by learning an interaction-aware semantic space. Extensive
experiments on prevalent benchmarks show that SDSGG outperforms top-leading
methods by a clear margin.

1 Introduction

SGG [1] aims to create a structured representation of an image by identifying objects as nodes and
their relations as edges within a graph. The emerging field of OVSGG [2, 3], which broadens the scope
of SGG to identify and associate objects beyond a predefined set of categories, has become a research
hotspot for its prospective to amplify the practicality of SGG in diverse real-world applications.

OVSGG has achieved notable progress due to the success of vision-language models (VLMs) [4, 5]
and prompt learning [6, 7]. Existing OVSGG methods adopt a standard zero-shot pipeline [4], which
computes similarity between the visual embedding from query image and the text embedding from
pre-defined text classifiers (c.f . Fig. 1a). One straightforward direction for OVSGG is to use only
the category name (e.g., “riding”) [2, 8, 9, 3, 10] as the text classifier and perform vision-language
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Figure 1: Illustration of the used text classifiers in OVSGG. (a) CLIP performs zero-shot classification by
computing similarity between the query image and the text embeddings for each category, then choosing the
highest. (b) To further utilize the learned semantic space of CLIP, one can compute similarities of multiple
part-level prompts (e.g., the object of ⟨man, riding, horse⟩ may be described with “with four legs” and “with a
saddle”). (c) Instead of using these scene-agnostic text classifiers, SDSGG adopts comprehensive, scene-specific
descriptions generated by LLMs, which can adapt to specific contexts by using the proposed renormalization.

alignment as in prompt learning to learn the underlying patterns. On the other hand, [11, 12] argue
that such methods fail to utilize the rich context of additional information that language can provide.
To address this, [12] decomposes relation detection into several separate components, computing
similarities by checking how well the visual features of the object match the part-level descriptions1.
As shown in Fig. 1b, the object of relation “riding” should have four legs, a saddle, etc.

Despite these technological advances, we still observe current OVSGG systems lack in-depth in-
spection of the expressive range of the used text classifiers, which puts a performance cap on them.
Concretely, OVSGG models that rely on scene2-agnostic text classifiers have the following flaws.
First, methods based on category names [2, 3] struggle to model the large variance in visual relations.
Using only category names as classifiers [4] does hold water when applied to object recognition [13].
For instance, CLIP shares common visual features across diverse image-text pairs of tigers which
encompasses a variety of tiger appearances and corresponding descriptions. Nonetheless, the scenario
becomes far more complex when it comes to relation detection. The visual features that define the rela-
tion “on” can vary dramatically across scenes, e.g., “dog on bed” vs. “people on road”. RECODE [12]
proposes to decompose relation detection into recognizing part-level descriptions for both subject
and object, hence partially easing the aforementioned difficulty. Yet, it computes similarities for the
subject and object separately and does not model the interplay between subjects and objects. Second,
part-level prompt based methods uniformly process all descriptions as affirmative classifiers [11, 12],
overlooking the possibility that some text classifiers might be contrary to specific contexts. When
querying LLMs for distinctive visual features of subjects and objects to distinguish the predicate
“riding”, with the subject as “human” and the object as “horse”, LLMs provide part-level descriptions
of the expected appearance of both entities. All generated descriptions are treated equally as definitive
text classifiers. However, these descriptions could potentially be misleading, as LLMs produce them
without considering the specific context, even resulting in some descriptions that are wholly irrelevant
to the presented image. For example, LLMs typically associate the predicate “riding” with the animal

1The terms “description” and “prompt” are used interchangeably, all denoting text classifiers.
2A scene typically involves objects and their interplay and relationships.
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“with four legs”. Nonetheless, such associations are indeed irrelevant, as an animal’s legs are not
always visible in the presented image, or the animal may have only two legs.

Filling the gaps identified above calls for a fundamental paradigm shift: moving from the fixed,
scene-agnostic (i.e., category-/part-level) text classifiers towards flexible, scene-specific ones. In
light of this, we develop SDSGG, a scene-specific description based OVSGG framework that utilizes
text classifiers generated from LLMs, complemented by a renormalization technique, to understand
scenes from different perspectives. For the textual part, given a scene with specified content, an
LLM is assigned distinct roles, akin to experts specializing in biology, physics, and engineering,
to analyze descriptive scene features comprehensively (c.f . Fig. 1c). Such a multi-persona scheme
is designed to improve the diversity of the generated scene descriptions as LLMs tend to generate
repetitive content. LLM can be queried multiple times to obtain a large number of scene descriptions.
Moreover, since not all descriptions are relevant to the presented image (e.g., some parts of the
object may not appear), SDSGG is equipped with an advanced mechanism that renormalizes each
scene description via opposite descriptions corresponding to the original descriptions. This involves
evaluating two vision-language similarities: one for the original scene description and the other for
its opposite. The difference between the two similarities is viewed as the self-normalized similarity
of the scene description, allowing for flexible control over its influence. For instance, an irrelevant
description would yield a self-normalized similarity close to zero, as the two similarity scores of it and
its opposite would be very close. By doing so, the generated scene-level descriptions become flexible,
scene-specific descriptions (SSDs). For the visual part, we propose a new adapter for relation
detection, called mutual visual adapter, which consists of several lightweight learnable modules.
The proposed adapter projects CLIP’s semantic embeddings into another interaction-aware space,
modeling the complicated interplay between the subject and object through cross-attention.

With the proposed adaptive SSDs, our SDSGG is capable of: i) adapting to the given context via
evaluating the self-normalized similarity of each SSD; ii) alleviating the overfitting problem in
OVSGG models [2, 3] that use only one classifier; and iii) naturally generalizing to novel relations
by associating them with SSDs. We validate SDSGG on two widely-used benchmarks, i.e. Visual
Genome (VG) [14] and GQA [15]. Experimental results show that SDSGG outperforms existing
OVSGG methods [3] by a large margin. The strong generalization and promising performance of
SDSGG evidence the great potential of scene-specific description based relation detection.

2 Related Work

Scene Graph Generation. Since [1] introduces iterative message passing for SGG, research studies
in structured visual scene understanding have witnessed phenomenal growth. Tremendous progress
has been achieved and can be categorized into: i) Two-stage SGG [16, 17, 18, 19, 20], which first
detects all objects in the images and then recognizes the pairwise relations between them; ii) Debiased
SGG [21, 22, 23, 24, 25, 26, 27, 28], which focuses on the problem of long-tailed predicate distribution
in the current dataset; iii) Weakly-supervised SGG [29, 30, 31, 32, 33], which investigates how to
generate scene graph with only image-level supervision; iv) One-stage SGG [34, 35, 36, 37, 38, 39],
which implements SGG within an end-to-end framework (also exemplified in other relation detection
tasks [40, 41, 42]), discarding several hand-crafted procedures; v) Open-vocabulary SGG, which
learns to recognize unseen categories during training by using category-level [2, 8, 9, 3, 10] or part-
level prompts [12]. vi) Few-show SGG, which learns to recognize relations given a few examples [43].

Existing OVSGG frameworks adopt a standard open-vocabulary learning paradigm, i.e., perform
vision-language alignment in the pre-trained or random initialized semantic space with supervision
of only the category names. One except [12] reformulates OVSGG from recognizing category-level
prompts into recognizing part-level prompts, by decomposing SGG into several separate components
and computing their similarities independently, in a training-free manner. SDSGG represents the best
of both worlds. On the one hand, we point out the drawbacks of the commonly used scene-agnostic
text classifiers and introduce scene-specific alternates to understand scenes from different perspectives.
On the other hand, SDSGG incorporates a learnable mutual visual adapter to capture the underlying
patterns in the dataset and proposes to renormalize text classifiers for adapting to specific contexts.

Open-vocabulary Learning. Most deep neural networks operate on the close-set assumption,
which can only identify pre-defined categories that are present in the training set. Early zero-shot
learning approaches [44, 45, 46] adopt word embedding projection to constitute the classifiers for
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unseen class classification. With the rapid progress of vision language pre-training [4, 5, 47], open
vocabulary learning [48] has been proposed and demonstrates impressive capabilities by, for example,
distilling knowledge from VLMs [49, 50, 51, 52, 53, 54], exploiting caption data [55, 56], generating
pseudo labels [57, 58, 59, 60, 61], training without dense labels [62, 63, 64], joint learning of several
tasks [65, 66, 67], and training with more balanced data [68, 69].

While sharing a very high-level idea of vision-language alignment in open-vocabulary methods,
our SDSGG i) explicitly models the context-dependent scenarios and introduces scene-specific text
classifiers as the flexible learning targets, and ii) incoroperates a new mechanism for computing
self-normalized similarities, thereby renormalizing text classifiers according to the presented image.

VLMs Meet LLMs [70]. The big win for VLMs has been all about getting the model to match up
pictures and their descriptions closely while keeping the mismatched ones apart [4, 5, 47]. This trick,
inspired by contrastive learning from self-supervised learning [71, 72, 73, 74, 75], helps VLMs get
really good at figuring out what text goes with what image. Moreover, prompt learning acts as a
flexible way to communicate with VLMs, giving them a nudge or context to apply their knowledge of
images and text in specific ways [6, 76, 77, 7, 78]. In addition to hand-crafted or learnable prompts,
[11] offers a fresh perspective, i.e., using LLMs to generate detailed, comprehensive prompts as the
inputs of VLMs’ text encoder. Many follow-up works [79, 80, 81, 82, 83, 84, 85] across various
domains and tasks demonstrate the effectiveness of integrating VLMs and LLMs.

Category-/part-level prompts are scene-agnostic and cannot adapt to specific contexts. To this end,
SDSGG adopts scene-specific descriptions, generated by LLMs in a multi-persona collaboration
fashion, as the inputs of CLIP’s text encoder. Different from part-level prompt based approaches [11,
12] which processes all part-level prompts as affirmative classifiers, SDSGG provides a flexible
alternative via the association between classifiers (i.e., SSDs) and categories, and the renormalizing
strategy w.r.t. each SSD. Since the learned semantic space of VLMs may not be sensitive to
relations [12], we design a lightweight mutual visual adapter to project them into interaction-aware
space for capturing the complicated interplay between the subject and object.

3 Methodology

Task Setup and Notations. Given an image I , SGG transforms it into a structured representation, i.e.,
a directed graph G = {O,R}, where O represents localized (i.e., bounding box) objects with object
category information and R represents pairwise relations between objects. For a fair comparison, this
work focuses on predicting R given O, i.e., the predicate classification task which avoids the noise
from object detection, as suggested by [1, 3, 12]. Our study delves into the intricacies of transitioning
SGG from a traditional closed-set setting to an open vocabulary paradigm. This transition enables
the system to recognize previously unseen predicate categories (i.e., novel split) by learning from
observed predicate categories (i.e., base split) during training.

SDSGG follows the standard zero-shot pipeline with VLMs [4], which computes similarity between
the visual embedding v and the text embedding t for each category, and the category with highest
similarity is viewed as the final classification result (c.f . Fig. 2a). For each subject-object pair, v
can be derived by feeding cropped patches from the input image I into the visual encoder. The text
embedding t used in existing OVSGG frameworks falls into two main settings: i) Each category
consists of only one text classifier, i.e., the category name itself. ii) Each category consists of multiple
text classifiers w.r.t. subject and object, i.e., part-level descriptions. SDSGG reformulates the text
classifiers as scene-specific descriptions which will be detailed in §3.1.

Algorithmic Overview. SDSGG is a SSD based framework for OVSGG, supported by the coopera-
tion of VLMs and LLMs. For the textual part (c.f . Fig. 2b), SDSSG enjoys the expressive range of
the comprehensive SSDs generated by LLMs’ multi-persona collaboration. This is complemented
by a renormalizing mechanism to adjust the influence of each text classifier. For the visual part (c.f .
Fig. 2c), SDSSG is equipped with a mutual visual adapter to aggregate visual features v from I
for a given subject-object pair. After introducing how we generate and use SSDs for the text part
(§3.1) and the mutual visual adapter for interplay modeling of the subject and object (§3.2), we will
elaborate on SDSGG’s training objective (§3.3).
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Figure 2: (a) Overview of SDSGG. (b) Each text classifier of SDSGG contains a raw description dn
a and an
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p . As such, the self-normalized similarities can be computed with the association (Cn

r )
between predicate categories and SSDs. (c) Given the visual features (i.e., f img

s , fcls
o , and f img

o ) of both the
subject and object extracted from CLIP’s visual encoder, our mutual visual adapter (MVA) projects them into
interaction-aware space and models their complicated interplay with cross-attention.

3.1 Scene-specific Text Classifiers

Scene-level Description Generation via Multi-persona Collaboration. Using standard prompts to
query LLMs is a direct way to generate scene descriptions. For instance, one could straightforwardly
prompt LLM with a question like “Imagine there is an animal that is eating, what should the scene
look like?”. LLM’s response would typically sketch out an envisioned scene based on its statistical
training on large corpus. However, these responses may not fully capture the scene’s complexity, often
overlooking aspects such as the spatial arrangement of elements and the background environment.

To alleviate this, we draw inspiration from recent advances in LLMs’ multi-persona capabili-
ties [86, 87, 88, 89]. Specifically, LLM adopts three distinct roles, mirroring the expertise found
in experts specializing in biology, physics, and engineering. This approach allows for a compre-
hensive discussion of what a given scene entails. Because each query to LLM usually only yields
3-5 sentences of description, we query LLM several times, each time giving LLM a different scene
content to be discussed, thus obtaining a large number of scene descriptions. Since these initial de-
scriptions may suffer from noise and semantic overlap, we ask LLM to streamline and combine these
descriptions, ensuring more cohesive and distinct scene-level descriptions Dl = {d1, d2, · · · , dN}
and corresponding text embeddings T = {t1, t2, · · · , tN}, where N denotes the number of SSDs
and text embeddings T are extracted by the text encoder of CLIP. Due to the limited space, we
provide more details and prompts for generating scene descriptions in the appendix (§D).

Association between Scene-level Descriptions and Relation Categories. So far, we have obtained
various scene-level descriptions that have the ability to represent diverse scenes. A critical inquiry
arises regarding their utility for relation detection, given their lack of explicit association with
specific relation categories. To address this, we delineate three distinct scenarios characterizing
the interplay between relation categories and scene descriptions: i) certain coexistence (Cn

r = 1),
where a direct correlation exists; ii) possible coexistence (Cn

r = 0), indicating a potential but not
guaranteed association; and iii) contradiction (Cn

r =−1), denoting an incompatibility between the
scene description and relation category. Here Cn

r denotes the correlation between relation r ∈ R and
nth scene description, and is generated by LLMs (prompts are shown in §D). Such a categorization
enables us to calculate the similarity for each relation category:

sim(v, r) =
∑N

n=1
Cn

r ∗ ⟨v, tn⟩, (1)

where ⟨·, ·⟩ denotes the cosine similarity with temperature [4].
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Scene-specific Descriptions = Scene-level Descriptions + Reweighing. Upon examining text
classifiers in depth, we noticed that certain classifiers are contextually bound, e.g., “two or more
objects partially overlap each other” may not exist in all scenes. This observation underscores the
necessity for a mechanism to evaluate the significance of each text classifier, rather than applying
a uniform weight across the board. This is exactly what the term “specific” means. Recall that
the similarity measurement between an image and the text “a photo of a cat” alone yields limited
insight. However, when juxtaposed with multiple texts, such as “a photo of a cat/dog/tiger”, the
comparison of similarity scores across these categories reveals which category (cat, dog, or tiger)
the image most closely resembles. Inspired by this, we propose the incorporation of an opposite
description dnp (§D) for each raw scene description dna as a reference point (e.g., “two or more
objects partially overlap each other” vs. “each object is completely separate with clear space between
them”), resulting in SSDs Ds = {(d1a, d1p), (d2a, d2p), · · · , (dNa , dNp )} and updated text embeddings
T = {(t1a, t1p), (t2a, t2p), · · · , (tNa , tNp )}. Subsequently, the self-normalized similarity is defined as:

sim(v, r) =
∑N

n=1
Cn

r ∗
(
⟨v, tna⟩ − ⟨v, tnp ⟩

)
. (2)

The difference in similarity scores, i.e., ⟨v, tna⟩−⟨v, tnp ⟩, quantifies the relative contribution of that
SSD. By such means, a SSD irrelevant to the presented context will have a minimal effect, as the
similarity scores of it (⟨v, tna⟩) and its opposite (⟨v, tnp ⟩) would be nearly identical.

3.2 Mutual Visual Adapter

After introducing how to obtain the text embeddings and how to compute vision-language similarity,
one question remains at this point: how to obtain visual embeddings? When given a subject-object
pair with bounding boxes from O, there exist various strategies for aggregating visual features for the
subject and object within I . For example, traditional closed-set SGG frameworks [16, 17] employ
RoI pooling to extract visual features for specified bounding boxes, subsequently fusing these features
for further classification. In contrast, the more recent OVSGG framework [12] uses the visual encoder
of CLIP to extract visual embeddings of both subject and object. Then, it processes two visual
embeddings independently through part-level descriptions. Such an independent approach, however,
overlooks the informative interplay between the subject and object.

To address this oversight and capture the complicated interactions between subject and object,
we introduce a new component: the mutual visual adapter (MVA). MVA is composed of several
lightweight, learnable modules designed to fine-tune CLIP’s visual encoder specifically for pairwise
relation detection. This approach aims to enhance the model’s ability to recognize the nuanced
interactions that define relationships between subject and object in an image.

Regional Encoder. Given an image I and a subject-object pair with bounding boxes (bs and bo) from
O, the initial visual embeddings can be obtained from the visual encoder of CLIP:

fs/o=[fcls
s/o|f img

s/o ]=[fcls
s/o|f1

s/o,f
2
s/o, · · · ,fM

s/o]=Encoderv
(
Crop(I, bs/o)

)
, (3)

where M denotes the number of patches, Encoderv is CLIP’s visual encoder that is kept frozen
during training, and Crop represents image cropping.

Visual Aggregator. Next, MVA is adopted to aggregate fs and fo by cross-attention and two
lightweight projection modules. Let the subject part be the query, and the object part be the key and
value. The patch embeddings of object f img

o are first projected into low-dimensional, semantic space:

limg
o = Lineardown(f

img
o ), (4)

where Linear denotes a standard fully connected layer. Afterwards, cross-attention is adopted
to capture the complicated interplay between subject and object, resulting in an aggregated visual
embedding for the given subject-object pair:

vso = Linearup
(
AvgPool(LN(f cls

o + CrossAttn(f img
s , limg

o )))
)
, (5)

where AvgPool is the average pooling. LN is the standard layer normarlization. CrossAttn(Q,KV )
denotes the standard cross-attention operation. vos can be computed in a similar way by exchanging
the query and key of cross-attention. Combining them together leads to the final visual embedding
v = (vso + vos)/2 for final similarity measurement. As such, MVA captures the interplay of subject
and object in the projected, interaction-aware space.
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Directional Marker. One may notice that the structure of MVA is symmetric and has no information
about which input branch is the subject/object. This has a relatively small effect on semantic relations,
but a significant effect on geometric relations. For instance, after exchanging the location of the
subject and object (image flipping), the relation “eating” remains unchanged, while the relation “on
the left” would become “on the right”. Here we simply incorporate two text embeddings (ts and to)
of “a photo of subject/object” into MVA and thus update the visual embedding as:

vso = Linear
(
Concate(vso, ts)

)
, (6)

where Concate denotes concatenation. vos and v can be updated accordingly. Further exploration of
directional marker, e.g., incorporating more complex feature fusion modules, is left for future work.

3.3 Training Objective

A typical training objective in open-vocabulary learning aims to bring representations of positive pairs
closer and push negative pairs apart in the embedding space. In SDSGG, the term “positive/negative
pairs” is not defined at the category level but at the description level, requiring losses tailored
for different relation-description association types. Given a labeled relation triplet, one simplest
contrastive loss can be defined as:

L = 1
|T |

∑
tn∈T

(
⟨v, tna⟩−⟨v, tnp ⟩︸ ︷︷ ︸

similarity

−α∗Cn
r︸ ︷︷ ︸

target

)2
, (7)

where α is a scaling factor. However, as for scene descriptions marked by possible coexistence (i.e.,
Cn

r = 0), there is no direct target that can be used for training. Inspired by the identical mapping in
residual learning [90], we make the prediction results of MVA close to those of CLIP. As such, MVA
can learn the implicit knowledge embedded in CLIP’s semantic space. In addition, this regularization
term prevents MVA from overfitting to relations in the base split, which is a common problem in
open-vocabulary learning. Hence, the loss is further reformulated as:

L = 1
|T |

∑
tn∈T

(
⟨v, tna⟩−⟨v, tnp ⟩︸ ︷︷ ︸

similarity

−α∗Cn
r︸ ︷︷ ︸

target

− (β∗simCLIP (I, rel)− λ)︸ ︷︷ ︸
margin

)2
, (8)

where β is another scaling factor, simCLIP (I, rel) denotes the vision-language similarity derived
from the original CLIP, and λ is a constant scalar and is empirically set to 3e-2.

4 Experiment

4.1 Experimental Setup

Dataset. We evaluate our method on GQA [15] and VG [14] following [3, 12].

Split. Following previous work [3], VG is divided into two splits: base and novel split. The
base split comprises 70% of the relation categories for training, while the novel split contains the
remaining 30% categories invisible during training. For a more comprehensive comparison, we also
conduct testing on the semantic set, encompassing 24 predicate categories [16, 12] with richer
semantics. base and novel split of GQA [15] are obtained in a similar manner (§B).

Evaluation Metrics. We report Recall@K (R@K) and Recall@K(mR@K) following [3, 22].

Base Models and Competitors. As for the base and novel split, we compare SDSGG with two
baselines: i) CLS [4], which uses only the category-level prompts to compute the similarity between
the image and text; and ii) Epic [3], a latest OVSGG method, which introduces an entangled cross-
modal prompt approach and learns the cross-modal embeddings using contrastive learning. In terms
of the semantic split, we compare our SDSGG with three baselines: i) CLS [4], which uses only
the category-level prompts; ii) CLSDE [12], which uses prompts of relation class description; and
iii) RECODE [12], which uses visual cues of several separate components. Since [10] has neither
released the detailed split nor the code, it is not included in the comparisons for fairness.

Implementation Details. Due to limited space, implementation details are left in the appendix (§B).

4.2 Quantitative Comparison Result

We conduct quantitative experiments on VG [14] and GQA [15]. To ensure the performance gain is
reliable, each experiment is repeated three times. The average and standard deviation are reported.

7



Table 1: Quantitative results (§4.2) on VG [14] base and novel.
Method Split R@20↑ R@50↑ R@100↑ mR@20↑ mR@50↑ mR@100↑

CLS[ICML21][4]
base

2.1 3.2 3.9 7.0 9.0 10.9
Epic[ICCV23][3] - 22.6 27.2 - - -

Ours 18.7±0.69 26.5±0.92 31.6±1.00 9.2±0.14 12.4±0.12 14.8±0.10

CLS[ICML21][4]
novel

13.2 18.1 22.2 11.5 17.9 23.8
Epic[ICCV23][3] - 7.4 9.7 - - -

Ours 18.4±0.53 25.4±0.48 29.6±0.42 17.1±0.42 25.2±0.95 31.2±1.09

Table 2: Quantitative results (§4.2) on VG [14] semantic.
Method R@20↑ R@50↑ R@100↑ mR@20↑ mR@50↑ mR@100↑

CLS[ICML21][4] 7.2 10.9 13.2 9.4 14.0 17.6
CLSDE[NeurIPS23][12] 7.0 10.6 12.9 8.5 13.6 16.9

RECODE†
[NeurIPS23][12] 7.3 11.2 15.4 8.2 13.5 18.3

RECODE[NeurIPS23][12] 9.7 14.9 19.3 10.2 16.4 22.7
RECODE⋆

[NeurIPS23][12] 10.6 18.3 25.0 10.7 18.7 27.8
Ours 21.5±0.47 29.3±0.53 34.9±0.66 16.8±0.08 22.7±0.41 28.4±0.67

VG [14] base and novel. Table 1 illustrates our compelling results over the latest OVSGG model,
Epic [3]. Since Epic did not release the full code, we report values under the same setting as in
the original paper. CLS [4] leverages the original CLIP’s checkpoint (w/o fine-tuning) and only the
category-level prompts. The performance of CLS on the novel split is better than that on the base
split because i) the base split contains more relation candidates to be classified (35 vs. 15); and ii)
the base split contains head, uninformative relations (e.g., “on” and “has”) which are hard to be
distinguished by CLIP [12]. By perform contrastive learning on the base split to learn the entangled
cross-modal prompt, Epic [3] achieves significant performance gains on the base split (i.e., 22.6% vs.
3.2% R@50 and 27.2% vs. 3.9% R@100). However, Epic demonstrates worse performance on the
novel split (i.e., 7.4% vs. 18.1% R@50 and 9.7% vs. 22.2% R@100), which indicates its overfitting
on the training data. By incorporating SSDs, SDSGG outperforms Epic by a large margin on both
the base split and novel split. For instance, SDSGG exceeds Epic by 3.9%/4.4% R@50/100 on the
base split and 18.0%/19.9% R@50/100 on the novel split, respectively. The significant performance
improvements on the novel set demonstrate the strong zero-shot capability of our approach. In
addition, our margins over the CLS are 16.6%∼27.7% R@K and 2.2%∼3.9% mR@K on the base
split, and 5.2%∼7.3% R@K and 5.6%∼7.4% mR@K on the novel split, respectively.

VG [14] semantic. In Table 2, we present the numerical results of SDSGG against the latest OVSGG
work [12] on the semantic split. By leveraging part-level prompts, RECODE demonstrates superior
performance compared to CLS [4] and CLSDE [12]. The introduction of filtering strategies, i.e.,
RECODE⋆, shows substantial improvements. As seen, SDSGG surpasses all counterparts with
remarkable gains on all metrics. In particular, SDSGG exceeds RECODE⋆ by 10.9%/11.0%/9.9%
on R@20/50/100, and 6.1%/4.0%/0.6% on mR@20/50/100. Notably, SDSGG achieves impressive
performance without relying on additional augmentation or data [10]. Since an increase on mR@K
implies the average of the improvements for all categories, yields on mR@K may be relatively lower
than that on R@K. Without bells and whistles, SDSGG establishes a new state-of-the-art.

Table 3: Quantitative results on GQA [14] base & novel.
Method Split R@20/50/100 mR@20/50/100
CLS [4]

base
4.2 / 6.4 / 7.9 8.9 / 13.2 / 15.3

Ours 33.4 / 43.9 / 49.5
±1.10 / ±1.21 / ±1.20

15.6 / 21.0 / 24.5
±0.47 / ±0.38 / ±0.79

CLS [4]
novel

21.3 / 28.3 / 32.1 16.6 / 27.0 / 29.4

Ours 27.2 / 37.4 / 42.9
±0.35 / ±0.58 / ±0.33

23.8 / 32.8 / 37.3
±0.21 / ±1.35 / ±1.33

GQA [15] base and novel. Since the
codes of Epic [3] and RECODE [12] are
insufficient to support replication, we only
compare SDSGG with CLS on GQA [15].
As shown in Table 3, SDSGG outperforms
CLS by a large margin across all splits and
metrics. Since CLS is not trained on the
base split, its performance on R@K is rel-
atively low due to the massive annotations of geometric relations that are not semantically rich [12].

Taking together, our extensive results provide solid evidence that SDSGG successfully unlocks the
power of LLMs in OVSGG, and SSD is a promising alternative to category-/part-level prompts.
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Figure 3: Visual results (§4.3) on VG [14].

4.3 Qualitative Comparison Result

Fig. 3 visualizes qualitative comparisons of SDSGG against CLIP [4] on VG [14]. As seen, with
the proposed SSDs, SDSGG can generate higher-quality relation predictions even in challenging
scenarios. We respectfully refer the reviewer to the appendix (§E) for more qualitative comparisons.

4.4 Diagnostic Experiment

For thorough evaluation, we conduct a series of ablative studies on VG [14].

Table 4: Ablation studies (§4.4) on MPC.
Method Split R@20/50/100 mR@20/50/100

Ours base 18.7 / 26.6 / 31.6 9.1 / 12.3 / 14.7
w/o MPC 6.0 / 9.3 / 11.8 2.5 / 5.1 / 7.6

Ours novel 18.9 / 25.8 / 30.0 16.6 / 25.2 / 31.5
w/o MPC 5.2 / 8.7 / 11.8 4.9 / 11.0 / 16.2

Textual Part. We first study the effec-
tiveness of our multi-persona collaboration
(MPC) for scene-specific description gen-
eration (§3.1) in Table 4. Here we use
the standard prompts to query LLMs for
generating descriptions. As seen, without
MPC, the performance drops drastically,
e.g., 11.8%/11.8% vs. 31.6%/30.0% R@100 on the base/novel split, respectively. This indicates
the importance of the text classifiers used as they have impact on both training and testing.

While the effectiveness of MPC has been validated, one may wonder: i) Why use these three roles?
ii) How to ensure the completeness and quality of generated classifiers? We want to highlight that: i)
Different roles are used to increase the variety of descriptions. There is no word on exactly which
roles should be used. ii) These open problems are beyond the scope of this work. We leave them
for future work. iii) This work makes the first attempt to enhance classifier generation for OVSGG
via MPC. iv) The experimental results suggest that the current generated SSDs are good enough for
commonly used relation categories. To provide more empirical results, we investigate the impact of
the proposed self-normalized similarities and the number of used SSDs in the appendix (§A).

Table 5: Ablation studies (§4.4) on the visual part.
MVA DM Split R@20/50/100 mR@20/50/100

base
13.1 / 18.7 / 22.4 8.6 / 11.6 / 13.8

✓ 17.0 / 23.8 / 28.2 9.2 / 12.3 / 14.6
✓ ✓ 18.7 / 26.6 / 31.6 9.1 / 12.3 / 14.7

novel
17.4 / 24.7 / 28.9 17.2 / 26.5 / 30.9

✓ 18.6 / 25.1 / 28.7 17.4 / 25.0 / 31.0
✓ ✓ 18.9 / 25.8 / 30.0 16.6 / 25.2 / 31.5

Visual Part. Then, we examine the impact
of mutual visual adapter (MVA, §3.2) and
directional marker (DM, §3.2) in Table 5.
The 1st row denotes a strong baseline, i.e.,
a multi-layer perceptron with comparable
parameters to aggregate the visual features.
Upon projecting the visual features into
interaction-aware space and applying cross-
attention, we observe consistent and substantial improvements for both R@K and mR@K on both
the base and novel split. These results demonstrate the efficacy of our adapter and the necessity of
incorporating cross-attention for capturing the complicated interplay between subjects and objects.
Since DM is designed for geometric relations with massive annotations [21, 24], the improvements
on R@K are considerable, while those on mR@K are relatively small. See §A for more results.

5 Conclusion

This work presents SDSGG, a scene-specific description based framework for OVSGG. Despite
the previous works based upon category-/part-level prompts, we argue that these text classifiers are
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scene-agnostic, which cannot adapt to specific contexts and may even be misleading. To address
this, we carefully design a multi-persona collaboration strategy for generating flexible, context-aware
SSDs, a self-normalized similarity computation module for renormalizing the influence of each
SSD, and a mutual visual adapter that consists of several trainable lightweight modules for learning
interaction-aware space. Our approach distinguishes itself by using SSDs derived from LLMs, which
are tailored to the content of the presented image. This is further enhanced by MVA, which captures
the underlying interaction patterns based on the semantic space of VLMs. We expect the introduction
of SDSGG will not only set a new benchmark for OVSGG, but also encourage the community to
explore the potential of integrating LLMs with VLMs for deeper, contextual understanding of images.
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Summary of the Appendix

For a better understanding of the main paper, we provide additional details in this supplementary
material, which is organized as follows:

• §A introduces more ablative experiments.
• §B details the implementation details.
• §C provides the pseudo code of SDSGG.
• §D shows the generated scene-specific descriptions and the corresponding prompts.
• §E offers more qualitative results.
• §F discusses our limitations, societal impact, and directions of future work.
• §G presents more experimental results.

A More Ablative Experiment

Self-normalized Similarity. Furthermore, we study the effectiveness of self-normalized similarity
for evaluating the influence of each scene-specific description (§3.1) in Table S1. Here we remove
the opposite description and use only the original scene description as the baseline. As seen, without
the reference of opposite description, the performance drops drastically, e.g., 28.3%/25.5%/28.4%
vs. 31.6%/30.0%/35.1% R@100 & 12.1%/29.8%/24.7% vs. 14.7%/31.5%/28.6% mR@100 on the
base/novel/semantic split, respectively. This indicates the importance of renormalizing similarity
scores, and also validates our hypothesis – the absolute value of one single similarity yields only
limited insight, while the difference of two similarities provides more information.

Table S1: Ablation studies (§A) on self-normalized similarity (SNS, §3.1).
Method Split R@20↑ R@50↑ R@100↑ mR@20↑ mR@50↑ mR@100↑

Ours base 18.7 26.6 31.6 9.1 12.3 14.7
w/o SNS 16.1 23.3 28.3 7.0 10.0 12.1

Ours novel 18.9 25.8 30.0 16.6 25.2 31.5
w/o SNS 14.7 20.6 25.5 14.2 21.5 29.8

Number of SSDs. We first study the impact of the number of used classifiers (i.e., SSDs). The
results, presented in Table S2, reveal a considerable performance enhancement when the number of
pairs increased from 11 to 21, affirming the efficiency of SSDs. However, we also witnessed a dip in
performance when too many SSDs were employed. This could be due to the unnecessary pairing of a
relation category with an excessive number of descriptions (52 descriptions for 26 pairs).

Table S2: Ablation studies (§A) on the number of used classifiers (Eq. 2). The adopted hyperparameters are
marked in red.

# Pairs Split R@20 R@50 R@100 mR@20 mR@50 mR@100
11

base

13.9 19.8 24.0 8.6 12.0 14.3
16 19.4 27.5 32.9 8.6 11.8 14.2
21 18.7 26.6 31.6 9.1 12.3 14.7
26 11.7 16.7 20.0 7.7 11.1 13.5
11

novel

18.4 23.9 26.8 16.6 23.3 27.2
16 17.9 24.4 28.7 16.4 23.2 28.7
21 18.9 25.8 30.0 16.6 25.2 31.5
26 12.4 18.5 23.7 14.3 21.8 27.2

Scaling Factors. We then study the effectiveness of the scaling factors used in our training objectives
(§3.3) in Table S3. As seen, the performance remains consistent for those compared hyperparameters.
This indicates the robustness of SDSGG to changes in the scale of the training targets. Considering
the performance on all metrics together, α and β are set to be 2 and 1e-1, respectively.

Number of Attention Heads. We further investigate the impact of the number of attention heads H
used in the mutual visual adapter (§3.2, Eq. 5). As shown in Table S4, the performance improves

15



Table S3: Ablation studies (§A) on the scaling factors used in the training objectives, i.e., α and β (§3.3, Eq. 8).
The adopted hyperparameters are marked in red.

α β Split R@20↑ R@50↑ R@100↑ mR@20↑ mR@50↑ mR@100↑
1.5 1e-1

base

16.8 24.0 28.7 9.8 12.7 15.0
2.5 1e-1 19.4 27.3 32.4 9.4 12.6 14.9
2 3e-1 18.8 26.7 31.8 9.4 12.6 14.9
2 5e-1 17.2 24.4 29.1 9.2 12.2 14.4
2 0 18.6 26.4 31.7 9.2 12.1 14.3
2 1e-1 18.7 26.6 31.6 9.1 12.3 14.7

1.5 1e-1

novel

19.8 25.5 29.3 17.5 24.5 30.8
2.5 1e-1 18.8 25.2 29.8 19.5 25.9 32.1
2 3e-1 18.4 25.2 29.7 16.5 24.4 30.4
2 5e-1 18.5 25.0 29.3 15.8 23.1 29.2
2 0 18.8 25.5 29.6 17.3 23.6 30.1
2 1e-1 18.9 25.8 30.0 16.6 25.2 31.5

from 32.7% to 35.1% R@100 on the semantic split when increasing the number of heads from 4 to
8, but the number of parameters steadily increase as the number of heads grows. When increasing
the number of heads from 8 to 16, we observe some improvements (e.g., 31.6% to 32.8% R@100
on the base split), but also some performance drops (e.g., 30.0% to 29.0% R@100 on the novel
split). Consequently, we set H = 8 as the default to strike an optimal balance between accuracy and
computation cost.

Table S4: Ablation studies (§A) on the number of attention heads H used in the mutual visual adapter (§3.2,
Eq. 5). The adopted hyperparameters are marked in red.

H Param. Split R@20↑ R@50↑ R@100↑ mR@20↑ mR@50↑ mR@100↑
4 4.2M

base
18.9 27.0 32.5 9.1 12.2 14.4

8 7.1M 18.7 26.6 31.6 9.1 12.3 14.7
16 12.8M 19.4 27.5 32.8 9.5 12.7 15.1
4 4.2M

novel
18.2 25.3 29.9 15.9 24.8 31.0

8 7.1M 18.9 25.8 30.0 16.6 25.2 31.5
16 12.8M 18.0 25.3 29.0 15.8 24.0 29.1

Margin. Last, we examine the impact of the margin λ in our training objectives (§3.3, Eq. 8). As
shown in Table S5, the performance remains consistent for those compared values, which indicates
the robustness of our learning procedure. λ is set to be 3e-2 by default.

Table S5: Ablation studies (§A) on the margin λ (Eq. 8). The adopted hyperparameters are marked in red.
λ Split R@20 R@50 R@100 mR@20 mR@50 mR@100

5e-2
base

19.2 26.9 32.0 9.5 12.6 15.0
3e-2 18.7 26.6 31.6 9.1 12.3 14.7
1e-2 18.6 26.0 30.8 8.8 11.8 13.8
5e-2

novel
18.7 24.8 29.1 17.0 24.0 30.3

3e-2 18.9 25.8 30.0 16.6 25.2 31.5
1e-2 18.0 24.6 28.7 16.6 24.4 29.2

B Implementation Details

Training. Our model is trained with a batch size of 4. One RTX 3090 is used for training. During the
training process, images are resized to dimensions within the range of [600, 1,000]. For each relation,
up to 50K samples are included. Random flipping is adopted for data augmentation. SGD is adopted
for optimization. The initial learning rate, momentum, and weight decay are set to be 2e-2, 9e-1,
1e-4, respectively. We utilize the pre-trained weights of CLIP to initialize our model. To avoid data
leakage, we remove annotations in the training set which contains categories in the novel split.
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Testing. Testing is conducted on the same machine as in training. No data augmentation is used
during testing. In terms of the semantic split, we directly applied the same weights trained on the
base split for testing. A similar filtering strategy [12] is adopted.

Codebase and Architecture. We use the same codebase as in [21]. We adopt GPT-3.5 from OpenAI
as our LLM. In terms of CLIP, we employ a widely used architecture, i.e., ViT-B/32, for initializing
our mutual visual adapter.

Split. We visualize all relation categories in Table S6. To guarantee fairness, we select GQA’s [15]
relation categories that also exist in VG [14]. As such, we can reuse SSDs obtained in our experiments
on VG, thus verifying the generalizability of the proposed SSDs and self-normalizing similarity.

Table S6: Relation categories in each split.
Split Relation Categories

Base

watching, of, hanging from, to, near, carrying, parked on, covered in, wearing,
sitting on, made of, on, standing on, from, in front of, belonging to, between,

above, attached to, walking on, behind, in, holding, against, has,
looking at, under, at, playing, riding, covering, for, with, wears, over

Novel flying in, painted on, mounted on, using, and, on back of, growing on,
lying on, along, part of, eating, laying on, walking in, across, says

Semantic
watching, growing on, hanging from, eating, carrying, parked on, covered in, says,

using, flying in, painted on, sitting on, lying on, standing on, walking in, mounted on,
attached to, walking on, holding, looking at, playing, riding, covering, laying on

(a) VG [14]

Split Relation Categories

Base in front of, watching, riding, covered in, under, wearing, behind, parked on, covering,
above, of, on, holding, walking on, at, carrying, with, sitting on, in, standing on, near

Novel lying on, looking at, growing on, walking in, attached to, using,
mounted on, hanging from, flying in, eating

(b) GQA [15]

C Pseudo Code

The pseudo code of SDSGG is given in Algorithm S1 and Algorithm S2. We respectfully refer
the reviewer to the supplementary Python files for the PyTorch implementation of SDSGG’s key
modules. Moreover, to guarantee reproducibility, our full code and pre-trained models will be publicly
available.

Algorithm S1 Pseudo-code for MVA of SDSGG in a PyTorch-like style.

"""
img_feats1: subject or object visual features, where the first vector is CLS feature, and the left

vectors are patch features.
img_feats2: subject or object visual features. The format is the same as img_feats1.
dire_mark_feature: marker used to identify the direction of the relation.
"""
def MVA(img_feats1, img_feats2, dire_mark_feat):

# Project features into low-dimensional, interation-aware space.
patch_feats = LinearDown(img_feats1[1:]) # Eq. 4

# Model the interplay between the subject and object
out = CrossAttn(patch_feats, img_feats2[1:]) # Eq. 5

# Project features into the original dimension.
out = LinearUp(out) # Eq. 5

# Add direction marker.
mva_out = Linear(Cat([out, dire_mark_feature]))
mva_out = (mva_out + img_feats1[0]).mean() # Eq. 6
return mva_out
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Algorithm S2 Pseudo-code for the forward process of SDSGG in a PyTorch-like style.

"""
bboxes: bounding boxes of all objects.
img: input image.
text_raw_des: raw description.
text_op_des: opposite description.
asso: the association presented in "Association between Scene-level Descriptions and Relation Categories".
targets: training targets.
"""

def forward(bboxes, img, text_raw_des, text_op_des, asso, targets):

# Batch crop and encode images.
crop_img = Crop(img, bboxes)
img_feats = EncodeImage(crop_img) # CLIP’s visual encoder, Eq. 3

# Tokenize and encode descriptive text.
text_raw_feats = EncodeText(Tokenize(text_raw_des)) # CLIP’s text encoder
text_op_feats = EncodeText(Tokenize(text_op_des))

# Define directional marker
mark_sub = EncodeText(Tokenize("a photo of subject"))
mark_obj = EncodeText(Tokenize("a photo of object"))

scores, losses = []
# Calculate self-normalized similarity for each subject-object pair
for sub, obj in sub_obj_pairs:

mva_out_s2o = MVA(img_feats[sub], img_feats[obj], mark_sub)
mva_out_o2s = MVA(img_feats[obj], img_feats[sub], mark_obj)
mva_out = (mva_out_s2o + mva_out_o2s) / 2.0

sim_raw = CosSim(mva_out, text_raw_feats)
sim_op = CosSim(mva_out, text_op_feats)

score = ((sim_raw - sim_op) * asso).sum() # Eq. 2
scores.append(score)

# If is training
if training:

loss = compute_loss(sim_raw, sim_op, targets) # Eq. 8
losses.append(loss)

return scores, losses
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D Scene-specific Description

The detailed, scene-specific descriptions generated by LLM’s multi-persona collaboration are provided
in Fig. S1. As seen, our scene-specific descriptions (21 pairs, 42 descriptions in total) cover different
scenes from a comprehensive view, e.g., spatial descriptions (“two or more objects partially overlap
each other”, “interaction between objects”, etc.), environment (background) descriptions (“on a road”,
“on a flat plane, it should appear balanced with no visible tilting”, etc.), semantic descriptions (“belong
to animal or human behavior”, “may have contact behavior”, etc.), appearance descriptions (“might
have flat teeth or sharp teeth”, “have a curvy body”, etc.).

SSDs

Two or more objects partially overlap each other

Each object is completely separate with clear space 
between them.

Interaction between objects

Objects are isolated and have no interaction with 
each other.

A picture on another object

With the picture not being on or part of the object

Vertical positional relationship

Objects are positioned horizontally in relation to 
each other

On a road

Located off-road, in a non-road environment

May have contact behavior

They cannot touch or interact.

On a flat plane, it should appear balanced with no 
visible tilting

Positioned on an uneven surface, appearing 
imbalanced or visibly tilted

Specialized structures resembling legs

Lacks structures resembling legs

With hand, for grasping, support, or locomotion

Lacks hands or similar structures

In a closed environment

Situated in an open, unrestricted environment
Connected or attached to a larger structure

Completely detached and independent from any 
larger structure

Have specialized equipment

Lacks any form of specialized equipment, entirely 
unaided or basic in form

Belong to animal or human behavior

Possibly inanimate or mechanical

Direct sensory organs toward the object of interest

Sensory organs are directed away from or are 
indifferent to the object of interest

Posture indicating concentration

Posture indicative of distraction, disinterest, or 
relaxation

Be a soft material

Composed of hard, rigid material

Might have flat teeth or sharp teeth

Possesses no teeth or structures resembling teeth

Development of leaves, stem, flowers

Lacks any botanical features

Object is in motion

Object remains stationary

Generally used for decoration

Not intended for decorative purposes

Have a curvy body

Have a straight body

Figure S1: Illustration of the generated scene-specific descriptions.

Next, we detail each step to generate scene-specific descriptions.

❶ Initial Description Generation. This step can be repeated many times to generate a large number
(72 after manual selection) of scene descriptions. The prompt is shown in Fig. S2.

❷ Summarizing Descriptions. Since these initial descriptions may suffer from noise and semantic
overlap, we ask LLM to streamline and combine these descriptions, ensuring more cohesive and
distinct scene-level descriptions. The prompt is shown in Fig. S3.

❸ Description-Relation Association. After obtaining various scene descriptions, a critical inquiry
arises regarding their utility for relation detection, given their lack of explicit association with
specific relation categories. To address this, we delineate three distinct scenarios characterizing
the interplay between relation categories and scene descriptions: i) certain coexistence (Cn

r = 1),
where a direct correlation exists; ii) possible coexistence (Cn

r = 0), indicating a potential but not
guaranteed association; and iii) contradiction (Cn

r =−1), denoting an incompatibility between the
scene description and relation category. Here Cn

r denotes the correlation between relation r ∈ R and
nth scene description, and is generated by LLMs. The prompt is shown in Fig. S4.

❹ Opposite Description Generation. Since classifiers are contextually bound, we generate opposite
descriptions to compute self-normalized similarities. The prompt is shown in Fig. S5.
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# Input: {scene content to be discussed}
# Output: 3~5 descriptions
"""
Begin by embodying three distinct personas: a biology expert, a physics expert, and

an engineering expert. Each expert will articulate a step-by-step approach
along with their thought process, considering various hypothetical scenarios
relevant to their field of study, and then share their insights with the
group. If any expert does not know the answer, he will exit the discussion.
Once all experts have provided their analyses, summarize the final generic
scene descriptions.

The generic scene description involves the specific appearance and the visible
action/motion/interaction may appear in the scene (use your imagination here).
Here are some examples of generic scene descriptions:

{some in-context examples}
Here is an example of discussion:
Discussion started!
Question: Suppose there is ... (this involves a detailed discussion of three roles)

Discussion started!
Question: Suppose there is {scene content to be discussed}, please give concise,

generic scene descriptions of this scene.
"""

Figure S2: Prompts for initial description generation.

# Input: initial {scene descriptions}, all {relation categories}, {number of final
scene descriptions}

# Output: final scene-level descriptions
"""
Here is a text pool that includes a series of descriptive texts:
{scene descriptions}
Here are all the relation categories:
{relation categories}
You are asked to pick {number of final scene descriptions} descriptive statements

from the text pool that can describe at least two predicates. Think step by
step.

"""

Figure S3: Prompts for summarizing descriptions.

# Input: {scene descriptions}, all {relation categories}
# Output: description-relation associations
"""
For {scene descriptions}, decide whether it is likely to appear in one of the

following flat photos where {relation categories} appears.
The judgment result is to choose between [certain coexistence, possible

coexistence, and contradiction]. When the photo shows that the scene must have
a certain description, it is judged as "contradiction". When the photo has
little relationship with the description, it is judged as "possible
coexistence". When the photo shows that the scene must not appear with a
certain description, it is judged as "contradiction".

"""

Figure S4: Prompts for generating description-relation associations.
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# Input: {scene descriptions} (original scene descriptions)
# Output: final scene-level descriptions
"""
Here are some descriptions:
{scene descriptions}
Please give their opposite descriptions.
"""

Figure S5: Prompts for opposite description generation.

E More Qualitative Comparison Result

We provide more visual results that compare SDSGG to CLIP [4] in Fig. S6. It can be observed that
SDSGG performs robust in hard cases and can consistently deliver more satisfying results, based
upon the scene-specific descriptions and self-normalized similarities.

<people, walking on, street> <man, carrying, bag>

SDSGG

carrying

holding

using

playing

61.5%

18.6%

11.8%

8.1%

CLIP

riding

lying on

holding 

attached to

26.5%

25.8%

25.8%

21.8%

SDSGG

walking on 

walking in

standing on

carrying

58.2%

22.0%

13.6%

6.1%

looking at

CLIP

walking in

walking on

standing on

38.2%

25.9%

18.0%

18.0%

riding standing on

<man, riding, skateboard>

SDSGG

riding

standing on

walking on

playing

55.4%

18.8%

13.0%

12.8%

attached to

CLIP

no relation

looking at

holding

29.4%

26.1%

23.0%

21.5%

<man, standing on, ski>

SDSGG

standing on

riding

walking on

using

39.0%

27.0%

20.4%

13.5%

CLIP

hanging from

standing on

riding 

holding

36.6%

24.7%

20.1%

18.6%

Figure S6: Visual results (§E) on VG [14] test. As seen, SDSGG makes the right predictions based
upon the scene-specific descriptions and self-normalized similarities.
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F Discussion

Limitation Analysis. Following [12], currently our algorithm is specifically designed for the predicate
classification task [1, 16] to make fair comparisons with relation detection models. Such a pairwise
classification task gives the ground-truth annotations of objects in the scene for easier representation
learning of relations. However, these annotations are unavailable in real-world applications.

Societal Impact. This work points out the drawbacks of existing scene-agnostic text classifiers and
accordingly introduces several new modules for both the visual and textual components, leading to a
scene-specific description based OVSGG framework that combines the strengths of VLMs and LLMs.
Like every coin has two sides, using our framework will have both positive and negative impacts.
On the positive side, our work contributes to research on intelligent scene understanding, and thus is
expected to eventually benefit industries such as autonomous driving. For potential negative social
impact, the reliance on VLMs and LLMs could lead to the perpetuation of biases and inequalities
present in the data used in these models’ large-scale pre-training stage.

Future Work. As mentioned before, the focus of this work is not on object detection. It is interesting
to extend our algorithm to handle the object detection task simultaneously by, for example, incorporat-
ing set-prediction architectures [91]. Moreover, the design of our multi-persona collaboration stands
for an early attempt and deserves to be further explored. In addition, the architectural designs of
directional marker and mutual visual adapter certainly worth further explorations, e.g., efficiency [92],
architecture [93, 94], and adaptive prompting [95, 96]. Furthermore, extending our algorithm to other
relation detection tasks [97, 40, 42, 98] may lead to an uniformed relation detection algorithm.

G More Experiment

Training on the Full Set of Relation. We trained our model with frequency bias [25] on the full set
of relations. The results are shown in Table S7.

Table S7: Results on the full set of relation.
Method mR@50↑ mR@100↑

Ours 28.7 34.2

Different Base/Novel Splits. We trained our model on different base/novel splits to investigate the
robustness further. Specifically, we i) change the proportion of the base and novel split and ii) change
the categories within the base and novel split (i.e., different No. for the same ratio). The results are
shown in Table S8.

Table S8: Results on different base/novel splits.
No. base:novel Base Novel

mR@50↑ mR@100↑ mR@50↑ mR@100↑
1 (paper) 35:15 12.3 14.7 25.2 31.5

2 35:15 12.4 14.8 24.3 28.2
3 32:18 11.9 14.4 23.9 28.4
4 32:18 13.6 15.9 20.6 26.7
5 38:12 11.8 14.2 23.7 29.9
6 38:12 11.5 13.7 22.6 27.1

Inference Time. Since the renormalization and similarity measurement involve only a few matrix
operations that can be omitted from the complexity analysis, we will focus on the inference time of
three main modules. The results are shown in Table S9.

Table S9: Inference time for different modules.
Module Inference Time (ms/pair)

CLIP’s Visual Encoder 6.5
Mutual Visual Adapter 0.2

CLIP’s Text Encoder 5.4
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Different Personas. The involvement of multiple personas in the discussion process enhances the
diversity of generated descriptions. The key point of our multi-persona collaboration is about the
“collaboration” rather than a specific persona. Actually, using only one persona can even decrease
the diversity of generated descriptions and hurt the performance, as it can only generate descriptions
from its own viewpoint without discussion with others. In addition, we changed the system prompt
of LLM from the default like “you are a helpful AI assistant” into a persona-specific one like “you
are a biologist”. We then evaluate the performance of our model with these generated descriptions.
The results are shown in Table S10.

Table S10: Comparison of different personas.
Method Base Novel

mR@50↑ mR@100↑ mR@50↑ mR@100↑
Multi-persona Collaboration 12.3 14.7 25.2 31.5

Biologist Persona 6.3 8.4 12.9 18.4
Engineer Persona 7.3 9.7 8.4 11.5
Physicist Persona 4.8 6.9 9.1 14.7
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We carefully described our contributions in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the appendix, we discussed our limitations, societal impact, and directions
for future work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This paper is not about theory.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provided details about the methodology and implementation in the main
paper and appendix. The code will be publicly available.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: The code will be publicly available at https://github.com/guikunchen/SDSGG.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We present the experimental setup and details in the main paper and appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We run each experiment three times and report the average and standard
deviation.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We introduce the used computer resources in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We carefully reviewed the NeurIPS Code of Ethics

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In the appendix, we discussed our limitations, societal impact, and directions
for future work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cited related papers.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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