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Abstract

Reinforcement learning (RL) in continuous state-action spaces remains challeng-
ing in scientific computing due to poor sample efficiency and lack of pathwise
physical consistency. We introduce Differential Reinforcement Learning (Dif-
ferential RL), a novel framework that reformulates RL from a continuous-time
control perspective via a differential dual formulation. This induces a Hamiltonian
structure that embeds physics priors and ensures consistent trajectories without
requiring explicit constraints. To implement Differential RL, we develop Differ-
ential Policy Optimization (dfPO), a pointwise, stage-wise algorithm that refines
local movement operators along the trajectory for improved sample efficiency and
dynamic alignment. We establish pointwise convergence guarantees, a property
not available in standard RL, and derive a competitive theoretical regret bound of
O(K5/6). Empirically, dfPO outperforms standard RL baselines on representative
scientific computing tasks, including surface modeling, grid control, and molecular
dynamics, under low-data and physics-constrained conditions.

1 Introduction

Reinforcement learning (RL) has achieved notable success across domains such as robotics, biological
sciences, and control systems ([16, 20, 6, 2]). Yet, its application to scientific computing remains
limited largely due to persistent challenges in sample complexity, lack of physical consistency, and
weak theoretical guarantees. Unlike supervised learning, where models learn from labeled datasets,
RL agents must explore through trial-and-error, often receiving sparse and delayed feedback. This
makes data efficiency a critical bottleneck. Furthermore, standard RL methods typically fail to encode
physical laws or structural priors, leading to suboptimal solutions in scientific problems governed by
continuous dynamics.

Model-based RL (MBRL) [31] improves sample efficiency by learning a surrogate model of the
environment. However, current approaches require information typically unavailable under scientific
computing settings. For example:

1. Explicit reward model: Many MBRL algorithms (e.g., SVG [14], iLQR [28], PILCO [10])
require access to the whole reward functions and/or its derivative, when in reality reward
functionals are only available at points along the explored trajectories.

2. Re-planning assumptions: Shooting methods and other trajectory-based planners [22]
often assume the ability to re-plan from a particular intermediate time step. However, in
many scientific computing problems, agents must always generate trajectories starting from
the initial time, without resetting or modifying the trajectory midway (see Section C.7 for
an example).

As a result, researchers often revert to model-free RL combined with customized reward shaping.
However, such approaches still fail to incorporate physics-informed priors or recover optimal policies
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under limited sample budgets. This motivates a fundamentally different approach: Rather than
optimizing cumulative rewards over discrete steps, we interpret RL through the lens of continuous-
time control, viewing trajectory returns as integrals and introducing a differential dual formulation.
This naturally gives rise to a Hamiltonian structure that embeds inductive biases aligned with physical
dynamics, even when explicit physical constraints are absent.

To implement the framework, we develop Differential Policy Optimization (dfPO), an algorithm that
directly optimizes a local trajectory operator and refines policy behavior pointwise along the trajectory,
rather than through global value estimates. This locality enables dfPO to align updates with system
dynamics at each timestep, avoiding inefficient exploration that is both costly and misaligned with
physical constraints. By maintaining consistency with the optimal trajectory throughout execution,
dfPO minimizes redundant relearning and reduces sample waste—crucial in scientific settings where
simulation cost and rollout horizon are tightly constrained.

We evaluate Differential RL on a suite of scientific problems that involve complex dynamics, implicit
objectives, and limited data—settings where traditional RL struggles.

1. Surface Modeling: Optimization over evolving surfaces, where rewards depend on the
geometric and physical properties of the surface.

2. Grid-based Modeling: Control on coarse grids with fine-grid evaluations, representative of
multiscale problems with implicit rewards.

3. Molecular Dynamics: Learning in graph-based atomic systems where dynamics depend on
nonlocal interactions and energy-based cost functionals.

Contributions. Our main contributions are:

1. We introduce Differential RL, a reinforcement learning framework that replaces cumula-
tive reward maximization with trajectory operator learning, naturally embedding physics-
informed priors via a differential dual formulation.

2. We propose Differential Policy Optimization (dfPO), a policy optimization algorithm with
rigorous pointwise convergence guarantees and a regret bound of O(K5/6), enabling effec-
tive learning in low-data, physics-constrained environments.

3. We validate dfPO across diverse scientific tasks, demonstrating strong performance over
several standard RL baselines.

Organization. In Section 2, we introduce the new framework of differential reinforcement learning
and the associated algorithm called dfPO. In Section 3, we outline the theoretical pointwise conver-
gence theorem and regret analysis for the dfPO algorithm with explicit details given in the Appendix.
In Section 4, we apply the dfPO algorithm to three representative scientific-computing tasks, and
show competitive performance against popular RL benchmarks.

2 Differential reinforcement learning

2.1 Problem formulation

In standard reinforcement learning, an agent operates in a Markov Decision Process (MDP) defined
by the 5-tuple (S,A,P, r, ρ0), where S and A are the set of states and actions respectively, P :
S × A × S → R is the transition probability distribution, r : S × A → R is the reward function,
ρ0 : S → R is the distribution of initial state. At step k, the agent choose an action ak ∈ A given its
current state sk ∈ S based on π(ak|sk):

s0 ∼ ρ0(s0), ak ∼ π(ak|sk), sk+1 ∼ P(sk+1|sk, ak) (1)

The goal is to maximize the expected cumulative reward J = Eπ

[∑H−1
k=0 r(sk, ak)

]
. For a given

policy π, the associated value function is defined as:

Vπ(s) = Ea,s1,···

[
H−1∑
k=0

r(sk, ak)|s0 = s

]
(2)
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The (optimal) value function is then defined as V (s) := argmaxπ Vπ(s). Many reinforcement
learning algorithms revolve around estimating and improving this value function. However, instead of
remaining in this discrete-time formulation, we shift to a continuous-time viewpoint. By associating
each discrete step k with a timestamp tk = k∆t and setting the terminal time T = tH = H∆t, we
approximate the discrete sum with a time integral:

max
π

E

[
H−1∑
k=0

r(sk, ak)

]
= max

π
E

[
H−1∑
k=0

r(stk , atk)

]
≈ max

π
E

[∫ T

0

r(st, at)dt

]
(3)

This leads to the control-theoretic objective:

max
π

E

[∫ T

0

r(st, at)dt

]
subject to ṡt = f(st, at) (4)

where f denotes the transition dynamics. Instead of directly solving this constrained optimization,
we invoke Pontryagin’s Maximum Principle [17], which introduces a dual formulation analogous to
the Hamiltonian framework in classical mechanics. We augment the system with an adjoint variable
p, and define the Hamiltonian function H through the Legendre transform:

H(s, p, a) := pT f(s, a)− r(s, a) (5)

Let a∗(s, p) denotes the optimal action as a function of state and adjoint variables. Substituting this
back gives the reduced Hamiltonian function h:

h(s, p) := H(s, p, a∗(s, p)) (6)

The resulting differential dual system imposes the following constraints on the trajectory:[
ṡ
ṗ

]
=

[
∂h
∂p (s, p)

−∂h
∂s (s, p)

]
subject to h(s, p) = H(s, p, a∗) with

∂H

∂a
(s, p, a∗) = 0 (7)

The stationarity condition ∂H
∂a (s, p, a

∗) = 0 ensures that the optimal action can be implicitly rep-
resented by the pair (s, p), allowing us to reformulate the optimal path solely in terms of these
dual variables. This condition effectively decouples the explicit dependency on actions by en-
coding them through the adjoint variable p. In this setting, the canonical state-action pair (s, a)
is replaced by the extended state (s, p), with the action recovered as a function a = P (s, p)
that solves the stationarity condition. Substituting this back yields the reduced Hamiltonian
h(s, p) = p⊤f(s, P (s, p)) − r(s, P (s, p)). Here, the influence of the reward function r is now
captured through the reduced Hamiltonian. We couple state and adjoint variables into the composite
vector x = (s, p) with dimension d = dS + dA (sum of state and action space’s dimensions). The
differential dual system can now be written as:

ẋ = S∇h(x) (8)

where S is the canonical sympletic matrix
[
0 I
−I 0

]
. This formulation encodes the evolution of the

system through a Hamiltonian gradient flow in phase space, which serves as the foundation for our
policy learning formulation. By discretizing the differential system, we arrive at the update rule:

xn+1 = xn +∆tS∇h(xn) := G(xn) (9)

where ∆t is the discretization time step. G is the dynamics operator dictating the evolution of the
policy-induced trajectory. From a learning perspective, we aim to discover an operator G such that
successive applications generate the optimal trajectory x,G(x), G(2)(x), · · · , where G(k) denotes
the k-fold composition of G: G(k)(x) = G(G(· · ·G(x) · · · )).
To approximate h(x), we introduce a learnable score function g(x) ≈ h(x), which plays the role of a
surrogate reward landscape defined over the extended space (x = (s, p)). This reparameterization
allows us to shift the learning objective toward trajectory-consistent updates. Altogether, this
approximation process suggests that the original reinforcement learning problem, when viewed
through the lens of continuous-time optimal control and its differential dual, can be reformulated as
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an abstract policy optimization problem, denoted D. The goal in D is to learn the optimal dynamics
operator G : Ω → Ω that governs the optimal trajectory:

x0 = x ∼ ρ0, x1 = G(x0) = G(x), (10)

x2 = G(x1) = G(2)(x), · · · , xH−1 = G(H−1)(x) (11)

Here Ω is a compact domain in Rd, and H is the number of steps in an episode. Moreover, ρ0
is the distribution of the starting point x0. In this work, we assume that ρ0 is a continuous func-
tion. Performing an interaction with an environment B (see Definition 2.1), we learn a policy Gθ

parameterized by θ that approximates G.
Definition 2.1. An environment B with respect to an adversarial distribution ρ0 and a score function
g is a black-box system that allows you to check the quality of a policy Gθ. More concretely, B inputs
a policy Gθ and outputs the trajectories (G(k)

θ (x))H−1
k=0 , and their associated scores (g(G(k)

θ (x)))H−1
k=0

for a sample x from distribution ρ0.

The function g serves as a score surrogate that allows us to evaluate and update the current policy Gθ.
From the differential dual formulation (Equation (9)), we obtain a first-order relationship:

G = Id +∆tS∇g, (12)

where Id is the identity operator, ∆t is again the time step, and S is the symplectic matrix. This
formulation implicitly encodes a physics prior through the symplectic form, while still allowing
flexibility for data-driven learning. As such, even though the original RL problem does not explicitly
enforce physical constraints, the differential structure induces an implicit bias toward trajectory-
consistent behavior, making it applicable to physics-based dynamical systems.

2.2 Differential policy optimization (dfPO) algorithm

Differential policy optimization (dfPO) (see Algorithm 1) is a “time-expansion (Dijkstra-like)” algo-
rithm that iteratively uses appropriate on-policy samples for policy updates to ensure an increase
in policy quality over each iteration. This algorithm has a similar idea to the trust region policy
optimization (TRPO) [25]. However, because of our differential approach that focuses on pointwise
estimates, dfPO becomes much simpler and easier to implement/optimize in practice, compared to
TRPO and other RL counterparts.

2.3 Application to scientific computing

We demonstrate how Differential RL naturally applies to a broad class of scientific-computing
problems by instantiating the abstract formulation D in three representative domains with energy-
based objectives. Such objectives can either be potential-based reward structure of the form r(s, a) =
−F(s) or an energy-regularized variant r(s, a) = 1

2∥a∥
2 −F(s). Here, F(s) denotes a task-specific

potential or cost functional.

The agent’s objective is to reach low-energy states while minimizing control effort. Although the
system dynamics can be simplified, the complexity of the task is fully encapsulated in F . In many
scientific settings, F is only accessible via simulation, lacks a closed-form expression, and cannot be
queried or differentiated directly. This renders model-based RL methods—relying on explicit reward
access or gradients—inapplicable. Differential RL circumvents this limitation by relying solely
on scalar evaluations along actual trajectories, similar to model-free RL. However, unlike typical
model-free methods, it embeds a physics-informed inductive bias through its differential structure,
making it particularly suited for scientific problems. The three representative domains include:

Surface Modeling: This setting involves evolving surfaces optimized for geometric or physical
properties. The surface is parameterized by control points (e.g., knots in a spline), and the reward
is derived from physical objectives such as smoothness, curvature, or structural stress. The state s
encodes the control point positions, and the action ak updates them according to sk+1 = sk +∆tak.
The cost F(s) evaluates the reconstructed surface S(s), with rewards of the form r(s, a) = −F(s)
or r(s, a) = 1

2∥a∥
2 −F(s) to penalize excessive updates.

Grid-based Modeling: In many PDE-constrained problems, control is applied on a coarse spatial
grid, while evaluation occurs on a refined grid. The state s consists of coarse-grid values, and
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Algorithm 1 (Main algorithm) dfPO for a generic environment B

Input: a generic environment B, the number of steps per episode H , time step ∆t, and the number
of samples Nk at stage k with k ∈ 1, H − 1. Here Nk can be chosen based on Theorem 3.2. We also
assume that the hypothesis space for the policy approximator Gθk in stage k is Hk for k ∈ 1, H .
Output: a neural network approximation Gθ that approximates the optimal policy G.

1: Initialize an empty replay memory queue M.
2: Initialize k = 1 as the current stage and a random scoring function gθ0 . Set the initial policy
Gθ0 = Id +∆tS∇gθ0 via automatic differentiation.

3: repeat
4: Use Nk starting points

{
Xi

}Nk

i=1
and previous policy Gθk−1

to query B to get Nk sample

trajectories
{
G

(j)
θk−1

(Xi)
}H−1

j=0
together with their scores

{
g(G

(j)
θk−1

(Xi))
}H−1

j=0
for i ∈ 1, Nk.

5: Add the labeled samples of the form (x, y) = (G
(k−1)
θk−1

(Xi), g(G
(k−1)
θk−1

)) to M. Also add

labeled samples (x, y) = (G
(j)
θk−1

(Xi), gθk−1
(G

(j)
θk−1

(Xi))) for j ∈ 1, k − 2 and i ∈ 1, Nk to
M. The latter addition step is to ensure that the new policy doesn’t deviate from the previous
policy on samples on which the previous policy already performs well.

6: Train the neural network gθk ∈ Hk at stage k using labeled sample from M with smooth L1

loss function [12].
7: Set Gθk = Id +∆tS∇gθk via automatic differentiation. Update k → k + 1.
8: until k ≥ H
9: Output GθH−1

:= Id + ∆tS∇gθH−1
via automatic differentiation.

actions modifying them. The reward F(s) is implicitly defined via a fine-grid reconstruction s1(s):
F(s) = U(s1(s)) for evaluation U on finer grid.

Molecular Dynamics: State st encodes atomic coordinates in a fixed molecular graph, with actions
as vertex displacements. The energy cost F(s) reflects atomic interactions over edges E, and the
objective is to reach low-energy, physically plausible configurations via r(s, a) = −F(s) or variants.

To analyze the dual dynamics in Equation (7), we consider the regularized reward form r(s, a) =
1
2∥a∥

2 −F(s) used across the three scientific-computing settings above. In this case, the stationarity
condition ∂H

∂a (s, p, a
∗) = 0 implies that p = ∂r

∂a (s, a
∗) = a∗, establishing a one-to-one correspon-

dence between the adjoint variable and the action. Substituting back, the reduced Hamiltonian
becomes h(s, p) = 1

2∥p∥
2 − r(s, p), showing that the dual’s central term is essentially a regularized

version of the original reward. Hence the score function g(s, p) can be defined as 1
2∥p∥

2 − r(s, p).

3 Theoretical analysis

This section shows the convergence of differential policy optimization (dfPO, Algorithm 1) based on
generalization pointwise estimates. We then use this result to derive regret bounds for dfPO.

3.1 Pointwise convergence and sample complexity

Definition 3.1 below defines the number of training samples needed to allow derivative approximation
transfer. This definition is used to derive the number of samples needed for Algorithm 1.

Definition 3.1. Recall that ρ0 is a continuous density for the starting states. Suppose that we are given
a function g : Ω → R, a hypothesis space H consists of the function h ∈ H that approximates g, two
positive constants ϵ and δ. We define the function N(g,H, ϵ, δ) to be the number of samples needed
so that if we approximate g by h ∈ H via N(g,H, ϵ, δ) training samples, then with probability of at
least 1− δ, we have the following estimate bound on two function gradients:

∥∇g(X)−∇h(X)∥ < ϵ (13)

In other words, we want N(g,H, ϵ, δ) to be large enough so that the original approximation can
transfer to the derivative approximation above. If no such N(g,H, ϵ, δ) exists, let N(g,H, ϵ, δ) = ∞.
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Pointwise convergence. We now state the main theorem of pointwise convergence for dfPO below.
Theorem 3.2. Suppose that we are given a threshold error ϵ, a probability threshold δ, and a number
of steps per episode H . Assume that {Nk}H−1

k=1 is the sequence of numbers of samples used at each
stage in Algorithm 1 (dfPO) so that:
N1 = N(g,H1, ϵ, δ), (14)

Nk = max{N(gθk−1
,Hk, ϵ, δk−1/(k − 1)), N(g,Hk, ϵ, δk−1/(k − 1))} for k ∈ 2, H − 1 (15)

Here δk = δ/3H−k = 3δk−1. We further assume that there exists a Lipschitz constant L > 0
such that both the true dynamics G and the policy neural network approximator Gθk at step k with
regularized parameters have their Lipschitz constant at most L for each k ∈ 1, H . Then, for a
general starting point X , with probability at least 1− δ, the following generalization bound for the
trained policy Gθk holds for all k ∈ {1, 2, · · · ,H − 1}:

EX∥G(j)
θk

(X)−G(j)(X)∥ < jLjϵ

L− 1
for all 1 ≤ j ≤ k (16)

Note that when Nk → ∞, the errors approach 0 uniformly for all j given a finite terminal time T .

Proof. The key idea is to prove a stronger statement by induction over the stage number k: with
probability of at least 1− δk,

EX∥G(j)
θk

(X)−G(j)(X)∥ < ϵj for all 1 ≤ j ≤ k (17)
Here ϵk and αk are sequences defined in Lemma B.1 (Appendix). The inductive step relies on
bounding the error using the following decomposition with 3 components:

EX∥G(k+1)
θk+1

(X)−G(k+1)(X)∥ ≤ EX∥Gθk+1
(G

(k)
θk+1

(X))−Gθk+1
(G

(k)
θk

(X))∥

+ EX∥Gθk+1
(G

(k)
θk

(X))−G(G
(k)
θk

(X))∥+ EX∥G(G(k)
θk

(X))−G(G(k)(X))∥
≤ Lαk + ϵ+ Lϵk = ϵk+1 (18)

This combines the Lipschitz continuity of G, the supervised approximation error, and the inductive
hypothesis. A complete and formal proof is provided in the Appendix (Section B).

Sample complexity. The general pointwise estimates for dfPO algorithm in Theorem 3.2 allow us to
explicitly state the number of training episodes required for two scenarios considered in this work:
one work with general neural network approximators and the other with more restricted (weakly
convex and linearly bounded) difference functions:
Corollary 3.3. In Algorithm 1 (dfPO), suppose we are given fixed step size and fixed number of steps
per episode H . Further assume that for all k ∈ 1, H − 1, Hk is the same everywhere and is the
hypothesis space H consisting of neural network approximators with bounded weights and biases.
Then with the sequence of numbers of training episodes Nk = O(ϵ−(2d+4)), the pointwise estimates
Equation (16) hold.
Corollary 3.4. Again, in Algorithm 1 (dfPO), suppose we are given fixed step size and fixed number
of steps per episode H . Suppose Hk is a special hypothesis subspace consisting of h ∈ Hk so that
h − g and h − gθk−1

are both p-weakly convex and linearly bounded. Then with the sequence of
numbers of training episodes Nk = O(ϵ−6), we obtain the pointwise estimates Equation (16).

Definitions of weakly convex and linearly bounded, along with proofs of Corollary 3.3 and Corol-
lary 3.4, are provided in the Appendix. The following corollary confirms dfPO’s convergence.
Corollary 3.5. Note that dynamics operator G(x) has the form x+∆tF (x), where ∆t is the step
size, and F is a bounded function. In this case, even when the step size is infinitely small, Algorithm 1
(dfPO)’s training converges with reasonable numbers of training episodes.

Proof. The Lipschitz constant L of G in this case is bounded by 1 + C∆t for some constant C > 0.
By scaling, WLOG, assume that for finite-time horizon problem, the terminal time T = 1 so that the
number of steps is m = 1/∆t. Hence, for Nk = O(1/∆2p

t ), ϵ = O(∆p
t ) for p > 2, the error bounds

in Theorem 3.2 are upper-bounded by:

∥G(k)
θk

(X)−G(k)(X)∥ ≤ kLkϵ

L− 1
≤ 1

∆t

(
1 +

C

m

)m

O(∆p
t )

1

∆t
≤ eCO(∆p−2

t ) → 0 (19)

for k ≤ H − 1, as ∆t → 0.
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3.2 Regret bound analysis

Now we give a formal definition of the regret and then derive two regret bounds for dfPO algorithm
(Algorithm 1). Suppose K episodes are used during the training process and suppose a policy πk

is applied at the beginning of the k-th episode with the starting state sk (sampled from adversary
distribution ρ0) for k ∈ 1,K. We focus on the total number of training episodes used and assume
that the number of steps H is fixed. The quantity Regret is then defined as the following function of
the number of episodes K:

Regret(K) =

K∑
k=1

(V (sk)− Vπk(sk)) (20)

We now derive an upper bound on Regret(K) defined in Equation (20):
Corollary 3.6. Suppose that number of steps per episode H is fixed and relatively small. If in
Algorithm 1 (dfPO), the number of training samples Nk have the scale of O(ϵ−µ), regret bound
for dfPO is upper-bounded by O(K(µ−1)/µ). As a result, for the general case in Corollary 3.3, we
obtain a regret bound of O(K(2d+3)/(2d+4)). For the special cases with restricted hypothesis space
in Corollary 3.4 the regret bound is O(K5/6).

Proof. For a fixed H , Equation (16) gives us the estimate EX [G
(j)
θk

(X)−G(j)(X)] ≈ O(ϵ) for the
state-action pairX at step j between (N1+ · · ·+Nk−1+1)th and (N1+ · · ·+Nk)

th episodes during
stage k. Assuming a mild Lipschitz condition on reward function, the gap between the optimal reward
and the reward obtained from the learned policy at step j during these episodes is also approximately
O(ϵ). Summing these uniform bounds over all j and over all episodes gives:

Regret(K) ≤ H(N1 + · · ·+NH−1)Cϵ = CHKϵ (21)

Since Nk = O(ϵ−µ), K = HO(ϵ−µ). With a fixed H , ϵ = O(K−1/µ). Hence, Equation (21) leads
to Regret(K) ≤ KO(K−1/µ) = O(K(µ−1)/µ) as desired.

4 Experiments

4.1 Evaluation tasks

We evaluate Differential RL on three scientific computing tasks drawn from the domains introduced
in Section 2.3. For each, we explicitly define the functional cost F(s) and provide the relevant
mathematical details below.

Surface Modeling. A representative surface modeling task arises in materials engineering [7],
where raw materials (e.g., metals, plastics) are deformed into target configurations. Formally, an
initial shape Γ0 are deformed into the target shape Γ∗ through a shape-dependent cost functional
C : S(shape) → R. The state s encodes control points on the shape’s 2D boundary, which are
interpolated into a smooth curve Γ(s) using cubic splines. The functional cost is then defined as

F(s) := C(Γ(s)), where C(Γ) :=
∫
R2 |δ1Γ| dx√∫

R2 1Γ dx
. Here, δ1Γ denotes the distributional derivative of

the indicator function 1Γ. The action a incrementally updates the boundary points, and the initial
shape is sampled from ρ0, a distribution over random polygons.

Grid-based Modeling. For this domain, control is applied on a coarse spatial grid while evaluation
occurs on a finer grid. The state s represents values of a function fcoarse on the coarse grid, and the
action a modifies these values. A bicubic spline [4] generates a fine-scale approximation ffiner from
s, and the cost is defined as:

F(s) := C(ffiner) =
∫
grid

|δffiner| dx√∫
grid

ffiner dx
(22)

The initial coarse-grid configuration fcoarse is sampled from a uniform distribution.
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(a) Surface modeling (b) Grid-based modeling (c) Molecular dynamics

Figure 1: Evaluation costs over episodes for 13 algorithms on 3 scientific computing tasks. dfPO (red
curves) consistently achieves lower costs with more optimal and physically aligned trajectories.

Molecular Dynamics. This task aims to guide the octa-alanine molecule to a low-energy con-
figuration [3]. The state s consists of dihedral angles (ϕj , ψj)j defining the molecular con-
formation. Given these angles, atomic coordinates (xi)

N
i=1 are reconstructed via a determinis-

tic mapping X((ϕj , ψj)j), based on molecular geometry. The energy functional is defined as
F(s) := F((ϕj , ψj)j) = U(X((ϕj , ψj)j)) = U((xi)

N
i=1), where energy U is computed via the

PyRosetta package [9]. Action a modifies the dihedral angle, while initial distribution ρ0 is purposely
chosen as a uniform distribution over small intervals to evaluate agents under limited exploration.

Beyond these examples, our framework applies to a wide range of simulation-defined objectives.
Selected tasks feature sufficiently complex functionals to effectively test the proposed method. More
details about our given choices of these representative tasks are given in the Appendix (Section C.6).

4.2 Experimental results

Models. We compare dfPO (Algorithm 1) against 12 baselines: 6 standard reinforcement learning
(RL) algorithms and 6 energy-reshaped variants. The RL algorithms include TRPO [25] and PPO [26],
two trust-region methods, with PPO widely used in LLM training due to its scalability. DDPG [19] and
SAC [13] are foundational algorithms for continuous control, while Cross-Q [5] and TQC [18] offer
more recent improvements in sample efficiency. For benchmarking, we denote the standard algorithms
with an “S-” prefix to distinguish them from their energy-reshaped counterparts (e.g., S-PPO vs.
PPO). The standard versions use the straightforward negative energy reward r(s, a) = −F(s), while
the reshaped variants apply a time-dependent modified reward r(s, a) = β−t( 12∥a∥

2 −F(s)). All
baselines are implemented based on the Stable-Baselines3 library [23].

Table 1: Final mean evaluation costs (F(s) at terminal step) for all algorithms across 3 tasks. Lower
values indicate better performance and correspond to higher rewards.

Standard Algorithms Reward-Shaping Variants

dfPO S-TRPO S-PPO S-SAC S-DDPG S-CrossQ S-TQC TRPO PPO SAC DDPG CrossQ TQC

Surface 6.32 7.74 19.17 8.89 9.54 6.93 6.51 6.48 20.61 7.41 15.92 6.42 6.67
Grid 6.06 6.48 7.05 7.17 6.68 7.07 6.71 7.10 7.11 7.00 6.58 7.23 7.12
Mol. Dyn. 53.34 1842.30 1842.30 126.73 82.95 338.07 231.98 1842.28 1842.31 1361.31 68.20 923.90 76.87

Train/test setup. All models are trained under limited-sample conditions. For the first two tasks, we
use 100,000 sample steps; for the third task, training is restricted to 5,000 sample steps due to the
high cost of reward evaluation. Each model is evaluated over 200 test episodes with a normalized
time horizon [0, 1] (terminal time T = 1). Our model sizes are also relatively small compared to other
approaches. Additional details on training samples, reward-shaping hyperparameters, and model
sizes are provided in the Appendix. All experiments are conducted on an NVIDIA A100 GPU.

Metrics. We evaluate models based on the cost functional F computed over test trajectories. The
objective is to achieve the lowest possible F values while maintaining physically plausible trajectories.

Results. As shown in Table 1, dfPO consistently outperforms all 12 baselines across 3 representative
scientific computing tasks. No baseline (besides dfPO) dominates overall; CrossQ, TQC, DDPG,
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Table 2: Hyperparameter ablations on reward-shaping algorithms.

dfPO CrossQ SAC TQC

Dataset orig orig nc=10 nc=2 orig ent=0.05 ent=0.2 orig nc=10 nq=5

Surface 6.32 6.42 7.33 6.63 7.41 7.62 8.23 6.67 6.68 6.96
Grid 6.06 7.23 7.43 7.53 7.00 6.97 7.19 7.12 7.15 7.29
Mol. Dyn. 53.34 923.90 1247.41 1287.99 1361.31 1367.50 1386.42 76.87 98.56 84.36

dfPO DDPG PPO TRPO

Dataset orig orig noise=OU tau=0.01 orig clip=0.1 norm=F orig GAE-λ=0.8

Surface 6.32 15.92 15.23 17.03 20.61 21.40 19.76 6.48 11.67
Grid 6.06 6.58 6.94 6.88 7.11 7.11 7.28 7.10 7.19
Mol. Dyn. 53.34 68.20 76.62 74.70 1842.31 1842.29 1842.31 1842.28 1842.33

and TRPO intermittently rank second or third, indicating varying strengths across domains. Notably,
reward-shaped variants generally improve over their standard counterparts yet remain below dfPO.
PPO underperforms across the board, likely due to its simplification of TRPO at the cost of reduced
stability and weaker physics-aligned inductive bias. The evaluation-cost curves in Figure 1 show
dfPO consistently exploring lower objective values with moderate variance. On the grid-based task,
its advantage over baselines is clear; on surface modeling and molecular dynamics, trajectories are
not always smooth but still converge to lower-energy states. dfPO’s exploration pattern resembles
TRPO’s but attains better final values with more controlled variance. Meanwhile, SAC yields smooth
curves yet fails to approach optimal values, likely due to bias from entropy regularization.

Ablation study. We report hyperparameter ablations for TQC—number of critics nc and quantiles
nq, CrossQ—number of critics nc, SAC—entropy coefficient ent, DDPG—action noise (Ornstein–
Uhlenbeck) and target-update coefficient tau, PPO—clip coefficient and advantage normalization,
and TRPO—GAE parameter λ. dfPO uses defaults hyperparameters (learning rate 0.001, batch size
32). Reward-shaping ablation results are reported in Table 2; ablations for the standard algorithms
appear in Table 5 (see Section C.3). Overall, hyperparameter variations does not substantially affect
relative performance rankings, and dfPO remains robust.

Computational complexity. To analyze Algorithm 1, we focus on the main computational bottleneck:
Step 6. In this step, the number of training updates for gθk is proportional to the number of
newly added samples to the memory buffer M . As shown in Corollary 3.4, this number scales
as kNk ∼ k · O(ϵ−6) for each k ∈ {1, . . . ,H − 1}, where ϵ denotes the target error threshold.
Therefore, the overall time complexity is

∑H−1
k=1 kO(ϵ−6) = O(H2ϵ−6).

Implementation link. The complete codebase is available at https://github.com/mpnguyen2/dfPO.

5 Related works

Continuous-time reinforcement learning. While most reinforcement learning (RL) methods
are formulated using Markov decision processes, control theory offers a natural continuous-time
alternative [11]. Early work [30] formalized RL with a continuous-time formulation grounded
in stochastic differential equations (SDEs), replacing cumulative rewards with time integrals and
modeling dynamics via continuous-time Markov processes. Several subsequent works, including
ours, build on this control-theoretic perspective. A related line of work proposes continuous-time
policy gradient and actor-critic analogs without heavy probabilistic machinery [1, 32], but these
methods also require pointwise access to rewards and their derivatives, limiting their applicability
in scientific computing as discussed Section 1. Furthermore, extending SAC, TRPO, or PPO to
continuous time is nontrivial: naive Q-function definitions collapse to the value function, eliminating
action dependence and breaking advantage-based updates. Recent theory [15, 33] addresses this by
redefining the Q-function as the limiting reward rate (expected reward per time) and linking it to the
Hamiltonian (see Section 2), thereby enabling continuous-time TRPO and PPO counterparts [33].

Our work also builds on the control-theoretic formulation (simplified in Equation (4) with stochastic
function f ), but differs in two key aspects. First, we use the continuous-time formulation only as
a means to derive the dual of RL: we move to continuous time mainly to construct the dual via
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PMP, and then discretize the dual. Second, we define the policy over the joint space of state and
adjoint variables, treating it as an operator over this extended space. This allows us to capture
localized updates more naturally. We conjecture that our “g-function” (Section 2.1) aligns with the
Hamiltonian-based q-function in [15], and our model corresponds to an iterative procedure refining
the continuous-time advantage function within the extended state-adjoint space.

Regret bounds. In discrete settings, optimal O(
√
K) regret is known (e.g., [8]), but the constants

scale with the state-space size, which is intractable in continuous settings. In continuous domains,
nontrivial guarantees typically require structural assumptions. Under the mild Lipschitz–MDP
assumption, the minimax regret admits a lower bound Ω

(
K

d+1
d+2

)
[27], where d is the joint state–

action dimension. Faster rates arise with stronger smoothness: Maran et al. [21] assume ν-times

differentiable rewards/transitions and obtain O
(
K

3d/2+ν+1
d+2(ν+1)

)
, which approaches O(

√
K) as ν→∞;

Vakili and Olkhovskaya [29] assume kernelized rewards/transitions in an RKHS with Matérn kernel
of order m and show O

(
K

d+m+1
d+2m+1

)
, again tending to O(

√
K) as m→ ∞. Under comparable

assumptions, our result achieves similar dimension-independent rates (see Corollary 3.6).

Our bound is significant because it is derived from pointwise guarantees on the per-step policy
error, rather than only bounding the total cumulative regret. For a fixed horizon H , we show the
expected policy error at each step j across episode segments. Summing over steps yields the global
regret (Equation (21)). These per-step guarantees are finer-grained: they show the learned policy is
near-optimal at each timestep, mitigating issues like overfitting specific cumulative reward paths (e.g.,
reward hacking or physically inconsistent behavior). In this sense, pointwise bounds are stronger
than bounding the total regret alone.

6 Conclusion

We propose Differential Reinforcement Learning (Differential RL), a framework that reinterprets
reinforcement learning via the differential dual of continuous-time control. Unlike standard RL
algorithms that rely on global value estimates, our framework offers fine-grained control updates
aligned with the system’s dynamics at each timestep. Differential RL also naturally introduces
a Hamiltonian structure that embeds physics-informed priors, further supporting trajectory-level
consistency. To implement this framework, we introduce Differential Policy Optimization (dfPO,
Algorithm 1), a stage-wise algorithm that updates local movement operators along trajectories.
Theoretically, we establish pointwise convergence guarantees, a property unavailable in conventional
RL, and derive a regret bound of O(K5/6). Empirically, dfPO consistently outperforms standard
RL baselines across three representative scientific computing domains: surface modeling, multiscale
grid control, and molecular dynamics. These tasks feature complex functional objectives, physical
constraints, and data scarcity, conditions under which traditional methods often struggle. Future work
includes extending this framework to broader domains, investigating adaptive discretization, and
further bridging the gap between optimal control theory and modern RL.
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A Basic algorithmic learning theory

We first introduce the results of basic learning theory on independent and identically distributed (i.i.d)
samples. The proofs for all lemmas in this section can be found in [24] and can also be found in the
literature on modern learning theory.

Notations: Throughout this section, X is the feature space, Y be the label space, Z = X × Y .
Let H be a hypothesis space consisting of hypothesis h : X → Y . Let l : H × Z → R+ be
a loss function on labeled sample z = (x, y) for x ∈ X and y ∈ Y . Our loss function will
have the following particular form: l(h, (x, y)) = ϕ(h(x), y) for a given associated function ϕ :
Y × Y → R+. We use capital letters to represent random variables. We also define the following
sets: H ◦ {Z1, · · · , Zn} := {(h(X1), · · · , h(Xn)), h ∈ H} ⊆ Rn, and L ◦ {Z1, · · · , Zn} :=
{(l(h,Z1), · · · , l(h, Zn)), h ∈ H} ⊆ Rn for i.i.d samples Zi = (Xi, Yi) ∈ X × Y = Z with label
Yi with i ∈ 1, n. Also, define e(h) to be the average loss over new test data e(h) := EZ [l(h,Z)], and
E(h) the empirical loss over n ∈ Z+ i.i.d. samples Z1, · · · , Zn: E(h) := 1

n

∑n
i=1 l(h,Zi).

Definition A.1. The Rademacher complexity of a set T ⊆ Rn is defined as:

Rad(T ) = E
[
sup
t∈T

1

n

n∑
i=1

Biti

]
(23)

for Bernoulli random variables Bi ∈ {−1, 1}.

Lemma A.2. Suppose ϕ(., y) is γ-Lipschitz for any y ∈ Y for some γ > 0. Then:

E
[
sup
h∈H

{e(h)− E(h)}
]
≤ 2E

[
Rad(L ◦ {Z1, · · · , Zn})

]
(24)

≤ 2γ E
[

Rad(H ◦ {Z1, · · · , Zn})
]

(25)

Lemma A.3. For a hypothesis space H, a loss function l bounded in the interval [0, c], and for n
i.i.d labeled samples Z1, · · · , Zn, with probability of at least 1− δ, the following bound holds:

sup
h∈H

(e(h)− E(h)) < 4 Rad(L ◦ {Z1, · · · , Zn}) + c

√
2 log(1/δ)

n
(26)

Lemma A.4. For hypothesis space H consisting of (regularized) neural network approximators with
weights and biases bounded by a constant, there exists a certain constant C1, C2 > 0 so that for a
set of n random variables Z1, · · · , Zn:

Rad(H ◦ {Z1, · · · , Zn}) ≤
1√
n
(C1 + C2

√
log d) (27)

Throughout this paper, we assume that the optimization error can be reduced to nearly 0, so that
E(h) ≈ 0 if the hypothesis space H contains the function to be learned. From Lemma A.3, the

average estimation error generally scales with c

√
2 log(1/δ)

n
.

B Proofs of theorems and corollaries in Section 3

Proof of theorem. We first state the supporting Lemma B.1 and then use it to prove the main
Theorem 3.2 in Section 3 regarding the pointwise estimates for dfPO algorithm.

Lemma B.1. Given L and ϵ > 0, define two sequences {αj}j≥0 and {ϵj}j≥0 recursively as follows:

α0 = 0 and αj = Lαj−1 + ϵ (28)
ϵ1 = ϵ and ϵk+1 = Lαk + ϵ+ Lϵk (29)

Then for each k, we get:

ϵk ≤ kLkϵ

L− 1
(30)
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Proof. First, αj = (Lj−1 + · · ·+ 1)ϵ. Hence,

ϵk
Lk

≤ L(Lk−2 + · · ·+ 1) + 1

Lk
ϵ+

ϵk−1

Lk−1

=
Lk − 1

Lk(L− 1)
ϵ+

ϵk−1

Lk−1
<

ϵ

L− 1
+
ϵk−1

Lk−1

Hence, by simple induction,
ϵk
Lk

<
(k − 1)ϵ

L− 1
+
ϵ1
L
<

kϵ

L− 1
. As a result, ϵk <

kLkϵ

L− 1
as desired.

Now we’re ready to give a full proof for the dfPO’s pointwise convergence.
Theorem 3.2. Suppose that we are given a threshold error ϵ, a probability threshold δ, and a number
of steps per episode H . Assume that {Nk}H−1

k=1 is the sequence of numbers of samples used at each
stage in Algorithm 1 (dfPO) so that:

N1 = N(g,H1, ϵ, δ), (14)

Nk = max{N(gθk−1
,Hk, ϵ, δk−1/(k − 1)), N(g,Hk, ϵ, δk−1/(k − 1))} for k ∈ 2, H − 1 (15)

Here δk = δ/3H−k = 3δk−1. We further assume that there exists a Lipschitz constant L > 0
such that both the true dynamics G and the policy neural network approximator Gθk at step k with
regularized parameters have their Lipschitz constant at most L for each k ∈ 1, H . Then, for a
general starting point X , with probability at least 1− δ, the following generalization bound for the
trained policy Gθk holds for all k ∈ {1, 2, · · · ,H − 1}:

EX∥G(j)
θk

(X)−G(j)(X)∥ < jLjϵ

L− 1
for all 1 ≤ j ≤ k (16)

Note that when Nk → ∞, the errors approach 0 uniformly for all j given a finite terminal time T .

Proof. Let αk and ϵk be two sequences associated with Lipschitz constant L and threshold error ϵ as
in Lemma B.1. We prove the generalization bound statement by induction on the stage number k that
for probability of at least 1− δk,

EX∥G(j)
θk

(X)−G(j)(X)∥ < ϵj for all 1 ≤ j ≤ k (31)

By Lemma B.1, proving this statement also proves Theorem 3.2.

The bound for the base case k = 1 is due to the definition of N1 = N(g,H1, ϵ, δ) that allows the
approximation of g by gθ1 transfers to (a linear transformation of) their derivatives G and Gθ1 with
error threshold ϵ and probability threshold δ. Assume that the induction hypothesis is true for k. We
prove that for a starting (random variable) point X , the following error holds with a probability of at
least 1− δk+1 = 1− 3δk:

EX∥G(j)
θk+1

(X)−G(j)(X)∥ < ϵj for all j ≤ k + 1 (32)

First, from induction hypothesis, with probability of at least 1− δk:

EX∥G(j)
θk

(X)−G(j)(X)∥ < ϵj for all j ≤ k (33)

In stage k + 1, all previous stages’ samples up to stage k − 1 is used for Gθk+1
. As a result, we can

invoke the induction hypothesis on k to yield the same error estimate for Gθk+1
on the first k sample

points with probability 1− δk:

EX∥G(j)
θk+1

(X)−G(j)(X)∥ < ϵj for all j ≤ k (34)

Recall from Algorithm 1 that gθk+1
is trained to approximate gθk to ensure that the updated

policy doesn’t deviate too much from current policy. For j ∈ {1, · · · , k − 1}, gθk+1
∈ Hk+1

approximates gθk on Nk+1 samples of the form G
(j)
θk

(Xi) for i ∈ {1, · · · , Nk+1}. Since
Nk+1 ≥ N(gθk ,Hk+1, ϵ, δk/k) allows derivative approximation transfer, for probability of at least
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1− δk/k, EX∥Gθk+1
(G

(j)
θk

(X))−Gθk(G
(j)
θk

(X))∥ < ϵ. Hence, under a probability subspace Γ with
probability of at least (1− (k − 1)δk/k), we have:

EX∥Gθk+1
(G

(j)
θk

(X))−Gθk(G
(j)
θk

(X))∥ < ϵ (35)
for all 1 ≤ j < k

We prove by induction on j that under this probability subspace Γ, we have:

EX∥G(j)
θk+1

(X)−G
(j)
θk

(X)∥ < αj for all 1 ≤ j ≤ k (36)

In fact, for the induction step, one get:

EX∥G(j)
θk+1

(X)−G
(j)
θk

(X)∥ ≤ EX∥Gθk+1
(G

(j−1)
θk+1

(X))−Gθk+1
(G

(j−1)
θk

(X))∥

+ EX∥Gθk+1
(G

(j−1)
θk

(X))−Gθk(G
(j−1)
θk

(X))∥

≤ LEX∥G(j−1)
θk+1

(X)−G
(j−1)
θk

(X)∥+ ϵ ≤ Lαj−1 + ϵ = αj (37)

Finally, we look at the approximation of g by gθk+1
∈ Hk+1 on the specific sample points{

G
(k)
θk

(Xi)
}Nk+1

i=1
. Definition of Nk+1 ≥ N(g,Hk+1, ϵ, δk/k) again allow derivative approximation

transfer so that with probability at least 1− δk/k:

EX∥Gθk+1
(G

(k)
θk

(X))−G(G
(k)
θk

(X))∥ < ϵ (38)

Now consider the probability subspace S under which 3 inequalities Equation (33), Equation (36),
and Equation (38) hold. The subspace S has the probability measure of at least 1 − (δk + (k −
1)δk/k + δk/k) = 1− 2δk = 1− (δk+1 − δk), and under S, we have:

EX∥G(k+1)
θk+1

(X)−G(k+1)(X)∥ ≤ EX∥Gθk+1
(G

(k)
θk+1

(X))−Gθk+1
(G

(k)
θk

(X))∥

+ EX∥Gθk+1
(G

(k)
θk

(X))−G(G
(k)
θk

(X))∥+ EX∥G(G(k)
θk

(X))−G(G(k)(X))∥

≤ LEX∥G(k)
θk+1

(X)−G
(k)
θk

(X)∥+ ϵ+ LEX∥G(k)
θk

(X)−G(k)(X)∥ ≤ Lαk + ϵ+ Lϵk = ϵk+1

(39)
Merging this inequality with probability subspace where the inequality in Equation (34) holds leads
to the estimate on the final step for stage k + 1 for the induction step.

Proofs of corollaries. Lemma B.3 and Lemma B.7 below estimates N(g,H, ϵ, δ) (defined in
Definition 3.1) in terms of the required threshold error ϵ. Such lemmas are then directly used to prove
the two corollaries Corollary 3.3 and Corollary 3.4 in Section 3.

Before proving Lemma B.3 and Lemma B.7, we need the following supporting lemma.
Lemma B.2. Let H be the hypothesis space consisting of neural network approximators with bounded

weights and biases. For each s ∈ 1, d, let Hs = {(∇h)s, h ∈ H} =

{
∂h

∂xs
, h ∈ H

}
consists of sth

components of the gradients of elements in H. Then the Rademacher complexity with respect to Hs

on n i.i.d random variables Z1, · · · , Zn scales with O(1/
√
n):

Rad(Hs ◦ {Z1, · · · , Zn}) = O(1/
√
n) ∀s ∈ 1, d (40)

Proof. To get the Rademacher complexity bound on Hs, we use the chain rule to express each
element of Hs as h1 · · ·hR, where R is the fixed number of layers in H’s neural network architecture.
Here each hi can be expressed as the composition of Lipschitz (activation) functions and linear
functions alternatively with bounded weights and biases. Those elements hi then form another
neural network hypothesis space. By invoking Lemma A.4, we obtain a bound of order O(1/

√
n) on

individual hi’s. To connect these hi’s, we express the product h1 · · ·hR as:

h1 · · ·hR =

R∏
i=1

(hi +D −D) =
∑

W⊆[R]

(−D)R−|W |
∏
i∈W

(hi +D)

=
∑

W⊆[R]

(−D)R−|W | exp

( ∑
i∈W

log(hi +D))

)

16



Here D is a constant large enough to make the log function well-defined and to make Lipschitz
constant of the log function bounded above by another constant. Now we use the simple bounds
on Rad(T + T ′) and Rad(f ◦ T ) for some sets T and T ′ and Lipschitz function f to derive the
Rademacher complexity bound of the same order O(1/

√
n).

Lemma B.3. Suppose that the hypothesis space H for approximating the target function g : Ω ⊂
Rd → Rd consists of neural network appproximators with bounded weights and biases. In addition,
assume that the function g and neural network appproximators h ∈ H are continuously differentiable
twice with bounded first and second derivatives by some constant C. One way this assumption can
be satisfied is to choose activation functions that are two times continuously differentiable. Then
N(g,H, ϵ, δ) is the upper bound of O(ϵ−(2d+4)), where we only ignore the quadratic factors of δ,
the polynomial terms of d, and other logarithmic terms.

Proof. Suppose we’re given ϵ > 0. Take ϵ1 > 0 so that 16Cϵ1 < ϵ/(2d), and ϵ2 = 0.5. Now take

n ∈ N large enough so that C1

√
log(1/(δ/(3d))

n
< ϵ/(2d) for an appropriate constant C1. Then

take m ∈ N large enough so that (1 − c1ϵ2ϵ
d
1)

m < δ/(3n), where c1 is an appropriate geometric
constant (see the following paragraphs). Let M = m+ n.

Train a neural network function h ∈ H to approximate the target function g on N samples, where N
is given by:

N =
log((6M)/δ)

(Cϵ21δ/(6M))2
or

√
log(1/(δ/6M))

N
= Cϵ21

δ

6M
= N(g,H, ϵ, δ) (41)

Before going to the main proof, we dissect N to obtain its asymptotic rate in terms of ϵ and d. First
of all ϵ1 = O(ϵ/2d). Next, n ≈ log(1/δ)/(ϵ/(2d))2, and m ≈ log(3n/δ)ϵ−d

1 . Hence, ignoring
logarithmic terms, polynomial terms in d and the quadratic factor of δ, M = m+ n is approximately
O(ϵ−d). As a result, N ≈ ϵ−(2d+4).

Choose a set S = {X1, · · · , Xm, Y1, · · · , Yn} consisting of M = m + n random samples of
distribution ρ0 that are independent of g: m samples X1, · · · , Xm and n sample Y1, · · · , Yn.

We apply Lemma A.3 to H with i.i.d labeled samples Z = (X, g(X)) and loss function l with the
associated ϕ(y, ŷ) = |y − ŷ|, which is 1-Lipschitz for a fixed ŷ. In this case, from Lemma A.3, for
probability of at least 1−δ/(6M), EU [|h(U)−g(U)|] < Cϵ21δ/(6M) for the random variableU ∈ S.
As a result, by Markov inequality, with probability at least 1− δ/(6M)− δ/(6M) = 1− δ/(3M),
|h(U)− g(U)| < Cϵ21 for each U ∈ {X1, · · · , Xm, Y1, · · · , Yn}. Hence, there exists a probability
subspace Γ with probability at least 1− δ/(3M) ∗M = 1− δ/3 so that |h(U)− g(U)| < Cϵ21 for
all U ∈ S.

The probability that a particular sample (random variable) Xi is in the hypercone with a conic angle
difference of ϵ2 surrounding the direction (∇h(Y ) − ∇g(Y )) of the hyper-spherical ϵ1-circular
neighborhood of Y is at least c1ϵ2ϵd1. Here a ϵ1-circular neighborhood here include points with
radius sizes between ϵ1/2 and ϵ1. The probability that no m samples is in this cone is at most
(1− c1ϵ2ϵ

d
1)

m < δ/(3n). As a result, on Γ except a subspace with probability less than δ/(3n), there
exists k (depends on both Y and X1, · · · , Xm) so that:

ϵ1/2 < ∥Xk − Y ∥ < ϵ1 (42)
(∇h(Y )−∇g(Y )) · (Xk − Y ) > (1− ϵ2)∥∇h(Y )−∇g(Y )∥∥Xk − Y ∥ (43)

Second-order Taylor expansion for f and g at each Y yields:

h(Xk) = h(Y ) +∇h(Y )(Xk − Y ) +
1

2
∥Xk − Y ∥2Uh(Xk, Y ) (44)

g(Xk) = g(Y ) +∇g(Y )(Xk − Y ) +
1

2
∥Xk − Y ∥2Ug(Xk, Y ) (45)
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where Uh and Ug are the second derivative terms of h and g in respectively, and are bounded by C.
As a result:

(1− ϵ2)∥∇h(Y )−∇g(Y )∥(ϵ1/2)
< (1− ϵ2)∥∇h(Y )−∇g(Y )∥∥Xk − Y ∥
< (∇h(Y )−∇g(Y )) · (Xk − Y )

< |h(Y )− g(Y )|+ |h(Xk)− g(Xk)|+ 2C∥Xk − Y ∥2

< 2Cϵ21 + 2C∥Xk − Y ∥2 < 4Cϵ21

Thus, ∥∇h(Y )−∇g(Y )∥ < 8Cϵ1/(1−ϵ2) = 16Cϵ1. Therefore, on the subspace Γ0 with probability
of at least 1 − δ/3 − n ∗ (δ/(3n)) = 1 − (2δ)/3, ∥∇h(Y ) − ∇g(Y )∥ < 16Cϵ1 for all samples
Y ∈ {Y1, · · · , Yn}.

In order to prove that EX∥∇h(X)−∇g(X)∥ < ϵ and thus finishing the proof for N(g,H, ϵ, δ) =
O(ϵ−(2d+4)), we only need to prove bounds on individual components of ∥∇h(X)−∇g(X)∥:

EX∥(∇h(X)−∇g(X))s∥ < ϵ/d

where xs is the sth component of a vector x ∈ Rd.

To this end, by Lemma B.2, we have a bound of order O(1/
√
n) for the Rademacher complexity of

the hypothesis space Hs for s ∈ 1, d, i.e. Rad(Hs ◦ {Z1, · · · , Zn}) = O(1/
√
n) for i.i.d random

variables Z1, · · · , Zn. Hence, we can invoke Lemma A.3 on Hs to get:

EX∥(∇h(X)−∇g(X))s∥ <
1

n

n∑
i=1

∥(∇h(Yi)−∇g(Yi))s∥+ ϵ/(2d)

< ϵ/(2d) + ϵ/(2d) = ϵ/d

on Γ0 except a set of probability of at most δ/(3d). Then we finish the proof of Lemma B.3 by
summing all inequalities over d components.

Remark. Another simpler way to achieve a similar result is to upper-bound ∥∇h(X)−∇g(X)∥ by
∥∇h(Yi)−∇g(Yi)∥+2C∥X − Yi∥ and use the probability subspace in which one of the Yi is close
enough to X . However, we need a similar argument for Lemma B.7, so we moved forward with the
proof approach given above.

We now state the definition of weakly convex and linearly bounded to define a more restricted
hypothesis space with an improved factor in Lemma B.7.

Definition B.4. For p ∈ N, a function h is called a p-weakly convex function if for any x ∈ Ω, there
exists a sufficiently small neighborhood U of x so that:

h(y) ≥ h(x) +∇h(x)(y − x)− C∥y − x∥p ∀y ∈ U (46)

Note that any convex function is p-weakly convex for any p ∈ N.

Definition B.5. A function h is linearly bounded, if for some constant C > 0, and for any x ∈ Ω,
there exists a sufficiently small neighborhood U of x so that:

|h(y)− h(x)| ≤ C∥∇h(x)∥∥y − x∥ ∀y ∈ U (47)

Any Lipschitz function on compact domain that has non-zero derivative is linearly bounded. One
such example is the function eα∥x∥

2

on domains that do not contain 0.
Remark B.6. Note that there are many hypothesis spaces consisting of infinitely many elements that
satisfy Lemma B.7. One such hypothesis space H is:{

h(x) :=

D∑
i=1

aie
bi∥x∥2

, 0 ≤ ai ≤ A, 0 < b ≤ bi ≤ B

}
(48)

for constant A,B, b > 0 and for domain Ω that doesn’t contain 0. Lemma B.7 also holds for concave
functions and their weak versions.
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Lemma B.7. Suppose that, possibly with knowledge from an outside environment or from certain
policy experts, the hypothesis space H is reduced to a smaller family of functions of the form g + h,
where g is as in Lemma B.3, and h is linearly bounded and p-weakly convex for some p ≥ 2d. Then
N(f,H, ϵ, δ) can be upper bound by the factor O(ϵ−6) that is independent of the dimension d.

Proof. Suppose we’re given ϵ > 0. Take ϵ1 = ϵ1/d = ϵα with α = 1/d, and set ϵ2 = 1/2. Now
choose m ∈ N large enough so that (1 − c1ϵ2ϵ

d
1)

m < ϵ2, where c1 is an appropriate geometric
constant. From here, we can see that m ≈ O(ϵ−d

1 ) = O(ϵ−1).

Choose N ≈ O(ϵ−6) ∈ N:

N = O
(
log(d/δ)

ϵ6

)
so that

√
log(1/(δ/d))

N
≈ O(ϵ3) (49)

Train a neural network function g to approximate f on N samples Y1, · · · , YN so that g(Yi) ≈ f(Yi)
for i ∈ 1, N . We prove that this N is large enough to allow derivative approximation transfer.

Choose βk = k/d and δk = kδ/d for k ∈ 0, d. We prove by induction on k ∈ 0, d that there exists a
subspace of probability at least 1−δk so that ∥∇f(Y )−∇g(Y )∥ < C0ϵ

βk for all Y ∈ {Y1, · · · , Yn}
and for some constant C0.

For k = 0, the bound is trivial. For the induction step from k to k + 1, we first consider the
loss function lk of the form lk(h, (x, y)) = lk(h, (x, g(x))) = ϕk(h(x), g(x)), where ϕk(y, ŷ) =
clip(|y− ŷ|, 0, Cϵα+βk)d. Here clip denotes a clip function and, in this case, is obviously a Lipschitz
function with Lipschitz constant 1. First, the loss function lk is bounded by (Cϵα+βk)d. Now note
the following simple inequality:

|ad − bd| = |a− b|
∣∣∣∣ d−1∑
k=0

akbd−1−k

∣∣∣∣ < |a− b|d(Cϵα+βk)d−1

for a, b < Cϵα+βk . The inequality shows that ϕk has the Lipschitz constant bounded by
d(Cϵα+βk)d−1. We are now ready to go the main step of the induction step.

Condition on Y , we repeat the same argument in Lemma B.3’s proof to show that except for a
subspace with probability less than ϵ2, there exists j ∈ 1,m (depends on both Y and X1, · · · , Xm)
so that:

ϵ1/2 < ∥Xj − Y ∥ < ϵ1 = ϵα (50)
(∇h(Y )−∇g(Y )) · (Xj − Y ) > (1− ϵ2)∥∇h(Y )−∇g(Y )∥∥Xj − Y ∥ (51)

Under this subspace, because h− g is linearly bounded,

|h(Xj)− g(Xj)| ≤ C∥∇h(Y )−∇g(Y )∥∥Y −Xj∥ < Cϵα+βk

As a result, |h(Xj)− g(Xj)|d = ϕk(h(Xj), g(Xj)). Next, since h− g is p-weakly convex, we have:

(1− ϵ2)∥∇h(Y )−∇g(Y )∥(ϵ1/2)
< (1− ϵ2)∥∇h(Y )−∇g(Y )∥∥Xj − Y ∥
≤ (∇h(Y )−∇g(Y )) · (Xj − Y )

≤ |h(Xj)− g(Xj)|+ |h(Y )− g(Y )|+ C1∥Xj − Y ∥p

< |h(Y )− g(Y )|+ |h(Xj)− g(Xj)|+ 2C1(ϵ
α)2d

= |h(Xj)− g(Xj)|+ 2C1ϵ
2

= ϕk(h(Xj), g(Xj))
1/d + 2C1ϵ

2

≤
( m∑

i=1

ϕk(h(Xi), g(Xi))

)1/d

+ 2C1ϵ
2
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By taking expectation over X1, · · · , Xm, we obtain

(1− ϵ2)∥∇h(Y )−∇g(Y )∥(ϵ1/2)

< (1− ϵ2)

((
EX1,··· ,Xm

[ m∑
i=1

ϕk(h(Xi), g(Xi))

])1/d

+ 2C1ϵ
2

)
+ C2ϵ

2

<

(
mEX [ϕk(h(X), g(X))]

)1/d

+ C3ϵ
2

=

(
mEX

[
lk(h, (X, g(X)))

])1/d

+ C3ϵ
2

for appropriate constants C2, C3 > 0.

By Lemma A.2 and Lemma A.3 on the Lipschitz loss function lk bounded by (Cϵα+βk)d with
Lipschitz constant d(Cϵα+βk)d−1, with probabilty of at least 1− δ/d, we can continue the sequence
of upper-bounds:

(1− ϵ2)∥∇h(Y )−∇g(Y )∥(ϵ1/2)
≤ C4(ϵ

−1(ϵα+βk)(d−1)ϵ3)1/d + C3ϵ
2

≤ C5ϵ
α+βk+1/d = C5ϵ

α+βk+1

for appropriate constants C4, C5 > 0.

Hence, we finish the induction step because except on a subspace with probability at most δk +
δ/d = δk+1, the inequality for induction hypothesis at (k + 1) holds. For βd = 1, we obtain
∥∇h(Y )−∇g(Y )∥ < ϵ for all Y ∈ {Y1, · · · , YN} with probability of at least 1− δd = 1− δ. By
repeating the argument in Lemma B.3’s proof, we obtain the expected bound

EX [∥∇h(Y )−∇g(Y )∥] < C6ϵ (52)

for an appropriate constant C6 > 0. After a constant rescaling, we showed that N(g,H, ϵ, δ) ≈
O(ϵ−6)

Together with the general pointwise estimates for dfPO algorithm in Theorem 3.2, Lemma B.3 and
Lemma B.7 allow us to explicitly state the number of training episodes required for two scenarios
considered in this work in Corollary 3.3 and in Corollary 3.4. Note that the proofs for these corollaries
now follow trivially from Theorem 3.2, Lemma B.3, and Lemma B.7.
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C Further experiment details

C.1 Sample size and problem parameters

For the first two tasks, models are trained for 100,000 steps, while for the third task, training is limited
to 5,000 steps due to the high computational cost of reward evaluation. For the reshaped reward
r(s, a) = β−t( 12∥a∥

2 − F(s)), we define the decay factor as γ := β∆t , where ∆t is the step size
(time step). Details on sample size (episodes and steps per episode), step size ∆t, and decay factor γ
are summarized in Table 3.

Table 3: Task-specific details.

Surface modeling Grid-based modeling Molecular dynamics

# of episodes 5000 5000 800
# of steps 20 20 6

Step size ∆t 0.01 0.01 0.1
Factor γ 0.99 0.81 0.0067

C.2 Statistical analysis on benchmarking results

We perform benchmarking using 10 different random seeds, with each seed generating over 200 test
episodes. In Table 4, we report the mean and variance of final functional costs across 13 algorithms.
Statistical comparisons are conducted using t-tests on the seed-level means. dfPO demonstrates
statistically significant improvement over all baselines in nearly all settings. The only exception is
the first experiment (Surface modeling), where dfPO and CrossQ exhibit comparable performance.

Table 4: Final evaluation costs (F(s) at terminal step, mean ± std) from 13 different algorithms for 3
tasks from 10 different seeds.

Surface modeling Grid-based modeling Molecular dynamics

dfPO 6.296 ± 0.048 6.046 ± 0.083 53.352 ± 0.055
TRPO 6.470 ± 0.021 7.160 ± 0.113 1842.300 ± 0.007
PPO 20.577 ± 2.273 7.155 ± 0.109 1842.303 ± 0.007
SAC 7.424 ± 0.045 7.066 ± 0.101 1364.747 ± 12.683

DDPG 15.421 ± 1.471 6.570 ± 0.082 68.203 ± 0.001
CrossQ 6.365 ± 0.030 7.211 ± 0.122 951.674 ± 15.476
TQC 6.590 ± 0.047 7.120 ± 0.087 76.874 ± 0.001

S-TRPO 7.772 ± 0.085 6.470 ± 0.098 1842.287 ± 0.014
S-PPO 16.422 ± 1.166 7.064 ± 0.094 1842.304 ± 0.009
S-SAC 8.776 ± 0.107 7.209 ± 0.126 126.397 ± 1.315

S-DDPG 9.503 ± 0.210 6.642 ± 0.124 82.946 ± 0.001
S-CrossQ 6.830 ± 0.076 7.028 ± 0.118 338.120 ± 8.642
S-TQC 6.468 ± 0.026 6.716 ± 0.099 233.944 ± 2.966

C.3 Additional ablation study

In the main paper, we reported ablations for the reward-shaped variants in Table 2; here we present
the corresponding results for the standard RL algorithms in Table 5 below.

C.4 Training time and memory usage

Approximate model sizes are given in Table 6; our networks are small, so memory overhead is low
and only slightly above PPO/TRPO. Approximate per-task wall-clock times are listed in Table 7 and
are comparable across tasks.
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Table 5: Hyperparameter ablations on standard (S-) algorithms.

dfPO S-CrossQ S-SAC S-TQC

Dataset orig orig nc=10 nc=2 orig ent=0.05 ent=0.2 orig nc=10 nq=5

Surface 6.32 6.93 7.22 19.42 8.89 8.71 9.79 6.51 8.65 6.61
Grid 6.06 7.07 7.21 7.15 7.17 7.90 7.21 6.71 7.00 7.12
Mol. Dyn. 53.34 338.07 593.53 1213.82 126.73 210.94 523.92 231.98 270.12 668.10

dfPO S-DDPG S-PPO S-TRPO

Dataset orig orig noise=OU tau=0.01 orig clip=0.1 norm=F orig GAE-λ=0.8

Surface 6.32 9.54 18.63 11.42 19.17 19.86 24.97 7.74 15.41
Grid 6.06 6.68 6.98 6.95 7.05 7.14 7.21 6.48 6.88
Mol. Dyn. 53.34 82.95 90.64 83.74 1842.30 1842.33 1842.31 1842.30 1842.28

Table 6: Model sizes (in MB) for 13 algorithms across tasks.

Surface modeling Grid-based modeling Molecular dynamics

dfPO 0.17 0.66 0.17
TRPO 0.06 0.37 0.06
PPO 0.08 0.62 0.08
SAC 0.25 2.86 0.25

DDPG 4.09 5.19 4.09
CrossQ 0.27 2.37 0.27

TQC 0.57 6.45 0.57
S-TRPO 0.06 0.37 0.06
S-PPO 0.08 0.62 0.08
S-SAC 0.25 2.86 0.25

S-DDPG 4.09 5.19 4.09
S-CrossQ 0.27 2.37 0.27

S-TQC 0.57 6.45 0.57

C.5 Evaluation on standard RL tasks

We evaluate on continuous-state, continuous-action versions of Pendulum, Mountain Car, and
CartPole using Gym. For Mountain Car, we use reward function R = 100σ

(
20(position −

0.45)
)
− 0.1 action[0]2, where σ denotes the sigmoid. For CartPole, R = upright · centered · stable

with upright = 2σ
(
−5 |θ/θthresh|

)
, centered = 2σ

(
−2 |x/xthresh|

)
, and stable = 2σ

(
−0.5(ẋ2 + θ̇2)

)
.

Rewards lie in [0, 1] and attain 1 only at θ = x = θ̇ = ẋ = 0; thus moderate reward values (e.g.,
≈ 0.15) can still indicate acceptable control within thresholds. We adopt continuous rewards to align
with our continuous-time assumptions. Results in Table 8 report episode rewards.

Our method performs reasonably on these standard tasks. Additionally, in the main paper, dfPO
shows strong performance in scientific computing tasks, where optimization over structured geometric
spaces, coarse-to-fine grid discretizations, and molecular energy landscapes better reflect real-world
modeling with complex functionals.

C.6 Explanation on the choices of representative tasks

In this section, we justify our choice of three evaluation tasks that capture scientific-computing
settings where physics and sample efficiency are essential. Our aim is to develop reinforcement
learning methods for settings where data are expensive to simulate and physical consistency is critical,
with a focus on scientific-computing applications. Motivated by this, we identify three representative,
foundational task types:

Surface Modeling, control over geometries. At the level of an individual object, many scientific
computing problems involve modifying the geometry of a structure to achieve desired physical
properties. A standard example is the design of an airfoil (e.g., an aircraft wing), where the goal is
to optimize its surface shape over time to minimize drag or maximize lift under aerodynamic flow.
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Table 7: Approximate training time (in hours) for each algorithm.

Algorithm PPO TRPO SAC DDPG TQC CrossQ dfPO

Train time (hrs) 0.3 0.6 1.0 1.2 2.0 2.0 1.0

Table 8: Episode rewards on continuous-state/action classic-control tasks.

Task PPO TRPO DDPG SAC TQC CrossQ dfPO

Pendulum -0.0213 -0.0011 -0.0063 -0.0054 -0.0047 -0.0045 -0.0042
Mountain Car 58.5273 60.1217 55.3489 60.7268 70.5280 63.2175 59.0146
CartPole 0.0903 0.1204 0.1151 0.1130 0.0527 0.1241 0.1352

These surfaces are often altered through a set of control points, and the reward is derived from a
functional measuring aerodynamic performance. Similarly, in structural engineering, surfaces can be
automatically adjusted to improve stability against external disturbances, such as seismic vibrations.
Additionally, in materials processing, time-varying surface optimization is used to control mechanical
or thermal properties, like stress distributions and heat dissipation, during the manufacturing of
advanced materials. Our surface modeling task captures this family of problems by enabling control
over geometries.

Grid-Based Modeling, control under PDE constraints. When moving beyond individual geome-
tries to macro-scale physical systems, we typically encounter phenomena modeled by controlled
partial differential equations (PDEs). These PDEs capture time-evolving quantities such as tem-

perature, pressure, or concentration fields in space. For instance, the heat equation
du

dt
= ∆u+ f

models temperature evolution, where u is the temperature field and f is a control input. An important
application is data center temperature control, where f can represent electricity supplied to cooling
elements, and the goal is to keep the temperature stable while optimizing the energy budget. Similar
examples range from smart HVAC systems to industrial furnace regulation. Most, if not all, physical
phenomena fall under this category and are represented by classical PDEs such as advection–diffusion
equations, wave equations, reaction–diffusion systems, and elasticity equations. In practical computa-
tional settings, solving such PDEs often requires spatial discretization, typically using a grid-based
approximation. Due to computational constraints, control actions are applied on a coarser grid, while
the underlying physical evaluation (i.e., computing the reward) is carried out on a finer grid. Our
grid-based task precisely reflects this multiscale setting: it requires learning control policies that
operate on a coarse discretization but are evaluated through a fine-grid reconstruction.

Molecular Dynamics. At a much smaller atomic scale, such as those in molecular or biological
systems, physical processes are often not well-described by a single PDE. Instead, one must work
directly with the atomic structures, whose interactions are governed by complex, often nonlocal,
energy-based potentials. This motivates our third category of molecular dynamics. One example is
understanding how virus capsids optimally change over time under therapeutic molecular interactions.
This is important for designing more effective treatments.

In summary, our three evaluation tasks correspond to core abstractions in scientific computing. As
summarized in the main paper, these include:

• Optimization over geometric surfaces.

• Grid-based modeling with controlled PDEs.

• Molecular dynamics in atomistic systems.

C.7 Scientific-computing tasks where re-planning assumptions fail

In many controlled PDEs, interesting dynamics concentrate near specific times—for example, sharp
transients or blow-up behavior where u(t) → ∞ as t→ t⋆. To resolve such phenomena, practical
solvers avoid a uniform time grid and instead place time points {ti}Ni=0 that cluster near the event
(often geometrically), so ti+1 − ti shrinks rapidly as ti → t⋆. Consider a black-box solver for such
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controlled PDEs:
F (ut, u,∇u,∇2u, f) = 0, (53)

with a fine-grid state xi and a coarse control fi. A single forward discretization step can be written
as:

xi+1 = Ai xi +Gi fi + ri, (54)
where Ai is the high-dimensional propagator determined by the local step size and discretization,
while Gifi injects a low-rank control effect (rank ≪ dimxi), and ri is a known source/residual.
Under adaptivity, the operators (Ai) vary with i and generally do not commute. Define the prefix
propagators from the initial time:

Q0 := I, Qi+1 := AiQi. (55)

For rollouts from t0, the full-rank computations are concentrated in evaluating Qi+1x0, while
control/source contributions are less expensive due to their low-rank structures. To keep computational
cost feasible, the solver can cache low-rank surrogates of the prefixesQi+1 ≈ Ci+1Di+1 for low-rank
matrices Ci+1 and Di+1, enabling fast computations from the initial time.

A mid-trajectory restart at an arbitrary time tk requires the full suffix operator Sk→n := An−1 · · ·Ak.
Making restart practical would therefore require constructing and maintaining low-rank approxima-
tions for every suffix Sk→n across many k. In a black-box environment, either these suffix maps are
unavailable, or storing and updating them would exceed compute and memory budgets. Thus, the
re-planning assumption demands capabilities beyond a black-box solver and fails in this setting.

D Hamiltonian differential dual approach

D.1 Physics intuition

Lagrangian mechanics is a reformulation of classical dynamics that expresses motion in terms
of energies and generalized coordinates. Where Newtonian mechanics emphasizes forces and
constraints, the Lagrangian view encodes dynamics through the principle of stationary action, from
which the familiar conservation laws emerge. Specifically, each admissible path s : [0, T ] → Rd

through space–time carries a scalar “action”. The physical path is the one that renders this action
stationary (often a minimum) under perturbations that fix the endpoints. Formally, with Lagrangian
L(s, ṡ, t), the action functional S is defined as an indefinite integral:

S =

∫
L(s, ṡ, t)dt (56)

and stationarity of S yields the Euler–Lagrange equation that governs a physical path:

∂L(s, ṡ, t)
∂s

=
d

dt

∂L(s, ṡ, t)
∂ṡ

(57)

A canonical example is L(s, ṡ, t) = 1
2m∥ṡ∥2−V(s) (kinetic minus potential energy). Then ∂L/∂ṡ =

mṡ and ∂L/∂s = −∇V(s), so that Equation (57) reduces to

−∇V(s) = d

dt

(
mṡ

)
= ms̈, (58)

which is precisely the Newton’s second law F = ms̈ with the force F being minus gradient of the
potential energy.

Optimal control (continuous-time RL) perspective. The Lagrangian formulation can be viewed as
a special case of optimal control by identifying the control with velocity, a ≡ ṡ, and adopting the
special dynamics f(s, a) = a. Consider the corresponding value function:

V (s, t) := max
a(·)

∫ T

t

(
− L(w(u), a(u), u)

)
du s.t. ẇ(u) = a(u), w(t) = s. (59)

The Hamilton–Jacobi–Bellman (HJB) equation [11] then reads

∂V (s, t)

∂t
+max

a

(
∂V (s, t)

∂s
f(s, a)− L(s, a)

)
= 0 (60)
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Defining the Hamiltonian H(s, a, t) :=
∂V (s, t)

∂s
f(s, a) − L(s, a), we recover Equation (5) with

adjoint (costate) p = ∂V/∂s. Optimality requires the first-order condition
∂H

∂a
= 0, which yields

∂L
∂ṡ

=
∂V

∂s
, and substituting the maximizing control a∗(s, t) = ṡ into Equation (60) gives

∂V

∂t
=

L − ∂V

∂s
f = L − ∂V

∂s
ṡ.

Differentiate the identity
∂L
∂ṡ

=
∂V

∂s
along the optimal trajectory yields:

d

dt

∂L
∂ṡ

=
d

dt

∂V

∂s
=

∂

∂t

∂V

∂s
+
∂2V

∂s2
ṡ

=
∂

∂s

∂V

∂t
+
∂2V

∂s2
ṡ

=
∂

∂s

(
L − ∂V

∂s
ṡ

)
+
∂2V

∂s2
ṡ

=
∂L
∂s

− ṡ
∂2V

∂s2
+
∂2V

∂s2
ṡ =

∂L
∂s

(61)

which is exactly Euler-Langrange Equation (57). Thus, the stationary action is a special optimal
control problem where velocity plays the role of the control, and H ties value gradients to momenta.

Hamiltonian mechanics and duality. Hamiltonian mechanics follows from the same dual construc-
tion (see Equation (9)): with controls suppressed, the Hamiltonian H and the adjoint p encode the
dynamics via symplectic flow. In our setting, Lagrangian mechanics appears as a special case, and
Hamiltonian mechanics is the corresponding dual description. The differential-learning duality we
use generalizes this physics correspondence and provides the bridge to continuous-time RL.

In this section, we write a = ṡ and occasionally suppress explicit (s, t) and (s, ṡ, t) arguments in V
and L for readability. A more rigorous derivation can also be done via the calculus of variations.

D.2 Relation with state-action value function

We revisit the temporal-difference (TD) error r(s, a) + V (s′)− V (s), where the next state s′ follows
the dynamics s′ = s+∆tf(s, a). Using a reparameterization trick, f can absorb arbitrary noise ϵ
as f = f(·, ϵ). With a first-order expansion and a constant step size, taking ∆t = 1 to match the
discrete-time TD update, we obtain:

ϵTD = r(s, a) + V (s′)− V (s) = r(s, a) + V (s+∆tf(s, a))− V (s)

≈ r(s, a) + ∆tf(s, a)
∂V

∂s
(s) = −H

(
s,−∂V

∂s
(s), a

)
(62)

Thus, under the one-step expansion with ∆t = 1, the TD error is exactly the Hamiltonian evaluated at
the value gradient. This identifies the critic’s TD signal with our control-theoretic local quantities used
in the dual approach. In the continuous-time limit (∆t → 0), this yields an instantaneous quantity that
coincides with the continuous-time q-function of Jia and Zhou [15]. When the dynamics are unknown,
such quantities can be estimated through the drift from observed transitions: f(s, a) ≈ (s′ − s)/∆t.

E Limitation

Our theoretical results rely on a set of assumptions stated in the corresponding theorems and lemmas,
including continuity of the initial state distribution and Lipschitz regularity of the dynamics operator
G and score function g. These assumptions are standard and broadly applicable in physical systems,
but they exclude certain cases, such as systems with discontinuous dynamics, which are not addressed
in this work.

While our Differential RL framework is designed to be broadly applicable across scientific computing
domains, our experimental evaluation focuses on three representative classes: surface modeling,
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grid-based modeling, and molecular dynamics. These were selected to demonstrate the generality and
effectiveness of our approach in settings with complex, simulation-defined objectives. Nonetheless,
our experiments do not exhaust the full spectrum of possible applications, and future work will
explore extensions to other domains—including those outside scientific computing, such as computer
vision—and to a wider variety of functionals within each domain.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims in the abstract and introduction accurately summarize the key
contributions and findings of the paper, and they align with the theoretical and experimental
results presented.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss limitations (such as theoretical assumptions and the scope of
problems considered) throughout the main paper and summarize them in the Appendix as
well.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The assumptions and setups for each theoretical result are stated in the main
paper. Proof overviews are included in the main text, with full and detailed proofs provided
in the Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all necessary details in the Experiment section and the Appendix,
along with a link to the codebase that includes detailed instructions for reproducing the main
experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide a link to the experimental codebase, which includes detailed
instructions in the README file for reproducing our results. The README also includes
links to necessary artifacts, such as trained models.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide detailed experimental settings in the Experiment section and the
Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report statistical analyses across 10 random seeds and include significance
testing (t-test) in the Appendix to support the reliability of our experimental results.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provided a description of the hardware used for the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We adhere to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]
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Justification: This paper aims to advance the field of Machine Learning. We do not foresee
direct negative societal impacts arising from this work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The research involves only datasets and models that poses no significant misuse
risks, thus no specific safeguards were necessary.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We properly credit all external code and models used in this work by citing the
relevant papers and libraries.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA] .
Justification: The paper does not introduce any new assets, thus documentation for such is
not applicable.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: : This paper does not involve crowdsourcing or research with human subjects,
thus the inclusion of participant instructions, screenshots, and compensation details is not
applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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Justification: This paper does not involve research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM is used only for editing and formatting purposes.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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