
Escaping Collapse: The Strength of Weak Data for
Large Language Model Training∗

Kareem Amin Sara Babakniya† Alex Bie

Weiwei Kong Umar Syed Sergei Vassilvitskii

Google Research

Abstract

Synthetically-generated data plays an increasingly larger role in training large
language models. However, while synthetic data has been found to be useful,
studies have also shown that without proper curation it can cause LLM performance
to plateau, or even “collapse”, after many training iterations. In this paper, we
formalize this question and develop a theoretical framework to investigate how
much curation is needed in order to ensure that LLM performance continually
improves. Our analysis is inspired by boosting, a classic machine learning technique
that leverages a very weak learning algorithm to produce an arbitrarily good
classifier. The approach we analyze subsumes many recently proposed methods
for training LLMs on synthetic data, and thus our analysis sheds light on why they
are successful, and also suggests opportunities for future improvement. We present
experiments that validate our theory, and show that dynamically focusing labeling
resources on the most challenging examples — in much the same way that boosting
focuses the efforts of the weak learner — leads to improved performance.

1 Introduction

Large Language Models (LLMs) represent the frontier of artificial intelligence, and are trained on
vast amounts of human-generated data. However, much of the high-quality publicly available data on
the Internet has been exhausted, and limits on generating new tokens threaten to slow progress on
LLM training.

As a consequence, synthetically-generated datasets are playing an important role in the training
of LLMs. Synthetic data have been shown to improve the performance of real large models on a
range of tasks [BKK+22, ZWMG22, GPS+23, SCA+24]. On the other hand, the circuitous nature
of training new LLMs on data generated by previous generations of LLMs has caused concerns of
model collapse [SSZ+24, ACRL+24].

What makes synthetic data beneficial or harmful? The answer depends on the precise elements of
the synthetic data recipe, and one of our main contributions is a theoretical framework that unifies
existing elements of synthetic data approaches, facilitating reasoning about when they might succeed
or fail.

∗Authors ordered alphabetically. Author contributions are listed at the end of the paper. Correspondence to
{kamin,babakniya,alexbie,weiweikong,usyed,sergeiv}@google.com.
†Work done while the author was a student at the University of Southern California.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Basic learning theory and empirical studies suggest that a necessary condition for avoiding model
collapse is that synthetic data is curated in some way to inject signal that is exogenous to the system
that produced the original data. This can come in many forms: identification of high-quality subsets
of synthetic data, human rewrites of poor responses, a separate model rating the responses, etc. A
key question is how much curation is sufficient to not only avoid collapse, but also to converge to an
optimal LLM? Our answer, which we will make precise, is the minimum amount.

Specifically, we analyze a simple procedure for improving an LLM, in which we iteratively (1)
generate synthetic responses from the model; (2) obtain additional responses from an exogenous
source; and (3) train the next generation of the model with both types of responses. This procedure
captures previous successful approaches for training LLMs on synthetic data [ZWMG22, GPS+23,
SCA+24], and so our analysis provides an explanation for why they work. More broadly, it models
the ad hoc processes employed by model developers. We show that if at least a β > 0 fraction of the
non-synthetic responses (i.e., the ones produced by an external signal) are correct, then the iterative
procedure converges to an optimal LLM (i.e., one that returns a correct response to each prompt).
See Theorem 5 for the precise statement and exact convergence rate.

Connection to Boosting. At a high level, our analysis shows how to use synthetic data to focus
curation on regions of the prompt space where the models perform poorly. In this way, this approach
resembles AdaBoost, a classic machine learning algorithm that iteratively focuses a weak learning
algorithm on training examples where previous weak hypotheses performed poorly. Unlike boosting,
however, our assumptions on the data and the learning method are inverted. Instead of a weak learner,
we assume access to powerful LLMs that can perfectly model an input distribution, which we call
strong learners. However, we also assume access to only weak information about the distribution we
wish to model (specifically, that β > 0), i.e. weak data. This is in contrast to traditional boosting
where the algorithm has access to strong data, i.e., independent and identically distributed (i.i.d.)
examples from some target distribution.

This connection between the theory of boosting and learning from synthetic data has been largely
unexamined in the existing literature. Our analysis also suggests practical ways to improve current
algorithms for learning from synthetic data. In our experiments, we show that scarce curation
resources are better utilized by focusing their efforts on producing responses to the most challenging
prompts in the training set.

2 Related work

Training models on human-generated data only has limitations such as scalability, biases, errors,
and potential privacy considerations [KPS+23, SCA+24, GAK23, LWX+24]. [LML+24] highlights
a challenge: as LLMs scale, the demand for high-quality data increases, yet access to such data
becomes more restricted due to copyright and privacy constraints. Given these challenges, integrating
synthetic data into training pipelines is essential but comes with risks.

Model Collapse. Several studies highlight a critical concern regarding the use of synthetic data in
training LLMs, known as model collapse. This phenomenon is caused by improper use of synthetic
data in training the model, which can cause performance degradation or even complete failure of the
model [SKAK25]. [ACRL+24, SSZ+24, HBA23, GSD+24] have empirically studied model collapse
in various settings, demonstrating the detrimental effects of iterative training on only synthetic data
and highlighting how this process can severely degrade model performance.

[DFK24, DFY+24, BBD+24, DD24, SCH+24] study model collapse theoretically. Their results
show that recursively retraining only on synthetic data causes performance degradation in differ-
ent models. However, combining synthetic and labeled training data [BBD+24, DD24, SCH+24,
KSD+24, FBBG24] can mitigate this performance degradation. In contrast to our work, they do not
demonstrate continuous improvement toward an optimal model.

Recently, [STK24] and [FDY+24] provide theoretical explanations for model collapse under restricted
models, including Gaussian mixture models and linear classifiers. [FDY+24] shows that the presence
of a verifier to select more desired synthetic data can improve the performance in non-recursive
settings. [FSH+24] extends this work to include both noisy labels and features and provide theoretical
and empirical results on the impacts of combining synthetic and real data. Our results do not assume
a specific learning class, instead relying on a black-box strong learning assumption.

2

Self Improving LLMs Self-evolving or self-improving LLMs [TLC+24] is a new research di-
rection that leverages the model itself to generate or guide the creation of high-quality data
[WKM+23, HGH+23, GFA+24], which can then be used for fine-tuning [YPC+24, CDY+24]
or RLHF [PMM+24], enabling continuous improvement with minimum or no external intervention.

STaR [ZWMG22] presents a bootstrapping mechanism to enhance the reasoning capabilities of
LLMs by iteratively asking the model to generate step-by-step “chain-of-thought” rationales for
questions, filtering out incorrect answers, fine-tuning the original model on all correct rationales, and
repeating the process. ReST [GPS+23] proposes a combination of self-generated data and offline
reinforcement learning. The method operates iteratively in two primary phases: a “Grow” phase,
where for each input (context), the LLM generates multiple outputs to expand the training dataset,
and an “Improve” phase, which involves ranking and filtering this augmented dataset using a learned
reward model trained on human preferences. ReSTEM [SCA+24] is a modified version of ReST with
two main differences; they do not augment the generated data with human-generated data, and in
the “Improve” step instead of fine-tuning the model in the previous iteration, they fine-tune the base
model. All of the above methods can be modeled in our framework, and thus we provide a better
theoretical understanding about why and when such methods can work.

Recent works [SZE+25, YFC+25, DDE+24] take a more theoretical approach to understand self-
improving algorithms. [SZE+25] introduces a new metric to analyze how different components
contribute to self-improvement formally. In parallel, [YFC+25] studies how to optimally allocate a
fixed computational budget across iterations of synthetic data generation and fine-tuning, showing
that exponential growth policies outperform constant or linear ones in both theory and practice.

3 Preliminary Notation

Datasets. Let X be the set of all possible prompts, and let Y be the set of all possible responses,
which we also call labels. An element of X × Y is a labeled prompt. A subset of X is a prompt set,
and a subset of X × Y is a dataset.

For any prompt set P , let P (x) denote the number of times prompt x appears in P , and for any
dataset D, let D(x, y) denote the number of times labeled prompt (x, y) appears in D. Typically
we have P (x) ∈ {0, 1} and D(x, y) ∈ {0, 1}. However, we also allow datasets to contain multiple
copies of the same element, where the multiplicity, or weight, of an element can be any non-
negative real number, i.e., D(x, y) ∈ R+. We write (x, y) ∈ D if and only if D(x, y) > 0 and
|D| =

∑
x,yD(x, y). Datasets with general weights are formed by using the weighted union

operation: If D0 and D1 are datasets, and λ0, λ1 > 0, then D = λ0D0] λ1D1 is the dataset defined
by D(x, y) = λ0D0(x, y) + λ1D1(x, y).

For any dataset D let D(y|x) = D(x, y)/
∑
y′ D(x, y′) be the fraction of labeled prompts in D with

prompt x that have response y. Define D(y|x) = 0 if
∑
y′ D(x, y′) = 0.

A large language model, or LLM, is a function that maps each prompt in X to a distribution on Y .
We will denote LLMs by the symbol g, and let g(x) denote the distribution over labels Y of g when
evaluated on prompt x.

Let q : X ×Y → {0, 1} be the quality function, where q(x, y) = 1 indicates that y is a good response
to prompt x.

4 Problem Setting

We consider a setting where a sequence of LLMs g1, g2, . . . are learned on a sequence of datasets
D1,D2, Given a prompt set P , our high-level goal is to produce an LLM that generates high
quality responses for every prompt in P . We illustrate this meta-algorithm in Setting 1.

Unlike classical learning, where the learner has access to samples from the target distribution, we
assume that the learner only has access to labeled examples constructed by a data generation procedure
that we control, denoted by the function GenerateData. Data generation might make use of synthetic
data, produced by the previous generation’s LLM gt−1, and exogenous (i.e., non-synthetic) signals.

3

In order to formalize our goal, we make precise the capabilities of learner, the capabilities of
GenerateData, and our notion of quality.

Setting 1 Data Generation Problem

Given: Prompt set P , number of iterations T .
1: g0 = ⊥
2: for t = 1, 2, . . . , T do
3: D = GenerateData(P, gt−1)
4: Dt = Dt−1]D
5: gt = learner(Dt)
6: end for
7: Output gT .

4.1 Strong Learning

We first introduce the concept of a strong learner.
Definition 1 (Strong Learner). For any LLM g let g(y|x) be the probability that the distribution g(x)
assigns to response y. The function learner takes as input a dataset D ⊂ X × Y and outputs an
LLM g such that g(y|x) = D(y|x) for all (x, y) ∈ D.

The procedure learner trains an LLM that matches the conditional probability of each response
given a prompt in the input dataset. That is, we assume that the model class has the capacity to match
this distribution exactly, and the learning procedure can find the model parameters that perfectly fit
the data. This assumption is motivated by the fact that deep neural networks instantiate all modern
LLMs and are both theoretically capable of approximating arbitrary functions [MP99] and frequently
observed to fit their training inputs [ZBH+21].

While LLMs are powerful, the largest models contain billions of parameters and are extremely
expensive to train. Thus, training T state-of-the art models from scratch is prohibitively expensive.
In contrast, given model gt−1 trained on Dt−1, it is significantly less expensive to train a model gt
on Dt−1]D, for some choice D. In other words, our setting models continued training, where the
training mixture for the next LLM is constructed by augmenting the existing data mixture with new
examples.

4.2 Data Generation

Creating data for the next generation of an LLM might involve making use of synthetic data produced
by the current generation of the LLM. To avoid model collapse, some degree of data curation happens
in practice. This curation may make use of an exogenous signal previously unknown to our training
algorithm. Curation may also take the form of evaluating the quality of existing synthetic data. We
discuss each of these capabilities in greater detail.

Synthetic Data. Given an LLM g, and a prompt x, we can generate a synthetic response for x by
sampling from distribution g(x). Overall, we assume that synthetic data generation is relatively
inexpensive, and permit data generation procedures that make calls to previously-trained LLMs.

Noisy Filter. We assume that we can noisily partition a dataset into labeled and unlabeled prompts
based on the quality function.
Definition 2 (γ-noisy Filter). Let γ ∈ [0, 1]. The function filterγ(D) takes as input a dataset
D ⊆ X × Y and outputs (S+, P−) = filterγ(D), where the following holds with independent
probability for each (x, y) ∈ D:

• If q(x, y) = 1 then (x, y) ∈ S+ with probability at least γ, and otherwise x ∈ P−.

• If q(x, y) = 0 then x ∈ P−.

In other words, γ is a lower bound on the recall of filterγ for recognizing high-quality responses.
For many applications, recognizing that a synthetic response is a high-quality for a given prompt is
significantly easier than generating the response from scratch. For instance, if the dataset contains
arithmetic or coding problems, it is relatively easy to programmatically verify a correct answer.

4

Weak Labeler. Key to our work is the notion of a weak labeler, a function, that given any set of
prompts produces responses with average quality bounded away from zero.

To formally define it, we use an auxiliary function aP : P → Y , which generates labels for all
prompts in a set P .

Definition 3 (β-weak Labeler). Let β ∈ [0, 1]. The function labelerβ takes as input a prompt set
P ⊂ X , and uses an auxiliary function aP : X → Y to label every prompt in P . Formally,

labelerβ(P) = {(x, y) : x ∈ P, y = aP (x)} ⊂ X × Y

We say that the labeler is β-weak if a β fraction of these labels are high-quality, i.e., for any input
prompt set P ,

|{(x, y) ∈ labelerβ(P) : q(x, y) = 1}|
|P |

≥ β.

In our setting, each iteration of data generation is allowed to make one call to the weak labeler. The
role of the labeler is to create new responses to a set of prompts. We are not prescriptive about how the
labeler is implemented, only that it provides some β fraction of high-quality responses. The labeler
does not need to indicate which prompts have been correctly labeled, nor does it need to correctly
label a representative portion of its input. For example, the labeler is allowed to only correctly label
the “easiest” prompts that it receives as input. We think of these responses as being produced by an
exogenous process, such as consulting with a human directly, having a human correct or critique
LLM responses, or any other framework for generating responses that are not purely synthetic.

4.3 Objective

Given these capabilities — the ability to synthesize data, assess synthetic data quality, and weakly
label new data — the goal of our algorithm is to construct datasets D1, . . . ,DT so that

lim
T→∞

Prx∼P,y∼gT (x)[q(x, y) = 1] = 1 (1)

where x ∼ P denotes that x is chosen uniformly at random from P , and y ∼ gT (x) denotes that y is
chosen from distribution gT (x). In other words, as the number of algorithm iterations grows large,
the final LLM output by the algorithm returns a correct response to almost every prompt in P . Note
that this objective is similar to the objective of classical boosting. Rather than use weak learners to
construct a good hypothesis, we ask whether strong learners and weak data can be used to construct
a model that provides high-quality results on all prompts.

5 Algorithm

We present an algorithm for learning an LLM from a mixture of synthetically generated and weakly
labeled data that uses the capabilities introduced in Section 4.

The aforementioned algorithm generates synthetic responses from the last generation of LLM.
Synthetic data generation is given multiple opportunities to produce good responses, which are noisily
recognized by filterγ . Prompts that are consistently paired with low-quality responses are passed
into labelerβ , which provides a minimal amount of signal. A mixture of good synthetically labeled
data and β-weak-labeled data is then incorporated into the training mixture. To state this procedure
formally, it will be convenient to introduce the generate subroutine, which issues multiple calls to
an LLM per prompt to produce a dataset of synthetically labeled prompts.

Definition 4 (Generation). The function generate takes as input a prompt set P ⊆ X , LLM g and
positive integer k, and is defined

generate(P ; k, g) = {(x, yix) : x ∈ P, i ∈ [k], yix ∼ g(x)}.

Algorithm 2 formalizes our procedure for data generation, where generation, filtering, and weak-
labeling are applied in sequence on each generation of LLM. Whether the data that is being added to
the mixture consists of mostly β-weakly labeled data (Dt in Algorithm 2) or γ-filtered synthetic data
(S+
t in Algorithm 2) is parameterized by α > 0.

5

Algorithm 2 Boosting-style algorithm for LLM training

Given: Prompt set P , repeat parameter k, weakly labeled prompt weight α, high-quality fraction
β, filter recall γ, number of iterations T .

1: g0 = ⊥ and D0 = ∅ . Initial LLM and initial training set
2: for t = 1, 2, . . . , T do
3: St = generate(P ; k, gt−1) . Generate k synthetic responses per prompt.
4: (S+

t , P
−
t) = filterγ(St) . Noisily partition high-quality synthetic data

from low-quality prompts.
5: Dt = labelerβ(P−t) . Weakly label low-quality prompts
6: λt = α

|Dt| . Set weight of weakly labeled prompts
7: Dt = Dt−1] λtDt] S+

t . Update training mixture
8: gt = learner(Dt) . Use learner to update LLM
9: end for

6 Main result

Theorem 5 is our main theoretical result, and states that the final LLM gT output by Algorithm 2
satisfies the convergence requirement in Eq. (1). Theorem 5 also quantifies the rate of convergence.
Theorem 5. Let ε ∈ (0, 1). Suppose that in Algorithm 2 we have α > 0, β ∈ (0, 1), γ ∈ (0, 1]

T ≥ log(2/ε)

β
+

2α

βε
+ 1

and k ≥ (2 log T + log |P |)/(βγ). With probability at least 1 − 1/T over the randomness of the
algorithm, the final LLM gT output by the algorithm satisfies

Prx∼P,y∼gT (x)[q(x, y) = 1] ≥ 1− ε.

Note that by setting α = ε in Algorithm 2 the iteration complexity becomes T = O(log(1/ε)/β).

Proof sketch. The key step in the proof is showing that, with probability 1− 1/T , in each iteration
t we have Pry∼gt−1(x)[q(x, y) = 1] ≥ β for all but (1 − β)t−1 fraction of the prompts x ∈ P .
Since the algorithm draws k = Ω(1/(βγ)) synthetic responses to each prompt from gt−1, one
of those responses is likely to be correct. As a result, correctly labeled prompts are continually
added to the training data (via the synthetic dataset S+

t), and the quality of the training data steadily
improves, causing the performance of the LLMs learned from that training data to approach the
optimal performance.

Even when t is large, it is non-trivial to show that Pry∼gt−1(x)[q(x, y) = 1] ≥ β for nearly all
prompts x ∈ P . While this fact follows from our assumption about the weak labeler, it does not
follow straightforwardly. The weak labeler ensures that the average response quality to a given set of
prompts is at least β, but we need a guarantee about response quality that holds uniformly for almost
all prompts. Our approach is to first show that P−t (the set of prompts with low-quality responses)
shrinks exponentially with t, and then observe that the total weight assigned to these prompts in the
training data is fixed at α > 0 (a free parameter of our algorithm). Consequently, once a prompt is
assigned a high-quality response by the weak labeler, the weight of that response overwhelms the
weight of all previous low-quality responses in the training data. So when the learner fits an LLM to
this training data, the LLM assigns non-trivial probability mass to the high-quality response; we are
able to bound this probability from below by β.

6.1 Relationship to Boosting

Boosting is a meta-learning algorithm for combining weak hypotheses into highly accurate ensemble
classifiers [SF13]. While the most common version of boosting is AdaBoost [FS97], we will present
a slightly simpler version that still contains all of the essential ideas.

In each iteration of boosting, a training set of binary-labeled examples is given as input to a weak
learner. Each training example is associated with a non-negative weight, and the weights sum to 1.
The weak learner returns a hypothesis that achieves weighted error at most 1

2 − β on the training set,

6

1 2 3 4 5
Round

0.0

0.1

0.2

0.3

0.4

Te
st

 a
cc

ur
ac

y

GSM8K test performance

PT
Gold SFT
Do nothing

Filter only
Boosting
Boosting w/o focusing

1 2 3 4 5
Round

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Tr
ai

n
ac

cu
ra

cy
 @

1/
@

8

GSM8K train performance

PT
Gold SFT
Do nothing

Filter only
Boosting
Boosting w/o focusing

Figure 1: We plot test and train performance of our Algorithm 2 variants on GSM8K, across rounds.
We report the mean and np.std(*,ddof=1) for 3 seeds. For train accuracy plots, we plot both train
accuracy@1 (solid) and train accuracy@8 (stacked). Boosting results displayed here use weak data
(A).

where β ∈ (0, 12) is the edge over the trivial hypothesis that randomly guesses each label. The weight
on each training example that is correctly labeled by the hypothesis is decreased by a factor exp(θ),
and the weight on each training example that is incorrectly labeled by the hypothesis is increased
by the same factor, where θ = 1

2 log 1+2β
1−2β . Essentially, the weights are adjusted to concentrate

on difficult examples. The weights are renormalized to sum to 1, and the process repeats. After
T = O(log(1/ε)/β2) iterations, a majority vote among all the hypotheses achieves unweighted error
most ε on the training set.

Comparing Algorithm 2 to the description of boosting given above reveals many similarities. In each
iteration of Algorithm 2, prompts are given as input to a weak labeler that has quality β ∈ (0, 1),
where β is the edge over the trivial labeler that assigns an incorrect response to every prompt. The
weight on each prompt that is correctly labeled by the previous iteration’s LLM is set to zero, and the
weight on each prompt that is incorrectly labeled by the previous iteration’s LLM is increased by
at least a factor exp(θ), where θ = log 1

1−β (this fact emerges from our analysis, which proves that
size of the set of prompts given to the weak labeler shrinks by a factor at least 1− β each iteration;
see Lemma 11(b) in the Appendix). As in boosting, the weights are adjusted to concentrate on
difficult examples. After T = O(log(1/ε)/β) iterations, an LLM learned from all of the training
data achieves error at most ε on the overall prompt set (see Theorem 5).

7 Experiments

Viewing Algorithm 2 as a meta-algorithm, we conduct experiments with specific instantiations using
Gemma 2 2B on math problem solving [CKB+21, GSM8K] and Python coding [AON+21, MBPP]
tasks.3 We select these tasks because measures of response quality here are consistent and easily
verifiable.

7.1 Instantiations of Algorithm 2

Do nothing. Responses produced by the current iteration of the model are directly used as training
data for the next iteration. This corresponds to setting α = 0, omitting the generate operation, and
using a pass-through filter in line 4 of Algorithm 2. This tracks the setting explored in the “model
collapse” literature [ACRL+24, SSZ+24, GSD+24].

Filter only. Only correct responses in the current iteration are used for training in the next iteration.
This corresponds to α = 0 and γ = 1 in Algorithm 2. This reproduces the STaR/ReST approaches
for learning from synthetic data [ZWMG22, GPS+23, SCA+24].

3Gemma models are made available under Google’s Gemma Terms of Use. GSM8K and MBPP are made
available under the MIT License.

7

1 2 3 4 5
Round

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Te
st

 p
as

s r
at

e

MBPP test performance

PT
Gold SFT
Do nothing

Filter only
Boosting
Boosting w/o focusing

1 2 3 4 5
Round

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n
pa

ss
 ra

te
 @

1/
@

32

MBPP train performance

PT
Gold SFT
Do nothing

Filter only
Boosting
Boosting w/o focusing

Figure 2: We plot test and train performance of our Algorithm 2 variants on MBPP, across rounds.
We report the mean and np.std(*,ddof=1) for 3 seeds. For train pass rate plots, we plot both train
pass@1 (solid) and train pass@32 (stacked). Boosting results displayed here use weak data (A).

Boosting. The full algorithm of the present paper. In addition to the synthetic data produced by Filter
only, we mix in weak data from the labeler. This corresponds to α > 0 and β > 0 in Algorithm 2.
We use α = 1/3 in all experiments.

• Boosting, w/o focusing. We ablate out focusing on hard examples. To be precise: rather
than giving the labeler the prompts we got wrong, P−t , we draw a random set of questions
of size |P−t |.

We also report two baselines that do not involve iteratively training on model-generated data. PT: the
pre-trained model; and Gold SFT: the model after one round of fine-tuning on the human-written
responses in the dataset. Note that Gold SFT is the only setup that makes use of human-written
responses, rather than just for answer verification.

7.2 Experimental Details

In all experiments, a round of fine-tuning entails training all parameters of the model for 330 (GSM8K)
or 30 (MBPP) steps at batch size 64 (with the exception of Gold SFT where we report the checkpoint
with best validation accuracy) We train with standard sequence cross-entropy loss. Training examples
are (input, target) pairs, where input is the problem preceded by a 3-shot prompt (see Appendix
D for prompt templates); and target is a model response (human-written response for Gold SFT).

Modeling the weak data. We instantiate labeler as a Gemma 2 2B PT model with a fixed total
query budget, which is distributed uniformly over all problems it receives. For a given problem, we
sample responses from the model equal to that problem’s allotted queries. We consider two setups to
simulate weak data provided by the weak labeler. Weak data (A): for each question, we return all
correct responses if there are any. If there are none, we return a random incorrect response. Weaker
data (B): we pool together the correct responses to all questions. We add to this collection an equal
number of incorrect responses, drawn randomly from all incorrect responses to all questions.

We remark that the fixed total query budget setup offers a mechanism for satisfying the weak data
assumption: the labeler can maintain constant accuracy when targeting increasingly granular (and
more difficult) slices of the input distribution by focusing their resources. We see that this is indeed
the case experimentally, and plot accuracies in Figure 3. Moreover, a fixed query budget is a natural
analogue to the fixed person-hours/money/compute budgets behind a labelling effort.

Departure from the theory. In our experiments, we make one main modification from Algorithm
2. Rather than accumulating data and retraining the model each iteration (Algorithm 2, line 9), we
instead accumulate updates. That is, we fine-tune on the newly introduced data in each iteration,
initializing from the checkpoint produced by the prior iteration. We do this for efficiency reasons.

8

GSM8K MBPP

Setup Rounds train test train test

@1 @8 greedy @1 @32 greedy

PT 0 .211.002 .630.007 .222.003 .235.008 .703.007 .275.002
- orig. report - - .243* - - .302*

Gold SFT 1 .392.020 .755.009 .379.008 .880.039 .987.009 .237.018

Do nothing 5 .136.012 .391.026 .129.022 .238.011 .386.041 .210.024

Filter only 5 .553.050 .762.029 .393.020 .632.016 .702.018 .329.022

Boosting (A) 5 .589.013 .849.005 .456.010 .681.008 .844.005 .329.004
- w/o focusing .550.008 .787.005 .432.013 .600.012 .747.003 .336.011

Boosting (B) 5 .565.020 .820.009 .443.020 .647.012 .832.009 .326.009
- w/o focusing .509.000 .767.007 .430.012 .544.012 .698.010 .327.009

Table 1: Comparison of 3-shot train and test accuracy@k rates on GSM8K and MBPP for Gemma
2 2B checkpoints produced by various setups. We report the mean and np.std(*, ddof=1) for
3 seeds. To report train accuracy@k, we sample k solutions to each problem at temperature 0.7
and mark it correct if any of k solutions is correct. For test accuracy, we employ greedy sampling.
(*): Row 2 cites the figure from the Gemma 2 report [GRP+24] which does not report sampling
temperature.

7.3 GSM8K Results

Table 1 (first half) summarizes our results on GSM8K. We have 7000 training problems, use k = 8
for generate, and allocate the same total query budget of 56,000 to the labeler each round. In
Appendix C, we present model responses to selected problems over the course of training.

Baselines validate our experimental setup. Results in the PT and Gold SFT demonstrate that: (1)
our evaluation setup is in the ballpark of what is reported in the original Gemma 2 report; and (2) our
fine-tuning setup indeed can yield significant improvement when the training data is human-written
solutions.

Model collapse with no curation. In the Do nothing row, we recover the result from the model
collapse literature that iterative fine-tuning without curation does not improve the model and leads to
degraded quality.

Comparison between curation variants. Indeed, the present algorithm demonstrates improvements
over the ReST-like variant that uses filtering only. The differences are most evident in training
accuracy, which is strongly predicted by the theory. Indeed, this is in spite of the fact that as opposed
to filtering only, boosting introduces incorrect answers to the training data. Furthermore although
our theory does not address generalization, we observe that boosting results in improved test accuracy.
Finally, the performance of boosting without focusing is quite close – random selection is a strong
baseline – but focusing still leads to improvements, especially in terms of training accuracy.

7.4 MBPP Results

Table 1 (second half) summarizes our results on MBPP. We have 374 training problems, use k = 32
for generate, and allocate the same total query budget of 11,968 to the weak labeler in each round.

Similar results to GSM8K for train pass rate. In terms of train pass@k, we observe similar results
to GSM8K experiments, that generally: Boosting > Boosting w/o focusing > Filter only > Do
nothing. On weaker data (B), Filtering beats Boosting w/o focusing in terms of pass@1.

No clear winner for test pass rate. While all iterative approaches outperform Gold SFT in terms
of test pass rate, they all recover similar test performance despite differences in training accuracy.
Notably, Boosting w/o focusing beats Boosting, and Filter Only outperforms Boosting with weaker
data (B). One explanation is the limited amount of training data (384 examples) which prevents
generalization; note that Gold SFT does not recover PT test pass rate.

9

8 Conclusion & Future Work

We have shown that under mild assumptions a modicum of curation applied to synthetic data not
only avoids model collapse, but leads to arbitrarily high accuracy results. Our analysis is through the
lens of boosting and, mirroring that paradigm, we define notions of strong learners and weak data to
reach the theoretical conclusions. In taking this view, we provide theoretical explanations for many
of the synthetic data methods used in practice.

Many interesting questions remain. An immediate avenue is further relaxing the assumptions (e.g.,
having nearly strong learners that only approximately match the conditional distribution) and deriving
corresponding convergence rates. A broader goal is using these insights for the burgeoning field of
data selection, where we must explicitly model similarities between different examples as part of the
analysis.

Author contributions

• Sergei V conceived the idea to analyze synthetic data training through the lens of boosting.

• Sara B and Alex B reviewed related work.

• Everyone developed the modeling framework.

• Kareem A, Weiwei K, Umar S and Sergei V proved the main result.

• Alex B designed and ran the experiments.

• Everyone contributed to writing the paper and framing its contributions.

References
[ACRL+24] Sina Alemohammad, Josue Casco-Rodriguez, Lorenzo Luzi, Ahmed Imtiaz Humayun,

Hossein Babaei, Daniel LeJeune, Ali Siahkoohi, and Richard Baraniuk. Self-consuming
generative models go MAD. In The Twelfth International Conference on Learning
Representations, 2024.

[AON+21] Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk Michalewski,
David Dohan, Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton.
Program synthesis with large language models. CoRR, abs/2108.07732, 2021.

[BBD+24] Quentin Bertrand, Joey Bose, Alexandre Duplessis, Marco Jiralerspong, and Gauthier
Gidel. On the stability of iterative retraining of generative models on their own data. In
The Twelfth International Conference on Learning Representations, 2024.

[BKK+22] Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion,
Andy Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol
Chen, Catherine Olsson, Christopher Olah, Danny Hernandez, Dawn Drain, Deep
Ganguli, Dustin Li, Eli Tran-Johnson, Ethan Perez, Jamie Kerr, Jared Mueller, Jeffrey
Ladish, Joshua Landau, Kamal Ndousse, Kamile Lukosiute, Liane Lovitt, Michael
Sellitto, Nelson Elhage, Nicholas Schiefer, Noemı́ Mercado, Nova DasSarma, Robert
Lasenby, Robin Larson, Sam Ringer, Scott Johnston, Shauna Kravec, Sheer El Showk,
Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton, Tom Conerly, Tom Henighan,
Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds, Ben Mann, Dario Amodei,
Nicholas Joseph, Sam McCandlish, Tom Brown, and Jared Kaplan. Constitutional AI:
harmlessness from AI feedback. CoRR, abs/2212.08073, 2022.

[CDY+24] Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play
fine-tuning converts weak language models to strong language models. In Ruslan
Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan
Scarlett, and Felix Berkenkamp, editors, Proceedings of the 41st International Confer-
ence on Machine Learning, volume 235 of Proceedings of Machine Learning Research,
pages 6621–6642. PMLR, 21–27 Jul 2024.

10

[CKB+21] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz
Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher
Hesse, and John Schulman. Training verifiers to solve math word problems. CoRR,
abs/2110.14168, 2021.

[DD24] Apratim Dey and David Donoho. Universality of the π2/6 pathway in avoiding model
collapse. arXiv preprint arXiv:2410.22812, 2024.

[DDE+24] Rudrajit Das, Inderjit S Dhillon, Alessandro Epasto, Adel Javanmard, Jieming Mao,
Vahab Mirrokni, Sujay Sanghavi, and Peilin Zhong. Retraining with predicted hard
labels provably increases model accuracy. arXiv preprint arXiv:2406.11206, 2024.

[DFK24] Elvis Dohmatob, Yunzhen Feng, and Julia Kempe. Model collapse demystified: The
case of regression. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024.

[DFY+24] Elvis Dohmatob, Yunzhen Feng, Pu Yang, Francois Charton, and Julia Kempe. A tale of
tails: Model collapse as a change of scaling laws. In Ruslan Salakhutdinov, Zico Kolter,
Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp,
editors, Proceedings of the 41st International Conference on Machine Learning, volume
235 of Proceedings of Machine Learning Research, pages 11165–11197. PMLR, 21–27
Jul 2024.

[FBBG24] Damien Ferbach, Quentin Bertrand, Avishek Joey Bose, and Gauthier Gidel. Self-
consuming generative models with curated data provably optimize human preferences.
arXiv preprint arXiv:2407.09499, 2024.

[FDY+24] Yunzhen Feng, Elvis Dohmatob, Pu Yang, Francois Charton, Julia Kempe, and FAIR
Meta. Beyond model collapse: Scaling up with syn-thesized data requires verification.
arXiv preprint arXiv:2406.07515, 2024.

[FS97] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of computer and system sciences,
55(1):119–139, 1997.

[FSH+24] Aymane El Firdoussi, Mohamed El Amine Seddik, Soufiane Hayou, Reda Alami,
Ahmed Alzubaidi, and Hakim Hacid. Maximizing the potential of synthetic data:
Insights from random matrix theory. arXiv preprint arXiv:2410.08942, 2024.

[GAK23] Fabrizio Gilardi, Meysam Alizadeh, and Maël Kubli. Chatgpt outperforms crowd
workers for text-annotation tasks. Proceedings of the National Academy of Sciences,
120(30):e2305016120, 2023.

[GFA+24] Nate Gillman, Michael Freeman, Daksh Aggarwal, Chia-Hong Hsu, Calvin Luo, Yong-
long Tian, and Chen Sun. Self-correcting self-consuming loops for generative model
training. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria
Oliver, Jonathan Scarlett, and Felix Berkenkamp, editors, Proceedings of the 41st In-
ternational Conference on Machine Learning, volume 235 of Proceedings of Machine
Learning Research, pages 15646–15677. PMLR, 21–27 Jul 2024.

[GPS+23] Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte
Weerts, Abhishek Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu,
Wolfgang Macherey, Arnaud Doucet, Orhan Firat, and Nando de Freitas. Reinforced
self-training (rest) for language modeling, 2023.

[GRP+24] Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin,
Surya Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre
Ramé, Johan Ferret, Peter Liu, Pouya Tafti, Abe Friesen, Michelle Casbon, Sabela
Ramos, Ravin Kumar, Charline Le Lan, Sammy Jerome, Anton Tsitsulin, Nino Vieillard,
Piotr Stanczyk, Sertan Girgin, Nikola Momchev, Matt Hoffman, Shantanu Thakoor,
Jean-Bastien Grill, Behnam Neyshabur, Olivier Bachem, Alanna Walton, Aliaksei
Severyn, Alicia Parrish, Aliya Ahmad, Allen Hutchison, Alvin Abdagic, Amanda Carl,
Amy Shen, Andy Brock, Andy Coenen, Anthony Laforge, Antonia Paterson, Ben

11

Bastian, Bilal Piot, Bo Wu, Brandon Royal, Charlie Chen, Chintu Kumar, Chris Perry,
Chris Welty, Christopher A. Choquette-Choo, Danila Sinopalnikov, David Weinberger,
Dimple Vijaykumar, Dominika Rogozińska, Dustin Herbison, Elisa Bandy, Emma
Wang, Eric Noland, Erica Moreira, Evan Senter, Evgenii Eltyshev, Francesco Visin,
Gabriel Rasskin, Gary Wei, Glenn Cameron, Gus Martins, Hadi Hashemi, Hanna
Klimczak-Plucińska, Harleen Batra, Harsh Dhand, Ivan Nardini, Jacinda Mein, Jack
Zhou, James Svensson, Jeff Stanway, Jetha Chan, Jin Peng Zhou, Joana Carrasqueira,
Joana Iljazi, Jocelyn Becker, Joe Fernandez, Joost van Amersfoort, Josh Gordon, Josh
Lipschultz, Josh Newlan, Ju yeong Ji, Kareem Mohamed, Kartikeya Badola, Kat Black,
Katie Millican, Keelin McDonell, Kelvin Nguyen, Kiranbir Sodhia, Kish Greene,
Lars Lowe Sjoesund, Lauren Usui, Laurent Sifre, Lena Heuermann, Leticia Lago, Lilly
McNealus, Livio Baldini Soares, Logan Kilpatrick, Lucas Dixon, Luciano Martins,
Machel Reid, Manvinder Singh, Mark Iverson, Martin Görner, Mat Velloso, Mateo
Wirth, Matt Davidow, Matt Miller, Matthew Rahtz, Matthew Watson, Meg Risdal,
Mehran Kazemi, Michael Moynihan, Ming Zhang, Minsuk Kahng, Minwoo Park, Mofi
Rahman, Mohit Khatwani, Natalie Dao, Nenshad Bardoliwalla, Nesh Devanathan,
Neta Dumai, Nilay Chauhan, Oscar Wahltinez, Pankil Botarda, Parker Barnes, Paul
Barham, Paul Michel, Pengchong Jin, Petko Georgiev, Phil Culliton, Pradeep Kuppala,
Ramona Comanescu, Ramona Merhej, Reena Jana, Reza Ardeshir Rokni, Rishabh
Agarwal, Ryan Mullins, Samaneh Saadat, Sara Mc Carthy, Sarah Cogan, Sarah Perrin,
Sébastien M. R. Arnold, Sebastian Krause, Shengyang Dai, Shruti Garg, Shruti Sheth,
Sue Ronstrom, Susan Chan, Timothy Jordan, Ting Yu, Tom Eccles, Tom Hennigan,
Tomas Kocisky, Tulsee Doshi, Vihan Jain, Vikas Yadav, Vilobh Meshram, Vishal
Dharmadhikari, Warren Barkley, Wei Wei, Wenming Ye, Woohyun Han, Woosuk Kwon,
Xiang Xu, Zhe Shen, Zhitao Gong, Zichuan Wei, Victor Cotruta, Phoebe Kirk, Anand
Rao, Minh Giang, Ludovic Peran, Tris Warkentin, Eli Collins, Joelle Barral, Zoubin
Ghahramani, Raia Hadsell, D. Sculley, Jeanine Banks, Anca Dragan, Slav Petrov, Oriol
Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena
Buchatskaya, Sebastian Borgeaud, Noah Fiedel, Armand Joulin, Kathleen Kenealy,
Robert Dadashi, and Alek Andreev. Gemma 2: Improving open language models at a
practical size, 2024.

[GSD+24] Matthias Gerstgrasser, Rylan Schaeffer, Apratim Dey, Rafael Rafailov, Tomasz Korbak,
Henry Sleight, Rajashree Agrawal, John Hughes, Dhruv Bhandarkar Pai, Andrey
Gromov, Dan Roberts, Diyi Yang, David L. Donoho, and Sanmi Koyejo. Is model
collapse inevitable? breaking the curse of recursion by accumulating real and synthetic
data. In First Conference on Language Modeling, 2024.

[HBA23] Ryuichiro Hataya, Han Bao, and Hiromi Arai. Will large-scale generative models
corrupt future datasets? In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pages 20555–20565, October 2023.

[HGH+23] Jiaxin Huang, Shixiang Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and
Jiawei Han. Large language models can self-improve. In Houda Bouamor, Juan
Pino, and Kalika Bali, editors, Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pages 1051–1068, Singapore, December
2023. Association for Computational Linguistics.

[KPS+23] Alexey Kurakin, Natalia Ponomareva, Umar Syed, Liam MacDermed, and Andreas
Terzis. Harnessing large-language models to generate private synthetic text. arXiv
preprint arXiv:2306.01684, 2023.

[KSD+24] Joshua Kazdan, Rylan Schaeffer, Apratim Dey, Matthias Gerstgrasser, Rafael Rafailov,
David L Donoho, and Sanmi Koyejo. Collapse or thrive? perils and promises of
synthetic data in a self-generating world. arXiv preprint arXiv:2410.16713, 2024.

[LML+24] Shayne Longpre, Robert Mahari, Ariel N. Lee, Campbell S. Lund, Hamidah Oderin-
wale, William Brannon, Nayan Saxena, Naana Obeng-Marnu, Tobin South, Cole J
Hunter, Kevin Klyman, Christopher Klamm, Hailey Schoelkopf, Nikhil Singh, Manuel
Cherep, Ahmad Mustafa Anis, An Dinh, Caroline Shamiso Chitongo, Da Yin, Damien
Sileo, Deividas Mataciunas, Diganta Misra, Emad A. Alghamdi, Enrico Shippole,

12

Jianguo Zhang, Joanna Materzynska, Kun Qian, Kushagra Tiwary, Lester James Val-
idad Miranda, Manan Dey, Minnie Liang, Mohammed Hamdy, Niklas Muennighoff,
Seonghyeon Ye, Seungone Kim, Shrestha Mohanty, Vipul Gupta, Vivek Sharma,
Vu Minh Chien, Xuhui Zhou, Yizhi LI, Caiming Xiong, Luis Villa, Stella Biderman,
Hanlin Li, Daphne Ippolito, Sara Hooker, Jad Kabbara, and Alex Pentland. Consent in
crisis: The rapid decline of the AI data commons. In The Thirty-eight Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2024.

[LWX+24] Lin Long, Rui Wang, Ruixuan Xiao, Junbo Zhao, Xiao Ding, Gang Chen, and Haobo
Wang. On LLMs-driven synthetic data generation, curation, and evaluation: A survey. In
Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors, Findings of the Association
for Computational Linguistics: ACL 2024, pages 11065–11082, Bangkok, Thailand,
August 2024. Association for Computational Linguistics.

[MP99] Vitaly Maiorov and Allan Pinkus. Lower bounds for approximation by mlp neural
networks. Neurocomputing, 25(1-3):81–91, 1999.

[PMM+24] Alizée Pace, Jonathan Mallinson, Eric Malmi, Sebastian Krause, and Aliaksei Severyn.
West-of-n: Synthetic preference generation for improved reward modeling. arXiv
preprint arXiv:2401.12086, 2024.

[SCA+24] Avi Singh, John D. Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Xavier
Garcia, Peter J. Liu, James Harrison, Jaehoon Lee, Kelvin Xu, Aaron T. Parisi, Abhishek
Kumar, Alexander A. Alemi, Alex Rizkowsky, Azade Nova, Ben Adlam, Bernd Bohnet,
Gamaleldin Fathy Elsayed, Hanie Sedghi, Igor Mordatch, Isabelle Simpson, Izzeddin
Gur, Jasper Snoek, Jeffrey Pennington, Jiri Hron, Kathleen Kenealy, Kevin Swersky,
Kshiteej Mahajan, Laura Culp, Lechao Xiao, Maxwell L. Bileschi, Noah Constant,
Roman Novak, Rosanne Liu, Tris Warkentin, Yundi Qian, Yamini Bansal, Ethan Dyer,
Behnam Neyshabur, Jascha Sohl-Dickstein, and Noah Fiedel. Beyond human data:
Scaling self-training for problem-solving with language models. Trans. Mach. Learn.
Res., 2024, 2024.

[SCH+24] Mohamed El Amine Seddik, Suei-Wen Chen, Soufiane Hayou, Pierre Youssef, and
Merouane Abdelkader DEBBAH. How bad is training on synthetic data? a statistical
analysis of language model collapse. In First Conference on Language Modeling, 2024.

[SF13] Robert E Schapire and Yoav Freund. Boosting: Foundations and algorithms. Kybernetes,
42(1):164–166, 2013.

[SKAK25] Rylan Schaeffer, Joshua Kazdan, Alvan Caleb Arulandu, and Sanmi Koyejo. Position:
Model collapse does not mean what you think. arXiv preprint arXiv:2503.03150, 2025.

[SSZ+24] Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Nicolas Papernot, Ross J. Anderson,
and Yarin Gal. AI models collapse when trained on recursively generated data. Nat.,
631(8022):755–759, 2024.

[STK24] Ananda Theertha Suresh, Andrew Thangaraj, and Aditya Nanda Kishore Khandavally.
Rate of model collapse in recursive training. arXiv preprint arXiv:2412.17646, 2024.

[SZE+25] Yuda Song, Hanlin Zhang, Carson Eisenach, Sham M. Kakade, Dean Foster, and Udaya
Ghai. Mind the gap: Examining the self-improvement capabilities of large language
models. In The Thirteenth International Conference on Learning Representations,
2025.

[TLC+24] Zhengwei Tao, Ting-En Lin, Xiancai Chen, Hangyu Li, Yuchuan Wu, Yongbin Li, Zhi
Jin, Fei Huang, Dacheng Tao, and Jingren Zhou. A survey on self-evolution of large
language models. arXiv preprint arXiv:2404.14387, 2024.

[WKM+23] Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel
Khashabi, and Hannaneh Hajishirzi. Self-instruct: Aligning language models with
self-generated instructions. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki,
editors, Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 13484–13508, Toronto, Canada, July 2023.
Association for Computational Linguistics.

13

[YFC+25] Pu Yang, Yunzhen Feng, Ziyuan Chen, Yuhang Wu, and Zhuoyuan Li. Spend wisely:
Maximizing post-training gains in iterative synthetic data boostrapping. arXiv preprint
arXiv:2501.18962, 2025.

[YPC+24] Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Xian Li, Sainbayar Sukhbaatar,
Jing Xu, and Jason E Weston. Self-rewarding language models. In Proceedings of the
41st International Conference on Machine Learning, volume 235 of Proceedings of
Machine Learning Research, pages 57905–57923. PMLR, 21–27 Jul 2024.

[YPF+24] Zhaorui Yang, Tianyu Pang, Haozhe Feng, Han Wang, Wei Chen, Minfeng Zhu, and
Qian Liu. Self-distillation bridges distribution gap in language model fine-tuning. arXiv
preprint arXiv:2402.13669, 2024.

[ZBH+21] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.
Understanding deep learning (still) requires rethinking generalization. Communications
of the ACM, 64(3):107–115, 2021.

[ZWMG22] Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D. Goodman. Star: Bootstrapping
reasoning with reasoning. In Advances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022,
New Orleans, LA, USA, November 28 - December 9, 2022, 2022.

14

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the abstract are repeated in the introduction and are
justified by theoretical proof as well as real experiments with LLMs.
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims

made in the paper.
• The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed throughout the paper, which gives the reader the
appropriate context to understand them.
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

15

Answer: [Yes]
Justification: The main body contains a proof sketch which gives high-level ideas. However,
the full proofs are contained in complete detail in the supplemental.
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [No]
Justification: Unfortunately, we are not at liberty to disclose all of the details of our
computing infrastructure.
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
• If the contribution is a dataset and/or model, the authors should describe the steps taken

to make their results reproducible or verifiable.
• Depending on the contribution, reproducibility can be accomplished in various ways.

For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

16

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: While our experiments use many open resources (Gemma model and publically
available data), the code itself is not open sourced.
Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
• The authors should provide instructions on data access and preparation, including how

to access the raw data, preprocessed data, intermediate data, and generated data, etc.
• The authors should provide scripts to reproduce all experimental results for the new

proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
• Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We describe our experimental setup at a level of detail that is sufficient for
fully appreciating and understanding our empirical results.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars are not included for all results.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: Unfortunately, we are not at liberty to disclose all of the details of our
computing infrastructure.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the code of ethics and do not believe this work falls under
of the areas of concern.
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our paper does not introduce any new potential societal impact (positive or
negative).
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

18

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not train models that have high risk of misuse.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We credit all assets used and explicitly mention and respect their licenses.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

19

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release any new assets.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our research did not involve human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our experiments do not involve human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

20

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We did not use LLMs in a non-standard way to conduct this research.
Guidelines:
• The answer NA means that the core method development in this research does not

involve LLMs as any important, original, or non-standard components.
• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)

for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

A Theoretical Analysis

A.1 Proof of Theorem 5

Throughout the proof, we will write S to denote a dataset where all of the labels were generated
synthetically (i.e., by an LLM), D to denote a dataset where all of the labels were provided by
labelerβ , and D to denote a dataset containing a mixture of these kinds of data. Also, only datasets
denoted by D will contain elements whose weights can differ from 0 and 1. All other datasets will be
ordinary sets.

We adopt a few simplifying assumptions and conventions. Assume that the given prompt set P is
non-empty. Assume that the initial LLM g0 returns an incorrect response to every prompt. Assume
that any LLM returns at most one correct response to any prompt. Removing the latter pair of
assumptions would only speed up the convergence of Algorithm 2 to an optimal LLM, but would
also further complicate its analysis. Finally, we adopt the convention that∞ · 0 = 0. This convention
is needed when Algorithm 2 constructs Dt via the weighted union operation, since it can happen that
λt =∞, but this only occurs when Dt is empty.

Let P+
t = {x ∈ P : (x, y) ∈ S+

t } be the correct prompts selected by filter. By definition P+
t and

P−t form a partition of P . Furthermore, Dt pairs each prompt in P−t with the label it was assigned
by labelerβ , and S+

t pairs each prompt in P+
t with the (synthetic) label it was assigned by the

previous iteration’s LLM, gt−1. Observe that P−t (x) =
∑
yDt(x, y) and P+

t (x) =
∑
y S

+
t (x, y).

For all t ≥ 1 and x ∈ P let

qt(x) =
∑
y

Dt(y|x)q(x, y)

q+t (x) =
∑
y

S+
t (y|x)q(x, y)

q̄t(x) =
∑
y

Dt(y|x)q(x, y)

be the average quality of the responses to prompt x in datasets Dt, S+
t and Dt, respectively. For

convenience we also define q̄0(x) = Ey∼g0(x)[q(x, y)]. Note that q̄0(x) = 0 for all x ∈ X by
assumption.
Lemma 6. For all t ≥ 1 and x ∈ P

q̄t(x) =

∑t
s=1 λsP

−
s (x)qs(x) + P+

s (x)q+s (x)∑t
s=1 λsP

−
s (x) + P+

s (x)
.

Proof. We have

Dt(y|x) =
Dt(x, y)∑
y′ Dt(x, y′)

=

∑t
s=1 λsDs(x, y) + S+

s (x, y)∑
y′
∑t
s=1 λsDs(x, y′) + S+

s (x, y′)

=

∑t
s=1 λsDs(x, y) + S+

s (x, y)∑t
s=1 λsP

−
s (x) + P+

s (x)

=

∑t
s=1 λsP

−
s (x)Ds(y|x) + P+

s (x)S+
s (y|x)∑t

s=1 λsP
−
s (x) + P+

s (x)

and therefore

q̄t(x) =
∑
y

Dt(y|x)q(x, y)

=

∑
y

∑t
s=1 λsP

−
s (x)Ds(y|x)q(x, y) + P+

s (x)S+
s (y|x)q(x, y)∑t

s=1 λsP
−
s (x) + P+

s (x)

22

=

∑t
s=1 λsP

−
s (x)qs(x) + P+

s (x)q+s (x)∑t
s=1 λsP

−
s (x) + P+

s (x)

Lemma 7. For all t ≥ 1 and x ∈ P we have q̄t(x) = 0 if and only if q̄t−1(x) = 0 and qt(x) = 0.

Proof. Suppose q̄t(x) = 0. By Lemma 6 this implies λsP−s (x)qs(x) + P+
s (x)q+s (x) = 0 for

s ∈ {1, . . . , t}, and therefore q̄t−1(x) = 0. This implies that x cannot be correctly labeled in St, and
therefore P−t (x) = 1. Since α > 0 we have λt > 0. And since λtP−t (x)qt(x) = 0 we must have
qt(x) = 0.

Now suppose q̄t−1(x) = 0 and qt(x) = 0. Since q̄t−1(x) = 0 then again by Lemma 6 we have
λsP

−
s (x)qs(x) + P+

s (x)q+s (x) = 0 for s ∈ {1, . . . , t− 1}. The fact that q̄t−1(x) = 0 also implies
that x cannot be correctly labeled in St, and therefore P+

t (x) = 0. And since qt(x) = 0 we have
λtP

−
t (x)qt(x) + P+

t (x)q+t (x) = 0, which implies q̄t(x) = 0.

Lemma 8. Let t ≥ 1 and x ∈ P . If x ∈ P−t then qt(x) ∈ {0, 1}. If x ∈ P+
t then q+t (x) = 1.

Proof. Note thatDt contains each prompt only once (by Definition 3 of labelerβ), and S+
t contains

only correctly labeled prompts (by Definition 2 of filter). The lemma follows from the definitions
of P−t , P

+
t , qt(x) and q+t (x).

Lemma 9. If a, b, c, d ≥ 0 satisfy a ≤ b, c ≥ d and b > 0 then

a+ c

b+ c
≥ a+ d

b+ d
.

Proof. If c = d then clearly the lemma holds with equality. Otherwise if c > d then

a+ c

b+ c
≥ a+ d

b+ d
⇔ (a+ c)(b+ d) ≥ (a+ d)(b+ c) b > 0

⇔ ab+ bc+ ad+ cd ≥ ab+ bd+ ac+ cd

⇔ bc+ ad ≥ bd+ ac

⇔ b(c− d) ≥ a(c− d)

⇔ b ≥ a c > d

Our analysis relies on conditioning on the fact that once the quality of a particular prompt, x, is high
enough, it is always selected by filter and is never sent to labelerβ . Formally, fix the number
of iterations, T , the set of prompts, P , and the quality of the weak data, β. We define event E, as
follows:

Event E ≡ For all t ∈ [T] and x ∈ P if q̄t−1(x) ≥ β then x 6∈ P−t ,

and to simplify notation, we drop the dependence of E on T , P and β.

Lemma 10. If the repeat parameter k ≥ 2 log T+log |P |
βγ then event E occurs with probability at least

1− 1
T .

Proof. By the definition of generate (Definition 4), each x ∈ P is labeled k times by gt−1 in
iteration t, with each label drawn independently from distribution gt−1(x). Thus we know that if
q̄t−1(x) ≥ β then x ∈ P−t with probability at most (1− βγ)k. This is because the probability that a
synthetic label does not prevent a prompt from being added to P−t is at most 1−β+β(1−γ) = 1−βγ,
which is the probability that the label is low-quality or that it is high-quality but is not recognized by
filterγ (Definition 2). Therefore

Pr[¬E] = Pr
[
∃t ∈ [T] and x ∈ P such that q̄t−1(x) ≥ β and x ∈ P−t

]
≤

T∑
t=1

∑
x∈P

Pr[q̄t−1(x) ≥ β and x ∈ P−t]

23

≤ T |P |(1− βγ)k

≤ T |P | exp(−βγk)

≤ T |P | exp(−2 log T − log |P |) Assumption about k

= T |P | 1

T 2

1

|P |

=
1

T

The next result is our key lemma. It says that if event E occurs then (a) P−t contains all and only
the prompts that must have been incorrectly labeled by the previous iteration’s LLM, (b) the size of
P−t shrinks exponentially over time, (c) once a prompt is outside P−t it remains that way, and (d)
prompts outside of P−t are correctly labeled by the previous iteration’s LLM with a probability that
is bounded above zero.
Lemma 11. Fix T . Let 1 ≤ t ≤ T and x ∈ P . If event E occurs then all of the following hold:

(a) x ∈ P−t if and only if q̄t−1(x) = 0.

(b) |P−r | ≤ (1− β)r−s|P−s | for all r, s ∈ [t] such that r ≥ s.

(c) There exists r ∈ [t] such that x ∈ P−s for all s ∈ [r] and x 6∈ P−s for all s ∈ [t] \ [r].

(d) Let r ∈ [t] satisfy the conditions of part (c). If r < t then

q̄t(x) ≥ α+ t− r
α(1−(1−β)r)

β + t− r
≥ β.

Proof. The proof will proceed by induction. We begin by proving the base case, t = 1. To prove
part (a), note that by assumption we have q̄0(x) = Ey∼g0(x)[q(x, y)] = 0, so we only need to show
that x ∈ P−1 . Since Ey∼g0(x)[q(x, y)] = 0, we know that x cannot be correctly labeled in S1, which
implies x ∈ P−1 . Part (b) follows immediately from the observation that when t = 1 we have
r = s = 1. Part (c) holds immediately by letting r = 1, since in this case [t] \ [r] is empty, and we
have already shown x ∈ P−1 in part (a). Part (d) holds vacuously because r < t must be false when
t = 1.

Now assume for induction that the lemma holds for a fixed t ≥ 1. We will prove the lemma for the
case t+ 1. To prove part (a), first assume q̄t(x) = 0, which is the premise of the ‘if’ direction. By
Definition 1 we have

Ey∼gt(x)[q(x, y)] =
∑
y

Dt(x, y)q(x, y) = q̄t(x) = 0

which implies that x cannot be correctly labeled in St+1, and therefore x ∈ P−t+1. Now assume
x ∈ P−t+1, which is the premise of the ‘only if’ direction. To force a contradiction, assume that
q̄t(x) > 0. By part (d) of the inductive hypothesis, this implies q̄t(x) ≥ β. Since event E occurred,
we have that x 6∈ P−t+1, which is a contradiction. This completes the proof of part (a).

To prove part (b), choose any r, s ∈ [t+ 1] such that r ≥ s. If r = s, part (b) follows immediately.
If r < t+ 1 and s < t+ 1 then part (b) follows from the inductive hypothesis. Henceforth assume
s < r = t+ 1. Let

D+
t = {(x, y) ∈ Dt : q(x, y) = 1}

be the subset of Dt that is correctly labeled. We have

(1− β)|P−t | = (1− β)|Dt|
≥ |Dt| − |D+

t | Definition 3 of labelerβ

=
∑
x,y

Dt(x, y)−
∑
x,y

Dt(x, y)q(x, y)

=
∑
x,y

Dt(x, y)(1− q(x, y))

24

=
∑
x,y

P−t (x)Dt(y|x)(1− q(x, y))

=
∑
x

P−t (x)(1− qt(x))

=
∑
x

P (x)1{q̄t−1(x) = 0}(1− qt(x)) Inductive hypothesis, part (a)

=
∑
x

P (x)1{q̄t−1(x) = 0}1{qt(x) = 0} Lemma 8

=
∑
x

P (x)1{q̄t(x) = 0} Lemma 7

=
∑
x

P−t+1(x) Part (a)

= |P−t+1|

and therefore

|P−t+1| ≤ (1− β)|P−t | ≤ (1− β)(1− β)t−s|P−s | = (1− β)t+1−s|P−s | = (1− β)r−s|P−s |

where the second inequality follows from the inductive hypothesis. This completes the proof of part
(b).

To prove part (c), we must prove the existence of a satisfying iteration r ∈ [t + 1]. Let r′ ∈ [t] be
the iteration that satisfies part (c) of the inductive hypothesis. If r′ = t and x 6∈ P−t+1 then we can
let r = t. If r′ = t and x ∈ P−t+1 then we can let r = t + 1. If r′ < t then we only have to show
x 6∈ P−t+1, because in that case we can let r = r′. Since r′ < t we have x 6∈ P−t , and by part (a) we
have q̄t−1(x) > 0. By Lemma 6 we have q̄t(x) > 0, and thus by part (a) again we have x 6∈ P−t+1.
This concludes the proof of part (c).

To prove part (d), let r ∈ [t+ 1] be the satisfying iteration from part (c). Note that r < t+ 1 by the
premise of part (d). We first prove that

P−s (x)qs(x) = 0 for all s ∈ [r − 1]. (2)

Suppose for contradiction that Eq. (2) is not true, which implies that P−s (x)qs(x) > 0 for some
s ∈ [r − 1]. By Lemma 6 and the fact that α > 0 we have q̄s(x) > 0, which implies by part (a) that
x 6∈ P−s+1, which contradicts part (c). Thus we have proved Eq. (2). We next prove that

P−r (x)qr(x) = 1. (3)

Suppose for contradiction that Eq. (3) is not true, which implies by part (c) and Lemma 8 that
P−r (x)qr(x) = 0. Thus by Eq. (2) we have P−s (x)qs(x) = 0 for s ∈ [r]. We also have by part (c)
that P+

s (x) = 0 for s ∈ [r]. Thus by Lemma 6 we have q̄r(x) = 0, and this implies by part (a) that
x ∈ P−r+1, which by r < t+ 1 contradicts part (c). Thus we have proved Eq. (3). We are now ready
to complete the proof of part (d). We have

q̄t+1(x) =

∑t+1
s=1 λsP

−
s (x)qs(x) + P+

s (x)q+s (x)∑t+1
s=1 λsP

−
s (x) + P+

s (x)
Lemma 6

=

∑t+1
s=1

α
|Ds|P

−
s (x)qs(x) + P+

s (x)q+s (x)∑t+1
s=1

α
|Ds|P

−
s (x) + P+

s (x)

=

α
|Dr| +

∑t+1
t=r+1 1∑r

s=1
α
|Ds| +

∑t+1
t=r+1 1

Part (c), Lemma 8, Eq. (2) and Eq. (3)

=

α
|Dr| + t− r + 1∑r
s=1

α
|Ds| + t− r + 1

=

α
|Dr| + t− r + 1∑r
s=1

α
|Ds| + t− r + 1

25

=

α
|P−r |

+ t− r + 1∑r
s=1

α
|P−s |

+ t− r + 1
Definitions of P−t and P+

t

≥
α
|P−r |

+ t− r + 1

α
|P−r |

∑r
s=1(1− β)r−s + t− r + 1

Part (b)

=

α
|P−r |

+ t− r + 1

α
|P−r |

∑r−1
s=0(1− β)s + t− r + 1

=

α
|P−r |

+ t− r + 1

α(1−(1−β)r)
β|P−r |

+ t− r + 1
Geometric series formula

=
α+ |P−r |(t− r + 1)

α(1−(1−β)r)
β + |P−r |(t− r + 1)

≥ α+ t− r + 1
α(1−(1−β)r)

β + t− r + 1
Lemma 9 and |P−r | ≥ 1 (by choice of r)

which proves the first inequality of part (d). Continuing from above

q̄t+1(x) ≥ α+ t− r + 1
α(1−(1−β)r)

β + t− r + 1
From above

≥ α
α(1−(1−β)r)

β

Lemma 9

=
β

1− (1− β)r
α > 0

≥ β β > 0

which proves the second inequality of part (d).

We are now ready to complete the proof of Theorem 5. Assume that event E occurs, which by
Lemma 10 happens with probability at least 1− 1

T . For each prompt x ∈ P let rx be the iteration
that satisfies Lemma 11(c) when the lemma is applied to prompt x and iteration T . Let r = log(2/ε)

β ,
and note that by assumption r < T . We have

Prx∼P,y∼gT (x)[q(x, y) = 1]

= Ex∼P,y∼gT (x)[q(x, y)]

= Ex∼P

[∑
y

DT (y|x)q(x, y)

]
Definition 1

= Ex∼P [q̄T (x)]

≥ Ex∼P [q̄T (x) | rx ≤ r] Prx∼P [rx ≤ r]
= Ex∼P [q̄T (x) | rx ≤ r] Prx∼P [x 6∈ P−r+1] Lemma 11(c)

= Ex∼P [q̄T (x) | rx ≤ r]
(

1− |P
−
r+1|
|P |

)
= Ex∼P [q̄T (x) | rx ≤ r]

(
1− |P

−
r+1|
|P−1 |

)
Lemma 11(a)

≥ Ex∼P [q̄T (x) | rx ≤ r] (1− (1− β)r) Lemma 11(b)

≥ min
x:rx≤r

α+ T − rx
α(1−(1−β)rx)

β + T − rx
(1− (1− β)r) Lemma 11(d)

≥ min
x:rx≤r

α+ T − rx
α
β + T − rx

(1− (1− β)r)

26

≥ α+ T − r
α
β + T − r

(1− (1− β)r) Lemma 9

≥ α+ T − r
α
β + T − r

(
1− e−βr

)
=
α+ T − r
α
β + T − r

(
1− ε

2

)
Since

T ≥ log(2/ε)

β
+

2α

βε
= r +

2α

βε

it is easy to show via algebra that
α+ T − r
α
β + T − r

≥ 1− ε

2

and plugging this into the final expression above proves Prx∼P,y∼gT (x)[q(x, y) = 1] ≥
(
1− ε

2

)2 ≥
1− ε, which proves the theorem.

B Additional Plots

0 1 2 3 4 5
Round

0.3

0.4

0.5

0.6

0.7

0.8

co
rre

ct
@

al
l

Percentage of labeled problems with a correct answer

Boosting (GSM8K)
Boosting w/o focusing (GSM8K)
Boosting (MBPP)
Boosting w/o focusing (MBPP)

Figure 3: Labeler accuracy across rounds. These results use weak data (A). Since training accuracy
increases across rounds, the weak labeler gets more queries per question in both cases. Despite this,
for Boosting we see that accuracy is relatively constant for GSM8K and decreasing for MBPP. This is
because we focus on increasingly harder problems. In Boosting w/o focusing, we observe labeler
accuracy increasing because we do not focus labeler efforts on the highest difficulty problems.

In Figure 4, we plot average response length on the test set as a function of training rounds. Average
response length does not change significantly throughout training, and incorrect answers are longer
on average.

27

1 2 3 4 5
Round

90

95

100

105

110

115

120

Av
er

ag
e

re
sp

on
se

 le
ng

th
 (t

ok
en

s)

Average response length over rounds
Overall
Correct
Incorrect

(a) Average response length, Boosting (A)

1 2 3 4 5
Round

90

95

100

105

110

115

120

125

Av
er

ag
e

re
sp

on
se

 le
ng

th
 (t

ok
en

s)

Average response length over rounds
Overall
Correct
Incorrect

(b) Average response length, Boosting (B)

Figure 4: Average length of responses to GSM8K test set problems across rounds for Boosting
experiments.

C Examples

In Tables 3 and 4 we present specific examples of the model improving its answer to a particular
question across rounds.

Question Bill starts on the 3rd floor. He rides the elevator up to the floor that’s equal to 4 times his starting
floor plus 6. What floor is Bill on now?

Response (round 1) Let’s use algebra to solve this problem. Let x be the number of floors Bill is on now.
The number of floors Bill is on now is equal to 4x + 6.
We know that Bill starts on the 3rd floor, so x = 3.
Therefore, Bill is on the 3rd floor now.
The answer is 3. ×

Response (round 2) Let’s use algebra to solve this problem. Let x be the floor Bill is on now.
The floor Bill is on now is equal to 4x + 6.
We know that Bill starts on the 3rd floor, so x = 3.
Therefore, Bill is on the 3rd floor now.
The answer is 3. ×

Response (round 3) Let us solve it using algebra. Let x be the floor Bill is on now.
The floor he rides up to is 4x + 6.
Therefore, the floor he rides up to is equal to the floor he starts on plus 6.
So, we have the equation:
x = 3 + 6
x = 9
Therefore, Bill is on the 9th floor now.
The answer is 9. ×

Response (round 4) Let us solve it using algebra. Let x be the floor Bill is on now.
The floor he is on now is 4x + 6.
We know that he starts on the 3rd floor, so x = 3.
Therefore, the floor he is on now is 4(3) + 6 = 12 + 6 = 18.
Bill is on the 18th floor now.
The answer is 18. X

Response (round 5) Let us solve it using algebra. Let x be the floor Bill is on now.
The floor he is on now is 4x + 6.
We know that he starts on the 3rd floor, so x = 3.
Therefore, the floor he is on now is 4(3) + 6 = 12 + 6 = 18.
Bill is on the 18th floor now.
The answer is 18. X

Table 3: Tracking responses to problem id=253 from the GSM8K test set, across rounds of a Boosting
(A) run. The model always sets up the right expression (4x+ 6), but in the first two rounds reports
x = 3 as the answer instead of substituting it into the expression. The correct substitution is done in
round 4, and the correct answer is maintained in round 5.

28

Question The Kennel house keeps 3 German Shepherds and 2 Bulldogs. If a German Shepherd consumes
5 kilograms of dog food and a bulldog consumes 3 kilograms of dog food per day. How many
kilograms of dog food will they need in a week?

Response (round 1) Let’s solve this problem using algebra.
Step 1: Find the total amount of dog food consumed by the German Shepherds in a week:
* German Shepherds: 3 dogs
* Dog food consumed per day: 5 kilograms
* Dog food consumed in a week: 3 dogs * 5 kilograms/dog = 15 kilograms
Step 2: Find the total amount of dog food consumed by the Bulldogs in a week:
* Bulldogs: 2 dogs
* Dog food consumed per day: 3 kilograms
* Dog food consumed in a week: 2 dogs * 3 kilograms/dog = 6 kilograms
Step 3: Find the total amount of dog food consumed in a week:
* Total dog food consumed: 15 kilograms + 6 kilograms = 21 kilograms
Therefore, the kennel house will need 21 kilograms of dog food in a week.
The answer is 21. ×

Response (round 2) Let’s calculate the total amount of dog food needed in a week.
German Shepherds:
- Number of German Shepherds: 3
- Dog food consumption per day: 5 kg
- Dog food consumption in a week: 3 * 7 = 21 kg
Bulldogs:
- Number of Bulldogs: 2
- Dog food consumption per day: 3 kg
- Dog food consumption in a week: 2 * 7 = 14 kg
Total dog food consumption in a week:
- Total dog food consumption in a week: 21 kg + 14 kg = 35 kg
Therefore, the kennel house will need 35 kilograms of dog food in a week.
The answer is 35. ×

Response (round 3) Let’s solve this problem using algebra.
German Shepherds:
* Number of German Shepherds: 3
* Dog food consumed per day: 5 kilograms
* Dog food consumed in a week: 3 * 7 = 21 kilograms
Bulldogs:
* Number of Bulldogs: 2
* Dog food consumed per day: 3 kilograms
* Dog food consumed in a week: 2 * 7 = 14 kilograms
Total dog food consumed in a week:
* Total dog food consumed in a week: 21 kilograms + 14 kilograms = 35 kilograms
Therefore, the Kennel house will need 35 kilograms of dog food in a week.
The answer is 35. ×

Response (round 4) Let’s calculate the total dog food needed per day:
* German Shepherds: 3 * 5 = 15 kilograms
* Bulldogs: 2 * 3 = 6 kilograms
* Total dog food needed per day: 15 + 6 = 21 kilograms
Now, let’s calculate the total dog food needed in a week:
* 7 days * 21 kilograms/day = 149 kilograms
Therefore, the kennel house will need 149 kilograms of dog food in a week.
The answer is 149. ×

Response (round 5) Let’s calculate the total dog food consumption per day:
* German Shepherds: 3 * 5 = 15 kilograms
* Bulldogs: 2 * 3 = 6 kilograms
* Total: 15 + 6 = 21 kilograms
Now, let’s calculate the total dog food consumption in a week:
* 7 days * 21 kilograms/day = 147 kilograms
Therefore, the Kennel house will need 147 kilograms of dog food in a week.
The answer is 147. X

Table 4: Tracking responses to problem id=1266 from the GSM8K test set, across rounds of a
Boosting (B) run. The round 1 response gets the correct amount per day (21), but does not multiply to
get the correct value for the week. Rounds 2 and 3 fail to incorporate the amount of food eaten per
dog. Round 4 gets the correct approach, but fails the final multiplication step, which is corrected in
the final round.

29

D Prompts

D.1 GSM8K

As an expert problem solver solve step by step the following mathematical questions.

Q:
Tina makes $18.00 an hour. If she works more than 8 hours per shift, she is eligible for overtime, which
is paid by your hourly wage + 1/2 your hourly wage. If she works 10 hours every day for 5 days, how
much money does she make?

A:
Here’s how to calculate Tina’s earnings:

Regular Time:

- Hours per shift: 8 hours

- Wage per hour: $18.00

- Regular pay per shift: 8 hours * $18.00/hour = $144.00

Overtime:

- Overtime hours per shift: 10 hours - 8 hours = 2 hours

- Overtime pay per hour: $18.00 + ($18.00 / 2) = $27.00

- Overtime pay per shift: 2 hours * $27.00/hour = $54.00

Total per day:

- Regular pay + overtime pay: $144.00/shift + $54.00/shift = $198.00/day

Total for 5 days:

- 5 days * $198.00/day = $990.00

Therefore, Tina will make $990.00 in 5 days.

The answer is 990.

Q:
Abigail is trying a new recipe for a cold drink. It uses 1/4 of a cup of iced tea and 1 and 1/4 of a cup of
lemonade to make one drink. If she fills a pitcher with 18 total cups of this drink, how many cups of
lemonade are in the pitcher?

A:
Ambiguity in the Problem Statement:

There is one main ambiguity in the problem statement:

Total volume vs. Number of servings: The statement ”18 total cups of this drink” could be
interpreted in two ways:

* 18 cups of the combined volume

* 18 individual servings

Let us assume the interpretation ”18 cups of the combined volume”.

Solution assuming 18 cups of combined volume:

30

Step 1: Find the proportion of lemonade in one drink:

- Lemonade: 1 1/4 cups

- Iced tea: 1/4 cup

- Total: 1 1/4 + 1/4 = 1 1/2 cups

- Lemonade proportion: (1 1/4) / (1 1/2) = 5/6

Step 2: Calculate the amount of lemonade in the pitcher:

- Total volume: 18 cups

- Lemonade proportion: 5/6

- Volume of lemonade: 18 * (5/6) = 15 cups

Therefore, there are 15 cups of lemonade in the pitcher.

The answer is 15.

Q:
A deep-sea monster rises from the waters once every hundred years to feast on a ship and sate its hunger.
Over three hundred years, it has consumed 847 people. Ships have been built larger over time, so each
new ship has twice as many people as the last ship. How many people were on the ship the monster ate
in the first hundred years?

A:
Let us solve it using algebra. Let x be the number of people on the ship the monster ate in the first
hundred years.

The number of people on the ship eaten in the second hundred years is 2x, and in the third hundred
years is 4x.

Therefore, the total number of people eaten over three hundred years is x + 2x + 4x = 847.

Combining like terms, we get 7x = 847.

Dividing both sides by 7, we find x = 121.

Therefore, there were 121 people on the ship the monster ate in the first hundred years.

The answer is 121.

Q:
{problem}

A:

D.2 MBPP

You are an expert Python programmer. Solve the following Python programming problems.

Q:
Write a function to find the similar elements from the given two tuple lists.
Your code should pass these tests:
assert similar_elements((3, 4, 5, 6),(5, 7, 4, 10)) == (4, 5)
assert similar_elements((1, 2, 3, 4),(5, 4, 3, 7)) == (3, 4)
assert similar_elements((11, 12, 14, 13),(17, 15, 14, 13)) == (13, 14)

A:

31

def similar_elements(test_tup1, test_tup2):
res = tuple(set(test_tup1) & set(test_tup2))
return (res)

Q:
Write a python function to identify non-prime numbers.
Your code should pass these tests:
assert is_not_prime(2) == False
assert is_not_prime(10) == True
assert is_not_prime(35) == True

A:
import math
def is_not_prime(n):

result = False
for i in range(2,int(math.sqrt(n)) + 1):
if n % i == 0:

result = True
return result

Q:
Write a function to find the largest integers from a given list of numbers using heap queue algorithm.
Your code should pass these tests:
assert heap_queue_largest([25, 35, 22, 85, 14, 65, 75, 22, 58],3)==[85, 75, 65]
assert heap_queue_largest([25, 35, 22, 85, 14, 65, 75, 22, 58],2)==[85, 75]
assert heap_queue_largest([25, 35, 22, 85, 14, 65, 75, 22, 58],5)==[85, 75, 65, 58, 35]

A:
import heapq as hq
def heap_queue_largest(nums,n):

largest_nums = hq.nlargest(n, nums)
return largest_nums

Q:
{problem}
Your code should past these tests:
{tests}

A:

E Additional Discussion

Weighting Examples Theorem 5 requires α > 0 and β > 0, and it is easy to see that both
assumptions are necessary. If α = 0 then each training set Dt contains no exogenously labeled data,
and if β = 0 then all of the exogenously labeled data could be incorrect. In either case, and given a
worst-case initial LLM g0 that returns an incorrect response to every prompt, the learner has no way
to determine the correct response to any prompt.

The astute reader will note that α can also be set arbitrarily close to zero in Theorem 5 without
weakening the convergence guarantee. This curious property is a consequence of an idealized
assumption that we made for the sake of analytical tractability. Specifically, we assumed that the
learner can match the conditional response distribution of every prompt in the training data, no matter
how infrequently the prompt appears in the data (see Definition 1). In practice, constraints on training
time and model size will prevent a learner from perfectly fitting the training data. So it would be
useful to extend our results to account for the possibility of an imperfect learner, and we expect that
any such extension would imply a non-zero lower bound on α. Nonetheless, our current results tell
us something interesting – computational limitations are the only barrier to learning an arbitrarily
good LLM, and not, as one might expect, the quality of the weak labeler.

Filtering Non-Synthetic Data Algorithm 2 has the property that it only applies filtering on LLM-
generated data. As discussed, this accurately models existing methods in the literature.

32

However, if we consider applying the quality function q on data produced by the weak labeler (that is,
data that is not LLM-generated), then there is an alternate solution to the data generation problem. It
can be shown that O(log(1/ε)/β) invocations of the weak labeler would suffice to correctly label all
but ε fraction of the prompts in P , and such a dataset could be given to a strong learner to produce
an LLM that achieves O(ε) error. It is worthwhile to reason about why such a solution cannot be
deployed in practice.

First, and most crucially – it has been repeatedly demonstrated empirically in the literature that
training directly on 100% correct human responses is sub-optimal compared to training on self-
generated synthetic data [SCA+24, ZWMG22]. Indeed this is confirmed in our own experiments
where we find that finetuning on correct answers (Gold SFT) is dramatically outperformed by
recursive training, hence motivating our theoretical study of the problem.

The weak data assumption specifies that β, while arbitrary, is bounded away from zero. Just as the
weak learning assumption might not hold in classical boosting, the weak data assumption might not
hold in our setting. We argue that iteratively filtering the weak labeler’s output should result in a
precipitous drop in the fraction of correctly-labeled examples. As an example, suppose human labelers
provide good responses to the β1 easiest coding prompts in some prompt set. One should expect that
asking similarly-qualified labelers to respond to the remaining prompts results in a β2 � β1 yield
of quality responses, as all but the easiest prompts have been answered. In contrast, a continually
improved LLM endows a human with more flexibility for future responses, such as rewriting nearly
high-quality solutions provided by the last iteration of LLM, making a non-vanishing β a much more
reasonable assumption.

While it keeps the setting simple to presume that q can be evaluated on any labeled example, this is
an overly permissive assumption. LLM-generated synthetic data can be made to include reasoning
traces, and often produces responses that the LLM itself can verify as high quality. This facilitates the
construction of automated quality checkers, which are much more difficult to construct when the labels
are produced by a human, and therefore contain reasoning traces and responses that are unfamiliar
to the current generation of LLM. This is born out in the literature, where quality verification of
LLM-generated synthetic data is relatively easy to implement [SCA+24, YPF+24, ZWMG22].

Finally, and somewhat remarkably, Algorithm 2 with α = ε achieves the same finite-time error rate as
this baseline while only ever evaluating the quality of LLM-generated data. Thus, the approach taken
in practice matches the convergence rate that would be experienced under a much more powerful set
of assumptions.

F Additional Experimental Results

In this section, we provide additional experimental results. Specifically, we conduct the following
experiments:

• Off-policy boosting: We fixed the learner to be Gemma 2 2B and switched out the labeler
from Gemma 2 2B (on-policy) to either Gemma 1 2B or Gemma 7B. The stronger off-policy
Gemma 7B model outperforms the on-policy Gemma 2 2B model. Results are pictured in
Figure 5. The weaker Gemma 1 2B significantly underperforms on-policy Gemma 2 2B, but
after 5 rounds roughly approaches the performance of filter only. Note that the Gemma 1 2B
model achieves only 11% on GSM8K, and based on our theory, we should expect to require
more iterations with a weaker labeler.

• Running longer and observing improvement plateau: In several prior works, it was
reported that improvement plateaus after a few rounds. We run some experiments longer
(>5 rounds). Indeed, in Figure 6 we see limited improvements in test accuracy (≈2%) from
additional rounds, despite persistent improvements in training accuracy.

33

1 2 3 4 5
Round

0.0

0.1

0.2

0.3

0.4

0.5

Te
st

 a
cc

ur
ac

y

GSM8K test performance

PT
Gold SFT
Filter only

Boosting (on-policy)
Boosting w/ Gemma 7B labeler
Boosting w/ Gemma 2B labeler

1 2 3 4 5
Round

0.0

0.2

0.4

0.6

0.8

Tr
ai

n
ac

cu
ra

cy
 @

1/
@

8

GSM8K train performance

PT
Gold SFT
Filter only

Boosting (on-policy)
Boosting w/ Gemma 7B labeler
Boosting w/ Gemma 2B labeler

Figure 5: We experiment with off-policy labelers on GSM8K, plotting performance across rounds.
Boosting (on-policy) is the setting in all prior experiments, employing Gemma 2 2B PT as the labeler.
We see improvement from using the stronger Gemma 7B as our labeler. The weaker Gemma 1 2B
performs much worse, but approaches the results from Filter only after 5 rounds.

1 2 3 4 5 6 7 8 9 10
Round

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Te
st

 a
cc

ur
ac

y

GSM8K test performance

PT
Gold SFT

Filter only
Boosting

1 2 3 4 5 6 7 8 9 10
Round

0.0

0.2

0.4

0.6

0.8

Tr
ai

n
ac

cu
ra

cy
 @

1/
@

8

GSM8K train performance

PT
Gold SFT

Filter only
Boosting

Figure 6: We plot test and train performance of Filter only and Boosting on GSM8K across more
rounds (10). We see limited improvements in test accuracy (≈2%) despite persistent improvements
in train accuracy.

34

	Introduction
	Related work
	Preliminary Notation
	Problem Setting
	Strong Learning
	Data Generation
	Objective

	Algorithm
	Main result
	Relationship to Boosting

	Experiments
	Instantiations of Algorithm 2
	Experimental Details
	GSM8K Results
	MBPP Results

	Conclusion & Future Work
	Theoretical Analysis
	Proof of Theorem 5

	Additional Plots
	Examples
	Prompts
	GSM8K
	MBPP

	Additional Discussion
	Additional Experimental Results

