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Abstract

Large language models have the ability to generate text that mimics patterns in1

their inputs. We introduce a simple Markov Chain (MC) sequence modeling task in2

order to study how this in-context learning (ICL) capability emerges. Transformers3

trained on this task (ICL-MC) form statistical induction heads which compute4

accurate next-token probabilities given the bigram statistics of the context. During5

the course of training, models pass through multiple phases: after an initial stage6

in which predictions are uniform, they learn to sub-optimally predict using in-7

context single-token statistics (unigrams); then, there is a rapid phase transition to8

the correct in-context bigram solution. We conduct an empirical and theoretical9

investigation of this multi-phase process, showing how successful learning results10

from the interaction between the transformer’s layers, and uncovering evidence that11

the presence of simpler solutions delays formation of the final optimal solutions.12

1 Introduction13

Large language models (LLMs) exhibit a remarkable ability to perform in-context learning (ICL)14

from patterns in their input context [10, 14]. The ability of LLMs to adaptively learn from context is15

profoundly useful, yet the underlying mechanisms of this emergent capability are not fully understood.16

In an effort to better understand ICL, some recent works propose to study ICL in controlled synthetic17

settings—in particular, training transformers on mathematically defined tasks which require learning18

from the input context. For example, a recent line of works studies the ability of transformers to19

perform ICL of standard supervised learning problems such as linear regression [2, 18, 23, 35].20

Studying these well-understood synthetic learning tasks enables fine-grained control over the data21

distribution, allows for comparisons with established supervised learning algorithms, and facilitates22

the examination of the in-context “algorithm” implemented by the network.23

The goal of this work is to propose and analyze a simple synthetic setting for studying ICL. To achieve24

this, we consider n-gram models [9, 13, 32], one of the simplest and oldest methods for language25

modeling. An n-gram language model predicts the probability of a token based on the preceding n−126

tokens, using fixed-size chunks (n-grams) of text data to capture linguistic patterns. Our work studies27

ICL of n-gram models, where the network needs to compute the conditional probability of the next28

token based on the statistics of the tokens observed in the input context, rather than on the statistics29

of the entire training data. We mainly focus on the simple case of n = 2; i.e., bigram models, which30

can be represented as Markov chains. We therefore consider ICL of Markov chains (ICL-MC): we31

train a two layer attention-only transformer on sequences of tokens, where each sequence is produced32

by a different Markov chain, generated using a different transition matrix (see Figure 1 (left)).33

We summarize our key findings:34
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Figure 1: (left) We train small transformers to perform in-context learning of Markov chains (ICL-
MC). Each training sequence is generated by sampling a transition matrix from a prior distribution,
and then sampling a sequence from this Markov chain. (right) Distance of a transformer’s output
distribution to several well-defined strategies over the course of training. The model passes through
three stages: (1) predicting a uniform distribution (blue region), (2) predicting based on in-context
unigram statistics (orange region), (3) predicting based on in-context bigram statistics (green region).

(1) Transformers learn statistical induction heads to optimally solve ICL-MC. We show that in35

order to solve ICL-MC, transformers learn statistical induction heads [16] that are able to compute36

the correct conditional (posterior) probability of the next token given all previous occurrences of the37

prior token (see attention patterns in Figure 4). We show that these statistical induction heads lead to38

the transformer achieving performance approaching that of the Bayes-optimal predictor.39

(2) Transformers learn predictors of increasing complexity and undergo a phase transition40

when increasing complexity. We observe that transformers display phase transitions when learning41

Markov chains—learning appears to be separated into phases, with fast drops in loss between the42

phases. We are able to show that different phases correspond to learning models of increased43

complexity—unigrams, then bigrams (see Figure 1)—and characterize the transition between the44

phases.45

(3) Simplicity bias may slow down learning. We provide evidence that the model’s inherent bias46

towards simpler solutions (in particular, in-context unigrams) causes learning of the optimal solution47

to be delayed. Changing the distribution of the in-context examples to remove the usefulness of48

in-context unigrams leads to faster convergence, even when evaluated on the original distribution.49

(4) Alignment of layers is crucial. We show that the transition from a phase of learning the50

simple-but-inadequate solution to the complex-and-correct solution happens due to an alignment51

between the layers of the model: the learning signal for the first layer is tied to the extent to which52

the second layer approaches its correct weights.53

Finally, in Appendix E we provide experiments with higher order Markov Chains, where we also54

observe a similar multi-stage learning process.55

Concurrent work. In parallel to this work, there have been a number of papers devoted to the56

study of similar questions regarding in-context learning of Markov chains [3, 19, 25]. Perhaps closest57

to our work, [27] introduces a general family of in-context learning tasks with causal structure, a58

special case of which is in-context Markov chains, and shows that simplified transformers (similar59

to the ones we introduce in Section B.2) can learn to identify the causal relationships. The focus of60

our work, instead, is on the different stages of training and how they relate to specific, well-defined,61

strategies. See Section A for a detailed discussion on prior work.62

2 Setup63

ICL-MC Task. Our learning task consists of sequences generated from Markov Chains with64

random transition matrices. The goal is to in-context estimate the transition probabilities from65
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Figure 2: A two layer transformer (top) and a minimal model (bottom) trained on our in-context
Markov Chain task. A comparison of the two layer attention-only transformer and minimal model
(4). The graphs on the left are test loss measured by KL-Divergence from the underlying truth. The
orange line shows the loss of the unigram strategy, and the green line shows the loss of the bigram
strategy. The middle graph shows the effective positional encoding (for the transformer, these are for
the first layer). The graph on the right shows the KL-divergence between the outputs of the models
and three strategy. The lower the KL-divergence, the more similar the model is to that strategy.

sampled sequences, in order to predict the next state. Formally, each sample sequence is generated66

by a Markov Chain with state space S = {1, . . . , k} and a transition matrix P sampled from a prior67

distribution, with x1 drawn from some other prior distribution (potentially dependent on P), and the68

rest of x = (x1, . . . , xt) drawn from the Markov Chain. We focus on the case where each row of the69

matrix is sampled from the Dirichlet distribution with concentration parameter α, i.e. Pi,: ∼ Dir(α).70

We want to learn a predictor that, given context x1, . . . , xt, predicts the next token, xt+1.71

Strategies. We consider two particular strategies that can be employed to solve the above task: a72

(suboptimal) unigram strategy which assumes tokens in each sequence are i.i.d. samples (and counts73

the frequency of the states in the sequence so far), and the bigram strategy which correctly takes74

into account dependencies among adjacent tokens (and counts frequency of pairs of tokens). See75

Section B in the Appendix for a detailed description of our learning setup.76

3 Empirical Findings and Theoretical Validation77

In this section, we present our empirical findings on how transformers succeed in in-context learning78

Markov Chains, we demonstrate the different learning stages during training and the sudden transitions79

between them, and draw analytical and empirical insights from a minimal model that we believe80

captures the behavior of transformers for this task.81

3.1 Transformers In-Context Learn Markov Chains Hierarchically82

We focus on attention-only transformers with 2 layers with causal masking and relative positional83

encodings and train them with the Adam optimizer on ICL-MC. As can be seen in Figure 2, all the84

models converge near the Bayes optimal solution, suggesting that they learn to implement the bigram85

strategy. Curiously, however, the learning seems to be happening in stages; there is an initial rapid86

drop and the model quickly finds a better than random solution. Afterwards, there is a long period of87

only slight improvement before a second rapid drop brings the model close to the Bayes optimal loss.88

Interestingly, as can be seen from the horizontal lines in Figure 2, the intermediate plateau corresponds89

to a phase when the model reaches the unigram baseline. We provide evidence that this is not a90
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coincidence, and that after the initial drop in loss, the model’s strategy is very similar to the unigram91

strategy, before eventually being overtaken by the bigram strategy (see Figure 2). This final drop is92

what has been associated to prior work with induction heads formation [28]; special dedicated heads93

inside a transformer are suddenly being formed to facilitate in-context learning.94

Mechanistic evidence for solutions found by transformer. To confirm how the two layer attention-95

only transformer solves ICL-MC, we inspected the attention in each layer throughout training. Figure96

4 shows the attention for a particular input during different parts of training. We observe that, by the97

end of training, each token in the first layer is attending to the previous token. In the second layer, the98

last token, a “2”, is attending to tokens that followed “2”s, allowing bigram statistics to be calculated.99

In Proposition B.2, we show how this behavior can be implemented in the transformer architecture.100

Varying the data distribution - Unigrams slow down learning. Given the previous findings, one101

can ask the question: is the unigram solution helpful for the eventual convergence of the model, or102

is it perhaps just a by-product of the learning procedure? To answer these questions, we define103

distributions over Markov chains that are in between the distribution where unigrams is Bayes optimal,104

and the distribution where unigrams is as good as uniform. As we see in Figure 3, the transformers105

that are being trained on the distribution where there is no unigrams “signal" train much faster. It106

appears that this simplicity bias towards the unigrams solution actually slows down learning. See also107

Figure 10 in the Appendix that displays how the models perform on different parts of the distribution108

during training.109

3.2 Theoretical Insights from the Minimal Model110

We now provide theoretical insights on how training progresses stage by stage and how this is111

achieved by the synergy between the two layers. For this, we analyze the training dynamics of a112

minimal model which can be seen as a simplified 2-layer attention only transformer. Section D113

contains our main theoretical result. Here, we summarize our theoretical findings:114

Learning occurs in two phases. Both in the theoretical and experimental models, training has115

two phases that work at very different speeds. The first phase is fast in both cases; in the theoretical116

setting, even a O
(
1
T

)
step size is sufficient for learning the second layer. In the second phase, a much117

larger step size of O(1) is needed in order to learn the positional encodings.118

Second layer is learned first. It has been observed before in a similar bigram learning setting with119

a two-layer transformer that the model might be learning first the second layer [6]. We also make120

similar observations in our experiments with the minimal model and the transformers (see Figure121

4). For the minimal model, the gradient calculations, clearly suggest that starting from a default122

initialization, it is only the second layer that quickly “picks up" the right solution.123

Even/odd pattern in positional encodings. We notice in the experiments that the positional124

embeddings of the models displayed an intriguing even/odd oscillating pattern - see Figure 2 (top,125

center), Figure 3 (right). We believe that a careful analysis the gradient of v in the second step will126

recover this pattern, which is likely related to the moments of the eigenvalues of the transition matrix.127

4 Conclusion128

In this work, we have introduced a simple learning problem which serves as a controlled setting129

for understanding in-context learning and the emergence of (statistical) induction heads. Through a130

combination of empirical investigation and theoretical analysis, we identify different stages during131

learning which we were able to precisely characterize. These validate similar observations from132

training large-scale language models.133

It would be worthwhile to understand similar stage-wise learning with natural language data, and use134

insights from our minimal model to improve formation of induction heads. In particular, it would be135

great to understand if better data curriculum could remove the undesirable simplicity bias we observe136

from unigrams. Such simple but incomplete solutions may be commonplace in language modeling137

and other rich learning settings; for any such solution, one can ask to what extent its presence speeds138

up or slows down the formation of more complex circuits with higher accuracy.139
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A Related Work261

In-Context Learning. In [11], the authors discuss how properties of the data distribution promote262

ICL. Xie et al. [36] suggest a Bayesian interpretation of ICL and studies how ICL emerges when the263

training distribution comes from a Hidden Markov Model (HMM). Abernethy et al. [1] study the264

ability of transformers to segment the context into pairs of examples and labels and provide learning265

guarantees when the labeling is of the form of a sparse function. Finally, the work of Bietti et al.266

[6] studies the dynamics of training transformers on a task that is reminiscent of our Markov chain267

setting but has additional complexities. Instead of drawing a fresh Markov chain for each sequence,268

in their task all sequences are sampled from the same Markov chain; after certain ‘trigger’ tokens, the269

following ‘output’ token is chosen deterministically within a sequence. Thus, successful prediction270

requires incorporating both global bigram statistics and in-context deterministic bigram copying,271

unlike in our setting where the patterns computed by statistical induction heads are necessary and272

sufficient. As in our work, the authors identify multiple distinct stages of training and show how273

multiple top-down gradient steps lead to a solution.274

Induction Heads. Elhage et al. [16] relates ICL with the formation of induction heads, sub-275

components of transformers that match previous occurrences of the current token, retrieving the276

token that succeeds the most recent occurrence. Reddy [30] studies the formation of induction heads277

and their role in ICL, showing empirically that a three layer network exhibits a sudden formation of278

induction heads towards solving some ICL problem of interest. Bietti et al. [6] study the effect of279

specific trigger tokens on the formation of induction heads.280

Phase Transitions. It has been observed in different contexts that neural networks and language281

models display a sudden drop in loss during their training process. This phase transition is often282

related to emergence of new capabilities in the network. The work of Power et al. [29] observed the283

“grokking” phenomena, where the test loss of neural networks sharply drops, long after the network284

overfits the training data. Chen et al. [12] shows another example of a phase transition in language285

model training, where the formation of specific attention mechanisms happen suddenly in training,286

causing the loss to quickly drop. Barak et al. [5] observe that neural networks trained on complex287

learning problems display a phase transition when converging to the correct solution. Several works288

[22, 24] attribute these phase transitions to rapid changes in the inductive bias of networks, while289

Merrill et al. [26] argue that the models are sparser after the phase change. Schaeffer et al. [31] warn290

that phenomena in deep learning that seem to be discontinuous can actually be understood to evolve291

continuously once seen through the right lens.292

Concurrent works. In parallel to this work, there have been a number of papers devoted to the study293

of similar questions regarding in-context learning or Markov chains: Akyürek et al. [3] empirically294

compare the ability of different architectures to perform in-context learning of regular languages.295

Their experiments with synthetic languages motivate architectural changes which improve natural296

language modeling in large scale datasets. Hoogland et al. [19] observe similar stage-wise learning297

behaviors on transformers trained on language or synthetic linear regression tasks. Makkuva et al.298

[25] study the loss landscape of transformers trained on sequences sampled from a single Markov299

Chain. Perhaps closest to our work, Nichani et al. [27] introduces a general family of in-context300

learning tasks with causal structure, a special case of which is in-context Markov chains. The authors301

prove that a simplified transformer architecture (similar to the one we introduce in Section B.2) can302

learn to identify the causal relationships by training via gradient descent, and also characterize the303

ability of the trained models to adapt to out-of-distribution data. The focus of our work, instead, is on304

the different stages of training and how they relate to specific, well-defined, strategies.305

B Setup306

In this section, we provide further details on our learning problem and present the neural network307

architectures that we consider.308

Details on ICL-MC Task. We focus on the case of the flat Dirichlet distribution, with α =309

(1, . . . , 1)⊤, that corresponds to uniformly random transition probabilities between states. We draw310

the initial state x1 from the stationary distribution π of the chain (which exists almost surely). We311

primarily consider the case where the number of states k is 2 or 3. In subsection E, we consider the312

generalization of this setting to n-grams for n > 2. Instead of Pr(xt) being determined by xt−1,313
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Figure 3: (left) Unigrams slow down optimization: Comparison of two-layer attention only transform-
ers trained on two distributions; one with a uniformly random doubly stochastic transition matrix and
another with a mixture of the doubly stochastic and unigrams distribution. We see that in absence
of unigrams “signal” the model minimizes the loss (evaluated on the full distribution) much faster.
(center, right) Training of the minimal model on ICL-MC with k = 2 states: (center) The heatmap of
the second layer (W matrix) that learns to be close to diagonal. (right) The values of the positional
embeddings (1st layer) that display a curious even/odd pattern. This is before any softmax is applied
to the positional embeddings.
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Figure 4: Attention patterns that correspond to the last token of the sequence for a transformer trained
to perform ICL-MC. The intensity of each blue line signifies the strength of the corresponding atten-
tion value. As the model gets trained, we observe that the attention weights mimic the construction of
Proposition B.2. Specifically, at the end of training (right), each token in the first layer is attending to
the previous token. In the second layer, the last token, a “2”, is attending to tokens that followed “2”s,
allowing bigram statistics to be calculated. See Figure 7 for full attention matrices

we let Pr(xt) be determined by xt−n+1, . . . , xt−1, according to a conditional distribution P drawn314

from some prior. In particular, for each tuple of n− 1 tokens, we sample the vector of conditional315

probabilities for the next state from a flat Dirichlet distribution.316

B.1 Potential Strategies for (Partially) Solving ICL-MC317

1st strategy: Unigrams. Since we let the Markov chain reach its stationary distribution (which318

exists a.s.), the optimal strategy across unigrams is just to count frequency of states and form a319

posterior belief about the stationary distribution. Unfortunately, the stationary distribution of this320

random Markov chain does not admit a simple analytical characterization when there is a finite321

number of states, but it can be estimated approximately. At the limit of k → ∞, the stationary322

distribution converges to the uniform distribution [8].323

2nd strategy: Bigrams. For any pair of states i and j, let Pij be the probability of transition-324

ing from i to j. On each sample x, we can focus on the transitions from the i-th state, which325

follow a categorical distribution with probabilities equal to (Pi1, . . . ,Pik). If we observe the in-326

context empirical counts {cij}kj=1 of the transitions, then Pij is given by: (Pi1, . . . ,Pik) |x ∼327

Dir(k, ci1 + α1, . . . , cik + αk), where α1, . . . , αk are the Dirichlet concentration parameters of328

the prior. Hence, each Pij has a (marginal) distribution that is actually a Beta distribution:329

Pij |x ∼ Beta
(
cij + αj ,

∑
j αj +Ni − αj − cij

)
, where Ni is the total number of observed transi-330
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tions from state i. As such, our best (point) estimate for each state j is given by: E [Pij |x] = cij+αj

N+
∑

i αi
.331

For the uniform Dirichlet, α = (1, . . . , 1)⊤, it is E [Pij |x] = cij+1
Ni+k .332

Remark B.1. The bigram strategy implicitly assumes that the first token x1 is sampled uniformly,333

as opposed to being sampled from the stationary distribution (which is used in our experiments and334

theoretical results). As the context length grows, the bigram statistics approach the Bayes optimal335

solution either way and this difference becomes negligible.336

B.2 Architectures: Transformers and Simplifications337

We are mainly interested in investigating how transformers [34] can succeed in in-context learning338

this task. We focus on attention-only transformers with 2 layers with causal masking which is a339

popular architecture for language modeling. Given an input sequence x, the output of an n-layer340

attention-only transformer1 is:341

TF (E) = P ◦ (Attnn + I) · · · ◦ (Attn1 + I) ◦ E. (1)

Where E ∈ Rt×d is an embedding of x, P ∈ Rd×k is a linear projection to the output logits, and342

Attn(x) is masked self attention with relative position embeddings [33], which is parameterized by343

WQ,WK ,WV ∈ Rd×d, v ∈ Rt×d:344

Attn(z) = softmax(mask(A))zWV , Ai,j =
(ziWQ)(zjWK + vi−j+1)

⊤
√
d

. (2)

Transformers with more complicated components, such as MLPs, also display similar qualitative345

behavior (see Figure 8). During training, we minimize this loss:346

L(θ) = E
x∼P

P∼Dir(α)k

[
1

t

t∑
p=1

l (TF (x; θ)p, xp+1)

]
, (3)

where θ denotes the parameters of the model and l is the cross entropy loss.347

We now show how a two-layer transformer can represent the optimal bigrams solution.348

Proposition B.2 (Transformer Construction). A single-head two layer attention-only transformer349

can find the bigram statistics in the in-context learning Markov chain task.350

Intuitively, the first layer of the transformer copies the previous token at each position, and in the351

second layer each token sums the embeddings of all the tokens whose output from the first layer352

matches itself. The full proof can be found in Appendix D.1.353

Simplified Transformer Architecture. As we see from the construction, there are two main354

ingredients in the solution realized by the transformer; (1st layer) the ability to look one token back355

and (2nd layer) the ability to attend to itself. For this reason, we define a minimal model that is356

expressive enough to be able to represent such a solution, but also simple enough to be amenable to357

analysis. Let exi denote the one-hot embedding that corresponds to the state at position i ∈ [T ], and358

let E be the R(T+1)×k one-hot embedding matrix. Then the model is parameterized by W ∈ Rk×k359

and v ∈ RT+1 and defined as:360

f(E) = mask(EW (Softmax(M)E)⊤)E, M =


v0 −∞ . . . −∞
v1 v0 . . . −∞
...

... · · ·
...

vT vT−1 . . . v0

 ∈ R(T+1)×(T+1),

(4)
where mask (·) is a causal mask, and Softmax(M)i,j =

exp(Mi,j)∑T
t=0 exp(Mt,j)

. Notice that the role of W is361

to mimic the attention mechanism of the second layer and the role of v is that of the relative positional362

embeddings. This model can be seen as a simplified version of a two-layer linear attention-only363

transformer. See also Appendix D.2 for a discussion.364

1For simplicity of notation we assume embedding dimension equals the hidden dimension, but in general
they can be different.
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Figure 5: In distribution test loss for 10 two layer attention only transformers, with random seeds
0, 1, . . . 9 (randomness affects initialization and the training data). The training dynamics are consis-
tent for each model, though the exact position of the phase transitions changes.

Fact B.3. Both the bigrams strategy and the unigrams strategy can be expressed by the minimal365

model with a simple choice of weights.366

• Bigrams: v = (0, c, 0, . . . , 0)⊤ and W = Ik×k, then f(E)T,s =367 ∑T
t′=2 1 {xt′ = s}1 {xt′−1 = xT }+O

(
kT 2

exp(c)

)
.368

• Unigrams: For v = (0, 0, 0 . . . , 0)⊤, W = 11⊤, we have f(E)T,s =
∑T

t′=1 1 {xt′ = s}.369

C Experimental Details and Additional Experiments370

Note on KL-divergence In our experiments, we used KL divergence to measure the difference371

between the probabilities predicted by the model and other probability distributions. For test loss,372

this other distribution was the appropriate rows of the transition matrices used to generate the test373

examples.374

Formally, let f(x1:T−1) be the softmax distribution of the transformer’s output, given the input
sequence x1:T−1. In our standard setting, we measured

dKL(PxT−1
||f(x1:T−1))

where PxT−1
is the true distribution of the next state xT given the previous state, under the true375

Markov chain P . Note that P varies from sequence to sequence (it is drawn from a prior over376

transition matrices) and is not directly observable by the learner—this is what needs to be learned377

in-context.378

For measuring how close the model was to various strategies, we computed the predicted probabilities
given by said strategies, and used those as the base distribution. Note that the output of the bigrams
strategy (which is Bayes-optimal for our base setting) is different from the aforementioned ground-
truth PxT−1

). Instead, as described in Section B, it is a Bayesian posterior distribution of the next
state given the observed sequence, with the prior determined by the prior distribution of transition
matrices. Formally:

E[PxT−1
|x1:T−1]

where the expectation is taken over the draw of Markov chain transition matrix.379

Experimental details We train transformers of the form (1) with the AdamW optimizer with380

learning rate 3e − 5 (for 3-grams a learning rate of 3e − 2 was used), batch size 64, and hidden381

dimension 16. The sequence length of the examples is 100 tokens. The minimal model was trained382

with SGD, with batch size 64, and learning rate 3e− 4. We use PyTorch 2.1.2.383
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Figure 6: ICL-MC with k = 8 states - KL-divergence between the transformer and the various
strategies over training. This required a sequence length greater than 100 (200 in this case) for the
difference between unigrams and bigrams to be large enough for the unigram phase to be visible (in
either case there was a plateau before the final drop in test loss).
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specifically the values of the matrix A from (2). The top row are showing A from the first layer, and
the bottom row from the second layer.
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Figure 8: A two layer relative position encoding transformer with MLPs trained on ICL-MC with
k=3 symbols. Notice while slightly noisier, the overall trend and observations made regarding the
attention only transformer still hold.

The data was generated in an online fashion, using numpy.random.dirichlet to generate each row384

of the transition matrices. Both the model initialization (for the transformers) and the data were385

randomized based on the seed (in a perfectly reproducible manner).386

Some of the training and model code was based on minGPT [21]. The experiments all measure the387

outputs of the models at the last token.388
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Figure 9: A comparison of the two layer attention only transformer and minimal model for k = 3
symbols.
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Figure 10: A two layer attention-only transformer (top) and minimal model (4) (bottom), trained on
the main task with ICL-MC with cross entropy loss, test loss measured by KL-Divergence from the
underlying truth (labels based on transition probabilities, not samples). The distributions test loss is
measured in are (from left to right) in-distribution, a distribution where each token is sampled iid, and
a distribution over uniformly random doubly stochastic transition matrices (equivalently, stationary
distribution is identity, or unigram based guesses are as good as guessing uniform probability). For
both models, the in distribution test loss quickly drops to the level of the unigram algorithm.

All of the experiments were performed with a single NVIDIA GeForce GTX 1650 Ti GPU with 4389

gigabytes of vram with 32 gigabytes of system memory. Each training run took under ten minutes.390

D Proofs391

In this section, we present our theoretical results on in-context learning Markov Chains of Section392

B.2.393
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Figure 11: Graphs of test loss showing that a single layer transformer can not achieve good perfor-
mance on ICL-MC. This result holds for transformers with or without MLPs, and with absolute or
relative positional encodings. These graphs show that even trained 8 times longer, there is no notable
increase in performance beyond the unigrams strategy (orange line).

D.1 Transformer Construction394

Proof of Proposition B.2. Set the internal dimension d = 3k, and choose ex to be one-hot395

embeddings—that is, exi
= δxi

, where δ is the Kronecker delta. We will call the parameters396

of attention layer i, W (i)
Q ,W

(i)
K ,W

(i)
V , v(i). Let397

v(1) =

δ21
⊤
k

0
0

 W
(1)
Q =

cIk×k 0 0
0 0 0
0 0 0

 W
(1)
K = 0 W

(1)
V =

0 Ik×k 0
0 0 0
0 0 0


So,

A
(1)
i,j =

(eiW
(1)
Q )(v

(1)
i−j+1)

⊤
√
d

.

Notice that A(1)
i,j = c1[j = i − 1]. So, softmax(mask(A))

(1)
i,j ≈ 1[j = i − 1] for large enough c.398

So, for any 2 ≤ i < T, 1 ≤ j < k, Attn1(e)i,j+k = ei−1,j . Effectively, the first layer appends399

the embedding of the previous token after the embedding of the current token, so that the output at400

position i is approximately (exi
exi−1

0).401

The second layer is defined as follows:402

v(2) = 0 W
(2)
Q =

cIk×k 0 0
0 0 0
0 0 0

 W
(2)
K =

 0 0 0
Ik×k 0 0
0 0 0

 W
(2)
V =

0 0 Ik×k

0 0 0
0 0 0


Note that z = e+Attn1(e), then

A
(2)
i,j =

(ziW
(2)
Q )(zjW

(2)
K )⊤

√
d

=
cexi

(exj−1
)⊤

√
d

=
c√
d
1[xj−1 = xi].

So, for all j < i, softmax(mask(A))i,j ≈ 1[xj−1=xi]∑i
h=1 1[xh−1=xi]

for large enough c. For any 2 ≤ i <403

T, 1 ≤ j < k,404

Attn2(e)i,j+2k =

3k∑
h=1

1[xh−1 = xi]∑i
g=1 1[xg−1 = xi]

(zW
(2)
V )h,j =

∑k
h=1 1[xh−1 = xi]1[xh = j]∑i

g=1 1[xg−1 = xi]
.
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Which is exactly the empircal bigram statistics (that is, the number of times xi → j appears before405

position i), so to make this the output, P =

 0
0

Ik×k

 2406

D.2 ICL-MC with Minimal Model407

To abstract away some of the many complicated components from the transformer architecture, we408

focus our attention now to the minimal model of Section B.2. We train minimal models of eq. (4),409

starting from a deterministic constant initialization, by minimizing the cross entropy loss with SGD.410

Full experimental details can be found in the Appendix. Figure 2 (bottom) displays the training411

curves for the minimal model.412

Lemma D.1. Let the model defined as in eq. (4) and initialized with W = 0, v = 0. If the random413

transition matrices are either414

• uniformly random from 2× 2 stochastic matrices415

• With some constant probability 0 < α < 1, a uniformly random doubly stochastic matrices, and416

otherwise 1⊤v where v is a uniformly random vector on the k-simplex.417

after one step of full batch gradient descent with step size η we have:418

W = η(T + 1)
(
AI +B 1⊤1

)
+ η O(log T ) and v(1) = 0,

where A,B ∈ R+.419

Assuming in the first step η = O
(

1
T 2

)
, after the second step of gradient descent, it holds:

W = (η + ηW )(T + 1)
(
AI +B 1⊤1

)
+ (η + ηW ) O(log T )

where the step size on W in the second step is ηW . Furthermore,420

v1 = ηvC log T, and v1 − vn = ηvΩ(log T ) ∀n ̸= 1,

where ηv is the step size for v in the second step, and C ≈ 0.0114.421

If ηv = O(T ), and ηW = 1
T (A+B) then the output of the model will be a weighted sum of bigrams422

and unigrams. Formally,423

f(E)T,s =
A

A+B

T∑
i=1

1 [xi−1 = xt, xi = s] +
B

A+B

T∑
i=1

1 [xi = s] +O(log T )

Note that in the first distribution (uniformly random 2 × 2) or the second distribution with k > 6,424

A > B, so at the end of the two steps, the weight on bigrams is greater than that of the weight on425

unigrams.426

Proof Overview. The idea of the proof is that a first step of gradient descent with a small learning rate427

can align the second layer, while a second step can learn to identify the correct relative positional428

embedding. The identity bias of W in the second layer ensures there is a strong signal in the gradient429

to look back one in the first layer. Without a bias in W , the gradient for the positional encodings, v,430

turns out to be zero.431

We get additional intuition from looking at the proof for just the second distribution: in the first step,432

effectively all of the gradient comes from the examples where the unigram strategy is optimal, while433

in the second step effectively all of the gradient comes from the examples where the bigram strategy434

is optimal.435

Remark D.2. It is worth noting that, while this is a simplified setting, the analysis goes beyond436

NTK-based [20] analyses where the representations do not change much and it crucially involves437

more than one step which has been a standard tool in the analysis of feature learning [4].438

2Technically, the output of this construction is not the log probabilities as generally cross-entropy loss

assumes. These can be approximated linearly by setting P =

 b1⊤1
0

aIk×k

 to change the output from x to ax+ b.

In practice, this approximation can achieve close to Bayes optimal loss.
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Setup and notation Our data consists of sequences of length T + 1, x = (x0, . . . , xT ), drawn439

from a Markov Chain with state space S = {1, . . . , k} (i.e., xj ∈ {1, . . . , k} for all j ∈ [T ]), and440

a random transition matrix P . Each row of the matrix is sampled from a flat Dirichlet distribution,441

i.e. Pi ∼ Dir(1), corresponding drawing the row from a uniform distribution over the simplex. Let442

E ∈ {0, 1}(T+1)×k be the one hot embedding matrix of x, that is, Ei,xi = 1 and for all s ̸= xi443

Ei,s = 0.444

Model We define our model as a simplified sequence to sequence transformer f : RT×k →
R(T+1)×k with f(E) = mask(EW (Softmax(M)E)⊤)E. The trained parameters are W ∈ Rk×k

and v ∈ RT+1. We define M ∈ R(T+1)×(T+1) as M =


v0 −∞ . . . −∞
v1 v0 . . . −∞
...

... · · ·
...

vT vT−1 . . . v0

, that is, for all

T ≥ i ≥ j ≥ 0, Mi,j = vi−j and if i > j, Mj,i = −∞. Furthermore, v = [v0, v2, . . . , vT ] ∈ RtT+1.
Softmax is defined as follows:

Softmax(M)i,j =
exp (Mi,j)∑T

T=1 exp (Mi,j)

The logit for symbol s at position T for our model is:445

f(E)T,s =

k∑
u=1

T∑
i=0

i∑
j=0

WxT ,u1[xi−j = u ∧ xi = s]
exp(vj)∑i
ℓ=0 exp(vℓ)

. (5)

The model can represent the unigrams and bigrams solutions as following:446

• Construction for bigrams: v = (0, c, 0, . . . , 0)⊤ and W = Ik×k, then f(E)T,s =447 ∑T
i=0 1 [xi = s ∧ xi−1 = xT ] +O

(
T 3

exp(c)

)
. As c tends to infinity, this becomes bigrams.448

• Construction for unigrams: v = 0 and W = 1⊤1, then f(E)T,s =
∑T

i=0 1 [xi = s].449

Proof of Fact B.3450

Proof. We will first prove the unigrams construction.451

f(E)T,s =

k∑
u=1

T∑
i=0

i∑
j=0

WxT ,u1[xi−j = u ∧ xi = s]
exp(vj)∑i
ℓ=0 exp(vℓ)

=

k∑
u=1

T∑
i=0

i∑
j=0

1[xi−j = u ∧ xi = s]
1

i

=

T∑
i=0

i∑
j=0

1[xi = s]
k

i

= k

T∑
i=0

1[xi = s]

Which is exactly unigrams.452

Now consider the bigrams construction. As c grows, the softmax of v very quickly becomes one hot.453

Formally, by lemma B.7 in [15], for any i > 0,454

exp(vj)∑i
ℓ=0 exp(vℓ)

= 1 [j = 1] +O

(
T

exp(c)

)
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So,455

f(E)T,s =

k∑
u=1

T∑
i=0

i∑
j=0

WxT ,u1[xi−j = u ∧ xi = s]
exp(vj)∑i
ℓ=0 exp(vℓ)

=

T∑
i=0

i∑
j=0

1[xi−j = xT ∧ xi = s]
exp(vj)∑i
ℓ=0 exp(vℓ)

We will take out the term i = 0,456

= 1[xT = x0 = s] +

T∑
i=1

i∑
j=0

1[xT = xi−j ∧ xi = s]
exp(vj)

i− 1 + exp(c))

Then apply the softmax approximation mentioned earlier,457

= 1[xT = x0 = s] +

T∑
i=1

i∑
j=0

1[xT = xi−j ∧ xi = s]

(
1 [j = 1] +O

(
2T

exp(c)

))

= 1[xT = x0 = s] +

T∑
i=1

1[xT = xi−1 ∧ xi = s] +

T∑
i=1

i∑
j=0

1[xT = xi−j ∧ xi = s]O

(
2T

exp(c)

)

=

T∑
i=1

1[xT = xi−1 ∧ xi = s] +

T∑
i=1

O

(
T 3

exp(c)

)
458

This simplified model was constructed by taking a two layer transformer with relative positional459

encodings and simplifying it. Our construction for how transformers would form induction heads460

(corroborated with experiments such as the viewing of attention patterns in figure 4) implies that the461

MLPs and the value matrices could just be identity functions, and the first layer query matrix, and the462

second layer positional embeddings were zero matricies, so in the simplified model we froze these463

parameters to there final states. We also remove the softmax on the attention in the first layer. Despite464

these changes, the training dynamics, our main interest, stay remarkably similar.465

Training We analyze gradient descent with the cross entropy loss LT (f,E, xT+1) =466

−
∑k

s=1 log Softmax (f(E))T,s PXT ,s
3467

D.3 Gradient Calculations468

For use in the proofs, here we show the calculations of the gradients of the model with respect to the469

parameters, and the loss with respect to the model.470

∂f(E)T,s

∂Wa,b
=

k∑
u=1

T∑
i=0

i∑
j=0

1[xT = a ∧ b = u]1[xi−j = u ∧ xi = s]
exp(vj)∑i
ℓ=0 exp(vℓ)

=

T∑
i=0

i∑
j=0

1[xT = a]1[xi−j = b ∧ xi = s]
exp(vj)∑i
ℓ=0 exp(vℓ)

471

∂f(E)T,s

∂va

=

k∑
u=1

T∑
i=0

i∑
j=0

WxT ,u1[xi−j = u ∧ xi = s]

(
1[j = a]

exp(va)∑i
ℓ=0 exp(vℓ)

− 1[a ≤ i]
exp(vj)∑i
ℓ=0 exp(vℓ)

exp(va)∑i
ℓ=0 exp(vℓ)

)
3In practice, one would often use the empircal value of xT+1 rather than its distribution PXT ,s, but in full

batch gradient descent this is in fact equivalent in our setting. This is because conditional on xT and P , xT+1 is
independent of x1, . . . xT−1.
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=

k∑
u=1

T∑
i=0

exp(va)∑i
ℓ=0 exp(vℓ)

i∑
j=0

WxT ,u

(
1[xi−a = u ∧ xi = s]1[j = a]− 1[xi−j = u ∧ xi = s]1[a ≤ i]

exp(vj)∑i
ℓ=0 exp(vℓ)

)

=

k∑
u=1

T∑
i=0

exp(va)∑i
ℓ=0 exp(vℓ)

WxT ,u

1[xi−a = u ∧ xi = s]1[a ≤ i]−
i∑

j=0

1[xi−j = u ∧ xi = s]1[a ≤ i]
exp(vj)∑i
ℓ=0 exp(vℓ)


=

k∑
u=1

T∑
i=a

exp(va)∑i
ℓ=0 exp(vℓ)

WxT ,u

1[xi−a = u ∧ xi = s]−
i∑

j=0

1[xi−j = u ∧ xi = s]
exp(vj)∑i
ℓ=0 exp(vℓ)


=

k∑
u=1

T∑
i=a

exp(va)∑i
ℓ=0 exp(vℓ)

WxT ,u1[xi = s]

1[xi−a = u]−
i∑

j=0

1[xi−j = u]
exp(vj)∑i
ℓ=0 exp(vℓ)


472

∂LT

∂f(E)T,s
= Softmax(f(E))T,s − PxT ,s

D.4 Proof of lemma D.1473

Proof. Recall that at initialization, v = 0 and W = 0, implying further that f(E) = 0.474

First step.475

First consider the gradient of the loss with respect to W . By chain rule,476

∂LT (E)

∂Wa,b
=

k∑
s=1

∂LT

∂f(E)T,s

∂f(E)T,s

∂Wa,b

=

k∑
s=1

(Softmax(f(E))T,s − PxT ,s)

T∑
i=0

i∑
j=0

1[xT = a]1[xi−j = b ∧ xi = s]
exp(vj)∑i
ℓ=0 exp(vℓ)

=

k∑
s=1

(
1

k
− PxT ,s

)
1[xT = a]

T∑
i=0

i∑
j=0

1[xi−j = b ∧ xi = s]
1

i+ 1

=
1

k
1[xT = a]

T∑
i=0

 i∑
j=0

1[xi−j = b]
1

i+ 1
−

k∑
s=1

Pa,s1[xT = a]

i∑
j=0

1[xi−j = b ∧ xi = s]
1

i+ 1


=

1

k
1[xT = a]

T∑
i=0

1[xi = b]−
k∑

s=1

Pa,s1[xT = a

i∑
j=0

1[xi−j = b ∧ xi = s]
1

i+ 1


=

1

k

T∑
i=0

1[xi = b ∧ xT = a]−
k∑

s=1

Pa,s

i∑
j=0

1[xi−j = b ∧ xi = s ∧ xT = a]
1

i+ 1


=

1

k

T∑
i=0

1[x0 = b ∧ xT−i = a]−
k∑

s=1

Pa,s

i∑
j=0

1[x0 = b ∧ xj = s ∧ xT−i+j = a]
1

i+ 1


Where the last line follows from the markov property.477

Now we take the expectation over x, xT+1 conditioned on the transition matrix P ,478

Ex|P

[
∂LT

∂Wa,b

]
= πb

T∑
i=0

1

k

(
PT−i

)
b,a

−
k∑

s=1

Pa,s
1

i+ 1

(
PT−i

)
s,a

i∑
j=0

(
P j
)
b,s


= πb

T∑
i=0

1

k

(
P i
)
b,a

−
k∑

s=1

Pa,s
1

T − i+ 1

(
P i
)
s,a

T−i∑
j=0

(
P j
)
b,s


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= πbπa(T + 1)

(
1

k
−

k∑
s=1

Pa,sπs

)
+O(log T )

Where the last step follows from Lemma D.8. Then, by applying Lemma D.3 or lemmas D.5 and D.6479

(depending on the distribution assumption on P ), there exist positive constants (potentially depending480

on k, but not T ) A,B such that for all a481

Ex|P

[
∂LT

∂Wa,a

]
= −(A+B)T +O(log T )

and for all a ̸= b,482

Ex|P

[
∂LT

∂Wa,b

]
= −BT +O(log T )

The updated Wa,b after the gradient step is just −ηEx|P

[
∂LT

∂Wa,b

]
(because W is initialized at 0).483

Choose η = Θ
(
1
T

)
, so that W will be O(1) with respect to T after the first step.484

For the gradient with respect to v, since W = 0,485

∂F (E)T,s

∂v
=

k∑
u=1

T∑
i=a

exp(va)∑i
ℓ=0 exp(vℓ)

WxT ,u

1[xi−a = u ∧ xi = s]−
i∑

j=0

1[xi−j = u ∧ xi = s]
exp(vj)∑i
ℓ=0 exp(vℓ)


= 0

So,486

∂LT (E)

∂v
=

k∑
s=1

∂LT (E)

∂f(E)T,s

∂F (E)T,s

∂v
= 0

Completing the first step calculations.487

Second step.488

After the first step, W = η
(
AI +B1⊤1

)
. Now let us bound the output of the model,489

|f(E)T,s| =

∣∣∣∣∣∣
k∑

u=1

T∑
i=0

i∑
j=0

WxT ,u1[xi−j = u ∧ xi = s]
exp(vj)∑i
ℓ=0 exp(vℓ)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
k∑

u=1

T∑
i=0

i∑
j=0

η
(
AI +B1⊤1

)
xT ,u

1[xi−j = u ∧ xi = s]
1

i

∣∣∣∣∣∣
≤ η

∣∣∣∣∣∣
k∑

u=1

T∑
i=0

i∑
j=0

(A+B)1[xi−j = u ∧ xi = s]
1

i

∣∣∣∣∣∣
≤ η

∣∣∣∣∣∣
k∑

u=1

T∑
i=0

i∑
j=0

(A+B)1[xi−j = u]
1

i

∣∣∣∣∣∣
≤ η

∣∣∣∣∣∣
T∑

i=0

i∑
j=0

(A+B)
1

i

∣∣∣∣∣∣
≤ ηT |A+B|

So, using the first order approximation of softmax,490

∂LT (E)

∂f(E)T,s
= Softmax(f(E))T,s − 1 [xT+1 = s]
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=
1

k
+

f(E)T,s

k
−
∑k

u=1 f(E)T,u

k2
+O(f(E)2T,s)− 1 [xT+1 = s]

=
1

k
+O

(
η
T

k
(A+B)

)
+O(η2T 2(A+B)2)− 1 [xT+1 = s]

=
1

k
+O

(
η
T

k
(A+B)

)
+O(η2T 2(A+B)2)− 1 [xT+1 = s]

=
1

k
− 1 [xT+1 = s] +O

(
1

T

)
Where the last step follows since η = O

(
1
T 2

)
.491

Now we can begin to analyze the gradients with respect to the parameters. For W , the gradient is492

approximately the same as in the last step. Notice that ∂f(E)T,s

∂Wa,b
does not depend on W , and v is493

unchanged, so ∂f(E)T,s

∂Wa,b
is unchanged. Furthermore,494

∂f(E)T,s

∂Wa,b
=

k∑
s=1

T∑
i=0

i∑
j=0

1[xT = a]1[xi−j = b ∧ xi = s]
exp(vj)∑i
ℓ=0 exp(vℓ)

=

T∑
i=0

i∑
j=0

1[xT = a]1[xi−j = b]
1

i

≤
T∑

i=0

i∑
j=0

1

i

= T

We will now show that the gradient is approximately the same as in the first gradient step:495

∂LT (E)

∂Wa,b
=

k∑
s=1

∂LT

∂f(E)T,s

∂f(E)T,s

∂Wa,b

=

k∑
s=1

(
1

k
− 1 [xT+1 = s] +O

(
1

T

))
∂f(E)T,s

∂Wa,b

=

k∑
s=1

(
1

k
− 1 [xT+1 = s]

)
∂f(E)T,s

∂Wa,b
+O

(
1

T

)
∂f(E)T,s

∂Wa,b

= πbπa(T + 1)

(
1

k
−

k∑
s=1

Pa,sπs

)
+O(log T )

Where the last lines follows from the gradient calculations in the first step.496

Now we will consider the gradient with respect to v. First, notice that the uniform component of W ,497

B1⊤1, has no affect on the gradient of v:498

∂f(E)T,s

∂va
=

k∑
u=1

T∑
i=a

WxT ,u
exp(va)∑i
ℓ=0 exp(vℓ)

1[xi = s]

1[xi−a = u]−
i∑

j=0

exp(vj)∑i
ℓ=0 exp(vℓ)

1[xi−j = u]


=

k∑
u=1

T∑
i=a

(
mI +B1⊤1

)
xT ,u

1

i+ 1
1[xi = s]

1[xi−a = u]−
i∑

j=0

1

i+ 1
1[xi−j = u]


=

k∑
u=1

T∑
i=a

(A1[xT = u] +B)
1

i+ 1
1[xi = s]

1[xi−a = u]−
i∑

j=0

1

i+ 1
1[xi−j = u]


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= A

k∑
u=1

T∑
i=a

1[xT = u]
1

i+ 1
1[xi = s]

1[xi−a = u]−
i∑

j=0

1

i+ 1
1[xi−j = u]


+B

k∑
u=1

T∑
i=a

1

i+ 1
1[xi = s]

1[xi−a = u]−
i∑

j=0

1

i+ 1
1[xi−j = u]


= A

k∑
u=1

T∑
i=a

1[xT = u]
1

i+ 1
1[xi = s]

1[xi−a = u]−
i∑

j=0

1

i+ 1
1[xi−j = u]


+B

T∑
i=a

1

i+ 1
1[xi = s]

 k∑
u=1

1[xi−a = u]−
i∑

j=0

1

i+ 1

k∑
u=1

1[xi−j = u]


= A

k∑
u=1

T∑
i=a

1[xT = u]
1

i+ 1
1[xi = s]

1[xi−a = u]−
i∑

j=0

1

i+ 1
1[xi−j = u]


+B

T∑
i=a

1

i+ 1
1[xi = s]

1−
i∑

j=0

1

i+ 1


= A

k∑
u=1

T∑
i=a

1[xT = u]
1

i+ 1
1[xi = s]

1[xi−a = u]−
i∑

j=0

1

i+ 1
1[xi−j = u]


By chain rule,499

∂LT

∂va
=

k∑
s=1

∂LT

∂f(E)T,s

∂f(E)T,s

∂va

=

k∑
s=1

(
1

k
− PxT ,s +O

(
1

T

)) k∑
u=1

T∑
i=a

1[xT = u]
1

i+ 1
1[xi = s]

1[xi−a = u]−
i∑

j=0

1

i+ 1
1[xi−j = u]


=

k∑
s=1

(
1

k
− PxT ,s

) k∑
u=1

T∑
i=a

1[xT = u]
1

i+ 1
1[xi = s]

1[xi−a = u]−
i∑

j=0

1

i+ 1
1[xi−j = u]

+O

(
log T

T

)

Where the last step follows because500 ∣∣∣∣∣∣
k∑

u=1

T∑
i=a

1[xT = u]
1

i+ 1
1[xi = s]

1[xi−a = u]−
i∑

j=0

1

i+ 1
1[xi−j = u]

∣∣∣∣∣∣ ≤
∣∣∣∣∣

k∑
u=1

T∑
i=a

1[xT = u]
1

i+ 1

∣∣∣∣∣
=

∣∣∣∣∣
T∑

i=a

1

i+ 1

∣∣∣∣∣
≤ log T

In expectation over the values of x, conditioned on the choice of P :501

Ex|P

[
∂LT

∂va

]
=

k∑
s=1

k∑
u=1

(
1

k
− Pu,s

) T∑
i=a

πu

i+ 1

(
PT−i

)
s,u

(P a)u,s −
1

i+ 1

i∑
j=0

(
P i−j

)
u,s

+O

(
log T

T

)

=

k∑
s=1

k∑
u=1

(
1

k
− Pu,s

) T∑
i=a

πu

T − i+ 1

(
P i
)
s,u

(P a)u,s −
1

T − i+ 1

T−i∑
j=0

(
P j
)
u,s

+O

(
log T

T

)

= (log (T + 1)− log (a+ 1))

k∑
s=1

k∑
u=1

π2
uPu,s

(
πs − (P a)u,s

)
+O(1)
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Where the last step follows from lemma D.9. Then, by applying Lemma D.4 or lemmas D.5 and D.6502

(depending on the distribution assumption on P ),503

Ex|P

[
∂LT

∂v1

]
< Ex|P

[
∂LT

∂va

]
Ex|P

[
∂LT

∂v1

]
< 0

Therefore, after the step is taken,504

v1 = Θ(ηv log T )

v1 − vn = ηvΩ(log T )

Finally, we can consider the state of the model after the second step. Assume that the step size for v505

in the second step is O(T ), and the step size for W is 1
T (A+B)506

f(E)T,s =

k∑
u=1

T∑
i=0

i∑
j=0

WxT ,u1[xi−j = u ∧ xi = s]
exp(vj)∑i
ℓ=0 exp(vℓ)

=
1

A+B

k∑
u=1

T∑
i=0

i∑
j=0

(
AI +B1⊤1+O

(
log T

T

))
xT ,u

1[xi−j = u ∧ xi = s]

(
1 [j = 1] +O

(
2T

exp(log(T ))

))

=
1

A+B

k∑
u=1

T∑
i=0

i∑
j=0

(
AI +B1⊤1+O

(
log T

T

))
xT ,u

1[xi−j = u ∧ xi = s]

(
1 [j = 1] +O

(
1

T

))

=
1

A+B

k∑
u=1

T∑
i=0

(
AI +B1⊤1

)
xT ,u

1[xi−1 = u ∧ xi = s] +O(log T )

=
A

A+B

T∑
i=0

1[xi−1 = xT ∧ xi = s] +
B

A+B

k∑
u=1

T∑
i=0

1[xi−1 = u ∧ xi = s] +O(log T )

=
A

A+B

T∑
i=0

1[xi−1 = xT ∧ xi = s] +
B

A+B

T∑
i=0

1[xi = s] +O(log T )

This completes the proof.507

D.5 Inequality lemmas for k = 2508

Lemma D.3. If P is a uniformly random stochastic 2× 2 matrix, and π is the stationary distribution
of P , then

E

[
π2
a

(
1

k
−

k∑
s=1

Pa,sπs

)]
=

5

12
− 2

3
log(2) ≈ −0.045

and for any b ̸= a

E

[
πaπb

(
1

k
−

k∑
s=1

Pa,sπs

)]
= −7

6
+

5

3
log(2) ≈ −0.011

Proof. We have:509

E

[
π2
a

(
1

k
−

k∑
s=1

Pa,sπs

)]
= Ea,b

[
(b− 1)2

(a+ b− 2)2

[
1

2
− a(b− 1)

a+ b− 2
− (1− a)(a− 1)

a+ b− 2

]]
=

1

2

∫ 1

0

∫ 1

0

(b− 1)2

(a+ b− 2)2
dadb−

∫ 1

0

∫ 1

0

a(b− 1)3

(a+ b− 2)3
dadb+

∫ 1

0

∫ 1

0

(b− 1)2(a− 1)2

(a+ b− 2)3
dadb

=
1

2
(1− ln 2)− 1

2
(1− ln 2) +

5

12
(5− 8 ln 2) =

5

12
− 2

3
ln 2.

(6)
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For the non-diagonal elements, it holds:510

E

[
πaπb

(
1

k
−

k∑
s=1

Pa,sπs

)]

=
1

2

∫ 1

0

∫ 1

0

(b− 1)(a− 1)

(a+ b− 2)2
dadb−

∫ 1

0

∫ 1

0

a(b− 1)2(a− 1)

(a+ b− 2)3
dadb+

∫ 1

0

∫ 1

0

(b− 1)(a− 1)3

(a+ b− 2)3
dadb

=
1

2

(
ln 2− 1

2

)
− 1

6
(1− ln 2) +

(
ln 2− 3

4

)
=

5

3
ln 2− 7

6
.

(7)

511

Lemma D.4. If P is a uniformly random stochastic 2× 2 matrix, and π is the stationary distribution
of P , then,

E

[
k∑

s=1

k∑
u=1

π2
uPu,s (πs − Pu,s)

]
= −7/2 + 5 log(2) ≈ −0.034

and for any n ̸= 1

E

[
k∑

s=1

k∑
u=1

π2
uPu,s (πs − Pu,s)

]
≤ E

[
k∑

s=1

k∑
u=1

π2
uPu,s

(
πs − (Pn)u,s

)]

Proof. We have:512

E

[
k∑

s=1

k∑
u=1

π2
uPu,s (πs − Pu,s)

]
=[

1/6x4 + (x+ y)(6xy(−4x2 + 2x+ 1) + 6y4 + y3(20− 24x)

12(x+ y)

+
y2(12x2 − 12x− 3) + log((x+ y)6x

2(4x2+2x−1)(x+ y)6y
2(4y2+2y−1)))

12(x+ y)

]1
0

= −7/2 + 5log(2)

(8)

For the inequality, we have an intuition that doesn’t depend on k, notice that:513

k∑
s=1

k∑
u=1

π2
uPu,s

(
πs − (Pn)u,s

)
≥ −

k∑
s=1

k∑
u=1

π2
uPu,s

∣∣∣πs − (P a)u,s

∣∣∣
≥ −

k∑
s=1

k∑
u=1

π2
uPu,sα

n

= −
k∑

u=1

π2
uα

n

≤ αn

As long as α isn’t concentrated around 1, then this shows that the magnitude of the RHS is bounded514

by a term that shrinks exponentially in n. For k = 2, we will find a similar bound, and then show515

separately that for all n for which the bound fails, the inequality still holds true.516

k∑
s=1

k∑
u=1

π2
uPu,s

(
πs − (Pn)u,s

)
=

P1,2P2,1(4P1,2P2,1 − P1,2 − P2,1)

(P1,2 + P2,1)3
(1− P1,2 − P2,1)

n

We can show that for any choice of P1,2 and P2,1 on the unit square,517 ∣∣∣∣P1,2P2,1(4P1,2P2,1 − P1,2 − P2,1)

(P1,2 + P2,1)3

∣∣∣∣ ≤ 1

4
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To see why this is true, observe that,518

(4P1,2P2,1 − P1,2 − P2,1)
2

= 16P 2
1,2P

2
2,1 + (P1,2 + P2,1)

2 − 8(P1,2 + P2,1)P1,2P2,1

≤ 16P 2
1,2P

2
2,1 + (P1,2 + P2,1)

2 − 4(P1,2 + P2,1)
2P1,2P2,1 since P1,2 + P2,1 ≤ 2

= 16P 2
1,2P

2
2,1 + (P1,2 + P2,1)

2 − 4P1,2P2,1((P1,2 + P2,1)
2 − 4P1,2P2,1)

= (P1,2 + P2,1)
2 − 4P1,2P2,1(P1,2 − P2,1)

2

≤ (P1,2 + P2,1)
2

Using the above, we have519 (
P1,2P2,1(4P1,2P2,1 − P1,2 − P2,1)

(P1,2 + P2,1)3

)2

≤
P 2
1,2P

2
2,1(P1,2 + P2,1)

2

(P1,2 + P2,1)6

=
P 2
1,2P

2
2,1

(P1,2 + P2,1)4

≤
P 2
1,2P

2
2,1

16P 2
1,2P

2
2,1

using (P1,2 + P2,1)
2 ≥ 4P1,2P2,1

=
1

16
.

So,520

∥
k∑

s=1

k∑
u=1

π2
uPu,s

(
πs − (Pn)u,s

)
∥ ≤ 1

4
|1− P1,2 − P2,1|n

Now,521

E
[
−1

1

4
|1− P1,2 − P2,1|n

]
= −1

4

∫ 1

0

∫ 1

0

|1− x− y|n

= −1

4

2

(n+ 1)(n+ 2)

= − 1

2(n+ 1)(n+ 2)

Notice that this decreases in n, and at n = 3, 1
2(3+1)(3+2) =

1
40 = 0.025 which is less in magnitude522

than the value we proved at n = 1, | − 7/2 + 5 log 2 ≈ 0.034. So, solving for n = 2 (verified by a523

symbolic algebra program)524

E

[
P1,2P2,1 (−P1,2 − P2,1 + 1)

2 · (2P1,2P2,1 + P1,2 (P2,1 − 1) + P2,1 (P1,2 − 1))

(P1,2 + P2,1)
3

]
= −413

60
+

149 log (2)

15
≈ 0.002

Which is not only greater than −7/2 + 5 log 2, but positive. Lastly, we simply need to show that the525

inequality holds at n = 0, and we are done.526

E

[
P1,2P2,1 (−P1,2 − P2,1 + 1)

0 · (2P1,2P2,1 + P1,2 (P2,1 − 1) + P2,1 (P1,2 − 1))

(P1,2 + P2,1)
3

]

=− E

[
P1,2P2,1 · (2P1,2P2,1 + P1,2 (P2,1 − 1) + P2,1 (P1,2 − 1))

(P1,2 + P2,1)
3

]
= −7/6 + 5 ∗ log(2)/3 ≈ −0.0114

Which is greater than −7/2 + 5 log 2, completing our proof.527
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Lemma D.5. If P is a uniformly random doubly stochastic matrix, then,

E

[
π2
a

(
1

k
−

k∑
s=1

Pa,sπs

)]
= E

[
πaπb

(
1

k
−

k∑
s=1

Pa,sπs

)]
for all a, b and

E

[
k∑

s=1

k∑
u=1

π2
uPu,s (πs − Pu,s)

]
< E

[
k∑

s=1

k∑
u=1

π2
uPu,s

(
πs − (P a)u,s

)]
For all non-negative a ̸= 1. and,

E

[
k∑

s=1

k∑
u=1

π2
uPu,s (πs − Pu,s)

]
< 0

Proof. We will use the fact that for doubly stochastic matrices, the stationary distribution is the528

uniform vector 1
k1.529

The first equality follows directly from πa = 1
k = πb. Now we will prove the inequality.530

E

[
k∑

s=1

k∑
u=1

π2
uPu,s

(
πs − (P a)u,s

)]
= E

[
k∑

s=1

k∑
u=1

1

k2
Pu,s

(
1

k
− (P a)u,s

)]

=
1

k2
− 1

k2

k∑
s=1

k∑
u=1

E
[
Pu,s (P

a)u,s

]
By Cauchy Schwartz,531

=
1

k2
− 1

k2
E [⟨P, P a⟩F ]

>
1

k2
− 1

k2
E [∥P∥F ∥P a∥F ]

We can make the above inequality strict because Cauchy Schwartz is only tight when the vectorizations532

of P and P a are linearly dependent, since both are still doubly stochastic, this can only happen when533

P = P a, which occurs only when each row of P is identical, which happens with probability zero.534

For now assume a > 0, then,535

=
1

k2
− 1

k2
E [∥P∥F ∥P a∥F ]

=
1

k2
− 1

k2
E
[
∥P∥F ∥PP a−1∥F

]
=

1

k2
− 1

k2
E

[
∥P∥F ∥

∑
i

αiΛiP
a−1∥F

]

≥ 1

k2
− 1

k2

∑
i

αiE
[
∥P∥F ∥ΛiP

a−1∥F
]

=
1

k2
− 1

k2

∑
i

αiE
[
∥P∥F ∥P a−1∥F

]
=

1

k2
− 1

k2
E
[
∥P∥F ∥P a−1∥F

]
The third step used the well known Birkhoff-Von Nuemann Theorem [7] that any doubly stochastic536

matrix P is the convex combination of permutation matrices, so P =
∑

i αiΛi for some permutation537

matrices Λi and constants αi > 0 with
∑

i αi = 1. The inequality step uses Jensen’s inequality.538

Induction on positive a yields the desired inequality for positive a.539
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Now consider the remaining case, a = 0,540

1

k2
− 1

k2

k∑
s=1

k∑
u=1

E
[
Pu,s

(
P 0
)
u,s

]
=

1

k2
− 1

k2

k∑
s=1

E [Ps,s]

Since cycling each row or column by 1 in a doubly stochastic matrix results in a doubly stochastic541

matrix, by symmetry the marginal distributions of any two entries in P are identical, so,542

1

k2
− 1

k2

k∑
s=1

E [Ps,s] =
1

k2
− 1

k2
= 0

While at a = 1, we have543

1

k2
− 1

k2

k∑
s=1

k∑
u=1

E
[
P 2
u,s

]
< 0

Note that equality only occurs when P = 11⊤, which occurs with probability 0, hence why the544

inequality is strict.545

546

Lemma D.6. If P is a uniformly random k by k stochastic matrix subject to each row being the same,
then,

E

[
π2
a

(
1

k
−

k∑
s=1

Pa,sπs

)]
< E

[
πaπb

(
1

k
−

k∑
s=1

Pa,sπs

)]
< 0

and547

E
[
π2
a

(
1
k −

∑k
s=1 Pa,sπs

)]
E
[
πaπb

(
1
k −

∑k
s=1 Pa,sπs

)] ≥ 8

5

for all a and b and

E

[
k∑

s=1

k∑
u=1

π2
uPu,s

(
πs − (P a)u,s

)]
= 0

For all a.548

Proof. The equality statement follows from the facts that for such transition matrices, P a = P for all549

natural a > 0, and that the stationary distribution matches the rows, that is, for any a, b, πb = Pa,b,550

E

[
k∑

s=1

k∑
u=1

π2
uPu,s

(
πs − (P a)u,s

)]
= E

[
k∑

s=1

k∑
u=1

π2
uPu,s (πs − Pu,s)

]
= E

[
k∑

s=1

k∑
u=1

π2
uPu,s (πs − πs)

]
= 0

Now we will do the inequalities. We will also use the following facts derived from the moments of551

the Dirichlet distribution,552

E
[
∥π∥22

]
=

2

k + 1

E
[
∥π∥42

]
=

4(k + 5)

(k + 1)(k + 2)(k + 3)

So,553

E

[
π2
a

(
1

k
−

k∑
s=1

Pa,sπs

)]
= E

[
π2
a

(
1

k
−

k∑
s=1

π2
s

)]

=
1

k
E
[
∥π∥22

(
1

k
− ∥π∥22

)]
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=
1

k2
E
[
∥π∥22

]
− 1

k
E
[(
∥π∥42

)]
=

2

k2(k + 1)
− 4(k + 5)

k(k + 1)(k + 2)(k + 3)

Which is negative for all k ≥ 2. And,554

E

[
πaπb

(
1

k
−

k∑
s=1

Pa,sπs

)]
=E

[
πaπb

(
1

k
−

k∑
s=1

π2
s

)]

=
1

k2
E
[(

1

k
− ∥π∥22

)]
=

1

k3
− 1

k2
E
[
∥π∥22

]
=

1

k3
− 2

k2(k + 1)

Which is also negative for all k ≥ 2. Finally, notice that555

2
k2(k+1) −

4(k+5)
k(k+1)(k+2)(k+3)

1
k3 − 2

k2(k+1)

≥ 8

5

For all k ≥ 2.556

D.6 Approximation Lemmas557

The following lemma is a well known property of stochastic matricies, (see Lemma 3.3.2 Gallager558

[17] for example).559

Lemma D.7. Let α = 1− 2mini,j Pi,j . Then, for any i, j∣∣∣(Pn)i,j − πj

∣∣∣ ≤ αn

Lemma D.8 and lemma D.9 both share similar intuitions and proofs. They largely rely on lemma560

D.7, which shows that (Pn)i,j approaches πj exponentially fast with respect to n, to show that over561

the course of summations over n the stationary distribution dominates, allowing us to simplify the562

expressions.563

Lemma D.8. Let P be a stochastic matrix with all positive entries, and let a, b be states. Assume564

that mini,j Pi,j is positive and doesn’t dependend on T . Then,565

πb

T∑
i=0

1

k

(
P i
)
b,a

−
k∑

s=1

Pa,s
1

T − i+ 1

(
P i
)
s,a

T−i∑
j=0

(
P j
)
b,s


= πbπa(T + 1)

(
1

k
−

k∑
s=1

Pa,sπs

)
+O(log T ).

Proof. Let us bound the magnitude of the difference between the two expressions.566 ∣∣∣∣∣∣πb

T∑
i=0

1

k

(
P i
)
b,a

−
k∑

s=1

Pa,s
1

T − i+ 1

(
P i
)
s,a

T−i∑
j=0

(
P j
)
b,s

− πbπa(T + 1)

(
1

k
−

k∑
s=1

Pa,sπs

)∣∣∣∣∣∣
=

∣∣∣∣∣∣πb

T∑
i=0

1

k

((
P i
)
b,a

− πa

)
−

k∑
s=1

Pa,s

 1

T − i+ 1

(
P i
)
s,a

T−i∑
j=0

(
P j
)
b,s

− πsπa

∣∣∣∣∣∣
≤ πb

T∑
i=0

1

k

∣∣∣(P i
)
b,a

− πa

∣∣∣+ k∑
s=1

Pa,s
1

T − i+ 1

T−i∑
j=0

∣∣∣(P i
)
s,a

(
P j
)
b,s

− πsπa

∣∣∣

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≤ πb

T∑
i=0

1

k
αi +

k∑
s=1

Pa,s
1

T − i+ 1

T−i∑
j=0

∣∣∣(P i
)
s,a

(
P j
)
b,s

− πsπa

∣∣∣


= πb

T∑
i=0

1

k
αi +

k∑
s=1

Pa,s
1

T − i+ 1

T−i∑
j=0

∣∣∣((P j
)
b,s

(
P i
)
s,a

− πa) + πa(
(
P j
)
b,s

− πs)
∣∣∣


≤ πb

T∑
i=0

1

k
αi +

k∑
s=1

Pa,s
1

T − i+ 1

T−i∑
j=0

((
P j
)
b,s

∣∣∣(P i
)
s,a

− πa

∣∣∣+ πa

∣∣∣(P j
)
b,s

− πs

∣∣∣)


≤ πb

T∑
i=0

1

k
αi +

k∑
s=1

Pa,s
1

T − i+ 1

T−i∑
j=0

((
P j
)
b,s

αi + πaα
j
)

≤ πb

T∑
i=0

1

k
αi +

k∑
s=1

Pa,s
1

T − i+ 1

T−i∑
j=0

(
αi + αj

)
≤ πb

T∑
i=0

(
1

k
αi +

k∑
s=1

Pa,s

(
αi +

1

T − i+ 1

1− αT−i+1

1− α

))

≤ πb

T∑
i=0

(
1

k
αi +

k∑
s=1

Pa,s

(
αi +

1

T − i+ 1

1

1− α

))

≤ πb

T∑
i=0

(
1

k
αi + αi +

1

T − i+ 1

1

1− α

)

≤ πb

T∑
i=0

(
1

k
αi + αi +

1

T − i+ 1

1

1− α

)
≤ πb

((
1 +

1

k

)
1− αT+1

1− α
+

log(T + 1) + 1

1− α

)
≤ πb

2 + 1
k + log(T + 1)

1− α

≤ 2 log T

1− α

=
log T

mini,j Pi,j

= O(log T )

The last step follows from our assumption, completing the proof.567

Lemma D.9. Let P be a stochastic matrix with all positive entries, and let a, b be states. Assume568

that mini,j Pi,j is positive and doesn’t depend on T . Then,569

k∑
s=1

k∑
u=1

(
1

k
− Pu,s

) T∑
i=a

πu

T − i+ 1

(
P i
)
s,u

(P a)u,s −
1

T − i+ 1

T−i∑
j=0

(
P j
)
u,s


= (log (T + 1)− log (a+ 1))

k∑
s=1

k∑
u=1

π2
uPu,s

(
πs − (P a)u,s

)
+O(1)

Proof. First notice that,570

k∑
s=1

k∑
u=1

(
1

k
− Pu,s

)
π2
u

(
(P a)u,s − πs

)
=

k∑
s=1

k∑
u=1

π2
u

(
1

k

(
(P a)u,s − πs

)
− Pu,s

(
(P a)u,s − πs

))
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=

k∑
u=1

π2
u

(
k∑

s=1

1

k

(
(P a)u,s − πs

)
−

k∑
s=1

Pu,s

(
(P a)u,s − πs

))

=

k∑
u=1

π2
u

(
1

k
(1− 1)−

k∑
s=1

Pu,s

(
(P a)u,s − πs

))

=

k∑
u=1

π2
u

k∑
s=1

Pu,s

(
πs − (P a)u,s

)

We will bound the distance between
∑k

s=1

∑k
u=1

(
1
k − Pu,s

)
π2
u

(
(P a)u,s − πs

)
and Ex|P

[
∂LT

∂va

]
.571

Define α = 1− 2mini,j Pi,j as in lemma D.7.572

=

∣∣∣∣∣∣
k∑

s=1

k∑
u=1

(
1

k
− Pu,s

) T∑
i=a

πu

T − i+ 1

(
P i
)
s,u

(P a)u,s −
1

T − i+ 1

T−i∑
j=0

(
P j
)
u,s


−

k∑
s=1

k∑
u=1

(
1

k
− Pu,s

) T∑
i=a

π2
u

1

T − i+ 1

(
(P a)u,s − πs

)∣∣∣∣∣
=

∣∣∣∣∣∣
k∑

s=1

k∑
u=1

(
1

k
− Pu,s

) T∑
i=a

πu

T − i+ 1

(P i
)
s,u

(P a)u,s −
1

T − i+ 1

T−i∑
j=0

(
P j
)
u,s

− πu

(
(P a)u,s − πs

)∣∣∣∣∣∣
≤

k∑
s=1

k∑
u=1

T∑
i=a

πu

T − i+ 1

∣∣∣∣∣∣(P i
)
s,u

(P a)u,s −
1

T − i+ 1

T−i∑
j=0

(
P j
)
u,s

− πu

(
(P a)u,s − πs

)∣∣∣∣∣∣
≤

k∑
s=1

k∑
u=1

T∑
i=a

πu

T − i+ 1

∣∣∣∣∣∣(P i
)
s,u

πs −
1

T − i+ 1

T−i∑
j=0

(
P j
)
u,s

−
(
(P a)u,s − πs

)((
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Figure 12: Three-headed transformer trained on In-Context Learning 3-grams (trigrams), with context
length 200. (left) Loss during training. The model hierarchically converges close to the Bayes
optimal solution. (right) KL divergence between the model and different strategies during training.
As we observe, there are 4 stages of learning, each of them corresponding to a different algorithm
implemented by the model.

≤
T∑

i=a

1

(T − i+ 1)
2

k

1− α

≤ 2k

1− α

=
k

mini,j Pi,j

= O(1)

The last step follows from our assumption, and the fact that k does not depend on T .573

E Beyond Bigrams: n-gram Statistics574

Finally, we investigate the performance of transformers on learning in-context n-grams for n > 2; in575

particular, 3-grams. We train attention-only transformers with three heads in each layer by minimizing576

the in-context cross entropy loss with the Adam optimizer. As can be seen in Figure 12 (left), the577

model eventually converges to the Bayes optimal solution. Interestingly, as in the case of Markov578

Chains, the model displays a “hierarchical learning" behavior characterized by long plateaus and579

sudden drops. In this setup, the different strategies correspond to unigrams, bigrams and trigrams,580

respectively. This is presented clearly on the right of Figure 12, where we plot the similarity of the581

model with the different strategies and it exhibits the same clear pattern as in the case of n = 2.582

Curiously, single attention headed models could not achieve better performance than bigrams. We583

leave a more thorough investigation of n-grams for future work. This behaviour is much less stable584

for different number of heads and tokens. With two heads or four heads, there is sometimes no bigram585

phase and faster convergence.586
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