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Abstract

Learning from a few examples is a challenging computer vision task. Traditionally,
meta-learning-based methods have shown promise towards solving this problem.
Recent approaches show benefits by learning a feature extractor on the abundant
base examples and transferring these to the fewer novel examples. However, the
finetuning stage is often prone to overfitting due to the small size of the novel
dataset. To this end, we propose Few shot Learning with hard Mixup (FeLMi)
using manifold mixup to synthetically generate samples that helps in mitigating
the data scarcity issue. Different from a naïve mixup, our approach selects the hard
mixup samples using an uncertainty-based criteria. To the best of our knowledge,
we are the first to use hard-mixup for the few-shot learning problem. Our approach
allows better use of the pseudo-labeled base examples through base-novel mixup
and entropy-based filtering. We evaluate our approach on several common few-shot
benchmarks - FC-100, CIFAR-FS, miniImageNet and tieredImageNet and obtain
improvements in both 1-shot and 5-shot settings. Additionally, we experimented on
the cross-domain few-shot setting (miniImageNet → CUB) and obtain significant
improvements. Code: https://github.com/aniket004/Felmi

1 Introduction

Supervised deep learning has revolutionized data-driven computer vision tasks, e.g., object detection,
segmentation [5], etc. However, it is expensive to collect and annotate large amounts of data,
especially in some fields like medical image diagnosis where one needs to rely on experts for
annotating the data. Despite recent progress in learning from large data, learning robust models using
a few labeled examples still remains quite challenging. Few-shot learning (FSL) [31, 28, 33] deals
with this problem, where there exists base classes with plenty of training examples, and novel classes
with only a few training samples. The goal is to learn a representation from the base classes, then
quickly and efficiently adapt to the novel classes from few examples.

There are two paradigms for training few-shot learner - (1) episodic training and (2) transfer learning.
During episodic training, in each episode, a few examples from the training data are sampled to form
the “support set”, on which training is performed and evaluated on the “query set” drawn from the
test dataset. Generally, the model is trained for a large number of episodes to get better generalization.
On the one hand, this approach is both time consuming and also incurs inductive (prior knowledge
driven bias) and sampling bias. On the other hand, recent approaches use simple transfer learning
to the novel classes and obtained comparative performance. Tian et al. [31] show that pretraining
on the large scale base dataset to learn a good representation, followed by finetuning on the few
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novel class examples using a simple linear classifier significantly outperforms the more complicated
meta-learning approaches in most of the FSL benchmarks. The performance is further boosted using
self-distillation and distillation across base and novel class representations [21].

Data scarcity is a fundamental issue in few-shot learning. To circumvent this, AssoAlign [1] uses
the nearest neighbor base examples in addition to the novel examples with adversarial augmentation.
Jian et al. [11] generates pseudo-labels for the base class samples and retrains on the entire dataset by
“hallucinating” the labels of the base class samples. However, literature in semi-supervised learning
has shown that poorly pseudo-labeled samples degrade the performance [21].

We overcome the above issues in these prior approaches using entropy filtering on the noisy pseudo-
labels. This step helps improve the training by discarding noisy pseudo-labeled base samples during
training. Next, we propose a solution to the data scarcity issue by synthetically generating training
examples with both novel and base examples using a mixup strategy. The mixup samples are
generated with minimal overhead while adding the much needed regularization by synthesizing new
points close to the novel distribution. Motivated by the efficacy of hard example mining in computer
vision [26], we propose to improve the naïve mixup step with uncertainty guided hard-mixup. Further,
we propose a technique to make use of base samples for mixup in addition to the novel samples. Note
that Mangla et. al [16] has also used mixup for few-shot learning, but the motivation is completely
different in our setting. Their approach does not add any more samples to training and use it as a
regularizer across layers. On the contrary, we are the first to propose generating hard mixup samples
to tackle the data scarcity issue in FSL.

Another contribution of our work is that we redefine hard-mixup for the few-shot learning setup. Note
that hard-mixup has been used in contrastive learning, where positive and negative classes are already
defined [12]. In contrast, for N-way K-shot problem, where there exists N classes, the notion of hard
examples is not straightforward. While, hard mixup similar to these approaches could be extended
in our setup by mixing and assigning a hard label, we instead work with soft labels and select the
optimal examples to mix with the appropriate lambda values. To this end, we define hard example
mixing based on a margin-based uncertainty measure, inspired by the concept of active learning. We
use the margin to estimate the hardness of a sample, thereby measuring the uncertainty in predicting
a particular class with high probability.

In summary, the contributions of this work are as follows:

1. To handle the data scarcity problem in few-shot learning, we use mixup-based data augmen-
tation.

2. We perform hard mixup using a novel margin-based uncertainty measure, which further
elevates performance. To the best of our knowledge, we are the first to use hard-mixup for
few-shot learning.

3. We propose an approach (FeLMi) to make use of both base and novel examples for generating
more samples for novel training.

4. We validate our approach through extensive experiments on standard few-shot benchmarks -
FC100, CIFAR-FS, miniImageNet and tieredImageNet demonstrating state-of-the-art results.
Our approach also demonstrates promising improvements on the standard miniImageNet →
CUB cross domain benchmark.

2 Related Work

Few-shot learning methods can be divided into two broad categories, (1) Meta-learning, (2) Transfer
learning methods.

Meta Learning. Traditionally, meta-learning based methods have been effective for few-shot learning
tasks and usually consists of a meta-training and a meta-testing phase. In both meta-training and
testing phases, multiple episodes are sampled from a task distribution and the model is trained on
the support samples of the episode and evaluated on the query set. Thus, the model is trained on
unseen classes via a learning to learn approach. Meta-learning methods can also be subdivided into
two categories, viz., metric-based meta learning and optimization-based meta-learning.

Metric-based meta-learning methods predict the label of the query as a weighted sum of the labels over
the support samples. Popular metric-based meta-learning methods include Prototypical Networks [28],
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Relation Networks [30], Matching networks [33], TADAM [17], etc. Optimization-based meta-
learning methods adapt the model parameters using a small number of gradient steps, e.g., MAML [9],
LEO [23], etc. MetaOptNet [19] solves a differentiable convex optimization problem for few-shot
learning with better generalization. Other meta-learning methods use earth-mover’s distance [38],
set-to-set functions [35], human interpretable concepts [5], etc.

Transfer learning methods. Recent methods have shown that contrastive pretraining on large
base example dataset and simple finetuning on the scarce novel examples performs surprisingly
better than the complex meta-learning-based methods. As an example, RFS [31] outperforms all the
meta learning baselines by learning a self-supervised representation followed by a simple logistic
classifier. Following a similar trend, SKD [18] uses rotational self-supervised distillation to further
improve the performance. Rizve et al. [22] explores the complementary strengths of invariant and
equivariant representations and self-distillation for better pretraining and performs significantly better
than previous methods. Partner-assisted learning [15], which also uses feature level knowledge
distillation has proven to be effective.

Base examples for few-shot learning. AssoAlign [1] makes use of large base dataset by search-
ing nearest neighbors of the novel examples in the pool of base examples along with adversarial
associative alignment. pseudo-labeling is a well-known technique for semi-supervised learning and
have been successfully used in several vision tasks, e.g., image and video classification [21]. Jian et
al. [11] used pseudo-labeling of the entire base examples and obtained significant performance boost.
Afrasiyabi et al. [2] also used mixture-based feature space learning [2] and matching feature sets [3]
to further improve the performance.

Mixup Approaches. These are simple yet effective regularization techniques for training deep
networks. Several variants of mixup have been proposed in the literature, viz., input mixup [39],
cutmix [37], manifold-mixup [32], etc. Manifold mixup uses feature level mixup, which provides
smoother decision boundary and flattened class representations. Mangla et al. [16] use manifold
mixup for few-shot learning from a regularization perspective. In contrast to the above methods, we
are using manifold mixup to tackle the data scarcity problem in few-shot learning by generating more
samples.

3 Problem Statement

We first define the few-shot classification problem addressed in this work. Typically, there exists
a large-scale labeled base dataset and novel classes with few samples per class. The task is to
learn a feature representation on the base class with abundant samples and then discriminatively
learn a representation to recognize subsequent novel classes. Let the base dataset be denoted as
Dbase = {xbaset , ybaset }Nbase

t=1 , where xbaset is the base class sample and the corresponding label is
ybaset ∈ Cbase. Similarly, the novel dataset is denoted by Dnovel = {xnovelt , ynovelt }Nnovel

t=1 , where
xnovelt is the novel class sample and the corresponding label is ynovelt ∈ Cnovel. The base and novel
classes are disjoint, i.e., Cbase ∩ Cnovel = ∅, and |Cbase| ≥ |Cnovel|.
The training and testing is performed in episodes on the novel class samples. In each episode
i of a N-way K-shot problem, the few-shot learner is trained on a support set, i.e., Dsupport

i =

{xsupporti,t , ysupporti,t }NK
t=1 for N novel classes containing K samples per class. Then, the few-shot

learner is evaluated on the query set Dquery
i = {xqueryi,t , yqueryi,t }NK

t=1 on the same N classes of Dsupport
i .

4 Proposed Methodology

Inspired by the efficacy of pseudo-labeling, we further increase sample size by mixup and choose
more informative samples by hard mixup-based sample selection. Our proposed method (FeLMi),
outlined in Fig. 1 consists of the following six stages: (i) Learning an embedding on the base dataset
(Dbase), (ii) Pseudo labeling of the base dataset, (iii) Entropy-based filtering of the pseudo-labeled
base dataset, (iv) Mixup sample generation using both base and novel examples, (v) Uncertainty-based
hard-mixup sample selection, and (vi) Finetune on the entire dataset using filtered base examples,
novel examples and hard-mixed examples. We next describe each of these steps in detail.

3



B

B’

N 𝑃!,!

𝑃#,!

𝑓! 𝑔"
𝑥!base #𝑦#$%&'

𝑥!novel

𝑥!*ilt

𝑥"#$N−N

ℒ()$%&' ℒ*+,-.'/ ℒ*+012'3

Stage 1 Stage 2

Stage 3

Stage 4

Stage 6

𝑓!

𝑓!

𝑃012

𝑥"#$B−N

𝑥!hard

𝑥!sel

Fewshot Learning with Hard
Mixup

Stage 5

Figure 1: Our proposed method, FeLMi consists of six stages. Stage (1): backbone (fθ) is pretrained
on the base dataset B. Stage (2): pseudo-labels (ŷbaset ) of the entire base dataset are generated using
classifier gϕ. Stage (3): base samples are filtered based on entropy to obtain a reduced dataset B’.
Stage (4): novel-novel (xN−N

mix ) and base-novel (xB−N
mix ) mixup samples are generated. Stage (5): hard

examples ( xhard
t ) are selected based on margin. Stage (6): The model is trained on the combination

of losses.

4.1 Learning embedding on the base dataset

We first learn a discriminative representation from the base dataset Dbase. The convolutional neural
network consists of a backbone fθ and a final classification layer hϕ. The parameters (θ, ϕ) are jointly
learned using the cross-entropy loss on the base dataset Dbase. We use the self-supervised Invariant
and Equivariant Represenatation learning (IER) framework by Rizve et al. [22] which makes use of
self-supervised losses in addition to standard cross-entropy loss to learn good representations.

(θbase, ϕbase) = argminθ,ϕE{x,y}∈DbaseLCE(hϕ(fθ(x)), y) (1)

Large base datasets ensure that we have a good pretrained model to use for meta-testing stage.

4.2 pseudo-labeling of base dataset using classifier trained on novel dataset

In this step, we train a logistic regression classifier using the novel examples. Then, using the trained
classifier, we generate the pseudo-labels on the entire base dataset following Jian et al. [11]. This
pseudo-labeling step partially mitigates the data scarcity problem prevalent in few-shot training. For
each episode i, we learn a linear classifier ϕi using the support set of novel examples Dsupport

i , such
that

ϕi = argminϕE{x,y}∈D
support
i

LCE(gϕ(fθbase(x)), y). (2)

Then, the classifier gϕi
is used to generate pseudo-labels for the entire base dataset, i.e., ŷbaset =

gϕi
(fθbase(xt)) for t = 1, .., Nbase.

4.3 Entropy based pseudo-label filtering

Given that base classes are disjoint from novel classes, not all classes will provide useful information
for the task at hand. Specifically, base samples with high entropy pseudo-labels might lead to
confusing samples. Therefore, we perform a simple pseudo-label filtering based on entropy.

Dbase_filt = {ŷbaset |H(ŷbaset ) ≤ τ where t = 1, · · · , Nbase} (3)
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We empirically select the entropy threshold τ . After refinement we have |Dbase_filt| base examples.
H(.) here denotes the entropy.

4.4 Mixup sample generation

Handling the data scarcity problem using pseudo-labels motivates us to generate even more samples
using a simple yet an effective mixup strategy. Particularly, we use a feature level manifold mixup
step to generate more synthetic samples. Since we have both the base and novel examples, we mix up
both base-novel and novel-novel pairs. Note that, since the mixed samples should be close to novel
examples, we are not performing base-base mixup. A straightforward way of generating synthetic
examples through mixup is to mix two pure novel examples. We call this strategy ‘Novel-Novel’
mixup.

4.4.1 Novel-Novel Mixup

We perform manifold mixup on novel-novel samples to create a pool of mixed up samples PN,N . We
select {(xnovel, ynovel), (x̄novel, ȳnovel)} ∈ Dsupport, pass them through the feature extractor fθbase
and mixup with λn ∼ Beta(α, α) to generate (xmix, ymix) where:

xN−N
mix = λn.fθbase(x

novel) + (1− λn)fθbase(x̄
novel)

yN−N
mix = λn.y

novel + (1− λn)ȳ
novel (4)

The pool of novel-novel mixup samples of size l are generated through randomly sampling λn, i.e.,
PN,N = {(xN−N

mix , yN−N
mix )i}li=1.

4.4.2 Base-Novel Mixup

Access to the base examples during training and their pseudo-labels allows us to make use of these
for mixup. The motivation behind using mixup is to generate and augment the small novel set.
Since the base classes are disjoint from novel classes and we only have a weak mapping through the
pseudo-labels, we employ the following steps while using base examples with mixup. 1) We refrain
from mixing two base examples, instead always mixes a base example with a novel example. 2) We
only mix with base examples that are close to novel examples. We ensure this by choosing base
examples which have a low pseudo-label entropy. 3) We choose a small mixup lambda corresponding
to the base examples when mixing them ensuring they remain proximal to the distribution of novel
samples. Specifically, we sample λb ∼ Uniform(0, 0.2). From (xbase, ŷbase) ∈ Dbase_filt, we select
k-lowest entropy base examples, i.e., (xbasesel , ŷbasesel ), such that,

{(xbasesel , ŷbasesel )} = {(xi, yi)|i ∈ bottom_k(H(ŷ))} (5)

Novel examples are (xnovel, ynovel) ∈ Dsupport mixed with these selected base examples to generate
(xB−N

mix , yB−N
mix ) as follows.

xB−N
mix = λb.fθbase(x

base
sel ) + (1− λb)fθbase(x

novel)

yB−N
mix = λb.ŷ

base
sel + (1− λb)y

novel (6)

The pool of base-novel mixup samples of size l are generated through randomly sampling λb, i.e.,
PB,N = {(xB−N

mix , yB−N
mix )i}li=1

4.5 Hard mixup sample generation

In the section above, we have generated a pool of base-novel and novel-novel mixed up samples
denoted by PB,N and PN,N respectively. Now, we concatenate the generated mixed-up samples, i.e.,
Pmix = PB,N ∪ PN,N and then choose hardest N samples based on a uncertainty measure.

More specifically, to get an estimate of hardness of a mixed example chosen from Pmix, we first
obtain a (potentially noisy) estimate of the class probability p (= gϕi(x)) using the classifier trained
in stage 2. We then estimate margin (difference in top-2 probabilities), a measure of uncertainty
that is commonly used in active learning [24] and pick mixed samples which have a low margin.
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Intuitively, samples with a lower margin lie close to the class boundary thus providing a stronger
learning signal.

We choose k-smallest margin values as hard examples (denoted as Phard_mix) chosen from both the
base and novel mixed up samples are as follows.

Phard_mix = bottom_k{margin(gϕi
(fθbase(x)) | (x, y) ∈ Pmix} (7)

4.6 Finetune on the entire dataset

In the last stage, the model is finetuned on a combined loss computed using the filtered base examples
(Dbase_filt), the novel examples (Dnovel), and the hard mixup samples (Phard_mix). For the base
examples, KL divergence loss is used, whereas cross-entropy loss has been used for novel and mixup
samples. The final loss is denoted as,

L = E{x,ŷ}∈Dbase_filtLKD(gϕ(fθ(x)), ŷ)

+ βE{x,y}∈DnovelLCE(gϕ(fθ(x)), y) + γE{x,y}∈Phard_mixLCE(gϕ(fθ(x)), y)
(8)

β and γ are scaling parameters for losses corresponding to novel and mixed up samples, respectively.

Finally, the trained model is evaluated on the query set of the episode i (Dquery
i ) and averaged

accuracy over all the episodes are reported.

5 Experimental Results

5.1 Experimental Setup

Datasets: We experiment on four widely used few-shot benchmarks: FC-100 [17], CIFAR-FS [4],
miniImageNet [33] and tieredImageNet [20]. FC-100 is a subset of CIFAR-100, containing 60 classes
for meta-training, 20 classes for meta-validation and 20 classes for meta-testing. CIFAR-FS is also
obtained from CIFAR-100, containing 64 classes for meta-training, 16 classes for meta-validation
and 20 classes for meta-testing. miniImageNet is derived from ImageNet with images downsampled
to a resolution of 84× 84 pixels. It has 64 classes for meta-training, 16 classes for meta-validation
and 20 classes for meta-testing. tieredImageNet [20] is another subset of ImageNet, containing total
of 608 classes, from which 351 classes are used for meta-training, 97 classes for meta-validation and
160 classes for meta-testing.

Implementation details: For a fair comparison with prior works, we use the ResNet-12 architecture
as the backbone network. We attach a two-layer MLP on top of the feature extractor which outputs
N-way logits. We use the SGD optimizer with momentum 0.9. Learning rate of backbone and
classifier are set to 0.025 and 0.05 respectively with weight decay of 5e-4. Following [11], we use
the temperature coefficient of 4.0 for our KD loss. We use a minibatch size of 250 for training. Using
standard setting, we also perform data augmentation using color jittering, random crop and horizontal
flip. Further details of the hyperparameters and training are provided in the supplementary material.

5.2 Results on benchmark datasets

We have compared our proposed method (FeLMi) with state-of-the-art techniques on the benchmark
datasets: FC-100, CIFAR-FS, miniImageNet and tieredImageNet. We obtain consistent improve-
ments over state-of-the-art showing the efficacy of our approach on all the aforementioned few-shot
benchmarks for both 1-shot and 5-shot settings in Table 1, Table 2 and Table 3.

5.3 Results on cross-domain benchmark

We test our approach for more challenging cross-domain settings, where the base-pretraining is done
on miniImageNet and the novel classes stem from samples from another domain, e.g., CUB [34]. Our
approach achieves significant performance improvements for both the 5-shot and 1-shot setting in
this setting as shown in Table 4. Since CUB performs fine-grained classification, we hypothesize that
hard mixup samples are even more useful in this case.
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Table 1: Comparison of FeLMi (ours) to prior works on CIFAR-FS. Following prior work, we
report our results with 95% confidence intervals on meta-testing split of the dataset. § denotes our
reproduced numbers using publicly available implementations.

CIFAR-FS 5-way

Model Backbone 1-shot 5-shot

ProtoNet [28] (NIPS’17) ResNet-12 72.2 ± 0.7 83.5 ± 0.5
MetaOptNet [13] (CVPR’19) ResNet-12 72.6 ± 0.7 84.3 ± 0.5
Shot-Free [19] (ICCV’19) ResNet-12 69.2 ± n/a 84.7 ± n/a
DSN-MR [27] (CVPR’20) ResNet-12 75.6 ± 0.9 86.2 ± 0.6
RFS-simple [31] (ECCV’20) ResNet-12 71.5 ± 0.8 86.0 ± 0.5
RFS-distill [31] (ECCV’20) ResNet-12 73.9 ± 0.8 86.9 ± 0.5
SKD-GEN1 [18] (Arxiv’20) ResNet-12 76.6± 0.9 88.6± 0.5
IER-distill [22] (CVPR’21) ResNet-12 77.6± 1.0 89.7± 0.6
PAL [15] (ICCV’21) ResNet-12 77.1 ± 0.7 88.0 ± 0.5
Label-Halluc [11] (AAAI’22) ResNet-12 78.0± 1.0§ 89.37± 0.6§

FeLMi ResNet-12 78.22 ± 0.7 89.47 ± 0.5

Table 2: Comparison of FeLMi (ours) to prior works on FC-100. Following prior work, we report our
results with 95% confidence intervals on meta-testing split of the dataset. § denotes our reproduced
numbers using publicly available implementations.

FC-100 5-way

Model Backbone 1-shot 5-shot

ProtoNet [28] (NIPS’17) ResNet-12 37.5 ± 0.6 52.5 ± 0.6
TADAM [17] (NIPS’18) ResNet-12 40.1 ± 0.4 56.1 ± 0.4
MetaOptNet [13] (CVPR’19) ResNet-12 41.1 ± 0.6 55.5 ± 0.6
MTL [29] (CVPR’19) ResNet-12 45.1 ± 1.8 57.6 ± 0.9
DeepEMD [38] (CVPR’20) ResNet-12 46.5 ± 0.8 63.2 ± 0.7
RFS-simple [31] (ECCV’20) ResNet-12 42.6 ± 0.7 59.1 ± 0.6
RFS-distill [31] (ECCV’20) ResNet-12 44.6 ± 0.7 60.9 ± 0.6
AssoAlign [1] (ECCV’20) ResNet-18 45.8 ± 0.5 59.7 ± 0.6
SKD-GEN1 [18] (Arxiv’20) ResNet-12 46.5± 0.8 64.2± 0.8
InfoPatch [10] (AAAI’21) ResNet-12 43.8 ± 0.4 58.0 ± 0.4
IER-distill [22] (CVPR’21) ResNet-12 48.1± 0.8 65.0± 0.7
PAL [15] (ICCV’21) ResNet-12 47.2 ± 0.6 64.0 ± 0.6
Label-Halluc [11] (AAAI’22) ResNet-12 47.37± 0.7§ 67.92± 0.7§

FeLMi ResNet-12 49.02 ± 0.7 68.68 ± 0.7

(a) FC-100 (b) CIFAR-FS (c) mini-ImageNet

Figure 2: Effect of changing number of mixup samples (N). In this experiment we investigate the
effect of N on the final cumulative accuracy for the 5-way 1-shot on the three datasets. We notice that
N=1000 shows consistent improvements across all datasets.
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Table 3: Comparison of our method (FeLMi) against the state-of-the-art on miniImageNet and tiered-
ImageNet. Following prior work, we report our results with 95% confidence intervals on meta-testing
split of the dataset. § denotes our reproduced numbers using publicly available implementations.

miniImageNet 5-way tieredImageNet 5-way

model backbone 1-shot 5-shot 1-shot 5-shot

ProtoNet [28] (NIPS’17) ResNet-12 60.37 ± 0.83 78.02 ± 0.57 65.65 ± 0.92 83.40 ± 0.65
TADAM [17] (NIPS’18) ResNet-12 58.50 ± 0.30 76.70 ± 0.30 - -
TapNet [36] (ICML’19) ResNet-12 61.65 ± 0.15 76.36 ± 0.10 63.08 ± 0.15 80.26 ± 0.12
MetaOptNet [13] (CVPR’19) ResNet-12 62.64 ± 0.61 78.63 ± 0.46 65.99 ± 0.72 81.56 ± 0.53
MTL [29] (CVPR’19) ResNet-12 61.20 ± 1.80 75.50 ± 0.80 65.62 ± 1.80 80.61 ± 0.90
Shot-Free [19] (ICCV’19) ResNet-12 59.04 ± 0.43 77.64 ± 0.39 66.87 ± 0.43 82.64 ± 0.43
DSN-MR [27] (CVPR’20) ResNet-12 64.60 ± 0.72 79.51 ± 0.50 67.39 ± 0.83 82.85 ± 0.56
DeepEMD [38] (CVPR’20) ResNet-12 65.91 ± 0.82 82.41 ± 0.56 71.16 ± 0.87 86.03 ± 0.58
FEAT [35] (CVPR’20) ResNet-12 66.78 ± 0.20 82.05 ± 0.14 70.80 ± 0.23 84.79 ± 0.16
Neg-Cosine [14] (ECCV’20) ResNet-12 63.85 ± 0.81 81.57 ± 0.56 - -
RFS-simple [31] (ECCV’20) ResNet-12 62.02 ± 0.63 79.64 ± 0.44 69.74 ± 0.72 84.41 ± 0.55
RFS-distill [31] (ECCV’20) ResNet-12 64.82 ± 0.82 82.41 ± 0.43 71.52 ± 0.69 86.03 ± 0.49
AssoAlign [1] (ECCV’20) ResNet-18 59.88 ± 0.67 80.35 ± 0.73 69.29 ± 0.56 85.97 ± 0.49
AssoAlign [1] (ECCV’20) WRN-28-10 65.92 ± 0.60 82.85 ± 0.55 - -
SKD-GEN1 [18] (Arxiv’20) ResNet-12 66.54± 0.97 83.18± 0.54 72.35 ± 1.23 85.97 ± 0.63
P-Transfer [25] (AAAI’21) ResNet-12 64.21 ± 0.77 80.38 ± 0.59 - -
MELR [8] (ICLR’21) ResNet-12 67.40 ± 0.43 83.40 ± 0.28 72.14 ± 0.51 87.01 ± 0.35
IEPT [40] (ICLR’21) ResNet-12 67.05 ± 0.44 82.90 ± 0.30 72.24 ± 0.50 86.73 ± 0.34
IER-distill [22] (CVPR’21) ResNet-12 66.85± 0.76 84.50± 0.53 72.71 ± 0.89 86.57 ± 0.81
Label-Halluc [11](AAAI’22) ResNet-12 67.04± 0.7§ 85.87± 0.48§ 71.97 ± 0.89 86.80 ± 0.58

FeLMi ResNet-12 67.47 ± 0.78 86.08 ± 0.44 71.63 ± 0.89 87.07 ± 0.55

Table 4: Comparison of FeLMi (ours) in cross-domain setting (miniImageNet → CUB). We obtain
significant boost compared to prior approaches showing the efficacy of our approach.

miniImageNet → CUB 5-way

model backbone 1-shot 5-shot

Baseline++ [6] (ICLR’19) ResNet-18 40.44 ± 0.75 56.64 ± 0.72
MetaOptNet [13] (CVPR’19) ResNet-18 44.79 ± 0.75 64.98 ± 0.68
S2M2R [16] (WACV’20) ResNet-18 48.24 ± 0.84 70.44 ± 0.75
AssoAlign [1] (ECCV’20) ResNet-18 47.25 ± 0.76 72.37 ± 0.89
MixFSL [2] (ICCV’21) ResNet-18 - 68.77 ± 0.9
MT-ConFT [7] (ICCV’21) ResNet-10 49.25 ± 0.83 74.45 ± 0.71

FeLMi ResNet-12 51.66 ± 0.82 77.61 ± 0.69

(a) FC-100 (b) CIFAR-FS (c) mini-ImageNet

Figure 3: Effect of changing number of α parameter of the Beta distribution. In this experiment we
investigate the effect of α on the final cumulative accuracy for the 5-way 1-shot on the three datasets.
Note that α effectively controls the λ values that we sample for N-N mixup. A value of 1 implies
sampling from a uniform distribution whereas 0.5 samples λ closer to 0 or 1. We notice that α = 1
shows consistent improvements across all datasets.
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Table 5: Contribution of our proposed tech-
niques to the final performance on FC-100
for 5-way 5-shot classification. We see that
each of our proposed techniques leads to an
improvement.

Approach Accuracy

IER [22] 65.00
+ pseudo-label [11] 67.92
+ entropy filtering 67.96
+ Mixup 68.49
+ hard selection 68.68

Table 6: Evaluating different mixup strate-
gies for 5-way 5-shot classification. Our pro-
posed approach of using N-N mixup improves
performance. Additionally using B-N mixup
leads to further gains.

Mixup
Approach λb λn FC-100 CIFAR-FS

B-N + N-N U(0, 0.2) B(1, 1) 68.68 89.47
B-N + N-N B(1, 1) B(1, 1) 68.49 89.26

N-N - B(1, 1) 68.57 89.4
None - - 67.92 89.37

(a) First training step (b) Last training step

Figure 4: tSNE visualizations. We visualize the tSNE plots of the learned representations at the
start of training and at the end for one random episode. We see that as training progresses, the data
gets more clustered and query labels (denoted by y_Q) get close to the support set clusters. We also
overlay the generated mixup samples. These samples offer a good training signal to learn better class
boundaries.

5.4 Ablation Studies

In this section, we investigate the effect of each stage of our method on the overall performance.

Ablation of each individual contribution: We start with the base pretraining similar to IER [22]
followed by pseudo-labeling of the entire base dataset akin to Jian et al. [11]. Entropy-based filtering
of the pseudo-labels provides an improvement of 0.04%. Using both base and novel sample mixup,
we get an improvement of 0.53%. Margin-based hard mixup sample selection additionally provide a
performance boost of 0.19% on FC-100 dataset in 5-way 5-shot setting as shown in Table. 5.

Effect of mixup strategies: Next, we evaluate different mixup strategies, results are provided in
Table. 6 on both FC-100 and CIFAR-FS in 5-way 5-shot settings. In both the cases, we observe
that best results are obtained when incorporating base-novel mixup with λb ∼ Uniform(0,0.2) in
addition to novel-novel mixup with λn ∼ Beta(1,1). This aforementioned setting ensures the mixed
up base-novel samples (denoted by yellow points in Fig. 4 (a)) lie close to the novel examples (labeled
0-4 in Fig. 4 (a)).

Effect of mixup sample size: We observe the variation of 5-way 5-shot classification accuracy
vs. number of mixup sample size for FC-100, CIFAR-FS and miniImageNet in Fig. 2a, Fig. 2b and
Fig. 2c, respectively. We notice that in all the settings, mixup sample size of 1000 performs the best.
Increasing the number of mixed up samples seems to lower the performance a bit. We hypothesize
this might be due to the increasing imbalance between ‘real’ and ‘generated’ points, thus hurting the
learning.

Effect of mixup parameters: The variation of 5-way 5-shot classification accuracy with respect
to mixup parameter α for FC-100, CIFAR-FS and miniImageNet used for performing novel-novel
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sample mixup is shown in Fig. 3 . In CIFAR-FS and miniImageNet, α = 0.5 seems to perform better.
However, in FC-100, we observe the opposite trend.

tSNE visualizations: Next, we analyse the tSNE visualizations of the representations learned using
our approach. The visualizations (Figure 4) show these for representations at the first step of training
(Figure 4(a)) and after the training is completed for one episode (Figure 4 (b)). We observe that the
representations for each class get more clustered as the training progresses. Further, representations
of the query samples get closer to the corresponding class support samples. Our generated hard
mixup samples are close to the query samples as seen in the figure, which provide the necessary
training signal to improve the model.

6 Limitations

Like most prior approaches, we make use of the base examples when adapting the classifier for novel
examples. This requires access to base examples during meta-testing which can be difficult for very
large scale datasets. We would like to fix this requirement in future work.

7 Conclusions

Few-shot learning is an important computer vision problem. The inherent data scarcity issue makes
this problem more challenging. To address this issue, we propose to use hard mixup to synthetically
generate mixup samples based on lowest margin based uncertainty measure. To the best of our
knowledge, we are the first to propose hard mixup for few-shot learning. Moreover, we also perform
hard mixup on the novel-novel and base-novel samples and further improve performance on the
benchmark datasets, e.g., FC-100, CIFAR-FS, miniImageNet and tieredImageNet in both the 1-shot
and 5-shot settings. Our approach also significantly outperforms the state-of-the-art in cross-domain
few-shot (miniImageNet → CUB) settings.
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