
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

UNDERSTANDING OPTIMIZATION OF OPERATOR NET-
WORKS WITH VARIATIONAL LOSS FOR SOLVING PDES

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we analyze the optimization of operator networks for solving ellip-
tic PDEs with variational loss functions. While approximation and generalization
errors in operator networks have been extensively studied, optimization error re-
mains largely unexplored. We apply Restricted Strong Convexity (RSC) theory to
rigorously examine the optimization dynamics of operator networks trained with
variational loss, providing theoretical guarantees for convergence and training sta-
bility. We further investigate the role of the condition number of A in optimization
and demonstrate that preconditioning strategies significantly improve convergence
rates, establishing a solid theoretical basis for the empirical benefits of precondi-
tioning. We also address the lower bound of a key quantity, qt, which ensures con-
vergence. To prevent qt from vanishing, we propose an algorithm that adaptively
incorporates additional weights into the variational loss function, leveraging val-
ues already computed during training, thereby avoiding any extra computational
costs. Finally, we validate our theoretical assumptions through numerical exper-
iments, demonstrating their practical applicability and confirming the effective-
ness of preconditioning, with significant improvements in training performance
and convergence rates.

1 INTRODUCTION

Scientific machine learning (SciML) has advanced through approaches like physics-informed neural
networks (PINNs) (Raissi et al., 2019), the Deep Ritz Method (DRM) (Yu et al., 2018), and the Deep
Galerkin Method (DGM) (Sirignano & Spiliopoulos, 2018), which use neural networks to approx-
imate solutions to complex partial differential equations (PDEs). Additionally, operator learning
methods, such as the Deep Operator Network (DeepONet) (Lu et al., 2021) and Fourier Neural Op-
erator (FNO) (Li et al., 2020), map input parameters (e.g., initial/boundary conditions or forcing
terms) directly to PDE solutions. Originally developed as supervised learning methods, DeepONet
and FNO have later been expanded to include the principles of PINNs, enabling them to work in
unsupervised learning scenarios as well. They are referred to as Physics-Informed Deep Operator
Networks (PI-DeepONet) (Wang et al., 2021b) and Physics-Informed Neural Operators (PINO) (Li
et al., 2024), respectively. As a result, these methods allow for the modeling of intricate physical
systems while reducing dependency on extensive labeled datasets.

However, many of these methods face optimization challenges, particularly in imposing accurate
boundary conditions and balancing the physics-informed loss with the boundary loss (Wong et al.,
2022; Krishnapriyan et al., 2021). Furthermore, the loss functions typically involve derivatives of the
network with respect to input variables, leading to a highly intricate optimization landscape. Addi-
tionally, even when the loss functions converge near zero, there is no guarantee that the approximate
solutions are close to the true PDE solutions.

In recent years, operator learning methods based on the variational loss form have gained attention
as a means to improve the accuracy and efficiency of solving PDEs. Notable examples include
the Finite Element Operator Network (FEONet) (Lee et al., 2023) and the Unsupervised Legendre
Galerkin Network (ULGNET) (Choi et al., 2023), which approximate PDE solutions by combining
neural networks with classical numerical methods, such as the Finite Element Method and Spectral
Methods. These methods effectively circumvent the aforementioned issues by incorporating basis
functions. The use of basis functions, combined with variational losses, not only eliminates the need

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

for additional penalty losses to impose boundary conditions but also simplifies the loss structure
by removing the need to differentiate neural networks with respect to input variables. This enables
them to handle singularly perturbed problems, boundary layer problems, and complex geometries
more efficiently (Choi et al., 2023; Lee et al., 2023).

With the advancement of machine learning techniques, the need for rigorous theoretical analysis
has become increasingly evident. In particular, the demand for a deeper understanding of optimiza-
tion, which significantly affects both the efficiency and stability of training, has grown substantially.
Most traditional optimization frameworks are primarily grounded in convex settings (Boyd & Van-
denberghe, 2004). However, it is well known that deep learning models are challenging to analyze
within these frameworks (Liu et al., 2020). To address this limitation, the Neural Tangent Kernel
(NTK) theory (Jacot et al., 2018), along with the PŁ-condition (Garrigos & Gower, 2023), has been
developed to provide convergence guarantees, drawing significant attention in the deep learning
community (Du et al., 2019; Allen-Zhu et al., 2019; Zou et al., 2020; Wang et al., 2022; 2021a;
Gao et al., 2023). Nonetheless, these theories often necessitate that the model be infinitely wide or
confined to the near-initialization regime, which considerably diverges from practical applications.
Another noteworthy framework for analyzing optimization is the Restricted Strong Convexity (RSC)
framework. While RSC has been extensively studied in linear or convex settings (Wainwright, 2019;
Negahban & Wainwright, 2012; Zhang & Cheng, 2015), its application to deep learning models has
only been explored in recent years. Motivated by this, we aim to extend the RSC theory to SciML
techniques, which are known to be more challenging to analyze than traditional machine learning
methods. Specifically, our main contributions are as follows:

• We apply the RSC theory to investigate the optimization process using GD in unsupervised
operator learning methods with variational loss. Our analysis rigorously proves the conver-
gence of the optimization error, providing theoretical guarantees for training stability.

• Building on these theoretical insights, we examine the impact of the condition number of
A, which is determined by the PDE structures in operator networks using variational loss
forms, on the optimization process. We demonstrate how preconditioning strategies can
significantly improve convergence rates. This provides a solid theoretical foundation for
the empirical observation that preconditioning enhances training efficiency.

• In addition, we propose an algorithm that adaptively improves the lower bound of qt, a key
quantity in optimization dynamics that ensures convergence. By adjusting the weights in
the variational loss function, the proposed algorithm prevents qt from vanishing during the
training process, leading to improved convergence rates.

• Through numerical experiments, we validate the assumptions underlying our theoretical
analysis, demonstrating that they hold in most practical cases. These experiments further
confirm the effectiveness of preconditioning, showing significant improvements in both
training performance and convergence rates.

2 PRELIMINARY

We begin with a brief overview of neural networks, followed by an introduction to the basic concepts
of operator networks based on variational loss, which are the primary focus of our optimization
theory.

2.1 NEURAL NETWORKS

For any inputs feature ω ∈ Ω, let us define ω := α(0)(ω) and m0 := M (to be determined later) for a
convenience. Then, a fully-connected neural network is defined by the following recursion relation:

α(l) = ϕ

(
1

√
ml−1

W (l)α(l−1)

)
, W (l) ∈ Rml×ml−1 , l ∈ [L],

α̂(ω) = α(L+1)(ω) =
1
√
mL

V Tα(L)(ω), V ∈ RN×mL ,

where ml is the width of the l-th layer, L is the depth of the network, ϕ is the activation function,
W (l) is the weight matrix, and V is the weight vector for the last layer. Throughout this paper, for

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

simplicity, for simplicity, we assume that the width ml (l = 1, · · · , L) of all the layer is the same as
m. Then, we denote the set of all parameters of the network by θ as follows:

θ = vec(W (0),W (1), . . . ,W (L),V) ∈ Rp,

where p = m(M+mL−1+N). The model parameters θ are updated during optimization processes
for minimizing a suitably given loss function.

2.2 OPERATOR NETWORK WITH THE VARIATIONAL LOSS FORM

In this subsection, we briefly introduce the operator network with the variational loss, focusing on
the specific examples. For simplicity, we will consider self-adjoint second ordered Elliptic PDEs
with homogeneous Dirichlet boundary condition on the compact domain D ⊂ Rd:

−div(a(x)∇u(x)) + b(x) · ∇u(x) + c(x)u = g(x) in D,

u(x) = h(x) on ∂D,
(1)

where the coefficient a(x) is uniformly elliptic and c(x) ≥ 0. The weak solution of equation 33 is
defined by the function u(x) satisfying the following variational formulation:∫
D

a(x)∇u(x) · ∇v(x) + [b(x) · ∇u(x) + c(x)u(x)] v(x)dx =

∫
D

g(x)v(x)dx, ∀v ∈ H1
0 (D).

(2)
We note that the existence and uniqueness of weak solutions is obtained by the Lax-Milgram the-
orem (Brenner, 2008). Traditional numerical methods such as the Finite Element Method (FEM)
and Spectral Method approximate the weak solution u(x) by a linear combination of basis func-
tions ϕk(x). Specifically, the solution u(x) is approximated by uN (x) =

∑N
k=1 αkϕk(x), where

{ϕk(x)}Nk=1 are chosen basis functions, typically selected based on the geometry of the domain
D, the boundary condition of the PDE, and the other properties of the PDE. For FEM, these basis
functions are piecewise polynomials defined over a mesh that discretizes the domain, while Spec-
tral Methods use globally defined functions such as trigonometric functions or Legendre-Galerkin
polynomials. In both approaches, the coefficients αk can be determined by solving the discrete
approximation of the variation formulation equation 2 with given basis functions ϕk(x):∫
D

a(x)∇uN (x) · ∇ϕk(x) + [b(x) · ∇uN (x) + c(x)uN (x)]ϕk(x)dx =

∫
D

g(x)ϕk(x)dx, ∀k.

(3)
which can be rewritten as the linear algebraic system,

Aα = g, (4)
where α := (α1, · · · , αN)⊤, and A and g are given as follows:

Aij =

∫
D

a(x)∇ϕi · ∇ϕj + [b(x) · ∇ϕi(x) + c(x)ϕi(x)]ϕj(x)dx, gj =

∫
D

g(x)ϕjdx.

Now, we are ready to introduce the method we are mainly concern with in this paper. The operator
network with the variational loss form involving Unsupervised Legendre-Galerkin neural network
(ULGNET) (Choi et al., 2023) and Finite Element Operator Network (FEONet) (Lee et al., 2023)
are based on the aforementioned classical numerical methods with finite basis functions. For each
PDEs, these methods approximate the coefficient αk as an output of a neural network with variable
coefficients and forcing term as an input, instead of solving the linear algebraic equation equation 4.
For clarify of presentation, we only consider that an input for the neural network is the forcing term
g(x). Let the forcing term g be parametrized by the random parameter ω in the compact parameter
space Ω. For each g(x, ω), the coefficients α̂k(ω; θ) are generated as an output of the neural network
and the solution is approximated by ûN (x, ω; θ) =

∑N
k=1 α̂k(ω; θ)ϕk(x).

To train the neural network, we use the following variation loss, inspired by equation 3:

L(θ) = Eω∼Ω

[N∑
k=1

∣∣∣∣ ∫
D

{
a(x)∇ûN (x, ω; θ) · ∇ϕk(x)

+ [b(x) · ∇uN (x, ω; θ) + c(x)ûN (x, ω; θ)]ϕk(x)

}
dx−

∫
D

g(x, ω)ϕk(x)dx

∣∣∣∣2].
(5)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

In practice, for the computational efficiency, we can deal with the empirical variational loss instead
of equation 5:

LM (θ) =
|Ω|
M

M∑
j=1

N∑
k=1

∣∣∣∣ ∫
D

{
a(x)∇ûN (x, ωj ; θ) · ∇ϕk(x)

+ [b(x) · ∇uN (x, ωj ; θ) + c(x)ûN (x, ωj ; θ)]ϕk(x)

}
dx−

∫
D

g(x, ωj)ϕk(x)dx

∣∣∣∣2,
where M is the number of training samples. This empirical loss can be written as the vectorized
form:

LM (θ) =
|Ω|
M

M∑
j=1

∥Aα̂(ωj)− gj∥22, (6)

where α̂ = (α̂1, · · · , α̂N)⊤ ∈ RN is an approximate coefficient vector obtained by the neural
network, and A and g are given as in equation 4. Throughout the remainder part of this paper, we
will use the above vectorized formulation.

Based on the classical numerical theory, the basis functions ϕk(x) are chosen in a way that the
approximate solution ûN directly satisfies the boundary conditions regardless of the choice of coef-
ficient α̂k. Therefore, unlike other unsupervised operator learning frameworks that typically require
additional loss terms to enforce boundary conditions, our approach inherently satisfies boundary
conditions without an extra penalty loss. Moreover, all differential operators with respect to the in-
put variable x are applied to the fixed basis functions ϕk(x) in the loss LM . This intrinsic structure
of operator learning methods with the variational loss results in that the loss LM consists of a single
variational-type term and does not involve any derivatives of the neural network with respect to x.
Consequently, complex unsupervised learning tasks for solving PDEs are transformed into simpler
tasks like data-fitting supervised learning with a standard least squares loss.

For more details and performance in various numerical tests, we refer to Choi et al. (2023); Lee et al.
(2023). Mathematical studies for operator learning methods with the variational loss form can be
found in (Hong et al., 2024; Ko et al., 2022).

3 RESTRICTED STRONG CONVEXITY

In this section, we analyze the optimization process of operator learning methods with variational
loss using RSC theory. This provides an alternative convergence theory to the commonly used
NTK-based approaches. From this analysis, we explore the impact of the condition number on
convergence and also discuss the relationship between RSC theory and NTK theory.

3.1 RSC THEORY IN THE OPERATOR NETWORK WITH THE VARIATIONAL LOSS FORM

In this section, we develop a theoretical framework for analyzing the optimization process of oper-
ator learning methods based on the variational form using RSC theory. However, it is important to
note that this analysis is not restricted to our operator learning method alone. The same framework
can be extended to other operator learning methods or PINNs that employ variational loss functions.

RSC theory has been extensively studied in other settings, such as linear models and convex loss
functions (Wainwright, 2019; Negahban & Wainwright, 2012; Zhang & Cheng, 2015). More re-
cently, in the work of Banerjee et al. (2022), RSC theory has been applied to analyze the optimiza-
tion process of deep learning models for simple supervised learning tasks. Naturally, one might
hope to extend this analytical framework to the training dynamics of scientific machine learning
(SciML) methods. However, for many unsupervised approaches that use PDE residual loss func-
tions, intended to embed the physical laws described by PDEs into neural networks, the inherent
complexity of these loss functions poses significant challenges for directly applying optimization
theories, including RSC.

In contrast, as mentioned in Subsection 2.2, the methods of operator learning based on the variation
loss effectively circumvent these issues by leveraging the variational form of PDEs and employ-
ing basis functions. Building on this advantage, we extend the RSC-based analysis to operator

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

learning methods based on the variational form, specifically examining how the convergence rate
is influenced by the condition number of the matrix A. The condition number κ(A) is defined
as κ(A) = σmax(A)/σmin(A) where σmax(A) and σmin(A) represent the largest and smallest
singular values, respectively.

In this paper, we focus mainly on analyzing the optimization of operator learning methods based on
the variational form in relation to the condition number of A, following the original work established
in Banerjee et al. (2022). Let us begin with providing the following standard assumptions as used in
Banerjee et al. (2022).
Assumption 1 (Activation). The activation ϕ is 1-Lipschitz i.e., |ϕ′| ≤ 1, and βσ smooth, i.e.,
|σ′′| ≤ βϕ.

Assumption 2 (Weight initialization). For l ∈ [L], the weights are initialized as W(l)
0,ij , V0,ij ∼

N (0, σ2
0), where σ0 = σ1

2(1+ 2
√

log m√
m

)
, σ1 > 0, and V0 is a random unit matrix, i.e. ∥V0∥2 = 1.

Assumption 3 (Boundedness of input features). For every ω ∈ Ω, there exists a M > 0 such that
∥ω∥22 ≤M .

We also provide the following definition.
Definition 3.1. Given a set of parameters θ̄ ∈ Rm, we define three subsets in the space of the model
parameters as follows:

BSpec
ρ,ρ1

(θ̄) :=
{
θ ∈ Rp| ∥W (l) − W̄ (l)∥2 ≤ ρ, l ∈ [L], ∥V − V̄ ∥2 ≤ ρ1

}
, (7)

BEuc
ρ (θ̄) :=

{
θ ∈ Rp| ∥θ − θ̄∥2 ≤ ρ

}
, (8)

Qq(θ̄) :=

{
θ ∈ Rp∥ 1

M

M∑
i=1

∥∇θα̂(ωi; θ)(θ − θ̄)∥22 > q∥θ − θ̄∥22

}
, (9)

where ḡ represents any matrix having a suitable column dimension to be multiplicable with θ, and
∥ · ∥ denotes the spectral norm for matrices while denoting the L2 norm for vectors.

For simplicity, we deal with the model parameter θ only in the ball BSpec
ρ,ρ1(θ0) for some given initial

parameter θ0. Here, the radius ρ is chosen in a way that ρ <
√
m and consequently the constant σ1

in Assumption 2 is fixed as 1 − ρ√
m

, which is a reasonable choice in practice. More discussion of
the choice for these parameters can be found in Banerjee et al. (2022).

To establish the main theorem, we present key lemmas. In particular, we observe that the constants
associated with the restricted strong convexity and smoothness of the loss function are related to
σmin(A) and σmax(A). This observation is crucial for understanding how the condition number
influences the optimization dynamics.
Lemma 3.2. Consider a fixed θ ∈ BSpec

ρ,ρ1
(θ0) and q be a fixed positive constant. Under Assumptions

1, 2 and 3, the following inequality holds with probability at least (1 − 2(L+1)
m): for all θ′ ∈

Qq(θ) ∩BSpec
ρ,ρ1

(θ0) ∩BEuc
ρ2

(θ)

LM (θ′) ≥ LM (θ) + ⟨θ′ − θ,∇θLM (θ)⟩+ β

2
||θ′ − θ||22,

where β = (σmin(A))2
(
q − 2ϱcHNρ2√

m

)
− σmax(A)2 cH

√
2Nc∗√
m

and ϱ, cH , and c∗ are given in
Appendix B.1.

Proof. The detailed proof is in Appendix B.1.

Lemma 3.3. Under Assumptions 1, 2 and 3, and with probability at least (1 − 2(L+1)
m), we have

that for all θ′, θ ∈ BSpec
ρ,ρ1

(θ0),

LM (θ′) ≤ LM (θ) + ⟨θ′ − θ,∇θLM (θ)⟩+ γ

2
||θ′ − θ||22,

where γ = (σmax(A))2
(
ϱ2N + cH

√
2c∗N√
m

)
, and ϱ, cH , and c∗ are given in Appendix B.1.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Proof. The detailed proof is in Appendix B.1.

With the detailed results from Lemmas 3.2 and 3.3, we are now prepared to state the main theorem,
which relates the convergence rate of the optimization process of LM (θ) in BSpec

ρ,ρ1 to the condition
number κ(A).
Theorem 3.4 (Optimization of the variation loss). Let {θt} denote the sequence of model parameters
generated by GD with the stepsize ηt =

ωt

γ ≤
2
γ , and we define

qt =

∑M
i=1 ∥∇θα̂(ωi; θt)∇θLM (θt)∥22

M∥∇θLM (θt)∥22
, Bt := Qqt(θt) ∩BSpec

ρ,ρ1
(θ0) ∩BEuc

ρ2
(θt),

θ∗ ∈ arginfθ∈BSpec
ρ,ρ1

(θ0)
L(θ), θ̄t+1 ∈ arginfθ∈Bt

L(θ) and δt :=
L(θ̄t+1)− L(θ∗)
L(θt)− L(θ∗)

.

Under Assumptions 1, 2 and 3, we further assume that for each iteration t, the followings holds:

(A1) θt+1 ∈ BSpec
ρ,ρ1

(θ0) ∩BEuc
ρ2

(θt), and (A2) qt >
2ϱcHNρ2√

m
+ κ(A)2

cH
√
2Nc∗√
m

.

(10)

Then, we have δt ∈ [0, 1), and the following inequality holds with probability at least (1− 2(L+1)
m):

LM (θt+1)− LM (θ∗) ≤ (1− rtωt(2− ωt)(1− δt))
(
LM (θt)− LM (θ∗)

)
where rt is given by

rt =
(κ(A))−2

(
qt − 2ϱN cHρ2√

m

)
− cH

√
2Nc∗√
m

ϱ2N + cH
√
2Nc∗√
m

> 0,

and ϱ, cH , and c∗ are given as in Lemma 3.2 and 3.3.

Proof. The detailed proof is in Appendix B.2.

3.2 THE IMPACT OF THE CONDITION NUMBER ON CONVERGENCE

In our RSC-based analysis of the optimization process, we established a clear connection between
the convergence rate and the condition number of the matrix A. Specifically, in Theorem 3.4, the
quantity rt, which is closely related to the convergence rate, is given as

rt =
(κ(A))−2

(
qt − 2ϱN cHρ2√

m

)
− cH

√
2Nc∗√
m

ϱ2N + cH
√
2Nc∗√
m

.

This implies that a smaller condition number κ(A) results in a faster convergence rate, which is
essential for efficient training. Therefore, reducing the condition number is a crucial strategy for
enhancing optimization efficiency. This finding is consistent with previous studies showing that re-
ducing the condition number also positively impacts generalization and approximation errors (Hong
et al., 2024). Thus, improving the condition number benefits optimization, generalization, and ap-
proximation errors simultaneously, without any trade-offs. These insights underscore the importance
of employing training strategies that reduce the condition number. Furthermore, the assumption
(A2) in Theorem 3.4 becomes less stringent when the condition number of A is reduced. Specifi-
cally, the right-hand side of (A2),

2ϱcHNρ2√
m

+ κ(A)2
cH
√
2Nc∗√
m

decreases as the condition number κ(A)2 becomes smaller. Thus, a smaller condition number allows
for a more relaxed bound on qt, making the assumptions more applicable in practical scenarios. This
further underscores the importance of reducing the condition number.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

One well-known approach to reducing the condition number is the use of preconditioning. In this
method, a preconditioner matrix P is applied to transform the system of equations into an equivalent
system with a lower condition number. Specifically, preconditioning replaces the matrix A with
PA, where P is chosen to ensure that the condition number κ(PA) is significantly smaller than
that of A. This transformation results in a system that is easier to optimize and converges more
quickly.

By showing that a reduced condition number directly improves the convergence rate in the optimiza-
tion process, our analysis explains why preconditioning leads to faster and more efficient training.
This alignment between theoretical and empirical results highlights the importance of precondition-
ing as a key strategy in operator learning with the variational loses, particularly in FEONet and
ULGNET. The numerical tests supporting these observations can be found in Section ??, where we
demonstrate the impact of preconditioning on training stability and efficiency

3.3 RELATION BETWEEN RSC AND NTK

In the proof of the main theorem, two technical assumptions, (A1) and (A2), are crucial for estab-
lishing the convergence of the loss LM . In particular, assumption (A2) plays a significant role in
ensuring the restricted strong convexity of LM . For assumption (A2), it is evident that the value on
the right-hand side decreases as the network width m increases. This implies that assumption (A2)
becomes less restrictive for networks with larger widths. Indeed, if qt maintains a uniform lower
bound throughout the training process, we can guarantee that assumption (A2) holds for sufficiently
large widths.

Interestingly, the value of qt is closely related to the Neural Tangent Kernel (NTK), which has been
one of the most widely used tools for analyzing the optimization dynamics of deep learning models
(Jacot et al., 2018; Du et al., 2019). More precisely, let∇θα ∈ RNM×p be defined as

∇θα := (∇θα̂1(ω1) ∇θα̂2(ω1) · · · ∇θα̂N (ω1) ∇θα̂1(ω2) · · · ∇θα̂N (ωM))
⊤
,

which is the matrix that lists each 1 × p matrix ∇θα̂i(ωj) as a block component in column order.
Then, NTK K(θ) can be expressed as∇θα(θ)⊤∇θα(θ). Note that the quantity qt can be expressed
in terms of the Neural Tangent Kernel K(θt).
Theorem 3.5 (Relation between qt and NTK). Let A ∈ RNM×NM and r ∈ RNM×1 are given by

A =


A 0 · · · 0
0 A · · · 0
...

...
. . .

...
0 0 · · · A

 , and r =


Aα̂(ω1)− g1
Aα̂(ω2)− g2

...
Aα̂(ωM)− gM

 .

Then, the following relation always holds:

qt :=

∑M
i=1 ∥∇θα̂(ωi; θt)∇θLM (θt)∥22

M∥∇θLM (θt)∥22
=

∥K(θt)A⊤r(θt)∥22
Mr(θt)⊤AK(θt)A⊤r(θt)

. (11)

Consequently, we have the following upper and lower bounds for qt:

λmin(K(θt))
2

λmax(K(θt))
≤ qt ≤

λmax(K(θt))
2

λmin(K(θt))
,

where λmin(·) and λmax(·) represent the minimun and maximum eigenvalues of the corresponding
matrix, respectively, and the upper bound are valid only when λmin(K(θt)) > 0.

Proof. The detailed proof is provided in Appendix B.3.

An important insight from this observation is that if σmin(K(θt)) and σmax(K(θt)) have uniform
lower and upper bounds, respectively, then a uniform lower bound for qt is naturally guaranteed
as Ω

(
1
M

)
. This directly implies that if m = Ω

(
(NM)2

)
, the positivity of qt is ensured, making

the convergence process more stable and predictable. Thus, maintaining tightly controlled singu-
lar values of K(θt) contributes directly to improving the efficiency and robustness of the training
process.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Although the existence of uniform positive lower and upper bounds for all eigenvalues of the NTK
provides a sufficient condition to ensure that assumption (A2) holds, numerous studies have shown
that guaranteeing this bound can be challenging in practice. Moreover, adaptively controlling the
NTK at each training step by calculating its eigenvalues or approximations introduces significant
computational overhead. To address these challenges, in the next section, we propose an algorithm
that enhances the stability of the lower bound of qt by utilizing only values already computed during
training, thereby avoiding the need for costly NTK calculations.

4 AN ADAPTIVE WEIGHT ALGORITHM

As discussed in Section 3.3, ensuring a uniform lower bound on qt is crucial to establish geometric
convergence as in Theorem 3.4. However, in general, our numerical experiments indicate that the
behavior of qt can often be highly unpredictable, which can be found in C.5. This unpredictability in
the dynamics of qt can ultimately result in convergence failures. Therefore, controlling the behavior
of qt is crucial to ensuring successful convergence.

To address this challenge, we propose an algorithm that adaptively applies weights to the loss func-
tion. This approach establishes a new lower bound for qt, which is both simpler and more practical
compared to the NTK-related bound discussed in Subsection 3.3. Furthermore, our experiments
confirm that this strategy makes the behavior of qt more stable compared to when the strategy is not
applied, throughout the entire training process, further demonstrating its effectiveness.

The remainder of this section is organized as follows. First, we establish some notations to clearly
present the algorithm and underlying concepts. Next, we introduce the algorithm designed to en-
hance the performance of operator learning with variational losses. Finally, we provide a brief
overview of the key idea behind the proposed algorithm. For clarity, we define some notations. Re-
calling the notation r from Section 3.3, we rewrite the quantity qt and the variational loss LM as
follows:

qt =
1

M

M∑
j=1

∥∇θα̂(ωi; θt)∇θα(θt)A⊤r(θt)∥22
∥∇θα(θt)A⊤r(θt)∥22

, and LM (θ) =
1

2M
r⊤r.

Note that multiplying both sides of Equation (6) by a non-singular matrix Λ, ΛAα̂(ωi) = Λgi, i =
1, 2, . . . ,M , yields the same solution as the original equation (6). We refer to such a matrix Λ as
the weight matrix. In our algorithm, the weight matrix is block diagonal and varies at each time
step t, denoted as Λt. Each block component of Λt is represented as Λi,t for i = 1, . . . ,M , i.e.,
Λt = Diag(Λ1,t, . . . ,ΛM,t). Furthermore, Λi,t is a diagonal matrix having λij,t as the j-th diagonal
component, multiplied by (A⊤)−1, i.e. Λi,t = Diag(λi1,t, λi2,t, . . . , λiN,t)(A

⊤)−1. Using the
weight matrix Λt, we define a modified loss function in place of the original loss LM such that
L̃M
t (θ) := 1

2M r̃t
⊤r̃t, where r̃t := Λrt. Here, r̃ij,t = (Aα̂(ωi; θ)− gi)jλij,t.

With the above notation established, we present the adaptive weight algorithm as follows:
Algorithm 1 Gradient Descent with Adaptive weight strategy.

Input A, rt, r̃t−1

When Λ0 := 1√
NM

diag(1NM)

Require: N ≥ 1, M > 1

λij,t ←
√

1
NM−1 (1−

r̃2ij,t−1

∥r̃t−1∥2)

Output L̃M
t , r̃t

We provide a brief outline of the above algorithm. Let us examine the modified qt resulting from
the adaptive weight methods such that

qt =
1

M

M∑
j=1

∥∇θα̂(ωi; θt)∇θα(θt)ΛtA⊤r̃t∥22
∥∇θα(θt)ΛtA⊤r̃t∥22

. (12)

As we mentioned above, it is often observed that qt decreases as the iterations progress. This means
that ΛtA⊤r̃t gradually becomes nearly orthogonal to ∇θα̂(ωi; θt) during the training process. In
this regard, our main idea is to ensure that ΛtA⊤r̃t remains parallel to the initial direction r0,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

while also avoiding placement in the null space of ∇θα̂(ωi; θt) throughout the training process by
adaptively selecting the appropriate weight matrix Λt.

Let us consider ΛtA⊤r̃t. Each ij component of ΛtA⊤r̃t can be expressed as (ΛtA⊤r̃t)ij =
r̃ij,tλij,t. By appropriately selecting λij,t, we aim to keep each rij,tλij,t constant throughout the
training process, thereby ensuring that the direction of ΛtA⊤r̃t remains unchanged. In fact, when
applying our algorithm, we have

rij,tλij,t = r̃ij,t

√
1

NM − 1

√
(1−

r̃2ij,t−1

∥r̃t−1∥2
)︸ ︷︷ ︸

=:Sij,t

,

where the term Sij,t becomes larger than in the previous step when rij,t−1 is relatively smaller
than the other components, and smaller when rij,t−1 is relatively larger. This strategy ensures that
r̃2ij,t ≈ r̃2ij,t+1 during training, indicating that the direction of ΛtA⊤r̃t does not change significantly
from the initial direction r̃0.

Assume that we can select a vector r̃0 /∈ N(∇θα(θt)) for most t > 0. In other words, for most
of t, r̃0 is outside the null space of ∇θα(θt). This is a reasonable assumption because in realistic
settings,∇θα(θt) rarely vanishes, and its null space is a measure-zero set. Based on this assumption,
we expect the existence of a constant c0 > 0 such that

c0 := min
t≥0

∥ 1
M

∑M
j=1∇θα̂(ωi; θt)∇θα(θt)v0∥22

∥ 1
M

∑M
j=1∇θα̂(ωi; θt)∥22∥∇θα(θt)v0∥22

,

as long as ∥ 1
M

∑M
j=1∇θα̂(ωi; θt)∥22 does not vanish during training. This implies that under our

algorithm, we have

qt ≥ c0∥
1

M

M∑
j=1

∇θα̂(ωi; θt)∥22,

ensuring that qt has a uniform lower bound, provided that
∥∥∥ 1
M

∑M
j=1∇θα̂(ωj ; θt)

∥∥∥2
2

maintains a
uniform lower bound—a property that can be demonstrated through various experimental tests in
Appendix C.5.

5 NUMERICAL EXPERIMENTS

In this section, we present the experimental results of applying the preconditioning technique and
our adaptive weight method, as proposed in Section 4, to the ULGNet method. Specifically, we
focus on the 1D Helmholtz equation, a paradigm example of a linear elliptic equation, to evaluate
the performance of these techniques.

Trial Description Relative L2 Error
Trial A ULGNET (baseline) 2.767× 10−4

Trial B Preconditioning Type 1 1.336× 10−4

Trial C Preconditioning Type 2 1.325× 10−4

Trial D Type 1 + Adaptive Weight 8.371× 10−5

Trial E Type 2 + Adaptive Weight 7.098× 10−5

Table 1: This table presents the performance of relative L2 errors using different optimization meth-
ods. Type A represents the baseline, ULGNet (Choi et al., 2023). In Types B through E, Types 1 and
2 denote different preconditioning methods described in Appendix C.4. The term ’Adaptive Weight’
in Types D and E refers to the adaptive weight algorithm outlined in Section 4.

In Table 1, Type A represents the baseline ULGNet (Choi et al., 2023), while Types B through E
correspond to various preconditioning methods described in Appendix C.4. The terms ’Type 1’ and
’Type 2’ denote these methods, with ’Adaptive Weight’ in Types D and E referring to the adaptive

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

weight algorithm outlined in Section 4. Our experiments demonstrate how different precondition-
ing techniques, both with and without adaptive weights, influence the convergence of the training
process. As predicted by our theoretical findings, the trials incorporating both preconditioning and
the adaptive weight method (Trials D and E) achieve the best performance, showcasing significantly
improved convergence. Notably, Trial E attains the lowest relative L2 error, underscoring the effec-
tiveness of combining Preconditioning Type 2 with the adaptive weight method.

Figure 1: Our theoretical findings indicate that trials in-
corporating both preconditioning and the adaptive weight
method (Trials D and E) yield the best performance, show-
casing significantly improved convergence stability and re-
duced final loss values. Notably, Trial E achieved the low-
est relative L2 error, highlighting the effectiveness of com-
bining Preconditioning Type 2 with the adaptive weight
method. Furthermore, our proposed approaches in Trials D
and E exhibit superior behavior, maintaining stable learning
dynamics without oscillations compared to the other trials.

A closer examination can be found
in Figure 1, which illustrates the be-
havior of the variational loss over
50,000 training steps. The experi-
ments reveal how different precon-
ditioning techniques, both with and
without adaptive weights, affect the
convergence and stability of the train-
ing process. Our theoretical find-
ings indicate that trials incorporating
both preconditioning and the adaptive
weight method (Trials D and E) yield
the best performance, with signifi-
cantly improved convergence stabil-
ity and reduced final loss values. In
particular, Trial E attained the lowest
relative L2 error, demonstrating the
efficacy of combining Precondition-
ing Type 2 with the adaptive weight
method.

Figure 1 illustrates that our pro-
posed approaches in Trials D and E
demonstrate superior performance,
attributable to the adaptive weight
strategy, which maintains stable
learning dynamics without oscillations. Our algorithm plays a crucial role in preventing qt from
vanishing by ensuring that the numerator of the equation equation 12 remains away from zero,
thereby contributing to stable training dynamics. In contrast, the other trials exhibit noisy training
dynamics and low convergence.

6 CONCLUSION AND LIMITATIONS

In this paper, we applied RSC theory to analyze the optimization process in unsupervised opera-
tor learning methods utilizing variational loss. Our rigorous analysis demonstrated the convergence
of the optimization error, establishing theoretical guarantees for training stability. We highlighted
the significance of the condition number of A in influencing convergence rates and showed that
preconditioning strategies can substantially enhance training efficiency. Additionally, we addressed
the lower bound of qt, proposing an algorithm that adaptively improves this bound without incur-
ring extra computational costs. Our numerical experiments validated the assumptions underlying
our theoretical framework and confirmed the effectiveness of preconditioning, revealing significant
improvements in training performance and convergence rates.

Despite the promising results, this study has certain limitations. First, while the theoretical analysis
is grounded in RSC, the applicability of these results may vary in highly complex or non-standard
optimization scenarios. Additionally, the proposed algorithm relies on the assumption that the con-
dition number of A can be effectively managed throughout the training process, which may not
hold true in all real-world applications. Future work should explore the robustness of the proposed
method in diverse contexts and assess its performance under varying conditions. Moreover, addi-
tional empirical studies are needed to further examine the impact of different weight matrices and
their configurations on optimization dynamics.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

ETHICS STATEMENT

This research adheres to the ethical standards required for scientific inquiry. We have considered the
potential societal impacts of our work and have found no clear negative implications. All experi-
ments were conducted in compliance with relevant laws and ethical guidelines, ensuring the integrity
of our findings. We are committed to transparency and reproducibility in our research processes.

REPRODUCIBILITY

We are committed to ensuring the reproducibility of our research. All experimental procedures,
data sources, and algorithms used in this study are clearly documented in the paper. The code and
datasets will be made publicly available upon publication, allowing others to validate our findings
and build upon our work.

REFERENCES

Mark Ainsworth and Justin Dong. Galerkin neural networks: A framework for approximating varia-
tional equations with error control. SIAM Journal on Scientific Computing, 43(4):A2474–A2501,
2021.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International conference on machine learning, pp. 242–252. PMLR, 2019.

Arindam Banerjee, Pedro Cisneros-Velarde, Libin Zhu, and Mikhail Belkin. Restricted strong con-
vexity of deep learning models with smooth activations. arXiv preprint arXiv:2209.15106, 2022.

Andrea Bonfanti, Giuseppe Bruno, and Cristina Cipriani. The challenges of the nonlinear regime
for physics-informed neural networks. arXiv preprint arXiv:2402.03864, 2024.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Susanne C Brenner. The mathematical theory of finite element methods. Springer, 2008.

Junho Choi, Namjung Kim, and Youngjoon Hong. Unsupervised legendre–galerkin neural network
for solving partial differential equations. IEEE Access, 11:23433–23446, 2023.

Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. In International conference on machine learning, pp. 1675–
1685. PMLR, 2019.

Yihang Gao, Yiqi Gu, and Michael Ng. Gradient descent finds the global optima of two-layer
physics-informed neural networks. In International Conference on Machine Learning, pp. 10676–
10707. PMLR, 2023.

Guillaume Garrigos and Robert M Gower. Handbook of convergence theorems for (stochastic)
gradient methods. arXiv preprint arXiv:2301.11235, 2023.

Youngjoon Hong, Seungchan Ko, and Jaeyong Lee. Error analysis for finite element operator learn-
ing methods for solving parametric second-order elliptic pdes. arXiv preprint arXiv:2404.17868,
2024.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. Advances in neural information processing systems, 31, 2018.

Ehsan Kharazmi, Zhongqiang Zhang, and George Em Karniadakis. Variational physics-informed
neural networks for solving partial differential equations. arXiv preprint arXiv:1912.00873, 2019.

Seungchan Ko, Seok-Bae Yun, and Youngjoon Hong. Convergence analysis of unsuper-
vised legendre-galerkin neural networks for linear second-order elliptic pdes. arXiv preprint
arXiv:2211.08900, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney. Char-
acterizing possible failure modes in physics-informed neural networks. Advances in neural infor-
mation processing systems, 34:26548–26560, 2021.

Jae Yong Lee, Seungchan Ko, and Youngjoon Hong. Finite element operator network for solving
parametric pdes. arXiv preprint arXiv:2308.04690, 2023.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020.

Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar
Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial
differential equations. ACM/JMS Journal of Data Science, 1(3):1–27, 2024.

Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Toward a theory of optimization for over-
parameterized systems of non-linear equations: the lessons of deep learning. arXiv preprint
arXiv:2003.00307, 7, 2020.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature machine intelligence, 3(3):218–229, 2021.

Sahand Negahban and Martin J Wainwright. Restricted strong convexity and weighted matrix com-
pletion: Optimal bounds with noise. The Journal of Machine Learning Research, 13(1):1665–
1697, 2012.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Justin Sirignano and Konstantinos Spiliopoulos. Dgm: A deep learning algorithm for solving partial
differential equations. Journal of computational physics, 375:1339–1364, 2018.

Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48. Cam-
bridge university press, 2019.

Sifan Wang, Hanwen Wang, and Paris Perdikaris. On the eigenvector bias of fourier feature net-
works: From regression to solving multi-scale pdes with physics-informed neural networks. Com-
puter Methods in Applied Mechanics and Engineering, 384:113938, 2021a.

Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of parametric par-
tial differential equations with physics-informed deeponets. Science advances, 7(40):eabi8605,
2021b.

Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why pinns fail to train: A neural tangent
kernel perspective. Journal of Computational Physics, 449:110768, 2022.

Jian Cheng Wong, Chin Chun Ooi, Abhishek Gupta, and Yew-Soon Ong. Learning in sinusoidal
spaces with physics-informed neural networks. IEEE Transactions on Artificial Intelligence, 5
(3):985–1000, 2022.

Bing Yu et al. The deep ritz method: a deep learning-based numerical algorithm for solving varia-
tional problems. Communications in Mathematics and Statistics, 6(1):1–12, 2018.

Hui Zhang and Lizhi Cheng. Restricted strong convexity and its applications to convergence analysis
of gradient-type methods in convex optimization. Optimization Letters, 9:961–979, 2015.

Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Gradient descent optimizes over-
parameterized deep relu networks. Machine learning, 109:467–492, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

A RELATED WORKS

Variational loss in SciML Variational loss-based neural networks have emerged as an alterna-
tive to traditional PINNs, focusing on enhancing accuracy and stability through the use of varia-
tional principles. Prominent examples include VPINN, hp-VPINN, and Galerkin Neural Networks
(Kharazmi et al., 2019; ?; Ainsworth & Dong, 2021), which reformulate the residual minimization
problem into a variational form, employing test functions to minimize errors across the entire do-
main. This approach has demonstrated improved accuracy over standard PINNs, particularly when
dealing with weak solutions or complex boundary conditions. In the realm of operator learning,
methods such as ULGNET (Choi et al., 2023) and FEONET (Lee et al., 2023) also utilize variational
loss forms. Similar to variational neural networks, these operator learning methods incorporate basis
functions, enabling them to effectively manage complex domains and challenging boundary condi-
tions. By leveraging these basis functions, these methods provide improved accuracy and stability
when solving PDEs in intricate geometries or in the presence of singular perturbations. While this
paper focuses on operator networks with variational losses, our approach can also be extended to
other operator learning methods or PINNs that employ variational loss functions.

RSC and NTK The NTK theory (Jacot et al., 2018) has been widely utilized to analyze optimiza-
tion in deep learning (Du et al., 2019; Allen-Zhu et al., 2019; Zou et al., 2020; Wang et al., 2022;
2021a; Gao et al., 2023). While NTK-based approaches offer strong theoretical insights into the
convergence of gradient descent, they generally require extremely wide neural networks and depend
on the near-initialization regime, which limits their practical applicability. This limitation is particu-
larly evident in the case of PINNs, where NTK theory struggles to address the complexity introduced
by PDE residuals (Bonfanti et al., 2024). In contrast, the recently developed RSC theory serves as
an alternative tool for analyzing the optimization process of deep learning models. Although RSC
has been previously applied to demonstrate geometric convergence in various settings (Wainwright,
2019; Negahban & Wainwright, 2012; Zhang & Cheng, 2015), its application to deep learning was
introduced only recently by Banerjee et al. (2022). Building on this work, we extend RSC theory to
operator learning methods with variational loss forms, highlighting its potential as a new analytical
tool in the field of SciML.

B PROOFS

In this section, we provide a series of theoretical proofs for lemmas and main theorems in this work.

B.1 PROOFS OF LEMMA 3.2 AND 3.3

Before we prove Lemma 3.2 and 3.3, and Theorem 3.4, we first recall some estimates on neural
networks established in Banerjee et al. (2022).
Lemma B.1 (Bound of neural networks α̂). Under Assumption 1 and 2, for θ ∈ BSpec

ρ,ρ1
(θ0), with

probability at least
(
1− 2(L+1)

m

)
, we have

∥α̂i(θ;ω)∥2 ≤ (1 + ϕ(0)L)(1 + ρ1) (13)
∥∇θα̂i(θ;ω)∥2 ≤ ϱ (14)

∥∇2
θα̂i(θ;ω)∥2 ≤

cH√
m
, (15)

where cH = O(poly(L)) and ϱ is a constant depending on L, ρ1 and ϕ.

Proof. The proof can be seen in Theorem 4.1 and Lemma 4.1 in Banerjee et al. (2022).

Using the bounds of neural networks, we obtain the estimates of the variational loss.
Lemma B.2 (Bound of variational loss LM). Under Assumption 1 and 2, for θ ∈ BSpec

ρ,ρ1
(θ0), the

following inequalities hold with probability at least (1− 2(L+1)
m):

LM (θ) ≤ σmax(A)2c∗. (16)

∥∇θLM (θ)∥2 ≤ ϱσmax(A)
√

2NL(θ) ≤ ϱσmax(A)2
√
2Nc∗ (17)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

where c∗ = N(1 + ϕ(0)L)2(1 + ρ1)
2 + 1

M

∑N
j=1

∑M
i=1 |αj(ωi)

∗|2.

Proof. We have

LM (θ) =
1

2M

M∑
i=1

∥Aα̂(θ;ωi)− g(ωi)∥22

≤ 1

2M

M∑
i=1

(
∥Aα̂(θ;ωi)−Aα̂∗

i ∥+ ∥Aα̂∗
i − g(ωi)∥2

)
(since A is full-rank, there exists the solution α̂∗

i s.t. Aα̂∗
i = g(ωi) for all i)

≤ σmax(A)2

2M

M∑
i=1

(
∥α̂(θ;ωi)− α̂∗

i ∥22
)

≤ σmax(A)2

M

M∑
i=1

(
∥α̂(θ;ωi)∥22 + ∥α̂∗

i ∥22
)
.

This, together with (13), implies (16). Then, for∇LM , we obtain that

∥∇LM (θ)∥2 ≤

∥∥∥∥∥ 1

M

M∑
i=1

(Aα̂(θ;ωi)−G(ωi))
⊤A∇θα̂(θ;ωi)

∥∥∥∥∥
2

≤ 1

M

M∑
i=1

∥(Aα̂(θ;ωi)−G(ωi))
⊤A∥2∥∇θα̂(θ;ωi)∥2

≤
√
Nϱσmax(A)

M

M∑
i=1

||(Aα̂(θ;ωi)−G(ωi))||2

≤
√
Nϱσmax(A)

(
1

M

M∑
i=1

∥(Aα̂(θ;ωi)−G(ωi))∥22

)1/2

≤ ϱσmax(A)
√

2NLM (θ)

≤ ϱσmax(A)2
√
2Nc∗,

which completes the proof.

Then, we prove Lemma 3.2 and 3.3 as follows.

Lemma 3.2. Consider a fixed θ ∈ BSpec
ρ,ρ1

(θ0) and q be a fixed positive constant. Under Assumptions

1, 2 and 3, the following inequality holds with probability at least (1 − 2(L+1)
m): for all θ′ ∈

Qq(θ) ∩BSpec
ρ,ρ1

(θ0) ∩BEuc
ρ2

(θ)

LM (θ′) ≥ LM (θ) + ⟨θ′ − θ,∇θLM (θ)⟩+ β

2
||θ′ − θ||22,

where β = (σmin(A))2
(
q − 2ϱcHNρ2√

m

)
− σmax(A)2 cH

√
2Nc∗√
m

and ϱ, cH , and c∗ are given in the
previous lemmas.

Proof. We start with the second order Taylor expansion around θ to obtain

LM (θ′) = LM (θ) + ⟨θ′ − θ,∇θL(θ)⟩+
1

2
(θ′ − θ)⊤

∂2LM (θ̃)

∂θ2
(θ′ − θ) (18)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

where θ̃ = ξθ′ + (1− ξ)θ for some ξ ∈ [0, 1]. For the hessian term in (18), we have

∂2LM (θ̃)

∂θ2
=

1

2M

M∑
i=1

∂2

∂θ2
(Aα̂(θ̃;ωi)− g(ωi))

⊤(Aα̂(θ̃;ωi)− g(ωi))

=
1

M

M∑
i=1

∇θα̂(θ̃;ωi)A
⊤A∇θα̂(θ̃;ωi)

⊤ + (Aα̂(θ̃;ωi)− g(ωi))
⊤A

∂2α̂

∂θ2
(θ̃;ωi).

Consequently, we obtain that

(θ′ − θ)⊤
∂2LM (θ̃)

∂θ2
(θ′ − θ) =

1

M

M∑
i=1

∥A∇θα̂(θ̃;ωi)(θ
′ − θ)∥22

+ (θ′ − θ)⊤(Aα̂(θ̃;ωi)− g(ωi))
⊤A

∂2α̂

∂θ2
(θ̃;ωi)(θ

′ − θ)

=:I1 + I2.

For I1,

I1 ≥
σmin(A)2

M

M∑
i=1

∥∇θα̂(θ̃;ωi)(θ
′ − θ)∥22

=
σmin(A)2

M

M∑
i=1

∥(∇θα̂(θ;ωi) +∇θα̂(θ̃;ωi)−∇θα̂(θ;ωi))(θ
′ − θ)∥22

=
σmin(A)2

M

M∑
i=1

[
∥∇θα̂(θ;ωi)(θ

′ − θ)∥22 + ∥(∇θα̂(θ̃;ωi)−∇θα̂(θ;ωi))(θ
′ − θ)∥22

+ 2⟨∇θα̂(θ;ωi)(θ
′ − θ), (∇θα̂(θ̃;ωi)−∇θα̂(θ;ωi))(θ

′ − θ)⟩
]

≥ σmin(A)2

M

M∑
i=1

∥∇θα̂(θ;ωi)(θ
′ − θ)∥22

− 2σmin(A)2

M

M∑
i=1

∥∇θα̂(θ;ωi)∥2∥∇θα̂(θ̃;ωi)−∇θα̂(θ;ωi)∥2∥θ′ − θ∥22

where we used the Cauchy-Schwartz inequality in last inequality. We also note that θ̃ ∈ BSpec
ρ,ρ1

(θ0),
since θ̃ is a convex combination of θ′ and θ in BSpec

ρ,ρ1
(θ0) which is a convex set. This, together with

(14) and (15), implies that

I1 ≥
σmin(A)2

M

M∑
i=1

∥∇θα̂(θ;ωi)(θ
′ − θ)∥22 −

2σmin(A)2N

M

M∑
i=1

ϱ
cH√
m
∥θ̃ − θ∥2∥θ′ − θ∥22

≥ σmin(A)2

M

M∑
i=1

∥∇θα̂(θ;ωi)(θ
′ − θ)∥22 −

2σmin(A)2ϱcHN√
m

∥θ′ − θ∥32

where we used the fact ∥θ′ − θ∥2 ≥ ∥θ̃ − θ∥2 in the last line. Recalling θ′ ∈ Qq(θ) ∩BEuc
ρ2

(θ), we
use the definition of the Qq(θ) to obtain

I1 ≥ σmin(A)2q∥θ′ − θ∥22 −
2σmin(A)2ϱcHNρ2√

m
∥θ′ − θ∥22. (19)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Then, for I2,

I2 =
1

M

M∑
i=1

(θ′ − θ)⊤(Aα̂(θ̃;ωi)− g(ωi))
⊤A

∂2α̂

∂θ2
(θ̃;ωi)(θ

′ − θ)

=
1

M

M∑
i=1

N∑
j=1

{(Aα̂(θ̃;ωi)− g(ωi))
⊤A}j(θ′ − θ)⊤

∂2α̂j

∂θ2
(θ̃;ωi)(θ

′ − θ)

=
1

M

N∑
j=1

M∑
i=1

{(Aα̂(θ̃;ωi)− g(ωi))
⊤A}j(θ′ − θ)⊤

∂2α̂j

∂θ2
(θ̃;ωi)(θ

′ − θ)

For simplicity, we define the following temporary notations:

λij := {(Aα̂(θ̃;ωi)− g(ωi))
⊤A}j , Qij := (θ′ − θ)T

∂2α̂j(θ̃;ωi)

∂θ2
(θ′ − θ).

From (15), we have

|Qij | ≤ ∥θ′ − θ∥22

∥∥∥∥∥∂2α̂j(θ̃t;ωi)

∂θ2

∥∥∥∥∥
2

≤ cH∥θ′ − θ∥22√
m

. (20)

Then, we use (16) to obtain

1

M

M∑
i=1

N∑
j=1

|λij |2 =
1

M

M∑
i=1

N∑
j=1

|{(Aα̂(θ̃;ωi)− g(ωi))
⊤A}j |2

=
1

M

M∑
i=1

∥Aα̂(θ̃;ωi)− g(ωi))
⊤A∥22

≤ (σmax(A))2

M

M∑
i=1

∥Aα̂(θ̃;ωi)− g(ωi)∥22

≤ 2(σmax(A))2LM (θ) ≤ 2σmax(A)4c∗.

(21)

Using the above things, we get

I2 =
1

M

N∑
j=1

M∑
i=1

λijQij

≥ −

 1

M

N∑
j=1

M∑
i=1

|λij |2
 1

2
 1

M

N∑
j=1

M∑
i=1

|Qij |2
 1

2

≥ −
√
2σmax(A)2

√
c∗

cH
√
N∥θ′ − θ∥22√

m
.

This, together with (19), gives that

(θ′ − θ)⊤
∂2LM (θ̃)

∂θ2
(θ′ − θ)

≥

[
(σmin(A))2

(
q − 2ϱcHNρ2√

m

)
− (σmax(A))2

cH
√
2c∗N√
m

]
∥θ′ − θ∥22,

which completes the proof.

Lemma 3.3. Under Assumptions 1, 2 and 3, we have that for all θ′, θ ∈ BSpec
ρ,ρ1

(θ0), with probability

at least (1− 2(L+1)
m):

LM (θ′) ≤ LM (θ) + ⟨θ′ − θ,∇θLM (θ)⟩+ γ

2
||θ′ − θ||22,

where γ = (σmax(A))2
(
ϱ2N + cH

√
2c∗N√
m

)
.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Proof. As in the previous lemma, we start with the second order Taylor expansion around θ to obtain

LM (θ′) = LM (θ) + ⟨θ′ − θ,∇θLM (θ)⟩+ 1

2
(θ′ − θ)⊤

∂2LM (θ̃)

∂θ2
(θ′ − θ) (22)

where θ̃ = ξθ′ + (1− ξ)θ for some ξ ∈ [0, 1]. For the hessian term in (22), we have

∂2LM (θ̃)

∂θ2
=

1

2M

M∑
i=1

∂2

∂θ2
(Aα̂(θ̃;ωi)− g(ωi))

⊤(Aα̂(θ̃;ωi)− g(ωi))

=
1

M

M∑
i=1

∇θα̂(θ̃;ωi)A
⊤A∇θα̂(θ̃;ωi)

⊤ + (Aα̂(θ̃;ωi)− g(ωi))
⊤A

∂2α̂

∂θ2
(θ̃;ωi).

Consequently, we obtain that

(θ′ − θt)
⊤ ∂2LM (θ̃)

∂θ2
(θ′ − θ) =

1

M

M∑
i=1

∥A∇θα̂(θ̃;ωi)(θ
′ − θ)∥22

+ (θ′ − θ)⊤(Aα̂(θ̃;ωi)− g(ωi))
⊤A

∂2α̂

∂θ2
(θ̃;ωi)(θ

′ − θ)

=:I1 + I2.

For I1,

1

M

M∑
i=1

∥A∇θα̂(θ̃;ωi)(θ
′ − θ)∥22 ≤

σmax(A)2

M

M∑
i=1

∥∇θα̂(θ̃;ωi)∥22∥θ′ − θ∥22 (23)

≤ σmax(A)2ϱ2N∥θ′ − θ∥22. (24)

Then, for I2,

I2 =
1

M

M∑
i=1

N∑
j=1

(θ′ − θ)⊤(Aα̂(θ̃;ωi)− g(ωi))
⊤A

∂2α̂j

∂θ2
(θ̃;ωi)(θ

′ − θ)

=
1

M

M∑
i=1

N∑
j=1

{(Aα̂(θ̃;ωi)− g(ωi))
⊤A}j(θ′ − θ)⊤

∂2α̂j

∂θ2
(θ̃;ωi)(θ

′ − θ).

We recall the temporary values used in the proof of Lemma 3.2:

λij := {(Aα̂(θ̃;ωi)− g(ωi))
⊤A}j , Qij := (θ′ − θ)T

∂2α̂j(θ̃;ωi)

∂θ2
(θ′ − θ).

By using (20) and (21), we have

I2 =
1

M

N∑
j=1

M∑
i=1

λijQij

≤

 1

M

N∑
j=1

M∑
i=1

|λij |2
 1

2
 1

M

N∑
j=1

M∑
i=1

|Qij |2
 1

2

≤ σmax(A)2
√
2c∗

cH
√
N∥θ′ − θ∥22√

m
.

(25)

This, together with equation ??, gives

(θ′ − θt)
T ∂2L(θ̃t)

∂θ2
(θ′ − θt) ≤ (σmax(A))2

(
ϱ2N +

cH
√
2c∗N√
m

)
∥θ′ − θ∥22

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

B.2 PROOF OF THEOREM 3.4

Theorem 3.4 (Optimization of the variation loss). Let {θt} denote the sequence of model parameters
generated by GD with the stepsize ηt =

ωt

γ ≤
2
γ , and we define

qt =

∑M
i=1 ∥∇θα̂(ωi; θt)∇θLM (θt)∥22

M∥∇θLM (θt)∥22
, Bt := Qqt(θt) ∩BSpec

ρ,ρ1
(θ0) ∩BEuc

ρ2
(θt),

θ∗ ∈ arginfθ∈BSpec
ρ,ρ1

(θ0)
L(θ), θ̄t+1 ∈ arginfθ∈Bt

L(θ) and δt :=
L(θ̄t+1)− L(θ∗)
L(θt)− L(θ∗)

.

Under Assumptions 1, 2 and 3, we further assume that for each iteration t, the followings holds:

(A1) θt+1 ∈ BSpec
ρ,ρ1

(θ0) ∩BEuc
ρ2

(θt), and (A2) qt >
2ϱcHNρ2√

m
+ κ(A)2

cH
√
2Nc∗√
m

.

(26)

Then, we have δt ∈ [0, 1), and the following inequality holds with probability at least (1− 2(L+1)
m):

LM (θt+1)− LM (θ∗) ≤ (1− rtωt(2− ωt)(1− δt))
(
LM (θt)− LM (θ∗)

)
where rt is given by

rt =
(κ(A))−2

(
qt − 2ϱN cHρ2√

m

)
− cH

√
2Nc∗√
m

ϱ2N + cH
√
2c∗N√
m

> 0,

and ϱ, cH , and c∗ are given as in Lemma 3.2 and 3.3.

Proof. Since θ∗ ∈ arginfθ∈BSpec
ρ,ρ1

(θ0)
L(θ) and θ̄t+1, θt ∈ BSpec

ρ,ρ1 , we have

LM (θ∗) ≤ LM (θ̄t+1) and LM (θ∗) ≤ LM (θt), (27)

which gives δt ≥ 0. To obtain δt < 1, we use Lemma 3.3 and the definition of Gradient Descent to
obtain

LM (θt+1) ≤ LM (θ) + ⟨θt+1 − θt,∇θLM (θt)⟩+
γ

2
||θt+1 − θt||22

= LM (θt)− ηt∥∇θLM (θt)∥22 +
γη2t
2
∥∇θLM (θt)∥22

= LM (θt)− ηt

(
1− γηt

2

)
∥∇θLM (θt)∥22.

(28)

Also, we have from the definition of Qqt(θt),

θt+1 ∈ Qqt(θt) and hence θt+1 ∈ Bt.

This, together with (27) and (28), gives

LM (θ∗) ≤ LM (θ̄t+1) ≤ LM (θt+1) ≤ LM (θt), (29)

for ηt ≤ 2
γ . Thus, we have δt ∈ [0, 1). To complete the proof, we use Lemma 3.2 to obtain that for

any θ′ ∈ Bt

LM (θ′) ≥ LM (θt) + ⟨θ′ − θt,∇θLM (θt)⟩+
β

2
||θ′ − θt||22

≥ min
θ′∈Bt

LM (θ′) + ⟨θ
′
− θt,∇θLM (θt)⟩+

βt

2
||θ′ − θt||22

= LM (θt)−
1

2βt
∥∇θLM (θt)∥22,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

where βt = (σmin(A))2
(
qt − 2ϱcHρ2√

m

)
− σmax(A)2 cH

√
2Nc∗√
m

. Consequently, this, together with
(28) gives

LM (θt+1)− LM (θ̄t+1) ≤ LM (θt)− LM (θ̄t+1)− ηt

(
1− γηt

2

)
∥∇θLM (θt)∥22

≤ LM (θt)− LM (θ̄t+1)− ηt

(
1− γηt

2

)
2βt(LM (θt)− LM (θ̄t+1))

=
(
1− 2βtηt

(
1− γηt

2

))
(LM (θt)− LM (θ̄t+1)).

(30)

Finally, by using (30) and the definition of δt, we have

LM (θt+1)− LM (θ∗)

= LM (θt+1)− LM (θ̄t+1) + LM (θ̄t+1)− LM (θ∗)

≤
(
1− 2βtηt

(
1− γηt

2

)) (
LM (θt)− LM (θ̄t+1)

)
+ LM (θ̄t+1)− LM (θ∗)

=
(
1− 2βtηt

(
1− γηt

2

)) (
LM (θt)− LM (θ∗)

)
+ 2βtηt

(
1− γηt

2

) (
LM (θ̄t+1)− LM (θ∗)

)
≤
(
1− 2βtηt

(
1− γηt

2

)) (
LM (θt)− LM (θ∗)

)
+ 2βtηtδt

(
1− γηt

2

) (
LM (θt)− LM (θ∗)

)
=
(
1− 2(1− δt)βtηt

(
1− γηt

2

)) (
LM (θt)− LM (θ∗)

)
,

which, together with ηt =
ωt

γ , completes the proof.

B.3 RELATION BETWEEN qt AND NTK

In this subsection, we wil give the proof of Theorem 3.5. Recalling the definition of qt, we have

qt =

∑M
i=1 ∥∇θα̂(ωi; θt)∇θLM (θt)

⊤∥22
M∥∇θLM (θt)⊤∥22

=

∑M
i=1

∑M
j=1 |∇θα̂j(ωi; θt)∇θLM (θt)

⊤|2

M∥∇θLM (θt)⊤∥22
.

(31)

Here, we use the fact

∇LM (θ) =
1

M

M∑
i=1

(Aα̂(ωi; θt)− gi)
⊤A∇α̂(ωi; θt)

=
1

M
r(θt)

⊤A∇θα(θt),

with the definitions of r, A, and α given in Subsection 3.3, to obtain that

qt =

∑M
i=1

∑M
j=1 |∇θα̂j(ωi; θt)∇θα(θt)

⊤A⊤r(θt)|2

M∥∇θα(θt)⊤A⊤r(θt)∥22

=
∥∇θα(θt)∇θα(θt)

⊤A⊤r(θt)∥22
M∥∇θα(θt)⊤A⊤r(θt)∥22

=
∥∇θα(θt)∇θα(θt)

⊤A⊤r(θt)∥22
Mr(θt)⊤A∇θα(θt)∇θα(θt)⊤A⊤r(θt)

=
∥K(θt)A⊤r(θt)∥22

Mr(θt)⊤AK(θt)A⊤r(θt)
.

This completes the proof.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

C MORE DETAILS ON NUMERICAL EXPERIMENTS

C.1 EQUATIONS

In this paper, we consider two linear elliptic equations: a 1D Helmholtz equation and a convection-
diffusion problem. Specifically, the equations are given as follows.

• Helmholtz equation reads as

−uxx + ku = g(x) in D,

u(x) = 0 on ∂D,
(32)

where we use k = 7
2 in this paper.

• Convection-diffusion equation reads as

−uxx + νux = g(x) in D,

u(x) = 0 on ∂D,
(33)

where we use ν = 1 in this work.

C.2 GENERATION OF SAMPLE DATA FOR TRAINING

To generate sample data for training, we use the following M forcing term given as:

gi = g(x, ωi) := ω1 sin(ω3(x) + ω2 cos(ω4),

where ω1, ω2 and ω3, ω4 are drawn from a uniform distribution on [3, 5] and [0, 2π].

C.3 DETAILS ON EXPERIMENTAL SET-UP

The networks used for the experiments are given as follows.

Helmholtz Equation

• The number of hidden layers L: 1

• The number of width at each layer m: 100

• The number of training samples M : 1,000

• The number of basis functions N : 30

• Activation function ϕ: Relu

• Learning rate: 0.001

• Optimizer: Adam

• The number of training steps: 100,000

Convection-Diffusion Equation

• The number of hidden layers L: 1

• The number of width at each layer m: 100

• The number of training samples M : 1,000

• The number of basis functions N : 30

• Activation function ϕ: Relu

• Learning rate: 0.001

• Optimizer: Adam

• The number of training steps: 100,000

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

C.4 PRECONDITIONING

In our experiments, we applied two types of preconditioning techniques as follows:

• Type 1: For this approach, we selected the preconditioner P as the exact inverse of the
matrix A. This method fully compensates for the condition number of A.

• Type 2: In this case, we chose P as a diagonal matrix, where each diagonal entry is the
inverse of the corresponding diagonal element of A. While less accurate than Type 1, this
method reduces the computational cost associated with the inverse of the full matrix A,
providing a balance between efficiency and accuracy.

C.5 ADDITIONAL EXPERIMENTAL RESULTS

In this subsection, we provide additional figures related to the Helmholtz equation experiments dis-
cussed in Section 5. Furthermore, we present the results of applying the same preconditioning and
adaptive weight methods to the convection-diffusion equation. Finally, we provide experimental
results on the behavior of qt and the boundedness of the average gradients during the training pro-
cess. As discussed in Section 3.3, maintaining a uniform lower bound for qt is crucial for ensuring
geometric convergence.

Helmholtz equation We present additional figures related to the Helmholtz equation experiments
discussed in Section 5

Figure 2: Norm of the average gradient dur-
ing training for 1D Helmholtz equation.

Figure 3: Loss behavior for 1D Helmholtz
equation from different trials.

Figure 4: Behavior of qt during training for
1D Helmholtz equation.

Trial Relative L2 Error
Trial A 2.767× 10−4

Trial B 1.336× 10−4

Trial C 1.325× 10−4

Trial D 8.371× 10−5

Trial E 7.098× 10−5

Figure 5: Relative L2 errors for Helmholtz
trials.

Convection Diffusion equation We also present experimental results for the convection-diffusion
equation. Each type of trial corresponds to those described in Section 5.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Figure 6: Norm of the average gradient dur-
ing training for 1D Standard equation.

Figure 7: Loss behavior for 1D Standard
equation from different trials.

Figure 8: Behavior of qt during training for
1D Standard equation.

Trial Relative L2 Error
Trial A 1.177× 10−4

Trial B 7.967× 10−5

Trial C 8.025× 10−5

Trial D 7.634× 10−5

Trial E 7.860× 10−5

Figure 9: Relative L2 errors for 1D Standard
trials.

Behavior of qt Figure 10 shows the behavior of qt over the whole training for both the precondi-
tioned and non-preconditioned cases. Through experiments, we can easily find some cases where qt
vanishes.

Figure 10: The behavior of qt during Training. Comparison among Different methods on the 1D
Helmholtz equation. Trial A: Original ULGNET; Trial B: ULGNET with Preconditioning Type
1 + Adaptive Weight method; Trial C: ULGNET with Preconditioning Type 2 + Adaptive Weight
method.

Boundedness of the average gradients: Figure 11 demonstrates the boundedness of the average
gradients 1

M

∑M
j=1∇θα̂(ωj ; θt) during the training process. This suggests that the proposed algo-

rithm successfully mitigates the behavior of qt and ensures that the optimization process proceeds.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Figure 11: Norm of the average gradient during training for 1D Helmholtz equation. Compari-
son among Different methods on the 1D Helmholtz equation. Trial A: Original ULGNET; Trial B:
ULGNET with Preconditioning Type 1 + Adaptive Weight method; Trial C: ULGNET with Precon-
ditioning Type 2 + Adaptive Weight method.

23

	Introduction
	Preliminary
	Neural Networks
	Operator network with the variational loss form

	Restricted Strong Convexity
	RSC Theory in the Operator Network with the variational loss form
	The impact of the condition number on Convergence
	Relation between RSC and NTK

	An Adaptive Weight Algorithm
	Numerical Experiments
	Conclusion and Limitations
	Related works
	Proofs
	Proofs of Lemma 3.2 and 3.3
	Proof of Theorem 3.4
	Relation between qt and NTK

	More details on Numerical Experiments
	Equations
	Generation of sample data for training
	Details on Experimental Set-up
	Preconditioning
	Additional Experimental results

