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ABSTRACT

In this paper, we analyze the optimization of operator networks for solving ellip-
tic PDEs with variational loss functions. While approximation and generalization
errors in operator networks have been extensively studied, optimization error re-
mains largely unexplored. We apply Restricted Strong Convexity (RSC) theory to
rigorously examine the optimization dynamics of operator networks trained with
variational loss, providing theoretical guarantees for convergence and training sta-
bility. We further investigate the role of the condition number of A in optimization
and demonstrate that preconditioning strategies significantly improve convergence
rates, establishing a solid theoretical basis for the empirical benefits of precondi-
tioning. We also address the lower bound of a key quantity, qt, which ensures con-
vergence. To prevent qt from vanishing, we propose an algorithm that adaptively
incorporates additional weights into the variational loss function, leveraging val-
ues already computed during training, thereby avoiding any extra computational
costs. Finally, we validate our theoretical assumptions through numerical exper-
iments, demonstrating their practical applicability and confirming the effective-
ness of preconditioning, with significant improvements in training performance
and convergence rates.

1 INTRODUCTION

Scientific machine learning (SciML) has advanced through approaches like physics-informed neural
networks (PINNs) (Raissi et al., 2019), the Deep Ritz Method (DRM) (Yu et al., 2018), and the Deep
Galerkin Method (DGM) (Sirignano & Spiliopoulos, 2018), which use neural networks to approx-
imate solutions to complex partial differential equations (PDEs). Additionally, operator learning
methods, such as the Deep Operator Network (DeepONet) (Lu et al., 2021) and Fourier Neural Op-
erator (FNO) (Li et al., 2020), map input parameters (e.g., initial/boundary conditions or forcing
terms) directly to PDE solutions. Originally developed as supervised learning methods, DeepONet
and FNO have later been expanded to include the principles of PINNs, enabling them to work in
unsupervised learning scenarios as well. They are referred to as Physics-Informed Deep Operator
Networks (PI-DeepONet) (Wang et al., 2021b) and Physics-Informed Neural Operators (PINO) (Li
et al., 2024), respectively. As a result, these methods allow for the modeling of intricate physical
systems while reducing dependency on extensive labeled datasets.

However, many of these methods face optimization challenges, particularly in imposing accurate
boundary conditions and balancing the physics-informed loss with the boundary loss (Wong et al.,
2022; Krishnapriyan et al., 2021). Furthermore, the loss functions typically involve derivatives of the
network with respect to input variables, leading to a highly intricate optimization landscape. Addi-
tionally, even when the loss functions converge near zero, there is no guarantee that the approximate
solutions are close to the true PDE solutions.

In recent years, operator learning methods based on the variational loss form have gained attention
as a means to improve the accuracy and efficiency of solving PDEs. Notable examples include
the Finite Element Operator Network (FEONet) (Lee et al., 2023) and the Unsupervised Legendre
Galerkin Network (ULGNET) (Choi et al., 2023), which approximate PDE solutions by combining
neural networks with classical numerical methods, such as the Finite Element Method and Spectral
Methods. These methods effectively circumvent the aforementioned issues by incorporating basis
functions. The use of basis functions, combined with variational losses, not only eliminates the need
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for additional penalty losses to impose boundary conditions but also simplifies the loss structure
by removing the need to differentiate neural networks with respect to input variables. This enables
them to handle singularly perturbed problems, boundary layer problems, and complex geometries
more efficiently (Choi et al., 2023; Lee et al., 2023).

With the advancement of machine learning techniques, the need for rigorous theoretical analysis
has become increasingly evident. In particular, the demand for a deeper understanding of optimiza-
tion, which significantly affects both the efficiency and stability of training, has grown substantially.
Most traditional optimization frameworks are primarily grounded in convex settings (Boyd & Van-
denberghe, 2004). However, it is well known that deep learning models are challenging to analyze
within these frameworks (Liu et al., 2020). To address this limitation, the Neural Tangent Kernel
(NTK) theory (Jacot et al., 2018), along with the PŁ-condition (Garrigos & Gower, 2023), has been
developed to provide convergence guarantees, drawing significant attention in the deep learning
community (Du et al., 2019; Allen-Zhu et al., 2019; Zou et al., 2020; Wang et al., 2022; 2021a;
Gao et al., 2023). Nonetheless, these theories often necessitate that the model be infinitely wide or
confined to the near-initialization regime, which considerably diverges from practical applications.
Another noteworthy framework for analyzing optimization is the Restricted Strong Convexity (RSC)
framework. While RSC has been extensively studied in linear or convex settings (Wainwright, 2019;
Negahban & Wainwright, 2012; Zhang & Cheng, 2015), its application to deep learning models has
only been explored in recent years. Motivated by this, we aim to extend the RSC theory to SciML
techniques, which are known to be more challenging to analyze than traditional machine learning
methods. Specifically, our main contributions are as follows:

• We apply the RSC theory to investigate the optimization process using GD in unsupervised
operator learning methods with variational loss. Our analysis rigorously proves the conver-
gence of the optimization error, providing theoretical guarantees for training stability.

• Building on these theoretical insights, we examine the impact of the condition number of
A, which is determined by the PDE structures in operator networks using variational loss
forms, on the optimization process. We demonstrate how preconditioning strategies can
significantly improve convergence rates. This provides a solid theoretical foundation for
the empirical observation that preconditioning enhances training efficiency.

• In addition, we propose an algorithm that adaptively improves the lower bound of qt, a key
quantity in optimization dynamics that ensures convergence. By adjusting the weights in
the variational loss function, the proposed algorithm prevents qt from vanishing during the
training process, leading to improved convergence rates.

• Through numerical experiments, we validate the assumptions underlying our theoretical
analysis, demonstrating that they hold in most practical cases. These experiments further
confirm the effectiveness of preconditioning, showing significant improvements in both
training performance and convergence rates.

2 PRELIMINARY

We begin with a brief overview of neural networks, followed by an introduction to the basic concepts
of operator networks based on variational loss, which are the primary focus of our optimization
theory.

2.1 NEURAL NETWORKS

For any inputs feature ω ∈ Ω, let us define ω := α(0)(ω) and m0 := M (to be determined later) for a
convenience. Then, a fully-connected neural network is defined by the following recursion relation:

α(l) = ϕ

(
1

√
ml−1

W (l)α(l−1)

)
, W (l) ∈ Rml×ml−1 , l ∈ [L],

α̂(ω) = α(L+1)(ω) =
1
√
mL

V Tα(L)(ω), V ∈ RN×mL ,

where ml is the width of the l-th layer, L is the depth of the network, ϕ is the activation function,
W (l) is the weight matrix, and V is the weight vector for the last layer. Throughout this paper, for
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simplicity, for simplicity, we assume that the width ml (l = 1, · · · , L) of all the layer is the same as
m. Then, we denote the set of all parameters of the network by θ as follows:

θ = vec(W (0),W (1), . . . ,W (L),V ) ∈ Rp,

where p = m(M+mL−1+N). The model parameters θ are updated during optimization processes
for minimizing a suitably given loss function.

2.2 OPERATOR NETWORK WITH THE VARIATIONAL LOSS FORM

In this subsection, we briefly introduce the operator network with the variational loss, focusing on
the specific examples. For simplicity, we will consider self-adjoint second ordered Elliptic PDEs
with homogeneous Dirichlet boundary condition on the compact domain D ⊂ Rd:

−div(a(x)∇u(x)) + b(x) · ∇u(x) + c(x)u = g(x) in D,

u(x) = h(x) on ∂D,
(1)

where the coefficient a(x) is uniformly elliptic and c(x) ≥ 0. The weak solution of equation 33 is
defined by the function u(x) satisfying the following variational formulation:∫
D

a(x)∇u(x) · ∇v(x) + [b(x) · ∇u(x) + c(x)u(x)] v(x)dx =

∫
D

g(x)v(x)dx, ∀v ∈ H1
0 (D).

(2)
We note that the existence and uniqueness of weak solutions is obtained by the Lax-Milgram the-
orem (Brenner, 2008). Traditional numerical methods such as the Finite Element Method (FEM)
and Spectral Method approximate the weak solution u(x) by a linear combination of basis func-
tions ϕk(x). Specifically, the solution u(x) is approximated by uN (x) =

∑N
k=1 αkϕk(x), where

{ϕk(x)}Nk=1 are chosen basis functions, typically selected based on the geometry of the domain
D, the boundary condition of the PDE, and the other properties of the PDE. For FEM, these basis
functions are piecewise polynomials defined over a mesh that discretizes the domain, while Spec-
tral Methods use globally defined functions such as trigonometric functions or Legendre-Galerkin
polynomials. In both approaches, the coefficients αk can be determined by solving the discrete
approximation of the variation formulation equation 2 with given basis functions ϕk(x):∫
D

a(x)∇uN (x) · ∇ϕk(x) + [b(x) · ∇uN (x) + c(x)uN (x)]ϕk(x)dx =

∫
D

g(x)ϕk(x)dx, ∀k.

(3)
which can be rewritten as the linear algebraic system,

Aα = g, (4)
where α := (α1, · · · , αN )⊤, and A and g are given as follows:

Aij =

∫
D

a(x)∇ϕi · ∇ϕj + [b(x) · ∇ϕi(x) + c(x)ϕi(x)]ϕj(x)dx, gj =

∫
D

g(x)ϕjdx.

Now, we are ready to introduce the method we are mainly concern with in this paper. The operator
network with the variational loss form involving Unsupervised Legendre-Galerkin neural network
(ULGNET) (Choi et al., 2023) and Finite Element Operator Network (FEONet) (Lee et al., 2023)
are based on the aforementioned classical numerical methods with finite basis functions. For each
PDEs, these methods approximate the coefficient αk as an output of a neural network with variable
coefficients and forcing term as an input, instead of solving the linear algebraic equation equation 4.
For clarify of presentation, we only consider that an input for the neural network is the forcing term
g(x). Let the forcing term g be parametrized by the random parameter ω in the compact parameter
space Ω. For each g(x, ω), the coefficients α̂k(ω; θ) are generated as an output of the neural network
and the solution is approximated by ûN (x, ω; θ) =

∑N
k=1 α̂k(ω; θ)ϕk(x).

To train the neural network, we use the following variation loss, inspired by equation 3:

L(θ) = Eω∼Ω

[ N∑
k=1

∣∣∣∣ ∫
D

{
a(x)∇ûN (x, ω; θ) · ∇ϕk(x)

+ [b(x) · ∇uN (x, ω; θ) + c(x)ûN (x, ω; θ)]ϕk(x)

}
dx−

∫
D

g(x, ω)ϕk(x)dx

∣∣∣∣2].
(5)
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In practice, for the computational efficiency, we can deal with the empirical variational loss instead
of equation 5:

LM (θ) =
|Ω|
M

M∑
j=1

N∑
k=1

∣∣∣∣ ∫
D

{
a(x)∇ûN (x, ωj ; θ) · ∇ϕk(x)

+ [b(x) · ∇uN (x, ωj ; θ) + c(x)ûN (x, ωj ; θ)]ϕk(x)

}
dx−

∫
D

g(x, ωj)ϕk(x)dx

∣∣∣∣2,
where M is the number of training samples. This empirical loss can be written as the vectorized
form:

LM (θ) =
|Ω|
M

M∑
j=1

∥Aα̂(ωj)− gj∥22, (6)

where α̂ = (α̂1, · · · , α̂N )⊤ ∈ RN is an approximate coefficient vector obtained by the neural
network, and A and g are given as in equation 4. Throughout the remainder part of this paper, we
will use the above vectorized formulation.

Based on the classical numerical theory, the basis functions ϕk(x) are chosen in a way that the
approximate solution ûN directly satisfies the boundary conditions regardless of the choice of coef-
ficient α̂k. Therefore, unlike other unsupervised operator learning frameworks that typically require
additional loss terms to enforce boundary conditions, our approach inherently satisfies boundary
conditions without an extra penalty loss. Moreover, all differential operators with respect to the in-
put variable x are applied to the fixed basis functions ϕk(x) in the loss LM . This intrinsic structure
of operator learning methods with the variational loss results in that the loss LM consists of a single
variational-type term and does not involve any derivatives of the neural network with respect to x.
Consequently, complex unsupervised learning tasks for solving PDEs are transformed into simpler
tasks like data-fitting supervised learning with a standard least squares loss.

For more details and performance in various numerical tests, we refer to Choi et al. (2023); Lee et al.
(2023). Mathematical studies for operator learning methods with the variational loss form can be
found in (Hong et al., 2024; Ko et al., 2022).

3 RESTRICTED STRONG CONVEXITY

In this section, we analyze the optimization process of operator learning methods with variational
loss using RSC theory. This provides an alternative convergence theory to the commonly used
NTK-based approaches. From this analysis, we explore the impact of the condition number on
convergence and also discuss the relationship between RSC theory and NTK theory.

3.1 RSC THEORY IN THE OPERATOR NETWORK WITH THE VARIATIONAL LOSS FORM

In this section, we develop a theoretical framework for analyzing the optimization process of oper-
ator learning methods based on the variational form using RSC theory. However, it is important to
note that this analysis is not restricted to our operator learning method alone. The same framework
can be extended to other operator learning methods or PINNs that employ variational loss functions.

RSC theory has been extensively studied in other settings, such as linear models and convex loss
functions (Wainwright, 2019; Negahban & Wainwright, 2012; Zhang & Cheng, 2015). More re-
cently, in the work of Banerjee et al. (2022), RSC theory has been applied to analyze the optimiza-
tion process of deep learning models for simple supervised learning tasks. Naturally, one might
hope to extend this analytical framework to the training dynamics of scientific machine learning
(SciML) methods. However, for many unsupervised approaches that use PDE residual loss func-
tions, intended to embed the physical laws described by PDEs into neural networks, the inherent
complexity of these loss functions poses significant challenges for directly applying optimization
theories, including RSC.

In contrast, as mentioned in Subsection 2.2, the methods of operator learning based on the variation
loss effectively circumvent these issues by leveraging the variational form of PDEs and employ-
ing basis functions. Building on this advantage, we extend the RSC-based analysis to operator
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learning methods based on the variational form, specifically examining how the convergence rate
is influenced by the condition number of the matrix A. The condition number κ(A) is defined
as κ(A) = σmax(A)/σmin(A) where σmax(A) and σmin(A) represent the largest and smallest
singular values, respectively.

In this paper, we focus mainly on analyzing the optimization of operator learning methods based on
the variational form in relation to the condition number of A, following the original work established
in Banerjee et al. (2022). Let us begin with providing the following standard assumptions as used in
Banerjee et al. (2022).
Assumption 1 (Activation). The activation ϕ is 1-Lipschitz i.e., |ϕ′| ≤ 1, and βσ smooth, i.e.,
|σ′′| ≤ βϕ.

Assumption 2 (Weight initialization). For l ∈ [L], the weights are initialized as W(l)
0,ij , V0,ij ∼

N (0, σ2
0), where σ0 = σ1

2(1+ 2
√

log m√
m

)
, σ1 > 0, and V0 is a random unit matrix, i.e. ∥V0∥2 = 1.

Assumption 3 (Boundedness of input features). For every ω ∈ Ω, there exists a M > 0 such that
∥ω∥22 ≤M .

We also provide the following definition.
Definition 3.1. Given a set of parameters θ̄ ∈ Rm, we define three subsets in the space of the model
parameters as follows:

BSpec
ρ,ρ1

(θ̄) :=
{
θ ∈ Rp| ∥W (l) − W̄ (l)∥2 ≤ ρ, l ∈ [L], ∥V − V̄ ∥2 ≤ ρ1

}
, (7)

BEuc
ρ (θ̄) :=

{
θ ∈ Rp| ∥θ − θ̄∥2 ≤ ρ

}
, (8)

Qq(θ̄) :=

{
θ ∈ Rp∥ 1

M

M∑
i=1

∥∇θα̂(ωi; θ)(θ − θ̄)∥22 > q∥θ − θ̄∥22

}
, (9)

where ḡ represents any matrix having a suitable column dimension to be multiplicable with θ, and
∥ · ∥ denotes the spectral norm for matrices while denoting the L2 norm for vectors.

For simplicity, we deal with the model parameter θ only in the ball BSpec
ρ,ρ1(θ0) for some given initial

parameter θ0. Here, the radius ρ is chosen in a way that ρ <
√
m and consequently the constant σ1

in Assumption 2 is fixed as 1 − ρ√
m

, which is a reasonable choice in practice. More discussion of
the choice for these parameters can be found in Banerjee et al. (2022).

To establish the main theorem, we present key lemmas. In particular, we observe that the constants
associated with the restricted strong convexity and smoothness of the loss function are related to
σmin(A) and σmax(A). This observation is crucial for understanding how the condition number
influences the optimization dynamics.
Lemma 3.2. Consider a fixed θ ∈ BSpec

ρ,ρ1
(θ0) and q be a fixed positive constant. Under Assumptions

1, 2 and 3, the following inequality holds with probability at least (1 − 2(L+1)
m ): for all θ′ ∈

Qq(θ) ∩BSpec
ρ,ρ1

(θ0) ∩BEuc
ρ2

(θ)

LM (θ′) ≥ LM (θ) + ⟨θ′ − θ,∇θLM (θ)⟩+ β

2
||θ′ − θ||22,

where β = (σmin(A))2
(
q − 2ϱcHNρ2√

m

)
− σmax(A)2 cH

√
2Nc∗√
m

and ϱ, cH , and c∗ are given in
Appendix B.1.

Proof. The detailed proof is in Appendix B.1.

Lemma 3.3. Under Assumptions 1, 2 and 3, and with probability at least (1 − 2(L+1)
m ), we have

that for all θ′, θ ∈ BSpec
ρ,ρ1

(θ0),

LM (θ′) ≤ LM (θ) + ⟨θ′ − θ,∇θLM (θ)⟩+ γ

2
||θ′ − θ||22,

where γ = (σmax(A))2
(
ϱ2N + cH

√
2c∗N√
m

)
, and ϱ, cH , and c∗ are given in Appendix B.1.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Proof. The detailed proof is in Appendix B.1.

With the detailed results from Lemmas 3.2 and 3.3, we are now prepared to state the main theorem,
which relates the convergence rate of the optimization process of LM (θ) in BSpec

ρ,ρ1 to the condition
number κ(A).
Theorem 3.4 (Optimization of the variation loss). Let {θt} denote the sequence of model parameters
generated by GD with the stepsize ηt =

ωt

γ ≤
2
γ , and we define

qt =

∑M
i=1 ∥∇θα̂(ωi; θt)∇θLM (θt)∥22

M∥∇θLM (θt)∥22
, Bt := Qqt(θt) ∩BSpec

ρ,ρ1
(θ0) ∩BEuc

ρ2
(θt),

θ∗ ∈ arginfθ∈BSpec
ρ,ρ1

(θ0)
L(θ), θ̄t+1 ∈ arginfθ∈Bt

L(θ) and δt :=
L(θ̄t+1)− L(θ∗)
L(θt)− L(θ∗)

.

Under Assumptions 1, 2 and 3, we further assume that for each iteration t, the followings holds:

(A1) θt+1 ∈ BSpec
ρ,ρ1

(θ0) ∩BEuc
ρ2

(θt), and (A2) qt >
2ϱcHNρ2√

m
+ κ(A)2

cH
√
2Nc∗√
m

.

(10)

Then, we have δt ∈ [0, 1), and the following inequality holds with probability at least (1− 2(L+1)
m ):

LM (θt+1)− LM (θ∗) ≤ (1− rtωt(2− ωt)(1− δt))
(
LM (θt)− LM (θ∗)

)
where rt is given by

rt =
(κ(A))−2

(
qt − 2ϱN cHρ2√

m

)
− cH

√
2Nc∗√
m

ϱ2N + cH
√
2Nc∗√
m

> 0,

and ϱ, cH , and c∗ are given as in Lemma 3.2 and 3.3.

Proof. The detailed proof is in Appendix B.2.

3.2 THE IMPACT OF THE CONDITION NUMBER ON CONVERGENCE

In our RSC-based analysis of the optimization process, we established a clear connection between
the convergence rate and the condition number of the matrix A. Specifically, in Theorem 3.4, the
quantity rt, which is closely related to the convergence rate, is given as

rt =
(κ(A))−2

(
qt − 2ϱN cHρ2√

m

)
− cH

√
2Nc∗√
m

ϱ2N + cH
√
2Nc∗√
m

.

This implies that a smaller condition number κ(A) results in a faster convergence rate, which is
essential for efficient training. Therefore, reducing the condition number is a crucial strategy for
enhancing optimization efficiency. This finding is consistent with previous studies showing that re-
ducing the condition number also positively impacts generalization and approximation errors (Hong
et al., 2024). Thus, improving the condition number benefits optimization, generalization, and ap-
proximation errors simultaneously, without any trade-offs. These insights underscore the importance
of employing training strategies that reduce the condition number. Furthermore, the assumption
(A2) in Theorem 3.4 becomes less stringent when the condition number of A is reduced. Specifi-
cally, the right-hand side of (A2),

2ϱcHNρ2√
m

+ κ(A)2
cH
√
2Nc∗√
m

decreases as the condition number κ(A)2 becomes smaller. Thus, a smaller condition number allows
for a more relaxed bound on qt, making the assumptions more applicable in practical scenarios. This
further underscores the importance of reducing the condition number.
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One well-known approach to reducing the condition number is the use of preconditioning. In this
method, a preconditioner matrix P is applied to transform the system of equations into an equivalent
system with a lower condition number. Specifically, preconditioning replaces the matrix A with
PA, where P is chosen to ensure that the condition number κ(PA) is significantly smaller than
that of A. This transformation results in a system that is easier to optimize and converges more
quickly.

By showing that a reduced condition number directly improves the convergence rate in the optimiza-
tion process, our analysis explains why preconditioning leads to faster and more efficient training.
This alignment between theoretical and empirical results highlights the importance of precondition-
ing as a key strategy in operator learning with the variational loses, particularly in FEONet and
ULGNET. The numerical tests supporting these observations can be found in Section ??, where we
demonstrate the impact of preconditioning on training stability and efficiency

3.3 RELATION BETWEEN RSC AND NTK

In the proof of the main theorem, two technical assumptions, (A1) and (A2), are crucial for estab-
lishing the convergence of the loss LM . In particular, assumption (A2) plays a significant role in
ensuring the restricted strong convexity of LM . For assumption (A2), it is evident that the value on
the right-hand side decreases as the network width m increases. This implies that assumption (A2)
becomes less restrictive for networks with larger widths. Indeed, if qt maintains a uniform lower
bound throughout the training process, we can guarantee that assumption (A2) holds for sufficiently
large widths.

Interestingly, the value of qt is closely related to the Neural Tangent Kernel (NTK), which has been
one of the most widely used tools for analyzing the optimization dynamics of deep learning models
(Jacot et al., 2018; Du et al., 2019). More precisely, let∇θα ∈ RNM×p be defined as

∇θα := (∇θα̂1(ω1) ∇θα̂2(ω1) · · · ∇θα̂N (ω1) ∇θα̂1(ω2) · · · ∇θα̂N (ωM ))
⊤
,

which is the matrix that lists each 1 × p matrix ∇θα̂i(ωj) as a block component in column order.
Then, NTK K(θ) can be expressed as∇θα(θ)⊤∇θα(θ). Note that the quantity qt can be expressed
in terms of the Neural Tangent Kernel K(θt).
Theorem 3.5 (Relation between qt and NTK). Let A ∈ RNM×NM and r ∈ RNM×1 are given by

A =


A 0 · · · 0
0 A · · · 0
...

...
. . .

...
0 0 · · · A

 , and r =


Aα̂(ω1)− g1
Aα̂(ω2)− g2

...
Aα̂(ωM )− gM

 .

Then, the following relation always holds:

qt :=

∑M
i=1 ∥∇θα̂(ωi; θt)∇θLM (θt)∥22

M∥∇θLM (θt)∥22
=

∥K(θt)A⊤r(θt)∥22
Mr(θt)⊤AK(θt)A⊤r(θt)

. (11)

Consequently, we have the following upper and lower bounds for qt:

λmin(K(θt))
2

λmax(K(θt))
≤ qt ≤

λmax(K(θt))
2

λmin(K(θt))
,

where λmin(·) and λmax(·) represent the minimun and maximum eigenvalues of the corresponding
matrix, respectively, and the upper bound are valid only when λmin(K(θt)) > 0.

Proof. The detailed proof is provided in Appendix B.3.

An important insight from this observation is that if σmin(K(θt)) and σmax(K(θt)) have uniform
lower and upper bounds, respectively, then a uniform lower bound for qt is naturally guaranteed
as Ω

(
1
M

)
. This directly implies that if m = Ω

(
(NM)2

)
, the positivity of qt is ensured, making

the convergence process more stable and predictable. Thus, maintaining tightly controlled singu-
lar values of K(θt) contributes directly to improving the efficiency and robustness of the training
process.
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Although the existence of uniform positive lower and upper bounds for all eigenvalues of the NTK
provides a sufficient condition to ensure that assumption (A2) holds, numerous studies have shown
that guaranteeing this bound can be challenging in practice. Moreover, adaptively controlling the
NTK at each training step by calculating its eigenvalues or approximations introduces significant
computational overhead. To address these challenges, in the next section, we propose an algorithm
that enhances the stability of the lower bound of qt by utilizing only values already computed during
training, thereby avoiding the need for costly NTK calculations.

4 AN ADAPTIVE WEIGHT ALGORITHM

As discussed in Section 3.3, ensuring a uniform lower bound on qt is crucial to establish geometric
convergence as in Theorem 3.4. However, in general, our numerical experiments indicate that the
behavior of qt can often be highly unpredictable, which can be found in C.5. This unpredictability in
the dynamics of qt can ultimately result in convergence failures. Therefore, controlling the behavior
of qt is crucial to ensuring successful convergence.

To address this challenge, we propose an algorithm that adaptively applies weights to the loss func-
tion. This approach establishes a new lower bound for qt, which is both simpler and more practical
compared to the NTK-related bound discussed in Subsection 3.3. Furthermore, our experiments
confirm that this strategy makes the behavior of qt more stable compared to when the strategy is not
applied, throughout the entire training process, further demonstrating its effectiveness.

The remainder of this section is organized as follows. First, we establish some notations to clearly
present the algorithm and underlying concepts. Next, we introduce the algorithm designed to en-
hance the performance of operator learning with variational losses. Finally, we provide a brief
overview of the key idea behind the proposed algorithm. For clarity, we define some notations. Re-
calling the notation r from Section 3.3, we rewrite the quantity qt and the variational loss LM as
follows:

qt =
1

M

M∑
j=1

∥∇θα̂(ωi; θt)∇θα(θt)A⊤r(θt)∥22
∥∇θα(θt)A⊤r(θt)∥22

, and LM (θ) =
1

2M
r⊤r.

Note that multiplying both sides of Equation (6) by a non-singular matrix Λ, ΛAα̂(ωi) = Λgi, i =
1, 2, . . . ,M , yields the same solution as the original equation (6). We refer to such a matrix Λ as
the weight matrix. In our algorithm, the weight matrix is block diagonal and varies at each time
step t, denoted as Λt. Each block component of Λt is represented as Λi,t for i = 1, . . . ,M , i.e.,
Λt = Diag(Λ1,t, . . . ,ΛM,t). Furthermore, Λi,t is a diagonal matrix having λij,t as the j-th diagonal
component, multiplied by (A⊤)−1, i.e. Λi,t = Diag(λi1,t, λi2,t, . . . , λiN,t)(A

⊤)−1. Using the
weight matrix Λt, we define a modified loss function in place of the original loss LM such that
L̃M
t (θ) := 1

2M r̃t
⊤r̃t, where r̃t := Λrt. Here, r̃ij,t = (Aα̂(ωi; θ)− gi)jλij,t.

With the above notation established, we present the adaptive weight algorithm as follows:
Algorithm 1 Gradient Descent with Adaptive weight strategy.

Input A, rt, r̃t−1

When Λ0 := 1√
NM

diag(1NM )

Require: N ≥ 1, M > 1

λij,t ←
√

1
NM−1 (1−

r̃2ij,t−1

∥r̃t−1∥2 )

Output L̃M
t , r̃t

We provide a brief outline of the above algorithm. Let us examine the modified qt resulting from
the adaptive weight methods such that

qt =
1

M

M∑
j=1

∥∇θα̂(ωi; θt)∇θα(θt)ΛtA⊤r̃t∥22
∥∇θα(θt)ΛtA⊤r̃t∥22

. (12)

As we mentioned above, it is often observed that qt decreases as the iterations progress. This means
that ΛtA⊤r̃t gradually becomes nearly orthogonal to ∇θα̂(ωi; θt) during the training process. In
this regard, our main idea is to ensure that ΛtA⊤r̃t remains parallel to the initial direction r0,

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

while also avoiding placement in the null space of ∇θα̂(ωi; θt) throughout the training process by
adaptively selecting the appropriate weight matrix Λt.

Let us consider ΛtA⊤r̃t. Each ij component of ΛtA⊤r̃t can be expressed as (ΛtA⊤r̃t)ij =
r̃ij,tλij,t. By appropriately selecting λij,t, we aim to keep each rij,tλij,t constant throughout the
training process, thereby ensuring that the direction of ΛtA⊤r̃t remains unchanged. In fact, when
applying our algorithm, we have

rij,tλij,t = r̃ij,t

√
1

NM − 1

√
(1−

r̃2ij,t−1

∥r̃t−1∥2
)︸ ︷︷ ︸

=:Sij,t

,

where the term Sij,t becomes larger than in the previous step when rij,t−1 is relatively smaller
than the other components, and smaller when rij,t−1 is relatively larger. This strategy ensures that
r̃2ij,t ≈ r̃2ij,t+1 during training, indicating that the direction of ΛtA⊤r̃t does not change significantly
from the initial direction r̃0.

Assume that we can select a vector r̃0 /∈ N(∇θα(θt)) for most t > 0. In other words, for most
of t, r̃0 is outside the null space of ∇θα(θt). This is a reasonable assumption because in realistic
settings,∇θα(θt) rarely vanishes, and its null space is a measure-zero set. Based on this assumption,
we expect the existence of a constant c0 > 0 such that

c0 := min
t≥0

∥ 1
M

∑M
j=1∇θα̂(ωi; θt)∇θα(θt)v0∥22

∥ 1
M

∑M
j=1∇θα̂(ωi; θt)∥22∥∇θα(θt)v0∥22

,

as long as ∥ 1
M

∑M
j=1∇θα̂(ωi; θt)∥22 does not vanish during training. This implies that under our

algorithm, we have

qt ≥ c0∥
1

M

M∑
j=1

∇θα̂(ωi; θt)∥22,

ensuring that qt has a uniform lower bound, provided that
∥∥∥ 1
M

∑M
j=1∇θα̂(ωj ; θt)

∥∥∥2
2

maintains a
uniform lower bound—a property that can be demonstrated through various experimental tests in
Appendix C.5.

5 NUMERICAL EXPERIMENTS

In this section, we present the experimental results of applying the preconditioning technique and
our adaptive weight method, as proposed in Section 4, to the ULGNet method. Specifically, we
focus on the 1D Helmholtz equation, a paradigm example of a linear elliptic equation, to evaluate
the performance of these techniques.

Trial Description Relative L2 Error
Trial A ULGNET (baseline) 2.767× 10−4

Trial B Preconditioning Type 1 1.336× 10−4

Trial C Preconditioning Type 2 1.325× 10−4

Trial D Type 1 + Adaptive Weight 8.371× 10−5

Trial E Type 2 + Adaptive Weight 7.098× 10−5

Table 1: This table presents the performance of relative L2 errors using different optimization meth-
ods. Type A represents the baseline, ULGNet (Choi et al., 2023). In Types B through E, Types 1 and
2 denote different preconditioning methods described in Appendix C.4. The term ’Adaptive Weight’
in Types D and E refers to the adaptive weight algorithm outlined in Section 4.

In Table 1, Type A represents the baseline ULGNet (Choi et al., 2023), while Types B through E
correspond to various preconditioning methods described in Appendix C.4. The terms ’Type 1’ and
’Type 2’ denote these methods, with ’Adaptive Weight’ in Types D and E referring to the adaptive

9
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weight algorithm outlined in Section 4. Our experiments demonstrate how different precondition-
ing techniques, both with and without adaptive weights, influence the convergence of the training
process. As predicted by our theoretical findings, the trials incorporating both preconditioning and
the adaptive weight method (Trials D and E) achieve the best performance, showcasing significantly
improved convergence. Notably, Trial E attains the lowest relative L2 error, underscoring the effec-
tiveness of combining Preconditioning Type 2 with the adaptive weight method.

Figure 1: Our theoretical findings indicate that trials in-
corporating both preconditioning and the adaptive weight
method (Trials D and E) yield the best performance, show-
casing significantly improved convergence stability and re-
duced final loss values. Notably, Trial E achieved the low-
est relative L2 error, highlighting the effectiveness of com-
bining Preconditioning Type 2 with the adaptive weight
method. Furthermore, our proposed approaches in Trials D
and E exhibit superior behavior, maintaining stable learning
dynamics without oscillations compared to the other trials.

A closer examination can be found
in Figure 1, which illustrates the be-
havior of the variational loss over
50,000 training steps. The experi-
ments reveal how different precon-
ditioning techniques, both with and
without adaptive weights, affect the
convergence and stability of the train-
ing process. Our theoretical find-
ings indicate that trials incorporating
both preconditioning and the adaptive
weight method (Trials D and E) yield
the best performance, with signifi-
cantly improved convergence stabil-
ity and reduced final loss values. In
particular, Trial E attained the lowest
relative L2 error, demonstrating the
efficacy of combining Precondition-
ing Type 2 with the adaptive weight
method.

Figure 1 illustrates that our pro-
posed approaches in Trials D and E
demonstrate superior performance,
attributable to the adaptive weight
strategy, which maintains stable
learning dynamics without oscillations. Our algorithm plays a crucial role in preventing qt from
vanishing by ensuring that the numerator of the equation equation 12 remains away from zero,
thereby contributing to stable training dynamics. In contrast, the other trials exhibit noisy training
dynamics and low convergence.

6 CONCLUSION AND LIMITATIONS

In this paper, we applied RSC theory to analyze the optimization process in unsupervised opera-
tor learning methods utilizing variational loss. Our rigorous analysis demonstrated the convergence
of the optimization error, establishing theoretical guarantees for training stability. We highlighted
the significance of the condition number of A in influencing convergence rates and showed that
preconditioning strategies can substantially enhance training efficiency. Additionally, we addressed
the lower bound of qt, proposing an algorithm that adaptively improves this bound without incur-
ring extra computational costs. Our numerical experiments validated the assumptions underlying
our theoretical framework and confirmed the effectiveness of preconditioning, revealing significant
improvements in training performance and convergence rates.

Despite the promising results, this study has certain limitations. First, while the theoretical analysis
is grounded in RSC, the applicability of these results may vary in highly complex or non-standard
optimization scenarios. Additionally, the proposed algorithm relies on the assumption that the con-
dition number of A can be effectively managed throughout the training process, which may not
hold true in all real-world applications. Future work should explore the robustness of the proposed
method in diverse contexts and assess its performance under varying conditions. Moreover, addi-
tional empirical studies are needed to further examine the impact of different weight matrices and
their configurations on optimization dynamics.
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A RELATED WORKS

Variational loss in SciML Variational loss-based neural networks have emerged as an alterna-
tive to traditional PINNs, focusing on enhancing accuracy and stability through the use of varia-
tional principles. Prominent examples include VPINN, hp-VPINN, and Galerkin Neural Networks
(Kharazmi et al., 2019; ?; Ainsworth & Dong, 2021), which reformulate the residual minimization
problem into a variational form, employing test functions to minimize errors across the entire do-
main. This approach has demonstrated improved accuracy over standard PINNs, particularly when
dealing with weak solutions or complex boundary conditions. In the realm of operator learning,
methods such as ULGNET (Choi et al., 2023) and FEONET (Lee et al., 2023) also utilize variational
loss forms. Similar to variational neural networks, these operator learning methods incorporate basis
functions, enabling them to effectively manage complex domains and challenging boundary condi-
tions. By leveraging these basis functions, these methods provide improved accuracy and stability
when solving PDEs in intricate geometries or in the presence of singular perturbations. While this
paper focuses on operator networks with variational losses, our approach can also be extended to
other operator learning methods or PINNs that employ variational loss functions.

RSC and NTK The NTK theory (Jacot et al., 2018) has been widely utilized to analyze optimiza-
tion in deep learning (Du et al., 2019; Allen-Zhu et al., 2019; Zou et al., 2020; Wang et al., 2022;
2021a; Gao et al., 2023). While NTK-based approaches offer strong theoretical insights into the
convergence of gradient descent, they generally require extremely wide neural networks and depend
on the near-initialization regime, which limits their practical applicability. This limitation is particu-
larly evident in the case of PINNs, where NTK theory struggles to address the complexity introduced
by PDE residuals (Bonfanti et al., 2024). In contrast, the recently developed RSC theory serves as
an alternative tool for analyzing the optimization process of deep learning models. Although RSC
has been previously applied to demonstrate geometric convergence in various settings (Wainwright,
2019; Negahban & Wainwright, 2012; Zhang & Cheng, 2015), its application to deep learning was
introduced only recently by Banerjee et al. (2022). Building on this work, we extend RSC theory to
operator learning methods with variational loss forms, highlighting its potential as a new analytical
tool in the field of SciML.

B PROOFS

In this section, we provide a series of theoretical proofs for lemmas and main theorems in this work.

B.1 PROOFS OF LEMMA 3.2 AND 3.3

Before we prove Lemma 3.2 and 3.3, and Theorem 3.4, we first recall some estimates on neural
networks established in Banerjee et al. (2022).
Lemma B.1 (Bound of neural networks α̂). Under Assumption 1 and 2, for θ ∈ BSpec

ρ,ρ1
(θ0), with

probability at least
(
1− 2(L+1)

m

)
, we have

∥α̂i(θ;ω)∥2 ≤ (1 + ϕ(0)L)(1 + ρ1) (13)
∥∇θα̂i(θ;ω)∥2 ≤ ϱ (14)

∥∇2
θα̂i(θ;ω)∥2 ≤

cH√
m
, (15)

where cH = O(poly(L)) and ϱ is a constant depending on L, ρ1 and ϕ.

Proof. The proof can be seen in Theorem 4.1 and Lemma 4.1 in Banerjee et al. (2022).

Using the bounds of neural networks, we obtain the estimates of the variational loss.
Lemma B.2 (Bound of variational loss LM ). Under Assumption 1 and 2, for θ ∈ BSpec

ρ,ρ1
(θ0), the

following inequalities hold with probability at least (1− 2(L+1)
m ):

LM (θ) ≤ σmax(A)2c∗. (16)

∥∇θLM (θ)∥2 ≤ ϱσmax(A)
√

2NL(θ) ≤ ϱσmax(A)2
√
2Nc∗ (17)

13
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where c∗ = N(1 + ϕ(0)L)2(1 + ρ1)
2 + 1

M

∑N
j=1

∑M
i=1 |αj(ωi)

∗|2.

Proof. We have

LM (θ) =
1

2M

M∑
i=1

∥Aα̂(θ;ωi)− g(ωi)∥22

≤ 1

2M

M∑
i=1

(
∥Aα̂(θ;ωi)−Aα̂∗

i ∥+ ∥Aα̂∗
i − g(ωi)∥2

)
(since A is full-rank, there exists the solution α̂∗

i s.t. Aα̂∗
i = g(ωi) for all i)

≤ σmax(A)2

2M

M∑
i=1

(
∥α̂(θ;ωi)− α̂∗

i ∥22
)

≤ σmax(A)2

M

M∑
i=1

(
∥α̂(θ;ωi)∥22 + ∥α̂∗

i ∥22
)
.

This, together with (13), implies (16). Then, for∇LM , we obtain that

∥∇LM (θ)∥2 ≤

∥∥∥∥∥ 1

M

M∑
i=1

(Aα̂(θ;ωi)−G(ωi))
⊤A∇θα̂(θ;ωi)

∥∥∥∥∥
2

≤ 1

M

M∑
i=1

∥(Aα̂(θ;ωi)−G(ωi))
⊤A∥2∥∇θα̂(θ;ωi)∥2

≤
√
Nϱσmax(A)

M

M∑
i=1

||(Aα̂(θ;ωi)−G(ωi))||2

≤
√
Nϱσmax(A)

(
1

M

M∑
i=1

∥(Aα̂(θ;ωi)−G(ωi))∥22

)1/2

≤ ϱσmax(A)
√

2NLM (θ)

≤ ϱσmax(A)2
√
2Nc∗,

which completes the proof.

Then, we prove Lemma 3.2 and 3.3 as follows.

Lemma 3.2. Consider a fixed θ ∈ BSpec
ρ,ρ1

(θ0) and q be a fixed positive constant. Under Assumptions

1, 2 and 3, the following inequality holds with probability at least (1 − 2(L+1)
m ): for all θ′ ∈

Qq(θ) ∩BSpec
ρ,ρ1

(θ0) ∩BEuc
ρ2

(θ)

LM (θ′) ≥ LM (θ) + ⟨θ′ − θ,∇θLM (θ)⟩+ β

2
||θ′ − θ||22,

where β = (σmin(A))2
(
q − 2ϱcHNρ2√

m

)
− σmax(A)2 cH

√
2Nc∗√
m

and ϱ, cH , and c∗ are given in the
previous lemmas.

Proof. We start with the second order Taylor expansion around θ to obtain

LM (θ′) = LM (θ) + ⟨θ′ − θ,∇θL(θ)⟩+
1

2
(θ′ − θ)⊤

∂2LM (θ̃)

∂θ2
(θ′ − θ) (18)
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where θ̃ = ξθ′ + (1− ξ)θ for some ξ ∈ [0, 1]. For the hessian term in (18), we have

∂2LM (θ̃)

∂θ2
=

1

2M

M∑
i=1

∂2

∂θ2
(Aα̂(θ̃;ωi)− g(ωi))

⊤(Aα̂(θ̃;ωi)− g(ωi))

=
1

M

M∑
i=1

∇θα̂(θ̃;ωi)A
⊤A∇θα̂(θ̃;ωi)

⊤ + (Aα̂(θ̃;ωi)− g(ωi))
⊤A

∂2α̂

∂θ2
(θ̃;ωi).

Consequently, we obtain that

(θ′ − θ)⊤
∂2LM (θ̃)

∂θ2
(θ′ − θ) =

1

M

M∑
i=1

∥A∇θα̂(θ̃;ωi)(θ
′ − θ)∥22

+ (θ′ − θ)⊤(Aα̂(θ̃;ωi)− g(ωi))
⊤A

∂2α̂

∂θ2
(θ̃;ωi)(θ

′ − θ)

=:I1 + I2.

For I1,

I1 ≥
σmin(A)2

M

M∑
i=1

∥∇θα̂(θ̃;ωi)(θ
′ − θ)∥22

=
σmin(A)2

M

M∑
i=1

∥(∇θα̂(θ;ωi) +∇θα̂(θ̃;ωi)−∇θα̂(θ;ωi))(θ
′ − θ)∥22

=
σmin(A)2

M

M∑
i=1

[
∥∇θα̂(θ;ωi)(θ

′ − θ)∥22 + ∥(∇θα̂(θ̃;ωi)−∇θα̂(θ;ωi))(θ
′ − θ)∥22

+ 2⟨∇θα̂(θ;ωi)(θ
′ − θ), (∇θα̂(θ̃;ωi)−∇θα̂(θ;ωi))(θ

′ − θ)⟩
]

≥ σmin(A)2

M

M∑
i=1

∥∇θα̂(θ;ωi)(θ
′ − θ)∥22

− 2σmin(A)2

M

M∑
i=1

∥∇θα̂(θ;ωi)∥2∥∇θα̂(θ̃;ωi)−∇θα̂(θ;ωi)∥2∥θ′ − θ∥22

where we used the Cauchy-Schwartz inequality in last inequality. We also note that θ̃ ∈ BSpec
ρ,ρ1

(θ0),
since θ̃ is a convex combination of θ′ and θ in BSpec

ρ,ρ1
(θ0) which is a convex set. This, together with

(14) and (15), implies that

I1 ≥
σmin(A)2

M

M∑
i=1

∥∇θα̂(θ;ωi)(θ
′ − θ)∥22 −

2σmin(A)2N

M

M∑
i=1

ϱ
cH√
m
∥θ̃ − θ∥2∥θ′ − θ∥22

≥ σmin(A)2

M

M∑
i=1

∥∇θα̂(θ;ωi)(θ
′ − θ)∥22 −

2σmin(A)2ϱcHN√
m

∥θ′ − θ∥32

where we used the fact ∥θ′ − θ∥2 ≥ ∥θ̃ − θ∥2 in the last line. Recalling θ′ ∈ Qq(θ) ∩BEuc
ρ2

(θ), we
use the definition of the Qq(θ) to obtain

I1 ≥ σmin(A)2q∥θ′ − θ∥22 −
2σmin(A)2ϱcHNρ2√

m
∥θ′ − θ∥22. (19)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Then, for I2,

I2 =
1

M

M∑
i=1

(θ′ − θ)⊤(Aα̂(θ̃;ωi)− g(ωi))
⊤A

∂2α̂

∂θ2
(θ̃;ωi)(θ

′ − θ)

=
1

M

M∑
i=1

N∑
j=1

{(Aα̂(θ̃;ωi)− g(ωi))
⊤A}j(θ′ − θ)⊤

∂2α̂j

∂θ2
(θ̃;ωi)(θ

′ − θ)

=
1

M

N∑
j=1

M∑
i=1

{(Aα̂(θ̃;ωi)− g(ωi))
⊤A}j(θ′ − θ)⊤

∂2α̂j

∂θ2
(θ̃;ωi)(θ

′ − θ)

For simplicity, we define the following temporary notations:

λij := {(Aα̂(θ̃;ωi)− g(ωi))
⊤A}j , Qij := (θ′ − θ)T

∂2α̂j(θ̃;ωi)

∂θ2
(θ′ − θ).

From (15), we have

|Qij | ≤ ∥θ′ − θ∥22

∥∥∥∥∥∂2α̂j(θ̃t;ωi)

∂θ2

∥∥∥∥∥
2

≤ cH∥θ′ − θ∥22√
m

. (20)

Then, we use (16) to obtain

1

M

M∑
i=1

N∑
j=1

|λij |2 =
1

M

M∑
i=1

N∑
j=1

|{(Aα̂(θ̃;ωi)− g(ωi))
⊤A}j |2

=
1

M

M∑
i=1

∥Aα̂(θ̃;ωi)− g(ωi))
⊤A∥22

≤ (σmax(A))2

M

M∑
i=1

∥Aα̂(θ̃;ωi)− g(ωi)∥22

≤ 2(σmax(A))2LM (θ) ≤ 2σmax(A)4c∗.

(21)

Using the above things, we get

I2 =
1

M

N∑
j=1

M∑
i=1

λijQij

≥ −

 1

M

N∑
j=1

M∑
i=1

|λij |2
 1

2
 1

M

N∑
j=1

M∑
i=1

|Qij |2
 1

2

≥ −
√
2σmax(A)2

√
c∗

cH
√
N∥θ′ − θ∥22√

m
.

This, together with (19), gives that

(θ′ − θ)⊤
∂2LM (θ̃)

∂θ2
(θ′ − θ)

≥

[
(σmin(A))2

(
q − 2ϱcHNρ2√

m

)
− (σmax(A))2

cH
√
2c∗N√
m

]
∥θ′ − θ∥22,

which completes the proof.

Lemma 3.3. Under Assumptions 1, 2 and 3, we have that for all θ′, θ ∈ BSpec
ρ,ρ1

(θ0), with probability

at least (1− 2(L+1)
m ):

LM (θ′) ≤ LM (θ) + ⟨θ′ − θ,∇θLM (θ)⟩+ γ

2
||θ′ − θ||22,

where γ = (σmax(A))2
(
ϱ2N + cH

√
2c∗N√
m

)
.
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Proof. As in the previous lemma, we start with the second order Taylor expansion around θ to obtain

LM (θ′) = LM (θ) + ⟨θ′ − θ,∇θLM (θ)⟩+ 1

2
(θ′ − θ)⊤

∂2LM (θ̃)

∂θ2
(θ′ − θ) (22)

where θ̃ = ξθ′ + (1− ξ)θ for some ξ ∈ [0, 1]. For the hessian term in (22), we have

∂2LM (θ̃)

∂θ2
=

1

2M

M∑
i=1

∂2

∂θ2
(Aα̂(θ̃;ωi)− g(ωi))

⊤(Aα̂(θ̃;ωi)− g(ωi))

=
1

M

M∑
i=1

∇θα̂(θ̃;ωi)A
⊤A∇θα̂(θ̃;ωi)

⊤ + (Aα̂(θ̃;ωi)− g(ωi))
⊤A

∂2α̂

∂θ2
(θ̃;ωi).

Consequently, we obtain that

(θ′ − θt)
⊤ ∂2LM (θ̃)

∂θ2
(θ′ − θ) =

1

M

M∑
i=1

∥A∇θα̂(θ̃;ωi)(θ
′ − θ)∥22

+ (θ′ − θ)⊤(Aα̂(θ̃;ωi)− g(ωi))
⊤A

∂2α̂

∂θ2
(θ̃;ωi)(θ

′ − θ)

=:I1 + I2.

For I1,

1

M

M∑
i=1

∥A∇θα̂(θ̃;ωi)(θ
′ − θ)∥22 ≤

σmax(A)2

M

M∑
i=1

∥∇θα̂(θ̃;ωi)∥22∥θ′ − θ∥22 (23)

≤ σmax(A)2ϱ2N∥θ′ − θ∥22. (24)

Then, for I2,

I2 =
1

M

M∑
i=1

N∑
j=1

(θ′ − θ)⊤(Aα̂(θ̃;ωi)− g(ωi))
⊤A

∂2α̂j

∂θ2
(θ̃;ωi)(θ

′ − θ)

=
1

M

M∑
i=1

N∑
j=1

{(Aα̂(θ̃;ωi)− g(ωi))
⊤A}j(θ′ − θ)⊤

∂2α̂j

∂θ2
(θ̃;ωi)(θ

′ − θ).

We recall the temporary values used in the proof of Lemma 3.2:

λij := {(Aα̂(θ̃;ωi)− g(ωi))
⊤A}j , Qij := (θ′ − θ)T

∂2α̂j(θ̃;ωi)

∂θ2
(θ′ − θ).

By using (20) and (21), we have

I2 =
1

M

N∑
j=1

M∑
i=1

λijQij

≤

 1

M

N∑
j=1

M∑
i=1

|λij |2
 1

2
 1

M

N∑
j=1

M∑
i=1

|Qij |2
 1

2

≤ σmax(A)2
√
2c∗

cH
√
N∥θ′ − θ∥22√

m
.

(25)

This, together with equation ??, gives

(θ′ − θt)
T ∂2L(θ̃t)

∂θ2
(θ′ − θt) ≤ (σmax(A))2

(
ϱ2N +

cH
√
2c∗N√
m

)
∥θ′ − θ∥22
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B.2 PROOF OF THEOREM 3.4

Theorem 3.4 (Optimization of the variation loss). Let {θt} denote the sequence of model parameters
generated by GD with the stepsize ηt =

ωt

γ ≤
2
γ , and we define

qt =

∑M
i=1 ∥∇θα̂(ωi; θt)∇θLM (θt)∥22

M∥∇θLM (θt)∥22
, Bt := Qqt(θt) ∩BSpec

ρ,ρ1
(θ0) ∩BEuc

ρ2
(θt),

θ∗ ∈ arginfθ∈BSpec
ρ,ρ1

(θ0)
L(θ), θ̄t+1 ∈ arginfθ∈Bt

L(θ) and δt :=
L(θ̄t+1)− L(θ∗)
L(θt)− L(θ∗)

.

Under Assumptions 1, 2 and 3, we further assume that for each iteration t, the followings holds:

(A1) θt+1 ∈ BSpec
ρ,ρ1

(θ0) ∩BEuc
ρ2

(θt), and (A2) qt >
2ϱcHNρ2√

m
+ κ(A)2

cH
√
2Nc∗√
m

.

(26)

Then, we have δt ∈ [0, 1), and the following inequality holds with probability at least (1− 2(L+1)
m ):

LM (θt+1)− LM (θ∗) ≤ (1− rtωt(2− ωt)(1− δt))
(
LM (θt)− LM (θ∗)

)
where rt is given by

rt =
(κ(A))−2

(
qt − 2ϱN cHρ2√

m

)
− cH

√
2Nc∗√
m

ϱ2N + cH
√
2c∗N√
m

> 0,

and ϱ, cH , and c∗ are given as in Lemma 3.2 and 3.3.

Proof. Since θ∗ ∈ arginfθ∈BSpec
ρ,ρ1

(θ0)
L(θ) and θ̄t+1, θt ∈ BSpec

ρ,ρ1 , we have

LM (θ∗) ≤ LM (θ̄t+1) and LM (θ∗) ≤ LM (θt), (27)

which gives δt ≥ 0. To obtain δt < 1, we use Lemma 3.3 and the definition of Gradient Descent to
obtain

LM (θt+1) ≤ LM (θ) + ⟨θt+1 − θt,∇θLM (θt)⟩+
γ

2
||θt+1 − θt||22

= LM (θt)− ηt∥∇θLM (θt)∥22 +
γη2t
2
∥∇θLM (θt)∥22

= LM (θt)− ηt

(
1− γηt

2

)
∥∇θLM (θt)∥22.

(28)

Also, we have from the definition of Qqt(θt),

θt+1 ∈ Qqt(θt) and hence θt+1 ∈ Bt.

This, together with (27) and (28), gives

LM (θ∗) ≤ LM (θ̄t+1) ≤ LM (θt+1) ≤ LM (θt), (29)

for ηt ≤ 2
γ . Thus, we have δt ∈ [0, 1). To complete the proof, we use Lemma 3.2 to obtain that for

any θ′ ∈ Bt

LM (θ′) ≥ LM (θt) + ⟨θ′ − θt,∇θLM (θt)⟩+
β

2
||θ′ − θt||22

≥ min
θ′∈Bt

LM (θ′) + ⟨θ
′
− θt,∇θLM (θt)⟩+

βt

2
||θ′ − θt||22

= LM (θt)−
1

2βt
∥∇θLM (θt)∥22,
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where βt = (σmin(A))2
(
qt − 2ϱcHρ2√

m

)
− σmax(A)2 cH

√
2Nc∗√
m

. Consequently, this, together with
(28) gives

LM (θt+1)− LM (θ̄t+1) ≤ LM (θt)− LM (θ̄t+1)− ηt

(
1− γηt

2

)
∥∇θLM (θt)∥22

≤ LM (θt)− LM (θ̄t+1)− ηt

(
1− γηt

2

)
2βt(LM (θt)− LM (θ̄t+1))

=
(
1− 2βtηt

(
1− γηt

2

))
(LM (θt)− LM (θ̄t+1)).

(30)

Finally, by using (30) and the definition of δt, we have

LM (θt+1)− LM (θ∗)

= LM (θt+1)− LM (θ̄t+1) + LM (θ̄t+1)− LM (θ∗)

≤
(
1− 2βtηt

(
1− γηt

2

)) (
LM (θt)− LM (θ̄t+1)

)
+ LM (θ̄t+1)− LM (θ∗)

=
(
1− 2βtηt

(
1− γηt

2

)) (
LM (θt)− LM (θ∗)

)
+ 2βtηt

(
1− γηt

2

) (
LM (θ̄t+1)− LM (θ∗)

)
≤
(
1− 2βtηt

(
1− γηt

2

)) (
LM (θt)− LM (θ∗)

)
+ 2βtηtδt

(
1− γηt

2

) (
LM (θt)− LM (θ∗)

)
=
(
1− 2(1− δt)βtηt

(
1− γηt

2

)) (
LM (θt)− LM (θ∗)

)
,

which, together with ηt =
ωt

γ , completes the proof.

B.3 RELATION BETWEEN qt AND NTK

In this subsection, we wil give the proof of Theorem 3.5. Recalling the definition of qt, we have

qt =

∑M
i=1 ∥∇θα̂(ωi; θt)∇θLM (θt)

⊤∥22
M∥∇θLM (θt)⊤∥22

=

∑M
i=1

∑M
j=1 |∇θα̂j(ωi; θt)∇θLM (θt)

⊤|2

M∥∇θLM (θt)⊤∥22
.

(31)

Here, we use the fact

∇LM (θ) =
1

M

M∑
i=1

(Aα̂(ωi; θt)− gi)
⊤A∇α̂(ωi; θt)

=
1

M
r(θt)

⊤A∇θα(θt),

with the definitions of r, A, and α given in Subsection 3.3, to obtain that

qt =

∑M
i=1

∑M
j=1 |∇θα̂j(ωi; θt)∇θα(θt)

⊤A⊤r(θt)|2

M∥∇θα(θt)⊤A⊤r(θt)∥22

=
∥∇θα(θt)∇θα(θt)

⊤A⊤r(θt)∥22
M∥∇θα(θt)⊤A⊤r(θt)∥22

=
∥∇θα(θt)∇θα(θt)

⊤A⊤r(θt)∥22
Mr(θt)⊤A∇θα(θt)∇θα(θt)⊤A⊤r(θt)

=
∥K(θt)A⊤r(θt)∥22

Mr(θt)⊤AK(θt)A⊤r(θt)
.

This completes the proof.
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C MORE DETAILS ON NUMERICAL EXPERIMENTS

C.1 EQUATIONS

In this paper, we consider two linear elliptic equations: a 1D Helmholtz equation and a convection-
diffusion problem. Specifically, the equations are given as follows.

• Helmholtz equation reads as

−uxx + ku = g(x) in D,

u(x) = 0 on ∂D,
(32)

where we use k = 7
2 in this paper.

• Convection-diffusion equation reads as

−uxx + νux = g(x) in D,

u(x) = 0 on ∂D,
(33)

where we use ν = 1 in this work.

C.2 GENERATION OF SAMPLE DATA FOR TRAINING

To generate sample data for training, we use the following M forcing term given as:

gi = g(x, ωi) := ω1 sin(ω3(x) + ω2 cos(ω4),

where ω1, ω2 and ω3, ω4 are drawn from a uniform distribution on [3, 5] and [0, 2π].

C.3 DETAILS ON EXPERIMENTAL SET-UP

The networks used for the experiments are given as follows.

Helmholtz Equation

• The number of hidden layers L: 1

• The number of width at each layer m: 100

• The number of training samples M : 1,000

• The number of basis functions N : 30

• Activation function ϕ: Relu

• Learning rate: 0.001

• Optimizer: Adam

• The number of training steps: 100,000

Convection-Diffusion Equation

• The number of hidden layers L: 1

• The number of width at each layer m: 100

• The number of training samples M : 1,000

• The number of basis functions N : 30

• Activation function ϕ: Relu

• Learning rate: 0.001

• Optimizer: Adam

• The number of training steps: 100,000

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

C.4 PRECONDITIONING

In our experiments, we applied two types of preconditioning techniques as follows:

• Type 1: For this approach, we selected the preconditioner P as the exact inverse of the
matrix A. This method fully compensates for the condition number of A.

• Type 2: In this case, we chose P as a diagonal matrix, where each diagonal entry is the
inverse of the corresponding diagonal element of A. While less accurate than Type 1, this
method reduces the computational cost associated with the inverse of the full matrix A,
providing a balance between efficiency and accuracy.

C.5 ADDITIONAL EXPERIMENTAL RESULTS

In this subsection, we provide additional figures related to the Helmholtz equation experiments dis-
cussed in Section 5. Furthermore, we present the results of applying the same preconditioning and
adaptive weight methods to the convection-diffusion equation. Finally, we provide experimental
results on the behavior of qt and the boundedness of the average gradients during the training pro-
cess. As discussed in Section 3.3, maintaining a uniform lower bound for qt is crucial for ensuring
geometric convergence.

Helmholtz equation We present additional figures related to the Helmholtz equation experiments
discussed in Section 5

Figure 2: Norm of the average gradient dur-
ing training for 1D Helmholtz equation.

Figure 3: Loss behavior for 1D Helmholtz
equation from different trials.

Figure 4: Behavior of qt during training for
1D Helmholtz equation.

Trial Relative L2 Error
Trial A 2.767× 10−4

Trial B 1.336× 10−4

Trial C 1.325× 10−4

Trial D 8.371× 10−5

Trial E 7.098× 10−5

Figure 5: Relative L2 errors for Helmholtz
trials.

Convection Diffusion equation We also present experimental results for the convection-diffusion
equation. Each type of trial corresponds to those described in Section 5.
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Figure 6: Norm of the average gradient dur-
ing training for 1D Standard equation.

Figure 7: Loss behavior for 1D Standard
equation from different trials.

Figure 8: Behavior of qt during training for
1D Standard equation.

Trial Relative L2 Error
Trial A 1.177× 10−4

Trial B 7.967× 10−5

Trial C 8.025× 10−5

Trial D 7.634× 10−5

Trial E 7.860× 10−5

Figure 9: Relative L2 errors for 1D Standard
trials.

Behavior of qt Figure 10 shows the behavior of qt over the whole training for both the precondi-
tioned and non-preconditioned cases. Through experiments, we can easily find some cases where qt
vanishes.

Figure 10: The behavior of qt during Training. Comparison among Different methods on the 1D
Helmholtz equation. Trial A: Original ULGNET; Trial B: ULGNET with Preconditioning Type
1 + Adaptive Weight method; Trial C: ULGNET with Preconditioning Type 2 + Adaptive Weight
method.

Boundedness of the average gradients: Figure 11 demonstrates the boundedness of the average
gradients 1

M

∑M
j=1∇θα̂(ωj ; θt) during the training process. This suggests that the proposed algo-

rithm successfully mitigates the behavior of qt and ensures that the optimization process proceeds.
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Figure 11: Norm of the average gradient during training for 1D Helmholtz equation. Compari-
son among Different methods on the 1D Helmholtz equation. Trial A: Original ULGNET; Trial B:
ULGNET with Preconditioning Type 1 + Adaptive Weight method; Trial C: ULGNET with Precon-
ditioning Type 2 + Adaptive Weight method.
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