Published in Transactions on Machine Learning Research (02/2025)

Partially Frozen Random Networks
Contain Compact Strong Lottery Tickets

Hikari Otsuka'*f otsuka.hikari@artic.iir.isct.ac.jp
Daiki Chijiwa?* daiki. chijiwa@nitt.com
Angel Lépez Garcia-Arias?* lopez@ieee. org
Yasuyuki Okoshi! okoshi.yasuyuki@artic.dir.isct.ac.jp

1

Kazushi Kawamura kawamura@artic.iir.isct.ac.jp

Thiem Van Chu! thiem@artic.dir.isct.ac.jp
Daichi Fujiki' dfujiki@artic.iir.isct.ac.jp
Susumu Takeuchi? susumu.takeuchi@ntt.com

1

Masato Motomura motomura@artic.iir.isct.ac.jp

! Department of Information and Communications Engineering, Institute of Science Tokyo, Japan
2NTT Corporation, Japan

Reviewed on OpenReview: https: //openreview. net/ forum? id=zpnPYfufhz

Abstract

Randomly initialized dense networks contain subnetworks that achieve high accuracy without
weight learning—strong lottery tickets (SLTs). Recently, Gadhikar et al. (2023) demonstrated
that SLTs could also be found within a randomly pruned source network. This phenomenon
can be exploited to further compress the small memory size required by SLTs. However,
their method is limited to SLTs that are even sparser than the source, leading to worse
accuracy due to unintentionally high sparsity. This paper proposes a method for reducing
the SLT memory size without restricting the sparsity of the SLTs that can be found. A
random subset of the initial weights is frozen by either permanently pruning them or locking
them as a fixed part of the SLT, resulting in a smaller model size. Experimental results
show that Edge-Popup (Ramanujan et al., 2020; Sreenivasan et al., 2022) finds SLTs with
better accuracy-to-model size trade-off within frozen networks than within dense or randomly
pruned source networks. In particular, freezing 70% of a ResNet on ImageNet provides 3.3
compression compared to the SLT found within a dense counterpart, raises accuracy by up
to 14.12 points compared to the SLT found within a randomly pruned counterpart, and
offers a better accuracy-model size trade-off than both.

1 Introduction

The strong lottery ticket hypothesis (SLTH) conjectured the existence of subnetworks within a randomly
weighted network—strong lottery tickets (SLTs)—that achieve comparable accuracy to trained dense net-
works (Zhou et al., 2019; Ramanujan et al., 2020; Malach et al., 2020). The existence of such subnetworks
that do not require weight training, illustrated in Figure 1 (left), has been demonstrated experimentally (Zhou

*Equal contribution. T Correspondence to: Hikari Otsuka <otsuka.hikari@artic.iir.isct.ac.jp>.

https://openreview.net/forum?id=xpnPYfufhz

Published in Transactions on Machine Learning Research (02/2025)

ImageNet
Optlmlzatlon Frozen Parameter ‘AV
Target (Locked) 'o\? 60 _——"',Q’:::—— =
2 oo
J O
bu] V-3
< e Model
2817 O ResNet-18
i o A ResNet-34
~ 0O ResNet-50
230 O ResNet-101
= v Wide ResNet-50
SLT Search Within SLT Search Within SLT Search Within Strong - - - -
Dense NN Frozen NN Lottery Ticket 0.5 1 1 5 25
[Ramanujan et al., 2020] [Gadhikar et al., 2023] (Pruned + Locked) Model Size [M B]
[Proposed] Freezing Ratio (Pruning Ratio : Locking Ratio)
Memorize - Memorize L Memorize --0% (0.0% : 0.0%) --70%(65.0%:5.0%)
20 Parameters 15 Parameters 5 Parameters 70% (70.0% : 0.0%)

Figure 1: Freezing the source network by randomly pruning some Figure 2: Freezing (e) improves the
parameters and locking others reduces the memorized supermask accuracy-to-model size trade-off over pre-
for finding an SLT. pruning only (e) or non-freezing (e).

et al., 2019; Ramanujan et al., 2020; Huang et al., 2022; Lépez Garcia-Arias et al., 2023; Yeo et al., 2023)
and proven theoretically for dense source networks (Malach et al., 2020; Orseau et al., 2020; Pensia et al.,
2020; Diffenderfer & Kailkhura, 2021; da Cunha et al., 2021; Burkholz, 2022a; Burkholz et al., 2022; Ferbach
et al., 2023; Gadhikar et al., 2023). They appear in networks with excessive amounts of parameters, and
their existence indicates the possibility of new optimization strategies for deep neural networks based on a
network connectivity perspective.

SLTs offer a particularly advantageous opportunity for specialized inference hardware (Hirose et al., 2022;
Chen et al., 2022; 2023) since the random weights can be reconstructed from the seed (i.e., they do not need
to be memorized), and the binary mask—supermask—can be greatly compressed with entropy coding, vastly
reducing off-chip memory access and its associated overheads. Furthermore, the binary nature of both the
supermask and the random weights can be exploited for multiplier-less execution, as demonstrated practically
by Hirose et al. (2022).

Recently, Gadhikar et al. (2023) showed that accurate SLTs could be found even if the number of edges to be
optimized was reduced by randomly pruning the source network at initialization (see Figure 1, center). Since
the random pre-pruning mask can be reconstructed from the seed in the same way as the random weights, and
thus there is no need to store the part of the supermask corresponding to pre-pruned weights, their approach
can be exploited to further reduce the memory cost required by the SLT in specialized hardware. However,
when aiming for high compression, their method can only search for SL'Ts in the relatively high sparsity
region, and may even lead to layer collapse (Hayou et al., 2020; Tanaka et al., 2020). Furthermore, since the
SLT sparsity regions where highly accurate SLTs exist depend on the dataset and network architecture, a
search limited to sparse regions may fail to find accurate SLTs. For instance, work on SLTs within graph
neural networks has shown that dense SLTs are more accurate than sparse ones in some settings (Huang
et al., 2022; Yan et al., 2023). Therefore, it would be desirable to use a method that allows for increased
randomness in SLTs for further model compression, but has the freedom to allocate it in the SLT sparsity
regions that lead to more accurate tickets.

This paper introduces such a novel method to reduce the memory cost of the optimized supermask without
restricting the desired sparsity of SLTs to be searched for: in addition to random pruning at initialization,
it also locks randomly chosen parameters at initialization to be a permanent part of the SLT (i.e., never
pruned), as exemplified in Figure 1 (right). Both the randomly pruned and the locked parameters—the frozen
parameters—are left completely random and can be regenerated from seed. The weights corresponding to the
optimized supermask region (less than 50% of the total) are also reconstructed from seed, and the supermask
is binary and sparse, producing a highly compressible model. Far from negatively impacting performance, this
cost reduction is efficient: as shown in Figure 2, the frozen SLTs achieve a higher accuracy than SLTs with a
similar size resulting from conventional methods. The contributions of this paper are summarized as follows:

Published in Transactions on Machine Learning Research (02/2025)

o We propose a novel method that vastly reduces the number of parameters to be memorized for finding
an accurate SLT by freezing (pruning and locking) the source random network.

o We experimentally validate our method in three scenarios corresponding to low, medium, and high
optimal SLT sparsity regions, which reveal that parameter freezing consistently produces smaller yet
accurate supermasks. Even with randomly frozen parameters, we find highly accurate SLTs that
cannot be found within dense networks for some desired sparsities.

e Furthermore, the experimental results show that SLTs found in frozen networks achieve comparable
or better accuracy-to-model size trade-off than SLTs found within dense (non-freezing) or sparse
(non-locking) random networks.

As mentioned above, SLTs are quite attractive for neural engine design, as they can vastly reduce the memory
size for model storage, meaning that off-chip memory access—by far the major bottleneck of energy and time
consumption (Horowitz, 2014)—can be drastically reduced for energy-efficient inference acceleration (Hirose
et al., 2022). Our contributions have the potential to reduce off-chip memory access further and to make
inference more energy-efficient than previous designs.

2 Preliminaries

This section outlines the background of strong lottery tickets (SLTs) within dense or sparse networks and
SLT search algorithms.

2.1 Strong Lottery Tickets in Dense Networks

SLTs (Zhou et al., 2019; Ramanujan et al., 2020; Malach et al., 2020) are subnetworks within a randomly
weighted neural network that achieve high accuracy without any weight training. Compared with learned dense
weight models, SLTs can be reconstructed from a small amount of information: since the random weights can
be regenerated from their seed, it is only necessary to store the binary supermask and the seed (Hirose et al.,
2022). SLT search algorithms for deep neural networks (Zhou et al., 2019; Ramanujan et al., 2020; Zhou
et al., 2021; Sreenivasan et al., 2022) find SLTs by updating weight scores, which are then used to generate
the supermask, instead of updating weights. For example, the Edge-Popup algorithm (Ramanujan et al.,
2020; Sreenivasan et al., 2022) used in this paper finds SLTs by applying a supermask generated from the
connections with the top-k% scores.

SLT Existence via Subset-Sum Approximation Given a set of random variables and a target value,
the subset-sum problem consists of finding a subset whose total value approximates the target. Lueker (1998)
showed that such a subset exists with high probability if the number of random variables is sufficiently large:

Lemma 2.1 (Subset-Sum Approximation (Lueker, 1998)). Let Xi,...,X,, ~ U(—1,1) be independent,
uniformly distributed random variables. Then, except with exponentially small probability, any z € [—1,1] can
be approximated by a subset-sum of X; if n is sufficiently large.

Based on this Lemma 2.1, which was first introduced into the SLT context by Pensia et al. (2020), previous
works (Burkholz, 2022a;b; da Cunha et al., 2021; Pensia et al., 2020) showed that an SLT that approximates
an arbitrary target network exists in a dense source network if it is logarithmically wider and constantly
deeper than the target network. In particular, Burkholz (2022a) proved that a source network with depth
L+1 and larger width than the target network contains an SLT that can approximate the target network
with depth L.

2.2 Strong Lottery Tickets in Sparse Networks

Recently, Gadhikar et al. (2023) revealed that SLTs also exist within sparse source networks, i.e., random
networks that have been randomly pruned at initialization (see Figure 1, center). They showed its existence
experimentally as well as theoretically, as outlined later: an SLT that approximates a given target network
exists with high probability in a sparse source network that is sufficiently wider and deeper than the target.

Published in Transactions on Machine Learning Research (02/2025)

SLT Existence in Sparse Networks To prove the existence of SLTs within sparse networks, Gadhikar
et al. (2023) extended the subset-sum approximation (Lemma 2.1) to the situation where randomly chosen
variables are permanently pruned at initialization:

Lemma 2.2 (Subset-Sum Approximation in Sparse Networks (Gadhikar et al., 2023)). Let X1, ..., X, be as in
Lemma 2.1, and My, ..., M,, ~ Ber(p) be independent, Bernoulli distributed random variables with p € (0,1).
Then, except with exponentially small probability, any z € [—1,1] can be approzimated by a subset-sum of
M; X; if n is sufficiently large.

By applying this extended lemma instead of Lemma 2.1 to the SLT existence theorem presented by Burkholz
(2022a), Gadhikar et al. (2023) proved the SLT existence in sparse networks as following theorem:

Theorem 2.1 (SLT Existence in Sparse Networks Gadhikar et al. (2023)). Let a target network fr with
depth L and a sparse source network fg with depth L+1 be given. Assume that the source network is randomly
pruned with pruning ratio p; for each l-th layer. Also assume that these networks have ReLU activation
function and initialized by using a uniform distribution U[—1,1]. Then, except with exponentially small
probability, a subnetwork fspr exists in the sparse source network fs such that fspr approximates the target
network fr if the width of fs is sufficiently large.

Thus, by extending the subset-sum approximation lemma, the conventional SLT existence proof can be easily
extended to various network settings.

3 Strong Lottery Tickets in Frozen Networks

The approach of finding SLTs within sparse networks by Gadhikar et al. (2023) offers a practical advantage: as
the randomly pre-pruned parts can be reconstructed from the seed, this pre-pruning process can be exploited
to reduce the memory requirement of the supermask.

However, this approach also imposes the limitation that it can only search for SLTs with a sparsity higher
than the pre-pruning ratio. For example, a random pre-pruning ratio of 90% vastly reduces the memory
size of the supermask, but it limits the search to only SLTs sparser than 90%. Therefore, their method is
incompatible with exploring the whole SLT sparsity range for optimal accuracy.

This paper proposes a novel method that allows us to find SLTs within the optimal sparsity range while
still capitalizing on the compression gains offered by random connectivity initialization. We explore the
performance of SLTs within a frozen source network, i.e., a random network that (in addition to randomly
pruned parameters) has randomly chosen parameters forced to be permanent part (i.e., never pruned) of the
SLT—Ilocked parameters (see Figure 1, right). Since the random locking pattern can be reconstructed from
seed in the same way as the random pre-pruning pattern, our freezing method allows us to compress SLTs
further. Additionally, locking allows us to extend the benefits of pre-pruning to the scenarios where the SLT
sparsity should not be too high, e.g., as found in graph neural networks (Huang et al., 2022; Yan et al., 2023).

This section first describes the construction of frozen networks and the freezing pattern encoding for model
compression. Then, we perform a preliminary experiment of the optimal settings for the proposed method in
preparation for the evaluation experiments in Section 4.

3.1 Partial Freezing for Enhanced SLT Compression

In our method, since frozen regions in the source network are completely random and thus can be reconstructed
from seed, we need to memorize only the optimized supermask region. The total amount of frozen parameters
is determined by a global freezing ratio F)., which is the sum of the respective pre-pruning ratio P, and locking
ratio L,. Therefore, we optimize the 1—F;. of the parameters (i.e., non-frozen parameters) of the original
dense network. As explained previously, it is not possible to search for an SLT with a lower sparsity (denser)
than the frozen source network. Consequently, as shown in Figure 3, the pre-pruning ratio P, sets the lower
bound of the sparsity of the SLTs that can be found. On the other hand, it is not possible to search for an
SLT that prunes more parameters than those available, so the locking ratio L, sets the upper bound of the
sparsity of the SLTs that can be found. (Specifically, the upper bound is given by 1—L,.) Thus, these ratios

Published in Transactions on Machine Learning Research (02/2025)

allow us to freely control the proportion of pre-pruning and locking ratios and memory size reduction ratio
for the desired SLT sparsity.

Frozen network construction: We assume that

the I-th layer of network with depth L has weights Top-1 Acc.
w® e R™. The number of frozen parame- T
ters is determined by the layer-wise freezing ratios .| Desired SLT Sparsity Range 1 .

(1) (L)) . Frozen Region 1 _ | h ., 1Frozen Region
Py py, where each p,° is defined as the sum of ¢ N+ I Sl
the layer-wise pre-pruning ratio pg) and the layer- l 1-F (N(lan-Frozen) m1
wise locking ratio pl(l)7 and pgcl),pl(,l),pl(l) € [0,1]. | SLT Sparsity

To prune p(fl)n(l) parameters and lock pl(l)n(l) Figure 3: Pre-pruning and locking set the bounds of
parameters, we generate two random masks, a the SLT sparsity that can be found. These optimal

pre-pruning mask ml(,l) e {0, 1}n<” and a lock- bounds are investigated in Section 3.2.

ing mask ml(l) € {0, 1}”(”, so that they satisfy
11— ml(,l)|| :pl(,l)n(l), ||ml(l)|| = pl(l)n(l), and (1— mg)) -ml(l) =0 (i.e., we require pre-pruning and lock-
ing to be implemented without overlap). The layer-wise weights frozen with these masks are calculated as

w;l) = (](f) ©(1- ml(l)) + ml(l)) ® w®. These masks are fixed during training, and we search for SLTs

only in the parts where mz(;l) ©1- ml(l)) is one.

Setting the layer-wise ratios: Our method considers the following two existing strategies for determining
the layer-wise pre-pruning ratio from the desired global pre-pruning ratio of the network:

o Erdés-Rényi-Kernel (ERK): The pre-pruning ratio of layer [is proportional to the scale
(Cz-(fl) + C’th + k,(ll) + kg))/(C’(l) N IO kg)), where ¢V ¢! k;l), and kY denote input chan-

in out h in) ~out’
nels, output channels, kernel height, and kernel width of the layer [, respectively (Evci et al.,

2020).

o FEdge Per Layer (EPL): Each layer’s pre-pruning ratio is set so that they all have the same number
of remaining weights (Price & Tanner, 2021; Gadhikar et al., 2023).

The same strategy is employed to determine the layer-wise pre-pruning and freezing ratios from their respective
global ratios, and then the locking ratios are calculated as the difference between the corresponding freezing
and pre-pruning ratios.

Freezing pattern encoding for model compression: The freezing pattern can be encoded during
inference as a ternary mask—a freezing mask—that indicates whether a parameter is pruned, locked, or part
of the supermask. For example, encoding pre-pruning as —1, locking as 41, and supermask inclusion as 0,
the layer-wise freezing mask can be encoded as ml(l) + (m,(gl) -1)e{-1,0, 1}”(1). Since this freezing mask
is also random and fixed, it can be regenerated from its seed and ratios, similarly to the random weights.
Furthermore, the supermask size is reduced by excluding from it the frozen parameters, so the SLTs found
by this method can be compressed in inference to an even smaller memory size than those produced by the
existing SLT literature (Hirose et al., 2022; Okoshi et al., 2022; Lépez Garcia-Arias et al., 2023), reducing
costly off-chip memory access on specialized neural inference accelerators (Hirose et al., 2022; Chen et al.,
2023), and thus offering an opportunity to perform even faster and more energy-efficient inference processing.

3.2 Optimal Pruning:Locking Proportion for Freezing

Here, we perform a preliminary investigation of the optimal pruning:locking proportion for each given desired
SLT sparsity by varying the proportion with a fixed freezing ratio of the network. Figure 4 explores different
configurations of a 80% freezing ratio—the situation where the supermask memory size is 20% of the SLT
in the dense source network—on a Conv6 network and compares the performance of the found SLTs on

Published in Transactions on Machine Learning Research (02/2025)

CIFAR-10. As expected, the best-performing SLT of each prune:lock configuration is found at the center of
the non-frozen region, where the number of candidate subnetworks is maximized. In other words, when the
non-frozen region accounts for S € [0, 1] of the entire source network, the optimal SLT sparsity is k = P, +.5/2,
where P, =}, p,(,l)n(l) /3=, n™®) is the global pre-pruning ratio of the network. Conversely, for a given freezing
ratio F}. of the network and a desired SLT sparsity k, the optimal position of the frozen region is set by the
pre-pruning ratio P. = k — (1 — F}.)/2 and the corresponding locking ratio L, = F,. — P,.. In the cases where
this would result in P. <0 or L, <0, we choose a best-effort approach that keeps the desired freezing ratio
and sets the bounds to P.=0 or L,.=0, respectively.

Additionally, Figure 4 compares the two strategies for setting 50 CIFAR-10

ratios considered in Section 3.1, showing that EPL outper-

forms ERK in all cases. Consequently, hereafter, the proposed ¢

method sets the global ratios in order to position the frozen ': 65 |

region center as close as possible to the desired SLT sparsity, &

and then sets the layer-wise ratios using EPL. ‘g
50]

3.3 SLT Existence in Frozen Networks g— :
Q :

One question comes to mind here: does SLT exist that ap- 35 H

proximates a given ta'rget network, even if tﬁe parameters 10 3%LT Spasrosity [%30 90
are randomly frozen (i.e., pruned or locked) in advance? Tt Pruning Ratio (%] - Locking Ratio [%]
has been shown by Gadhikar et al. (2023) that an SLT that | .50 < 50:60 -40:40 —60:20 ~80:0
approximates a given target network exists in the pre-pruned 10:70 =30:50 ~50:30 —~70:10

source network if the source network is sufficiently wider and |—gpL ...ERK

deeper than the target, but it is not known whether such an

SLT exists in the situation of a frozen source network. Here, Figure 4: Different prune:lock proportions of
we provide a rough theoretical result indicating that an SLT a 80% freezing ratio using a Conv6.

capable of approximating a target network exists in a frozen

network with a sufficiently large width. This result is proved by extending the subset-sum approximation
lemma (Lemma 2.1) to the case where some parameters are locked (for detailed proof, see Appendix A).

Lemma 3.1 (Subset-Sum Approximation in Randomly Locked Networks). Let X1, ..., X,, be as in Lemma 2.1,
and Mj, ..., M}, ~ Ber(q) be independent, Bernoulli distributed random variables with q € (0,1). Then, except
with exponentially small probability, any z € [—1,1] can be approzimated by the sum of > ., M/X; and a
subset-sum of (1 — M) X; if n is sufficiently large.

Then, by using the same proof procedure as Lemma 3.1, we extend the subset-sum approximation to the
situation where some random variables are frozen (i.e., pruned or locked).

Lemma 3.2 (Subset-Sum Approximation in Frozen Networks). Let Xi,...,X, be as in Lemma 2.1,
My, ..., M, ~ Ber(p) be as in Lemma 2.2, and Mj,..., M) ~ Ber(q) be as in Lemma 3.1. Then, ex-

cept with exponentially small probability, any z € [—1,1] can be approzimated by the sum of ZLI M;M!X;
and a subset-sum of M;(1 — M!)X; if n is sufficiently large.

Finally, by applying Lemma 3.2 to the Theorem 2.5 in Gadhikar et al. (2023) instead of Lemma 2.2, it follows
that an SLT approximating a target network exists within a frozen network.

Theorem 3.1 (SLT Existence in Frozen Networks). Let a target network fr with depth L and a partially
frozen source network fg with depth L+1 be given. Assume that the source network is randomly frozen with
pruning ratio p; and locking ratio q; for each l-th layer, except for O-th and 1-st layers. Also assume that
these networks use the ReLU activation function and are initialized with a uniform distribution U[—1,1].
Then, except with exponentially small probability, a subnetwork fspT exists in the frozen source network fg
such that fspr approxzimates the target network fr if the width of fs is sufficiently large.

Note that this theorem is intended to provide an existential guarantee for the question raised at the beginning
of this subsection, whether the freezing operation hurts the existence of SLTs that can approximate an
arbitrary network; thus, we do not focus on the sharpness of the probability bound to keep the results simple.

Published in Transactions on Machine Learning Research (02/2025)

[Freezing Ratio [%] =0 =40 =50 =60 =70 =80 90

o]
o

g r/_:h—A\\ 90 70 A I~ 1
U 80 N -
2 % 65
= 88
@ 75
- 66
270 86 |
‘ : : . : : : . — 64 1+ : . :
10 30 50 70 90 10 30 50 70 90 10 30 50 70 90
SLT Sparsity [%] SLT Sparsity [%] SLT Sparsity [%]
(a) Conv6 (CIFAR-10) (b) ResNet-18 (CIFAR-10) (¢) GIN (OGBN-Arxiv)

Figure 5: Impact of the freezing ratio on different architectures. Pruning and locking ratios are set following
Section 3.2.

Nevertheless, proving sharper bounds may lead to capturing the effect of the freezing operation, which is left
for future work.

4 Experiments

This section demonstrates that freezing reduces the SLT memory size in a broad range of situations by
evaluating it on image classification and graph node classification. We evaluate the impact of the freezing
ratio on various network architectures, identifying three scenarios. Then, we explore trade-offs between
accuracy and model memory size for different network widths and architectures.

4.1 Experimental Settings

We evaluate the SLTs within frozen networks on image classification using the CIFAR-10 (Krizhevsky, 2009)
and ImageNet (Russakovsky et al., 2015) datasets, and on node classification using the OGBN-Arxiv (Hu
et al., 2020) dataset. CIFAR-10 and ImageNet train data are split into training and validation sets with a
4:1 ratio, while for OGBN-Arxiv we use the default set split. We test the models with the best validation
accuracy and report the mean of three experiment repetitions for CIFAR-10 and OGBN-Arxiv, and the result
of one experiment for ImageNet. The standard deviation of experiments conducted more than once is plotted
as error bars.

For image classification we employ the VGG-like Conv6 (Simonyan & Zisserman, 2014; Ramanujan et al.,
2020), ResNet (He et al., 2016), and Wide ResNet (Zagoruyko & Komodakis, 2016) architectures, and for
graph node classification the 4-layer modified GIN (Xu et al., 2019) architecture in Huang et al. (2022), all
implemented with no learned biases. ResNet and GIN use non-affine Batch Normalization (Ioffe & Szegedy,
2015), while Conv6 has no normalization layers. Random weights are initialized with the Kaiming Uniform
distribution, while weight scores are initialized with the Kaiming Normal distribution (He et al., 2015).

SLTs are searched using an extension of Edge-Popup (Ramanujan et al., 2020) that enforces the desired SLT
sparsity globally instead of per-layer (Sreenivasan et al., 2022). On CIFAR-10, scores are optimized for 100
epochs using stochastic gradient descent with momentum 0.9, batch size 128, weight decay 0.0001, and initial
learning rates of 0.01 and 0.1 for Conv6 and ResNet-18, respectively. On ImageNet, scores are optimized by
the same setting as ResNet-18 on CIFAR-10, but a 256 batch size. On OBGN-Arxiv, scores are optimized
for 400 epochs using AdamW (Loshchilov & Hutter, 2019) with weight decay 0.0001 and initial learning rate
0.01. All experiments use cosine learning rate decay (Loshchilov & Hutter, 2017). These can be adequately
verified with two NVIDIA H100 SXM5 94GB GPUs.

4.2 Varying Desired SLT Sparsity at Different Freezing Ratios

This section investigates the effect of the freezing ratio of the network on desired SLT accuracy. We identify
three scenarios, represented in Figure 5.

Published in Transactions on Machine Learning Research (02/2025)

[Weight Init. —KU --SKC

Width 0025x A 0.5x O01.0x ¢ 2.0x]

o0 ~ o]
a vl v
L L L

Top-1 Test Acc. [%]

[§]
v
L

0.01 1

o1
Model Size [MB]

0.1 1
Model Size [MB]

!
Model Size [MB]

Freezing Ratio (Pruning Ratio : Locking Ratio)
— 0% (0.0% : 0.0%) —50%(25.0% :25.0%)
45% (45.0% : 0.0%) —60%(30.0% :30.0%)

Freezing Ratio (Pruning Ratio : Locking Ratio)
— 0% (0.0% : 0.0%) —85%(82.5%:2.5%)
85% (85.0% : 0.0%) —90%(85.0% :5.0%)

Freezing Ratio (Pruning Ratio : Locking Ratio)
— 0% (0.0% : 0.0%) —50%(0.0% :50.0%)
15% (15.0% : 0.0%) — 60%(0.0% : 60.0%)

(a) Conv6 (SLT Sparsity 50%)

(b) ResNet-18 (SLT Sparsity 90%)

(c) GIN (SLT Sparsity 20%)

Figure 6: Compared to sparse () or dense (o) source networks, freezing achieves better accuracy-to-model
memory size trade-off (top-left is better).

In the cases where the optimal SLT sparsity is found at intermediate sparsity—e.g., around 50% for Conv6 in
Figure 5a—pruning and locking can be applied with equally high ratios. Results show that the supermask
memory size can be reduced by 40% with a small impact on accuracy, and by 70% with still a moderate
accuracy drop of 5 points.

Applying the much larger ResNet-18 to the same task results in much stronger overparametrization. Therefore,
optimal SLTs are found in the higher sparsity range, as revealed by Figure 5b, benefiting from much higher
pruning than locking. Even though 90% of the memory size is reduced in this scenario, we can find 90%
sparse SLTs with 88.1% accuracy.

As an example of the scenario where optimal SLT sparsities are found in the denser range, benefiting from
a higher locking ratio, we evaluate GIN in Figure 5c. Compared with the best-performing SLT found in
the dense GIN, of 70.1% accuracy and 20% sparsity, by freezing 50% of the memory size, our method finds
similarly performing SLTs of 69.8% accuracy with 40% sparsity.

Interestingly, with low SLT sparsity (e.g., 10% sparsity) in all three scenarios, despite the reduced parameters
to be optimized, SLTs within frozen networks achieve higher accuracy than SLTs within dense networks.
These results imply that parameter freezing at an appropriate ratio has the effect of avoiding the inclusion
of low-grade local optimal solutions in the search space. While searching for SLTs in a dense network by
Edge-Popup leads to convergence to a local optimal solution (Fischer & Burkholz, 2022), a moderate random
parameter freezing may reduce the number of less accurate local optimal solutions and facilitate convergence
to a more accurate local optimal solution within the reduced search space. In other words, we conjecture that
if the network is properly frozen, the local optimal solution for the reduced search space is close to the global
optimal solution of the entire search space.

4.3 Accuracy-to-Model Memory Size Trade-Off

The freezing mask compression scheme proposed in Section 3.1 allows to reduce the model memory size
during inference by regenerating both the random weights and the freezing mask with random number
generators. Here we consider this compression and investigate the accuracy-to-model size trade-off offered by
the SLTs found in the frozen networks. Model size refers to the total memory size of model parameters that
need to be stored. The random weights and the frozen parts of the supermask are excluded, since they can
be regenerated from seed, whereas each non-frozen element of the supermask and each learned batchnorm
parameter are counted as 1 and 32 bits, respectively. Furthermore, we also compare the Kaiming Uniform
(KU) weight initialization used so far with the binary weights provided by the Signed Kaiming Constant
(SKC) initialization (Ramanujan et al., 2020), which can be exploited for reduced computational cost in
neural engines (Hirose et al., 2022). For SKC, we scale weights by 1/+/1 — k;, where k; is the sparsity of each

Published in Transactions on Machine Learning Research (02/2025)

layer, as proposed by Ramanujan et al. (2020). Note that since we are interested in the accuracy of the SLTs
compressed as much as possible obtained by each method, the pre-pruning ratio for the pruning-only case
is determined as (target sparsity — 5)% to compress the SLT as much as possible while allowing to search
for SLTs. On the other hand, we evaluate freezing with a higher compression ratio than pruning only. This
setting means we evaluate our method under more strict conditions than pruning-only from the compression
ratio perspective.

Figure 6 explores varying the width of the source network to analyze its impact on accuracy and model
size. SLT sparsity is fixed to that of the best performing SLT found in a dense source network in Figure 5:
50% in Conv6, 90% in ResNet-18, and 20% in GIN. Compared to the SLTs found in dense or sparse source
networks, SLTs found by our method achieve similar or higher accuracy for similar or smaller model size,
thus improving the accuracy-to-model size trade-off in all scenarios.

Empirically, it is known that SLTs within an SKC-initialized dense network achieve better performance than
with continuous random weights (Ramanujan et al., 2020; Okoshi et al., 2022; Lépez Garcia-Arias et al.,
2023; Yan et al., 2023). Our results show that such a trend can also be observed in frozen source networks.
Nonetheless, in all source networks, we find that this improvement is smaller the wider the source network is,
suggesting that the requirement for source networks of larger width is weaker in the case of binary weights.

4.4 ImageNet Experiments

Finally, we evaluate our method using larger models on a large-scale dataset: deeper and wider ResNets
on ImageNet. Since SLTs with 80% sparsity achieve the highest accuracy in a dense source ResNet-50 (for
details, see Appendix B.1), we compare the three methods using 80% SLT sparsity.

Figure 2 compares the accuracy-to-model size trade-off in finding the 80% sparsity SLTs between the proposed
and conventional methods with SKC using ImageNet. Despite the more challenging setting and the significant
70% memory size reduction, our method (green) finds SLTs that are more accurate than pre-pruning-only
methods (orange) for the same model size. This result demonstrates that the effective combination of
parameter pruning and locking at initialization can improve the SLT memory efficiency even on large-scale
datasets and models.

4.5 Result Analysis

Table 1 summarizes the presented results and compares the proposed method to weight training and SLT
search in dense and sparse source networks for the same network architecture and SLT sparsity. As described
in Section 4.3, the model size is calculated as the sum of the unfrozen partial supermask (1 bit/parameter)
and the batch normalization parameters (32 bits/parameter). Also, as described in Section 4.2, the target
SLT sparsity is fixed to that of the best-performing SLT found in a dense source network, and we determine
the pre-pruning ratio in sparse network as (SLT sparsity — 5)% for high compression.

In the case of Conv6, compared to weight training our method provides reductions of 66.4x of the model size,
in exchange of a small accuracy drop. Compared to the SLT found in the sparse source network, the SLT
found in the frozen source network achieves much higher accuracy.

Even in the more challenging case of ResNet-18, SLTs found in a frozen network are 250.8x smaller than the
trained-weight model. When comparing SLTs found in sparse and frozen networks with the same 85% freezing
ratio, the accuracy is almost equivalent, demonstrating that the inclusion of locking does not introduce a
degradation in accuracy even in the scenario that benefits more from pruning.

Interestingly, the SLT found in the frozen GIN model achieves comparable accuracy to the trained-weight
network, even though the model size is reduced by 40.3x. The SLT found within a dense network also
achieves accuracy comparable to that of the trained-weight network, but the SLT found by our method is
smaller. Generally, graph neural networks (GNNs) suffer from a generalization performance degradation due
to the over-smoothing problem Li et al. (2018). Searching for SLTs within dense GNNs has been shown to
mitigate the over-smoothing problem Huang et al. (2022) and achieve higher accuracy. As our method is

Published in Transactions on Machine Learning Research (02/2025)

Table 1: Comparison between trained-weight networks and SLTs found in dense, sparse, and frozen networks.

Conv6 & CIFAR-10

Method Weight Sparsity Pruning Locking Top-1 Test Model
(Source Net.) Init. (%) Ratio [%] Ratio [%] Acc. [%)] Size [MB]
Weight Training KU - - - 87.1 8.63
SLT (Dense) SKC 50 0 0 86.2 0.27
SLT (Sparse) SKC 50 45 0 66.7 0.15
SLT (Frozen) SKC 50 25 25 84.8 0.13

RESNET-18 & CIFAR-10
Weight Training KU - - - 92.4 42.63
SLT (Dense) SKC 90 0 0 91.0 1.37
SLT (Sparse) SKC 90 85 0 89.9 0.24
SLT (Frozen) SKC 90 82.5 2.5 89.8 0.24
SLT (Frozen) SKC 90 85 5 88.9 0.17
GIN & OGBN-ARX1V
Weight Training KU - - - 70.1 1.452
SLT (Dense) SKC 20 0 0 70.0 0.054
SLT (Sparse) SKC 20 15 0 62.3 0.047
SLT (Frozen) SKC 20 0 40 69.2 0.036
RESNET-50 & IMAGENET
Weight Training KU - - - 74.4 97.49
SLT (Dense) SKC 80 0 0 66.8 3.24
SLT (Sparse) SKC 80 70 0 47.1 1.11
SLT (Frozen) SKC 80 65 5 55.2 1.11
RESNET-34 & IMAGENET
SLT (Dense) SKC 80 0 0 62.5 2.66
SLT (Sparse) SKC 80 70 0 40.7 0.84
SLT (Frozen) SKC 80 65 5 51.2 0.84
RESNET-18 & IMAGENET
SLT (Dense) SKC 80 0 0 54.0 1.43
SLT (Sparse) SKC 80 70 0 25.2 0.45
SLT (Frozen) SKC 80 65 5 39.4 0.45
WIDE RESNET-50 & IMAGENET
SLT (Dense) SKC 80 0 0 70.8 8.46
SLT (Sparse) SKC 80 70 0 57.7 2.72
SLT (Frozen) SKC 80 65 5 63.9 2.72

similarly accurate compared to dense networks, it is possible that parameter freezing offers an even stronger
solution to the over-smoothing problem.

Although the ImageNet experiment falls into the scenario where a relatively sparse SLT is more accurate (like
the ResNet-18 experiment on CIFAR-10), the SLT found in a sparse network is significantly less accurate. On
the other hand, the inclusion of parameter locking shows a significant improvement in SLT accuracy. These
results suggest that the number of highly accurate SLT patterns decreases as the difficulty of the problem
increases, and the pruning:locking proportion affects the performance of the found SLTs more severely.

10

Published in Transactions on Machine Learning Research (02/2025)

5 Limitations

Our results have the following limitations: 1) Although the proposed method can effectively reduce the model
memory size for inference in principle, actual hardware implementation remains for future work. The previous
work of the SLT-specialized neural engine, Hiddenite Hirose et al. (2022), would be a promising direction for
such future implementation. 2) This paper provides theoretical support for the existence of SLTs in frozen
networks, but it does not provide their superiority in the approximation capability compared to random
pruning, a special case of random freezing, which may depend on the sparsity nature of target networks. Also,
the theoretical consideration of the appropriate proportion of these ratios is left for future work. 3) Even
though we demonstrate our method on various model architectures including CNNs, ResNet families and GIN
in Section 4, following previous SLT work (Zhou et al., 2019; Ramanujan et al., 2020; Lépez Garcia-Arias
et al., 2023; Huang et al., 2022; Yan et al., 2023), we have to leave it for future work to apply our method to
Transformers (Vaswani et al., 2017) because SLT itself has not yet been established for Transformers.

6 Conclusion

This paper capitalizes on the fact that pre-pruning a randomly weighted network reduces the supermask
memory size, but identifies that doing so limits the search to a suboptimal sparsity region. This problem
is tackled by freezing (i.e., pruning or locking) some parameters at initialization, excluding them from the
search. Freezing allows to the search for SLTs in the optimal sparsity region, while further reducing the
model size. Experimental results show that SLTs found in frozen networks improve the accuracy-to-model
size trade-off compared to SLTs found in dense (Ramanujan et al., 2020; Sreenivasan et al., 2022) or sparse
networks (Gadhikar et al., 2023). Interestingly, although for weight training random parameter locking
has only been found useful for reducing accuracy degradation in network compression (Zhou et al., 2019;
Wimmer et al., 2020), we identify scenarios in SLT training where they can be used for raising accuracy.
Our method can be interpreted as being capable of generating more useful SLT information from a random
seed than previous methods, offering an opportunity for reducing off-chip memory access in specialized
SLT accelerators (Hirose et al., 2022). Additionally, the reduced number of parameters to be optimized
may be exploited for training cost reduction. Appropriate freezing may improve the SLT search efficiency,
including preventing convergence to local low-precision solutions as experimentally confirmed in Section 4.2,
and improving convergence speed through reduced parameters to be optimized. Investigations about the SLT
search efficiency remain as future work.

Acknowledgments

This work was supported in part by JSPS KAKENHI Grant Number JP23H05489 and JST-ALCA-Next
Japan Grant # JPMJAN24F3.

Impact Statements

This paper presents work whose goal is to advance the field of machine learning. Among the many potential
societal consequences of our work, we highlight its potential to reduce the computational cost of inference of
neural networks, and thus their energy consumption footprint.

References

Rebekka Burkholz. Most activation functions can win the lottery without excessive depth. Proc. Adv. Neural
Inform. Process. Syst., 35:18707-18720, 2022a.

Rebekka Burkholz. Convolutional and residual networks provably contain lottery tickets. In Proc. Int. Conf.
Mach. Learn., pp. 2414-2433. PMLR, 2022b.

Rebekka Burkholz, Nilanjana Laha, Rajarshi Mukherjee, and Alkis Gotovos. On the existence of universal
lottery tickets. In Proc. Int. Conf. Learn. Repr., 2022.

11

Published in Transactions on Machine Learning Research (02/2025)

Yiming Chen, Guodong Yin, Mingyen Lee, Wenjun Tang, Zekun Yang, Yongpan Liu, Huazhong Yang, and
Xueqing Li. Hidden-ROM: A compute-in-rom architecture to deploy large-scale neural networks on chip
with flexible and scalable post-fabrication task transfer capability. In Proc. IEEE Int. Conf. Comput.-Aided
Design, pp. 1-9, 2022.

Yung-Chin Chen, Shimpei Ando, Daichi Fujiki, Shinya Takamaeda-Yamazaki, and Kentaro Yoshioka. HALO-
CAT: A hidden network processor with activation-localized CIM architecture and layer-penetrative tiling.
arXi preprint arXiv:2312.06086, 2023.

Arthur da Cunha, Emanuele Natale, and Laurent Viennot. Proving the lottery ticket hypothesis for
convolutional neural networks. In Proc. Int. Conf. Learn. Repr., 2021.

James Diffenderfer and Bhavya Kailkhura. Multi-prize lottery ticket hypothesis: Finding accurate binary
neural networks by pruning a randomly weighted network. In Proc. Int. Conf. Learn. Repr., 2021.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery: Making
all tickets winners. In Proc. Int. Conf. Mach. Learn., pp. 2943-2952. PMLR, 2020.

Damien Ferbach, Christos Tsirigotis, Gauthier Gidel, and Joey Bose. A general framework for proving the
equivariant strong lottery ticket hypothesis. In Proc. Int. Conf. Learn. Repr., 2023.

Jonas Fischer and Rebekka Burkholz. Plant 'n’ seek: Can you find the winning ticket? In Proc. Int. Conf.
Learn. Repr., 2022.

Advait Harshal Gadhikar, Sohom Mukherjee, and Rebekka Burkholz. Why random pruning is all we need to
start sparse. In Proc. Int. Conf. Mach. Learn., pp. 10542-10570. PMLR, 2023.

Soufiane Hayou, Jean-Francois Ton, Arnaud Doucet, and Yee Whye Teh. Pruning untrained neural networks:
Principles and analysis. arXiv preprint arXiv:2002.08797, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human-
level performance on ImageNet classification. In Proc. IEEE Int. Conf. Comput. Vis., pp. 1026-1034,
2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proc. IEEE Comput. Soc. Conf. Comput. Vis. and Pattern Recognit., pp. 770-778, 2016.

Kazutoshi Hirose, Jachoon Yu, Kota Ando, Yasuyuki Okoshi, Angel Lépez Garcia-Arias, Junnosuke Suzuki,
Thiem Van Chu, Kazushi Kawamura, and Masato Motomura. Hiddenite: 4K-PE hidden network inference
4D-tensor engine exploiting on-chip model construction achieving 34.8-to-16.0 TOPS/W for CIFAR-100
and ImageNet. In Proc. IEEE Int. Solid-State Circuits Conf., volume 65, pp. 1-3. IEEE, 2022.

Mark Horowitz. 1.1 computing’s energy problem (and what we can do about it). In Proc. IEEE Int. Solid-State
Circuits Conf., pp. 10-14, 2014. doi: 10.1109/ISSCC.2014.6757323.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and Jure
Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Proc. Adv. Neural Inform.
Process. Syst., 33:22118-22133, 2020.

Tianjin Huang, Tianlong Chen, Meng Fang, Vlado Menkovski, Jiaxu Zhao, Lu Yin, Yulong Pei, Decebal Con-
stantin Mocanu, Zhangyang Wang, Mykola Pechenizkiy, and Shiwei Liu. You can have better graph neural
networks by not training weights at all: Finding untrained GNNs tickets. In Learn. of Graphs Conf., 2022.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In Proc. Int. Conf. Mach. Learn., pp. 448-456. pmlr, 2015.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis, Department of
Computer Science, University of Toronto, Toronto, 2009.

12

Published in Transactions on Machine Learning Research (02/2025)

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for semi-
supervised learning. In Proc. AAAI Conf. on Artif. Intell., volume 32, 2018.

Angel Lépez Garcia-Arias, Yasuyuki Okoshi, Masanori Hashimoto, Masato Motomura, and Jaehoon Yu.
Recurrent residual networks contain stronger lottery tickets. IEEE Access, 11:16588-16604, 2023. doi:
10.1109/ACCESS.2023.3245808.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. In Proc. Int. Conf.
Learn. Repr., 2017.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In Proc. Int. Conf. Learn. Repr.,
2019.

George S Lueker. Exponentially small bounds on the expected optimum of the partition and subset sum
problems. Random Struct. Algor., 12(1):51-62, 1998.

Eran Malach, Gilad Yehudai, Shai Shalev-Schwartz, and Ohad Shamir. Proving the lottery ticket hypothesis:
Pruning is all you need. In Proc. Int. Conf. Mach. Learn., pp. 6682-6691. PMLR, 2020.

Yasuyuki Okoshi, Angel Lopez Garcia-Arias, Kazutoshi Hirose, Kota Ando, Kazushi Kawamura, Thiem
Van Chu, Masato Motomura, and Jachoon Yu. Multicoated supermasks enhance hidden networks. In Proc.
Int. Conf. Mach. Learn., pp. 17045-17055, 2022.

Laurent Orseau, Marcus Hutter, and Omar Rivasplata. Logarithmic pruning is all you need. Proc. Adv.
Neural Inform. Process. Syst., 33:2925-2934, 2020.

Ankit Pensia, Shashank Rajput, Alliot Nagle, Harit Vishwakarma, and Dimitris Papailiopoulos. Optimal
lottery tickets via subset sum: Logarithmic over-parameterization is sufficient. Proc. Adv. Neural Inform.
Process. Syst., 33:2599-2610, 2020.

Ilan Price and Jared Tanner. Dense for the price of sparse: Improved performance of sparsely initialized
networks via a subspace offset. In Proc. Int. Conf. Mach. Learn., pp. 8620-8629. PMLR, 2021.

Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kembhavi, Ali Farhadi, and Mohammad Rastegari. What’s
hidden in a randomly weighted neural network? In Proc. IEEE Comput. Soc. Conf. Comput. Vis. and
Pattern Recognit., pp. 11893-11902, 2020.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, et al. ImageNet large scale visual recognition challenge. Int.
J. Comput. Vis., 115:211-252, 2015.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition.
arXiw preprint arXiv:1409.1556, 2014.

Kartik Sreenivasan, Jy-yong Sohn, Liu Yang, Matthew Grinde, Alliot Nagle, Hongyi Wang, Eric Xing,
Kangwook Lee, and Dimitris Papailiopoulos. Rare gems: Finding lottery tickets at initialization. Proc.
Adv. Neural Inform. Process. Syst., 35:14529-14540, 2022.

Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya Ganguli. Pruning neural networks without any
data by iteratively conserving synaptic flow. Proc. Adv. Neural Inform. Process. Syst., 33:6377-6389, 2020.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé Jégou.
Training data-efficient image transformers & distillation through attention. In Proc. Int. Conf. Mach.
Learn., pp. 10347-10357. PMLR, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Proc. Adv. Neural Inform. Process. Syst., 30, 2017.

Paul Wimmer, Jens Mehnert, and Alexandru Condurache. Freezenet: Full performance by reduced storage
costs. In Proc. Asian Conf. Comput. Vis., 2020.

13

Published in Transactions on Machine Learning Research (02/2025)

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In
Proc. Int. Conf. Learn. Repr., 2019.

Jiale Yan, Hiroaki Ito, Angel Lopez Garcia-Arias, Yasuyuki Okoshi, Hikari Otsuka, Kazushi Kawamura,
Thiem Van Chu, and Masato Motomura. Multicoated and folded graph neural networks with strong lottery
tickets. In Learn. of Graphs Conf., 2023.

Sangyeop Yeo, Yoojin Jang, Jy-yong Sohn, Dongyoon Han, and Jaejun Yoo. Can we find strong lottery
tickets in generative models? In Proc. AAAI Conf. on Artif. Intell., volume 37, pp. 3267-3275, 2023.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146, 2016.

Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosinski. Deconstructing lottery tickets: Zeros, signs, and
the supermask. Proc. Adv. Neural Inform. Process. Syst., 32, 2019.

Xiao Zhou, Weizhong Zhang, Hang Xu, and Tong Zhang. Effective sparsification of neural networks with
global sparsity constraint. In Proc. IEEE Comput. Soc. Conf. Comput. Vis. and Pattern Recognit., pp.
3599-3608, 2021.

14

Published in Transactions on Machine Learning Research (02/2025)

A Proof for Strong Lottery Tickets (SLTs) Existence in Frozen Networks

This section describes the proofs of the lemma and theorem introduced in the manuscript.

We first extend the lemma of the subset-sum approximation shown by Lueker (1998) to the case where some
random variables are always included in the subset-sum.

Lemma A.1 (Subset-Sum Approximation in Randomly Locked Networks). Let X1, -+, X, ~U(-1,1) be

independent, uniformly distributed random variables, and My, --- , M, ~ Ber(q) be independent, Bernoulli

distributed random variables with ¢ € (0,1). Let 0 < e,d < 1. Then, with probability at least 1 — §, for any
€ [—1,1], there exist indices I C {1,--- ,n} such that |z — 31" | MiX; — >, ., (1 — My)X;| < e if

/
n > C'log (;) , (1)
where C,C" > 0 are constants, and C' depends on q.

Proof. Let My, --- , M, ~ Ber(q) and m := >, M;. By Hoeffding’s inequality, we have

P(|m —gn| <emn) > 1 —2exp (—e3n) (2)

for epr > 0. Thus, if we set n > loge(% and gy 1= w7 we have
M
(29 = B)n <m < fn (3)

with 8 :=q+ ey = min(% %) (0,), with probability at least 1 — §. In particular, the number of
non-vanishing terms in the sum), ; (1 — M;)X; is n —m > (1 — B)n as long as each X; is non-zero.
Now fix Mj,---, M, ~ Ber(g) with (2q — B)n < m < fn. The goal is to approximate z € [—1,1] and
S, M;X; by subset sum from {(1 — M;)X; : M; = 0}. For simplicity, we split it into two parts:

{(1 - ML)XI M, = O} = {X{a ,X,:“} U{X{/v"' 7X7,z/2}v (4)

where the former part is used for approximating z € [—1, 1] and the latter part for approximating Y ., M; X;.
To approximate z € [—1, 1], we can directly apply Corollary 2.5 from Lueker (1998):

P (VZ €[-1,1,3Ic{l,-- ,m}st. |z= > X[< g) >1-90 (5)
il
whenever ny > 4C'log(8/¢96).
To approximate Z?:l M; X;, we have to evaluate its norm. By Hoeffding’s inequality on X;’s with M; # 0,

we have
n 2
IP’(’ f §am) >1-—2exp (3a2m>’ (6)
i=1

for any fixed a > 0, whose value will be specified later. Thus
2log 2/6)
3

< am < afin holds with
210g(2/5)
T

probability at least 1 — § whenever m > . Since m < n holds, n > is enough.

From the proof of Corollary 3.1 in Lueker (1998), for any v € (0,), we know that

P (Vz € [—yn2,yno), 3T C {1, ;na} s.t. |z — ZX” < 5) (7)
iel
— 2n, —
>1—0—2exp (_(1473)2n24> (8)

15

Published in Transactions on Machine Learning Research (02/2025)

whenever ny > 2Clog(%). Thus if

oo s (10 (2, e () ®

holds, we can approximate any z € [—yng, yng] by subset sum of X7, ---, X, with probability 1 — 24.
13
10-8
when we split {(1 — M;)X;} by n1 = ng = % in (4). Then the approximation (7) can be applied to
z =Y, M;X, with high probability since | Y ;" ; M;X;| < am < afin < yny holds.

By combining (5), (6), (9) with the fact that n = m + n; 4+ ng, and replacing € and ¢ with /2 and §/6,
respectively, we obtain the desired results. O

Now we assume (af/v)n < ng. For example, if we set o« =

and v = %, the assumption is satisfied

By similar arguments as in Lueker (1998) or Pensia et al. (2020), we can easily generalize Lemma A.1 to the
case where the distribution followed by X; contains the uniform distribution. Also, by using the same proof
procedure, we can prove the following extension of Lemma A.1:

Lemma A.2 (Subset-Sum Approximation in Frozen Networks.). Let X1, ..., X,, be independent, uniformly
distributed random wvariables so that X ~ U(—1,1), My, ..., M,, be independent, Bernoulli distributed random
variables so that M; ~ Ber(p) forp € (0,1), and M/, ..., M/, be independent, Bernoulli distributed random vari-
ables so that M| ~ Ber(q) forq € (0,1). Lete,d € (0,1) be given. Then for any z € [—1,1] there exists a subset
I C{1,...,n} so that with probability at least 1 — & we have |z — Y7 | MM/ X; — >, M; (1 — M]) X;| <«
if

!
n > Clog (;) , (10)

where C,C" > 0 are constants, and C depends on p and q.

These corollaries seem to be derived by taking 2’ := z — > | M;X; as the target of the Lueker (1998) and
Gadhikar et al. (2023) corollaries. However, it cannot. Their corollaries need the target to be deterministic
and have constant bounds. On the other hand, since Z?:l M; X; is stochastic, 2’ is a stochastic value, and
the bounds of z’ are not constant. Therefore, z’ cannot be directly assigned to the conventional corollaries,
and our approach is necessary for proofing the subset-sum approximation with frozen variables.

Finally, by these extended lemmas, we can prove the SLT existence within the frozen network with a
sufficiently large width.

Theorem A.1 (SLT Existence in Frozen Networks). Let D be input data, fr be a target network with depth
L, and fs be a source network with depth L 4+ 1, Os be a parameter of fs, and p;,q; € (0,1). Assume that
these networks have ReLU activation functions, and each element of Og is uniformly distributed over [—1,1].
Also assume that Os is randomly pruned and locked with pruning ratio p; and locking ratio q; for each l-th
layer, except for O-th and 1-st layers. Then, with probability at least 1 — §, there exists a binary mask mg so
that each output component i is approzimated as maxqzep || fri(x) — fs,i(x;0s © mg)| < e if

Cl
> S >
ng; > Cilog (min{sl,é/p}> nr,, (1>1) (11)
> (1 G d (1=0) (12)
5,0 = 0508 min {e1,d/p} N

where Cy,C] > 0 are constants, and each C; includes p; and q;, except for I = 0. Also, ¢; and p are as
defined in Burkholz (2022a); Gadhikar et al. (2023).

Proof. By following the proof procedure of Gadhikar et al. (2023) using our Lemma A.2 instead of Lemma 2.4
in Gadhikar et al. (2023), we can obtain the desired result as an extension of Theorem 2.5 in Gadhikar et al.
(2023). O

16

Published in Transactions on Machine Learning Research (02/2025)

B Additional Experimental Results

B.1 Accuracy of SLT within Dense ResNet-50

This section introduces the preliminary experiment used for determining the main experimental setup.
Figure 7 compares the accuracy of SLTs within a dense ResNet-50 source at different SLT sparsity using
ImageNet. The SLT with 80% sparsity is the most accurate, reaching 66.8% accuracy.

— 70 ImageNet
2

3 50 A

<

e

0

2 30

-

Q.

2 10

10 30 50 70 20

SLT Sparsity [%]

Figure 7: Accuracy comparison of SLTs of different sparsity within a dense ResNet-50 on ImageNet.

B.2 Accuracy of SLT within Transformer Architectures

In this section, we search for SLTs within DeiT-S (Touvron et al., 2021), the Transformer architecture for

vision tasks, using ImageNet. The experimental setup is same as in the DeiT paper, and we use Edge-Popup
for finding SLTs.

As shown in Table 2, compared to the existing SLT search methods, we can find more accurate SLTs from
the frozen network, even though the model size is the same or smaller. However, the SLT accuracies are
significantly lower than that of the weight-trained network. While CNN and GNN maintain some SLT accuracy
regardless of network pre-processing (i.e., non-frozen, pruning only, or frozen), as shown in Table 1, DeiT shows
a significant decrease in SLT accuracy even without freezing. It suggests there are some problems specific
to the Transformer architecture with respect to SLT. As mentioned in Section 5, SLT within Transformer
architectures has not yet been established experimentally and theoretically, and investigating this degradation
is left for future work.

Table 2: SLT accuracy comparison in the DeiT-S architecture.

DEIT-S & IMAGENET

Method Weight Sparsity Pruning Locking Top-1 Test Model
(Source Net.) Init. (%] Ratio [%] Ratio [%] Acc. [%)] Size [MB]
Weight Training KU - - - 78.4 83.59
SLT (Dense) SKC 60 0 0 51.8 2.61
SLT (Sparse) SKC 60 50 0 10.3 1.31
SLT (Frozen) SKC 60 35 15 40.2 1.31
SLT (Frozen) SKC 60 40 20 36.9 1.04

17

	Introduction
	Preliminaries
	Strong Lottery Tickets in Dense Networks
	Strong Lottery Tickets in Sparse Networks

	Strong Lottery Tickets in Frozen Networks
	Partial Freezing for Enhanced SLT Compression
	Optimal Pruning:Locking Proportion for Freezing
	SLT Existence in Frozen Networks

	Experiments
	Experimental Settings
	Varying Desired SLT Sparsity at Different Freezing Ratios
	Accuracy-to-Model Memory Size Trade-Off
	ImageNet Experiments
	Result Analysis

	Limitations
	Conclusion
	Proof for Strong Lottery Tickets (SLTs) Existence in Frozen Networks
	Additional Experimental Results
	Accuracy of SLT within Dense ResNet-50
	Accuracy of SLT within Transformer Architectures

