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ABSTRACT

Autonomous agents need large repertoires of skills to act reasonably on new tasks
that they have not seen before. However, acquiring these skills using only a
stream of high-dimensional, unstructured, and unlabeled observations is a tricky
challenge for any autonomous agent. Previous methods have used variational
autoencoders to encode a scene into a low-dimensional vector that can be used as
a goal for an agent to discover new skills. Nevertheless, in compositional/multi-
object environments it is difficult to disentangle all the factors of variation into such
a fixed-length representation of the whole scene. We propose to use object-centric
representations as a modular and structured observation space, which is learned
with a compositional generative world model. We show that the structure in the
representations in combination with goal-conditioned attention policies helps the
autonomous agent to discover and learn useful skills. These skills can be further
combined to address compositional tasks like the manipulation of several different
objects.
https://martius-lab.github.io/SMORL

1 INTRODUCTION

Reinforcement learning (RL) includes a promising class of algorithms that have shown capability to
solve challenging tasks when those tasks are well specified by suitable reward functions. However, in
the real world, people are rarely given a well-defined reward function. Indeed, humans are excellent
at setting their own abstract goals and achieving them. Agents that exist persistently in the world
should likewise prepare themselves to solve diverse tasks by first constructing plausible goal spaces,
setting their own goals within these spaces, and then trying to achieve them. In this way, they can
learn about the world around them.

In principle, the goal space for an autonomous agent could be any arbitrary function of the state
space. However, when the state space is high-dimensional and unstructured, such as only images, it
is desirable to have goal spaces which allow efficient exploration and learning, where the factors of
variation in the environment are well disentangled. Recently, unsupervised representation learning
has been proposed to learn such goal spaces (Nair et al., 2018; 2019; Pong et al., 2020). All
existing methods in this context use variational autoencoders (VAEs) to map observations into a
low-dimensional latent space that can later be used for sampling goals and reward shaping.

However, for complex compositional scenes consisting of multiple objects, the inductive bias of
VAEs could be harmful. In contrast, representing perceptual observations in terms of entities has
been shown to improve data efficiency and transfer performance on a wide range of tasks (Burgess
et al., 2019). Recent research has proposed a range of methods for unsupervised scene and video
decomposition (Greff et al., 2017; Kosiorek et al., 2018; Burgess et al., 2019; Greff et al., 2019; Jiang
et al., 2019; Weis et al., 2020; Locatello et al., 2020). These methods learn object representations and
scene decomposition jointly. The majority of them are in part motivated by the fact that the learned
representations are useful for downstream tasks such as image classification, object detection, or
semantic segmentation. In this work, we show that such learned representations are also beneficial
for autonomous control and reinforcement learning.
∗equal contribution
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Figure 1: Our proposed SMORL architecture. Representations zt are obtained from observations
ot through the object-centric SCALOR encoder qφ, and processed by the goal-conditional attention
policy πθ(at|zt, zg). During training, representations of goals are sampled conditionally on the
representations of the first observation z1. At test time, the agent is provided with an external goal
image og that is processed with the same SCALOR encoder to a set of potential goals {zn}Nn=1.
After this, the goal zg is sequentially chosen from this set. This way, the agent attempts to solve all
the discovered sub-tasks one-by-one, not simultaneously.

We propose to combine these object-centric unsupervised representation methods that represent
the scene as a set of potentially structured vectors with goal-conditional visual RL. In our method
(illustrated in Figure 1), dubbed SMORL (for self-supervised multi-object RL), a representation
of raw sensory inputs is learned by a compositional latent variable model based on the SCALOR
architecture (Jiang et al., 2019). We show that using object-centric representations simplifies the
goal space learning. Autonomous agents can use those representations to learn how to achieve
different goals with a reward function that utilizes the structure of the learned goal space. Our main
contributions are as follows:

• We show that structured object-centric representations learned with generative world models
can significantly improve the performance of the self-supervised visual RL agent.
• We develop SMORL, an algorithm that uses learned representations to autonomously

discover and learn useful skills in compositional environments with several objects using
only images as inputs.
• We show that even with fully disentangled ground-truth representation there is a large benefit

from using SMORL in environments with complex compositional tasks such as rearranging
many objects.

2 RELATED WORK

Our work lies in the intersection of several actively evolving topics: visual reinforcement learning for
control and robotics, and self-supervised learning. Vision-based RL for robotics is able to efficiently
learn a variety of behaviors such as grasping, pushing and navigation (Levine et al., 2016; Pathak
et al., 2018; Levine et al., 2018; Kalashnikov et al., 2018) using only images and rewards as input
signals. Self-supervised learning is a form of unsupervised learning where the data provides the
supervision. It was successfully used to learn powerful representations for downstream tasks in
natural language processing (Devlin et al., 2018; Radford et al., 2019) and computer vision (He et al.,
2019; Chen et al., 2020). In the context of RL, self-supervision refers to the agent constructing its
own reward signal and using it to solve self-proposed goals (Baranes & Oudeyer, 2013; Nair et al.,
2018; Péré et al., 2018; Hausman et al., 2018; Lynch et al., 2019). This is especially relevant for
visual RL, where a reward signal is usually not naturally available. These methods can potentially
acquire a diverse repertoire of general-purpose robotic skills that can be reused and combined during
test time. Such self-supervised approaches are crucial for scaling learning from narrow single-task
learning to more general agents that explore the environment on their own to prepare for solving
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many different tasks in the future. Next, we will cover the two most related lines of research in more
detail.

Self-supervised visual RL (Nair et al., 2018; 2019; Pong et al., 2020; Ghosh et al., 2019; Warde-
Farley et al., 2019; Laversanne-Finot et al., 2018) tackles multi-task RL problems from images without
any external reward signal. However, all previous methods assume that the environment observation
can be encoded into a single vector, e.g. using VAE representations. With multiple objects being
present, this assumption may result in object encodings overlapping in the representation, which is
known as the binding problem (Greff et al., 2016; 2020). In addition, as the reward is also constructed
based on this vector, the agent is incentivized to solve tasks that are incompatible, for instance
simultaneously moving all objects to goal positions. In contrast, we suggest to learn object-centric
representations and use them for reward shaping. This way, the agent can learn to solve tasks
independently and then combine these skills during evaluation.

Learning object-centric representations in RL (Watters et al., 2019; van Steenkiste et al., 2019;
Veerapaneni et al., 2020; Kipf et al., 2020) has been suggested to approach tasks with combinatorial
and compositional elements such as the manipulation of multiple objects. However, the previous
work has assumed a fixed, single task and a given reward signal, whereas we are using the learned
object-representations to construct a reward signal that helps to learn useful skills that can be used to
solve multiple tasks. In addition, these methods use scene-mixture models such as MONET (Burgess
et al., 2019) and IODINE (Greff et al., 2019), which do not explicitly contain features like position
and scale. These features can be used by the agent for more efficient sampling from the goal space and
thus the explicit modeling of these features helps to create additional biases useful for manipulation
tasks. However, we expect that other object-centric representations could also be successfully applied
as suitable representations for RL tasks.

3 BACKGROUND

Our method combines goal-conditional RL with unsupervised object-oriented representation learning
for multi-object environments. Before we describe each technique in detail, we briefly state some RL
preliminaries. We consider a Markov decision process defined by (S,A, p, r), where S and A are
the continuous state and action spaces, p : S × S ×A 7→ [0,∞) is an unknown probability density
representing the probability of transitioning to state st+1 ∈ S from state st ∈ S given action at ∈ A,
and r : S 7→ R is a function computing the reward for reaching state st+1. The agent’s objective is to
maximize the expected return R =

∑T
t=1 Est∼ρπ,at∼π,st+1∼p [r(st+1)] over the horizon T , where

ρπ(st) is the state marginal distribution induced by the agent’s policy π(at|st).

3.1 GOAL-CONDITIONAL REINFORCEMENT LEARNING

In the standard RL setting described before, the agent only learns to solve a single task, specified
by the reward function. If we are interested in an agent that can solve multiple tasks (each with a
different reward function) in an environment, we can train the agent on those tasks by telling the
agent which distinct task to solve at each time step. But how can we describe a task to the agent? A
simple, yet not too restrictive way is to let each task correspond to an environment state the agent has
to reach, denoted as the goal state g. The task is then given to the agent by conditioning its policy
π(at | st, g) on the goal g, and the agent’s objective turns to maximize the expected goal-conditional
return:

Eg∼G

[
T∑
t=1

Est∼ρπ,at∼π,st+1∼p [rg(st+1)]

]
(1)

whereG is some distribution over the space of goals G ⊆ S the agent receives for training. The reward
function can, for example, be the negative distance of the current state to the goal: rg(s) = −‖s−g‖.
Often, we are only interested in reaching a partial state configuration, e.g. moving an object to a
target position, and want to avoid using the full environment state as the goal. In this case, we have
to provide a mapping m : S 7→ G of states to the desired goal space; the mapping is then used to
compute the reward function, i.e. rg(s) = −‖m(s)− g‖.
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As the reward is computed within the goal space, it is clear that the choice of goal space plays a
crucial role in determining the difficulty of the learning task. If the goal space is low-dimensional
and structured, e.g. in terms of ground truth positions of objects, rewards provide a meaningful
signal towards reaching goals. However, if we only have access to high-dimensional, unstructured
observations, e.g. camera images, and we naively choose this space as the goal space, optimization
becomes hard as there is little correspondence between the reward and the distance of the underlying
world states (Nair et al., 2018).

One option to deal with such difficult observation spaces is to learn a goal space in which the RL task
becomes easier. For instance, we can try to find a low-dimensional latent space Z and use it both as
the input space to our policy and the space in which we specify goals. If the environment is composed
of independent parts that we intend to control separately, intuitively, learning to control is easiest if
the latent space is also structured in terms of those independent components. Previous research (Nair
et al., 2018; Pong et al., 2020) relied on the disentangling properties of representation learning models
such as the β-VAE (Higgins et al., 2017) for this purpose. However, these models become insufficient
when faced with multi-object scenarios due to the increasing combinatorial complexity of the scene,
as we show in Sec. 5.2 and in App. A.2. Instead, we use a model explicitly geared towards inferring
object-structured representations, which we introduce in the next section.

3.2 STRUCTURED REPRESENTATION LEARNING WITH SCALOR

SCALOR (Jiang et al., 2019) is a probabilistic generative world model for learning object-oriented
representations of a video or stream of high-dimensional environment observations. SCALOR
assumes that the environment observation ot at step t is generated by the background latent variable
zbg
t and the foreground latent variable zfg

t . The foreground is further factorized into a set of object
representations zfg

t = {zt,n}n∈Ot , where Ot is the set of recognised object indices. To combine the
information from previous time steps, a propagation-discovery model is used (Kosiorek et al., 2018).
In SCALOR, an object is represented by zt,n =

(
zpres
t,n , z

where
t,n , zwhat

t,n

)
. The scalar zpres

t,n defines if the
object is present in the scene, whereas the vector zwhat

t,n encodes object appearance. The component
zwhere
t,n is further decomposed into the object’s center position zpos

t,n, scale zscale
t,n , and depth zdepth

t,n . With
this, the generative process of SCALOR can be written as:

p(o1:T , z1:T ) = p(zD1 )p(z
bg
1 )

T∏
t=2

p(ot | zt)︸ ︷︷ ︸
rendering

p(zbg
t | zbg

<t, z
fg
t )︸ ︷︷ ︸

background transition

p(zDt | zPt )︸ ︷︷ ︸
discovery

p(zPt | z<t)︸ ︷︷ ︸
propagation

, (2)

where zt = (zbg
t , z

fg
t ), z

D
t contains latent variables of objects discovered in the present step, and zPt

contains latent variables of objects propagated from the previous step. Due to the intractability of
the true posterior distribution p(z1:T |o1:T ), SCALOR is trained using variational inference with the
following posterior approximation:

q(z1:T | o1:T ) =

T∏
t=1

q(zt | z<t,o≤t) =
T∏
t=1

q(zbg
t | zfg

t ,ot) q(z
D
t | zPt ,o≤t) q(zPt | z<t,o≤t), (3)

by maximizing the following evidence lower bound L(θ, φ) =
T∑
t=1

Eqφ(z<t|o<t)
[
Eqφ(zt|z<t,o≤t)

[
log pθ(ot | zt)

]
−DKL

[
qφ(zt | z<t,o≤t) ‖ pθ(zt | z<t)

]]
, (4)

where DKL denotes the Kullback-Leibler divergence. As we are using SCALOR in an active setting,
we additionally condition the next step posterior predictions on the actions at taken by the agent. For
more details and hyperparameters used to train SCALOR, we refer to App. D.3. In the next section,
we describe how the structured representations learned by SCALOR can be used in downstream RL
tasks such as goal-conditional visual RL.
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4 SELF-SUPERVISED MULTI-OBJECT REINFORCEMENT LEARNING

Learning from flexible representations obtained from unsupervised scene decomposition methods
such as SCALOR creates several challenges for RL agents. In particular, these representations consist
of sets of vectors, whereas standard policy architectures assume fixed-length state vectors as input.
We propose to use a goal-conditioned attention policy that can handle sets as inputs and flexibly
learns to attend to those parts of the representation needed to achieve the goal at hand.

In the setting we consider, the agent is not given any reward signal or goals from the environment
at the training stage. Thus, to discover useful skills that can be used during evaluation tasks, the
agent needs to rely on self-supervision in the form of an internally constructed reward signal and
self-proposed goals. Previous VAE-based methods used latent distances to the goal state as the reward
signal. However, for compositional goals, this means that the agent needs to master the simultaneous
manipulation of all objects. In our experiments in Sec. 5.1, we show that even with fully disentangled,
ground-truth representations of the scene, this is a challenging setting for state-of-the-art model-free
RL agents. Instead, we propose to use the discovered structure of the learned goal and state spaces
twofold: the structure within each representation, namely object position and appearance, to construct
a reward signal, and the set-based structure between representations to construct sub-goals that
correspond to manipulating individual objects.

4.1 POLICY WITH GOAL-CONDITIONED ATTENTION

We use the multi-head attention mechanism (Vaswani et al., 2017) as the first stage of our policy πθ
to deal with the challenge of set-based input representations. As the policy needs to flexibly vary its
behavior based on the goal at hand, it appears sensible to steer the attention using a goal-dependent
query Q(zg) = zgW

q. Each object is allowed to match with the query via an object-dependent key
K(zt) = ztW

k and contribute to the attention’s output through the value V (zt) = ztW
v, which is

weighted by the similarity between Q(zg) and K(zt). As inputs, we concatenate the representations
for object n to vectors zt,n = [zwhat

t,n ; zwhere
t,n ; zdepth

t,n ], and similarly the goal representation to zg =

[zwhat
g ; zwhere

g ; zdepth
g ]. The attention head Ak is computed as

Ak = softmax
(
zgW

q(ZtW
k)T√

de

)
ZtW

v, (5)

where Zt is a packed matrix of all zt,n’s, W q , W k, W v constitute learned linear transformations and
de is the common key, value and query dimensionality. The final attention output A is a concatenation
of all the attention heads A = [A1; . . . ;AK ]. In general, we expect it to be beneficial for the policy
to not only attend to entities conditional on the goal; we thus let some heads attend based on a set of
input independent, learned queries, which are not conditioned on the goal. We go into more details
about the attention mechanism in App. D.1 and ablate the impact of different choices in App. B.

The second stage of our policy is a fully-connected neural network f that takes as inputs A and the
goal representation zg and outputs an action at. The full policy πθ can thus be described by

πθ ({zt,n}n∈Ot , zg) = f(A, zg). (6)

4.2 SELF-SUPERVISED TRAINING

In principle, our policy can be trained with any goal-conditional model-free RL algorithm. For our
experiments, we picked soft-actor critic (SAC) (Haarnoja et al., 2018b) as a state-of-the-art method
for continuous action spaces, using hindsight experience replay (HER) (Andrychowicz et al., 2017)
as a standard way to improve sample-efficiency in the goal-conditional setting.

The training algorithm is summarized in Alg. 1. We first train SCALOR on data collected from a
random policy and fit a distribution p(zwhere) to representations zwhere of collected data. Each rollout,
we generate a new goal for the agent by picking a random zwhat from the initial observation z1 and
sampling a new zwhere from the fitted distribution p(zwhere). The policy is then rolled out using this
goal. During off-policy training, we are relabeling goals with HER, and, similar to RIG (Nair et al.,
2018), also with “imagined goals” produced in the same way as the rollout goals.

5



Algorithm 1 SMORL: Self-Supervised Multi-Object RL (Training)
Require: SCALOR encoder qφ, goal-conditional policy πθ , goal-conditional SAC trainer, number of training

episodes K.
1: Train SCALOR on sequences uniformly sampled from D using loss described in Eq. 4.
2: Fit prior p(zwhere | zwhat) to the latent encodings of observations.
3: for n = 1, ...,K episodes do
4: Sample goal zg =

(
ẑwhere
g , zwhat

g

)
.

5: Collect episode data with policy πθ(at | zt, zg) and SCALOR representations of observations qφ(zt |
z<t,o≤t).

6: Store transitions (zt,at, zt+1, zg) into replay bufferR.
7: Sample transitions from replay buffer (z,a, z′, zg) ∼ R.
8: Relabel zwhere

g goal components to a combination of future states and p(zwhere | zwhat).
9: Compute matching reward signal R = r(z′, zg).

10: Update policy πθ(at | zt, zg) using R with SAC trainer.
11: end for
We also refer to Alg. 2 in App. D.2 for a more detailed description of the algorithm.

A challenge with compositional representations is how to measure the progress of the agent towards
achieving the chosen goal. As the goal always corresponds to a single object, we have to extract the
state of this object in the current observation in order to compute a reward. One way is to rely on the
tracking of objects, as was shown possible e.g. by SCALOR (Jiang et al., 2019). However, as the
agent learns, we noticed that it would discover some flaws of the tracking and exploit them to get a
maximal reward that is not connected with environment changes, but rather with internal vision and
tracking flaws (details in App. E).

We follow an alternative approach, namely to use the zwhat component of discovered objects and
match them with the current goal representation zwhat

g . As the zwhat space encodes the appearance of
objects, two detections corresponding to the same object should be close in this space (we verify that
this hypothesis holds in App. A.1). Thus, it is easy to find the object corresponding to the current goal
object using the distance mink ||zwhat

k − zwhat
g ||. In case of failure to discover a close representation,

i.e. when all zwhat
k have a distance larger than some threshold α to the goal representation zwhat

g , we
use a fixed negative reward rno_goal to incentivise the agent to avoid this situation.

Our reward signal is thus

r(z, zg) =

{
−||zwhere

k̂
− zwhere

g || if mink ||zwhat
k − zwhat

g || < α,

rno_goal otherwise,
(7)

where k̂ = argmink ||zwhat
k − zwhat

g ||.

4.3 COMPOSING INDEPENDENT SUB-GOALS DURING EVALUATION

At evaluation time, the agent receives a goal image from the environment showing the state to achieve.
The goal image is processed by SCALOR to yield a set of goal vectors. For our experiments, we
assume that these sub-goals are independent of each other and that the agent can thus sequentially
achieve them by cycling through them until all of them are solved. The evaluation algorithm is
summarized in Alg. 3, with more details added in App. D.2.
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5 EXPERIMENTS

(a) View from top (b) Agent observation

Figure 2: Multi-Object Visual Push and Rearrange envi-
ronments with 2 objects and a Sawyer robotic arm.

We have done computational experiments
to address the following questions:

• How well does our method scale to
challenging tasks with a large number
of objects in case when ground-truth
representations are provided?

• How does our method perform com-
pared to prior visual goal-conditioned
RL methods on image-based, multi-
object continuous control tasks?

• How suitable are the representations
learned by the compositional genera-
tive world model for discovering and
solving RL tasks?

To answer these questions, we constructed the Multi-Object Visual Push and Multi-Object Visual
Rearrange environments. Both environments are based on MuJoCo (Todorov et al., 2012) and the
Multiworld package for image-based continuous control tasks introduced by Nair et al. (2018), and
contain a 7-dof Sawyer arm where the agent needs to be controlled to manipulate a variable number
of small picks on a table. In the first environment, the objects are located on fixed positions in front
of the robot arm that the arm must push to random target positions. We included this environment
as it largely corresponds to the Visual Pusher environments of Nair et al. (2018). In the second
environment, the task is to rearrange the objects from random starting positions to random target
positions. This task is more challenging for RL algorithms due to the randomness of initial object
positions. For both environments, we measure the performance of the algorithms as the average
distance of all pucks to their goal positions on the last step of the episode. Our code, as well as the
multi-objects environments will be made public after the paper publication.

5.1 SMORL WITH GROUND-TRUTH (GT) STATE REPRESENTATION

We first compared SMORL with ground-truth representation with Soft Actor-Critic (SAC) (Haarnoja
et al., 2018a) with Hindsight Experience Replay (HER) relabeling (Andrychowicz et al., 2017) that
takes an unstructured vector of all objects coordinates as input. We are using a one-hot encoding for
object identities zwhat and object and arm coordinates as zwhere components. With such a representa-
tion, the matching task becomes trivial, so our main focus in this experiment is on the benefits of
the goal-conditioned attention policy and the sequential solving of independent sub-tasks. We show
the results in Fig. 3. While for 2 objects, SAC+HER is performing similarly, for 3 and 4 objects,
SAC+HER fails to rearrange any of the objects. In contrast, SMORL equipped with ground-truth
representation is still able to rearrange 3 and 4 objects, and it can solve the more simple sub-tasks of
moving each object independently. This shows that provided with good representations, SMORL can
use them for constructing useful sub-tasks and learn how to solve them.

5.2 VISUAL RL METHODS COMPARISON

We compare the performance of our algorithm with two other self-supervised, multi-task visual
RL algorithms on our two environments, with one and two objects. The first one, RIG (Nair et al.,
2019), uses the VAE latent space to sample goals and to estimate the reward signal. The second
one, Skew-Fit (Pong et al., 2020), also uses the VAE latent space, however, is additionally biased
on rare observations that were not modeled well by the VAE on previously collected data. In terms
of computational complexity, both our method and RIG need to train a generative model before
RL training. We note that training SCALOR is more costly than training RIG’s VAE due to the
sequence processing utilized by SCALOR. However, once trained, SCALOR only adds little overhead
compared to RIG’s VAE during RL training, and compared to Skew-Fit, our method is still faster to
train as Skew-Fit needs to continuously retrain its VAE.
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Figure 3: Average distance of objects to goal positions, comparing SMORL using ground truth
representations to SAC with ground truth representations in the Rearrange environment with different
number of objects. SAC struggles to improve performance when the combinatorial complexity of the
scene rises. The dotted line indicates the performance of a passive policy that performs no movements.
Results averaged over 5 random seeds, shaded regions indicate one standard deviation.
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Figure 4: Average distance of objects to goal positions, comparing SMORL to Visual RL Baselines.
In addition to the baselines, we show SAC’s performance with ground truth representations. Results
averaged over 5 random seeds, shaded regions indicate one standard deviation.

We show the results in Fig. 4. For the simpler Multi-Object Visual Push environment, the performance
of SMORL is comparable to the best performing baseline, while for the more challenging Multi-
Object Visual Rearrange environment, SMORL is significantly better then both RIG and Skew-Fit.
This shows that learning of object-oriented representations brings benefits for goal sampling and
self-supervised learning of useful skills. However, our method is still significantly worse than
SAC with ground-truth representations. We hypothesize that one reason for this could be that
SCALOR right now does not properly deal with occluded objects, which makes the environment
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partially observable from the point of view of the agent. On top of this, we suspect noise in the
representations, misdetections and an imperfect matching signal to slow down training and ultimately
hurt performance. Thus, we expect that adding recurrence to the policy or improving SCALOR itself
could help close the gap to an agent with perfect information.

5.3 OUT-OF-DISTRIBUTION GENERALIZATION FOR DIFFERENT NUMBER OF OBJECTS
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Figure 5: Out-of-distribution generalization
of SMORL agent training on Visual Rear-
range with two objects and being tested with
one object. Green line shows final perfor-
mance when training with one object.

One important advantage of structured policies is that
they could potentially still be applicable for observa-
tions that are from different, but related distributions.
Standard visual RL algorithms were shown to be
sensitive to small changes unrelated to the current
task (Higgins et al., 2018). To see how our algorithm
can generalize to a changing environment, we tested
our SMORL agent trained on observations of the
Rearrange environment with 2 objects on the environ-
ment with 1 object. As can be seen from Fig. 5, the
performance of such an agent increases during train-
ing up to a performance comparable to a SMORL
agent that was trained on the 1 object environment.

6 CONCLUSION AND FUTURE WORK

In this work, we have shown that discovering structure in the observations of the environment with a
compositional generative world models and using it for controlling different parts of the environment
is crucial for solving tasks in compositional environments. Learning to manipulate different parts of
object-centric representations is a powerful way to acquire useful skills such as object manipulation.
Our SMORL agent learns how to control different entities in the environment and can then combine
the learned skills to achieve more complex compositional goals such as rearranging several objects
using only the final image of the arrangement.

Given the results presented so far, there are a number of interesting directions to take this work.
First, one can combine learned sub-tasks with a planning algorithm to achieve a particular goal.
Currently, the agent is simply sequentially cycling through all discovered sub-tasks, so we expect
that a more complex planning algorithm as e.g. described by Nasiriany et al. (2019) could allow
solving more challenging tasks and improve the overall performance of the policy. To this end,
considering interactions between objects in the manner of Fetaya et al. (2018) or Kipf et al. (2020)
could help to lift the assumption of independence of sub-tasks. Second, prioritizing certain sub-tasks
during learning, similar to Blaes et al. (2019), could accelerate the training of the agent. Finally, an
active training of SCALOR to combine the object-oriented bias of SCALOR with a bias towards
independently controllable objects (Thomas et al., 2018) is an interesting direction for future research.
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Sebastian Blaes, Marin Vlastelica Pogančić, Jiajie Zhu, and Georg Martius. Control what you can:
Intrinsically motivated task-planning agent. In H. Wallach, H. Larochelle, A. Beygelzimer, F. Alché-
Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32,
pp. 12541–12552. Curran Associates, Inc., 2019. URL https://proceedings.neurips.
cc/paper/2019/file/b6f97e6f0fd175613910d613d574d0cb-Paper.pdf.

Christopher P. Burgess, Loic Matthey, Nicholas Watters, Rishabh Kabra, Irina Higgins, Matt
Botvinick, and Alexander Lerchner. Monet: Unsupervised scene decomposition and representation,
2019.

Ricky TQ Chen, Xuechen Li, Roger B Grosse, and David K Duvenaud. Isolating sources of
disentanglement in variational autoencoders. In Advances in Neural Information Processing
Systems, pp. 2610–2620, 2018.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. arXiv preprint arXiv:2002.05709, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

T. Fetaya, E. Wang, K.-C. Welling, M. Zemel, Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang,
M. Welling, and R. Zemel. Neural relational inference for interacting systems. In ICML, 2018.

D. Ghosh, A. Gupta, and S. Levine. Learning actionable representations with goal-conditioned
policies. ArXiv, abs/1811.07819, 2019.

Klaus Greff, Rupesh Kumar Srivastava, and Jürgen Schmidhuber. Binding via reconstruction
clustering, 2016.

Klaus Greff, Sjoerd Van Steenkiste, and Jürgen Schmidhuber. Neural expectation maximization. In
Advances in Neural Information Processing Systems, pp. 6691–6701, 2017.

Klaus Greff, Raphaël Lopez Kaufman, Rishabh Kabra, Nick Watters, Chris Burgess, Daniel Zoran,
Loic Matthey, Matthew Botvinick, and Alexander Lerchner. Multi-object representation learning
with iterative variational inference. Proceedings of the 36nd International Conference on Machine
Learning, 2019.

Klaus Greff, Sjoerd van Steenkiste, and Jürgen Schmidhuber. On the binding problem in artificial
neural networks, 2020.

T. Haarnoja, Aurick Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In ICML, 2018a.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290,
2018b.

Karol Hausman, Jost Tobias Springenberg, Ziyu Wang, Nicolas Heess, and Martin Riedmiller.
Learning an embedding space for transferable robot skills. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=rk07ZXZRb.

10

https://proceedings.neurips.cc/paper/2017/file/453fadbd8a1a3af50a9df4df899537b5-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/453fadbd8a1a3af50a9df4df899537b5-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/b6f97e6f0fd175613910d613d574d0cb-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/b6f97e6f0fd175613910d613d574d0cb-Paper.pdf
https://openreview.net/forum?id=rk07ZXZRb


Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. arXiv preprint arXiv:1911.05722, 2019.

I. Higgins, Loïc Matthey, A. Pal, C. Burgess, Xavier Glorot, M. Botvinick, S. Mohamed, and
Alexander Lerchner. beta-vae: Learning basic visual concepts with a constrained variational
framework. In ICLR, 2017.

Irina Higgins, Arka Pal, Andrei A. Rusu, Loic Matthey, Christopher P Burgess, Alexander Pritzel,
Matthew Botvinick, Charles Blundell, and Alexander Lerchner. Darla: Improving zero-shot
transfer in reinforcement learning, 2018.

Jindong Jiang, Sepehr Janghorbani, Gerard de Melo, and Sungjin Ahn. Scalable object-oriented
sequential generative models. arXiv preprint arXiv:1910.02384, 2019.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Qt-opt: Scalable deep
reinforcement learning for vision-based robotic manipulation. arXiv preprint arXiv:1806.10293,
2018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2015.

Thomas Kipf, Elise van der Pol, and Max Welling. Contrastive learning of structured world models.
In International Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=H1gax6VtDB.

Adam Roman Kosiorek, Hyunjik Kim, Ingmar Posner, and Yee Whye Teh. Sequential attend, infer,
repeat: Generative modelling of moving objects. In Advances in Neural Information Processing
Systems, 2018. URL https://arxiv.org/abs/1806.01794.

Adrien Laversanne-Finot, Alexandre Pere, and Pierre-Yves Oudeyer. Curiosity driven explo-
ration of learned disentangled goal spaces. In Aude Billard, Anca Dragan, Jan Peters, and
Jun Morimoto (eds.), Proceedings of The 2nd Conference on Robot Learning, volume 87 of
Proceedings of Machine Learning Research, pp. 487–504. PMLR, 29–31 Oct 2018. URL
http://proceedings.mlr.press/v87/laversanne-finot18a.html.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep
visuomotor policies. The Journal of Machine Learning Research, 17(1):1334–1373, 2016.

Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and Deirdre Quillen. Learning hand-
eye coordination for robotic grasping with deep learning and large-scale data collection. The
International Journal of Robotics Research, 37(4-5):421–436, 2018.

Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, Bernhard Schölkopf,
and Olivier Bachem. Challenging common assumptions in the unsupervised learning of dis-
entangled representations. In International Conference on Machine Learning, pp. 4114–4124,
2019.

Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold,
Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with slot attention,
2020.

Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar, Jonathan Tompson, Sergey Levine, and
Pierre Sermanet. Learning latent plans from play. Conference on Robot Learning (CoRL), 2019.
URL https://arxiv.org/abs/1903.01973.

Ashvin Nair, Shikhar Bahl, Alexander Khazatsky, Vitchyr H. Pong, G. Berseth, and S. Levine.
Contextual imagined goals for self-supervised robotic learning. In CoRL, 2019.

Ashvin V Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine. Visual
reinforcement learning with imagined goals. In Advances in Neural Information Processing
Systems, pp. 9191–9200, 2018.

11

https://openreview.net/forum?id=H1gax6VtDB
https://openreview.net/forum?id=H1gax6VtDB
https://arxiv.org/abs/1806.01794
http://proceedings.mlr.press/v87/laversanne-finot18a.html
https://arxiv.org/abs/1903.01973


Soroush Nasiriany, Vitchyr Pong, Steven Lin, and Sergey Levine. Planning with goal-conditioned
policies. In Advances in Neural Information Processing Systems, pp. 14843–14854, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alché-Buc, E. Fox,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32, pp. 8026–
8037. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/
2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.

Deepak Pathak, Parsa Mahmoudieh, Guanghao Luo, Pulkit Agrawal, Dian Chen, Yide Shentu, Evan
Shelhamer, Jitendra Malik, Alexei A Efros, and Trevor Darrell. Zero-shot visual imitation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp.
2050–2053, 2018.

Vitchyr H Pong, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey Levine. Skew-fit:
State-covering self-supervised reinforcement learning. In Proceedings of the 37nd International
Conference on Machine Learning, volume 42 of JMLR Workshop and Conference Proceedings.
JMLR, 2020.

Alexandre Péré, Sébastien Forestier, Olivier Sigaud, and Pierre-Yves Oudeyer. Unsupervised learning
of goal spaces for intrinsically motivated goal exploration. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=S1DWPP1A-.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Michal Rolinek, Dominik Zietlow, and Georg Martius. Variational autoencoders pursue pca
directions (by accident). In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), June 2019. URL http://openaccess.thecvf.com/content_CVPR_2019/
papers/Rolinek_Variational_Autoencoders_Pursue_PCA_Directions_
by_Accident_CVPR_2019_paper.pdf.

Valentin Thomas, Emmanuel Bengio, William Fedus, Jules Pondard, Philippe Beaudoin, Hugo
Larochelle, Joelle Pineau, Doina Precup, and Yoshua Bengio. Disentangling the independently
controllable factors of variation by interacting with the world. arXiv preprint arXiv:1802.09484,
2018.

E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 5026–5033, 2012.

Sjoerd van Steenkiste, Klaus Greff, and Jürgen Schmidhuber. A perspective on objects and systematic
generalization in model-based rl. arXiv preprint arXiv:1906.01035, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Rishi Veerapaneni, John D. Co-Reyes, Michael Chang, Michael Janner, Chelsea Finn, Jiajun Wu,
Joshua B. Tenenbaum, and Sergey Levine. Entity abstraction in visual model-based reinforcement
learning, 2020.

David Warde-Farley, Tom Van de Wiele, Tejas Kulkarni, Catalin Ionescu, Steven Hansen, and
Volodymyr Mnih. Unsupervised control through non-parametric discriminative rewards. In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=r1eVMnA9K7.

Nicholas Watters, Loic Matthey, Matko Bosnjak, Christopher P. Burgess, and Alexander Lerchner.
Cobra: Data-efficient model-based rl through unsupervised object discovery and curiosity-driven
exploration, 2019.

12

https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://openreview.net/forum?id=S1DWPP1A-
http://openaccess.thecvf.com/content_CVPR_2019/papers/Rolinek_Variational_Autoencoders_Pursue_PCA_Directions_by_Accident_CVPR_2019_paper.pdf
http://openaccess.thecvf.com/content_CVPR_2019/papers/Rolinek_Variational_Autoencoders_Pursue_PCA_Directions_by_Accident_CVPR_2019_paper.pdf
http://openaccess.thecvf.com/content_CVPR_2019/papers/Rolinek_Variational_Autoencoders_Pursue_PCA_Directions_by_Accident_CVPR_2019_paper.pdf
https://openreview.net/forum?id=r1eVMnA9K7
https://openreview.net/forum?id=r1eVMnA9K7


Marissa A. Weis, Kashyap Chitta, Yash Sharma, Wieland Brendel, Matthias Bethge, Andreas Geiger,
and Alexander S. Ecker. Unmasking the inductive biases of unsupervised object representations
for video sequences, 2020.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhut-
dinov, and Alexander J Smola. Deep sets. In I. Guyon, U. V. Luxburg, S. Ben-
gio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in
Neural Information Processing Systems, volume 30, pp. 3391–3401. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
f22e4747da1aa27e363d86d40ff442fe-Paper.pdf.

13

https://proceedings.neurips.cc/paper/2017/file/f22e4747da1aa27e363d86d40ff442fe-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/f22e4747da1aa27e363d86d40ff442fe-Paper.pdf


APPENDIX

A ANALYSIS OF REPRESENTATIONS LEARNED BY SCALOR

A.1 CLUSTERING OF zWHAT COMPONENTS

In this section, we analyze the representations learned by SCALOR. First, we looked at how well
different detections of the same object cluster together in the zwhat space SCALOR learns. This is
important in order to find out whether we can use distances in zwhat space to match corresponding
objects which is necessary to compute rewards for the agent (see Sec. 4.2). A well separated zwhat

space also indicates the usefulness of SCALOR’s representations for other potential downstream
tasks such as classification. In Fig. 6, we plot the first and second principal component of points in
zwhat space, and color each point according to the mean pixel value of the foreground object in the
crop detected by SCALOR. As one can see, the three objects (green, blue, and red points) and the
robotic arm (darker red points) are quite well separated, with relatively low intra cluster variance. The
robotic arm cluster shows larger variance as it is observed in more different poses than the objects.
There is also a small cluster of misdetections (center top), with the gray color of the table. Overall,
this shows that the zwhat space is well suited for the purpose of matching.
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Analysis of clustering in SCALOR’s zwhat space

Figure 6: First and second PCA dimension of zwhat space of SCALOR trained on Visual Rearrange
with 3 objects. The plot shows 3000 random zwhat points collected from a random policy. Each point
is colored as the mean of the foreground pixels on the crop detected by SCALOR. For each cluster,
the highlighted point shows an example crop. Dashed lines indicate the Voronoi partitions according
to cluster centers found by running k-means clustering. Figure is best viewed on screen.

A.2 DISENTANGLEMENT ANALYSIS OF REPRESENTATIONS LEARNED BY SCALOR AND VAE

After seeing that SCALOR representation can be successfully used for object classification, we
further examined the quality of the object location information learned by SCALOR by evaluating
how disentangled they are. For this, we computed Mutual Information Gap (MIG) (Chen et al.,
2018) scores for SCALOR and VAE components. As SCALOR representations are unordered sets of
vectors, we used the clusters obtained from the cluster analysis (see App. A.1) to produce a vector
zwhere

vec that has consistent dimension ordering by matching zwhat components to clusters. In the case
of an object not being recognized in an image, we imputed zeros values to its part in the vector zwhere

vec .
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We estimated MIG by adapting the disentanglement_lib (Locatello et al., 2019), with an
additional discretization of the continuous ground truth factors in the same way the continuous latent
space is discretized.

The results in Fig. 7 show that SCALOR’s zwhere components are more disentangled and thus are
better suited for the construction of independent RL sub-tasks. In addition, it can be seen that the
VAE disentanglement score is quite low, potentially because different factors of variation (object
coordinates) have the same variance and thus could be more difficult to disentangle (Rolinek et al.,
2019).
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(b) Mutual information matrix for SCALOR representations.

Figure 7: Comparison of VAE and SCALOR representations. (a) shows MIG scores of VAE and
SCALOR representations on data obtained from running a random policy in the Visual Rearrange
environment with 3 objects (with whisker showing the standard deviation over 5 runs), (b) shows the
mutual information matrix for SCALOR representations on the same data.

A.3 SCALOR TRAJECTORY TRAVERSALS

One of the ways to evaluate the quality of learned representations is to show how it reconstructs the
scene. To this end, Fig. 8 shows some example environment traversals and how SCALOR processes
them. SCALOR is not only able to reconstruct the final image, but in addition is also able to locate
objects and produce accurate segmentation masks for each object.

B ABLATION ANALYSIS OF GOAL-CONDITIONED ATTENTION POLICY

To understand how important the contribution of the goal-conditioned attention policy is to the
performance and the generalization properties of our architecture, we have compared it with several
other options for processing the set of SCALOR representations. In particular, we test two more
variants of our attention mechanism: one where we use only goal-conditional attention heads, and one
where we use only goal-unconditional heads with learned, input-independent queries. We hypothesize
that using only goal-conditional heads reduces the ability of the policy to easily concentrate on parts
of the environment that are globally relevant for all tasks. Using only goal-unconditional heads with
learned queries should still allow the policy to learn to order the input representations and produce a
consistent fixed length vector; however, it removes the ability to flexibly select parts of the inputs
based on the task at hand. Finally, we also implemented the DeepSet method (Zaheer et al., 2017) as
an alternative approach to process inputs of sets of vector representation. In our case, we instantiate
DeepSets by transforming each component embedding with a one hidden layer MLP with ReLU
activation to feature vectors of dimensionality 128 and then summing up these vectors.

The results in Fig. 9 show that both types of attention heads are necessary to achieve the best results,
with the goal-conditional heads having a larger impact on the final performance. Without the goal-
conditional heads, the SMORL algorithm performs significantly worse. In addition, we observe
that SMORL with DeepSets can also perform competitively on the two objects tasks, however, it is
significantly worse on the out-of-distribution task with one object.
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Visual Rearrange environment with 2 objects

Visual Rearrange environment with 3 objects

Figure 8: Reconstructions of scene observations using learned SCALOR representation and decoder.
Rows are a) original images (green boxes for recognized objects, red boxes for non-propagated
objects), b) full reconstructions, c) bounding boxes of recognized objects produced using zwhere,
d) foreground object reconstructions, e) segmentation masks of objects generated by SCALOR.

C LONGER TRAINING FOR VISUAL REARRANGE WITH TWO OBJECTS

For the challenging Visual Rearrange environment with 2 objects, we trained a SMORL agent for
twice as long as in the main plot in Fig. 4 to better understand the final convergence performance
(see Fig. 10). Whereas the RIG baseline still shows no signs of progress after one million timesteps,
our SMORL agent is continuing to improve performance. This result hints at that with even more
training steps, SMORL might eventually reach the performance of a SAC agent that has privileged
information of the ground-truth state.
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Figure 9: Ablation study of goal-conditioned attention policy on Visual Rearrange with two objects
(left) and out-of-distribution testing on Visual Rearrange with one object (right). We compare variants
of the attention policy with only goal-conditional and only goal-unconditional attention heads, plus
an alternative approach to aggregate sets of vector representations in the form of DeepSets (Zaheer
et al., 2017). Our results demonstrate that both types of attention heads are necessary to achieve the
best results.
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Figure 10: Performance of a SMORL agent trained for 106 timesteps on Visual Rearrange with 2
objects.

D IMPLEMENTATION DETAILS

D.1 DETAILS OF ATTENTION MECHANISM

As discussed in Sec. 4.1, the policy should be able to select from the set of input representations based
on the goal it needs to solve. We implement this by running attention with a goal-dependent query
Q(zg) = zgW

q . However, there might be some parts of the input state that are always relevant to the
policy, regardless of the current goal. For example, in our experiments, we expect the state of the
robotic arm to always be important, as it is needed to manipulate objects. To simplify the extraction of
this information for the policy, we optionally add M learned, input-independent, goal-unconditional
queries Q(P q) to the goal-dependent query. P q ∈ RM×de is simply a matrix of parameters that is
trained via backpropagation; we initialize P q by sampling from N (0, 0.02). Furthermore, we use
two separate sets of attention heads to process the goal-conditional and -unconditional queries, i.e.
each set of attention head has its own set of projections W q,W v,W k. The output of both sets of
attention heads is simply concatenated before feeding it to the next stage of the policy.

We use Pytorch’s (Paszke et al., 2019) torch.nn.MultiheadAttention module to implement
the attention mechanism. In practice, we use two separate instantiations of these modules to implement
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goal-conditional and goal-unconditional heads. In accordance to the original transformer attention
formulation (Vaswani et al., 2017), this module also includes a linear transformation that mixes the
outputs of the different heads together. As we think this transformation is not strictly necessary, we
have omitted it for notational clarity. Moreover, note that we also linearly embed the policy inputs zg
and zt,n’s into a common space of dimensionality de before processing them further, which we have
found to slightly improve performance.

D.2 FULL SMORL TRAINING AND EVALUATION ALGORITHMS

We display a fully detailed version of the training algorithm in Alg. 2. In addition, Alg. 3 shows
how we apply SMORL during evaluation. For evaluation, the agent receives a goal image to achieve
from the environment. After processing this image into latent representations with SCALOR, the
agent picks one of the recognized objects as its sub-goal and attempts to achieve it for a fixed number
of time steps. Following this, the agent sequentially moves on to the next object in the goal image
that is not solved and repeats this process until either all goals are solved or the agent runs out of
evaluation time steps. For our purpose, we define a goal as solved when the zwhere component of
the best matching object from the observation is closer to the zwhere component of the sub-goal than
some threshold.

Algorithm 2 SMORL: Self-Supervised Multi-object RL (Training with Details)
Require: SCALOR encoder qφ, goal-conditioned policy πθ , goal-conditioned value function Qw, number of

data points from random policy N , number of training episodes K, number of time steps in the episode H
1: Collect D = {oi}Ni=1 using random initial policy.
2: Train SCALOR on sequences data uniformly sampled from D using loss described in Eq. 4.
3: Fit prior p(zwhere | zwhat) to the latent encodings of observations

{(
zwhere
i , zwhat

i

)}N
i=1

obtained using
qφ(zt | z<t,o≤t).

4: for n = 1, ...,K episodes do
5: for t = 1, ..., H steps do
6: if t = 1 then
7: Generate goal zg =

(
ẑwhere
g , zwhat

g

)
using SCALOR and initial observation o1 (pick random detected

object k and substitute zwhere by sampled from prior ẑwhere
g ∼ p(zwhere | zwhat)).

8: end if
9: Encode zt using qφ(zt | z<t,o≤t).

10: Get action at ∼ πθ(at | zt, zg).
11: Execute at and get next state observation ot+1 from environment.
12: Encode zt+1 using qφ(zt+1 | z≤t,o≤t+1).
13: Store (zt,at, zt+1, zg) into replay bufferR.
14: With probability 0.5, replace ẑwhere

g with a sample p(zwhere | zwhat). B Sample “imagined” goals
15: Sample transition (z,a, z′, zg) ∼ R.
16: Compute matching reward signal R = r(z′, zg) using Eq. 7.
17: Minimize Bellman Error using (z,a, z′, zg, R).
18: end for
19: for l = t, ..., H steps do
20: Sample future state ohi that has matching component in observation representation set zhi to the

original goal zg , l < hi ≤ H − 1. B Sample HER “future” goals
21: Store (zl,al, zl+1, zhi,k) intoR (for k such that zhi,k is matching the original goal zg).
22: end for
23: end for

D.3 SCALOR

We are using the SCALOR implementation from the original authors1. The parameters that were
modified from the default settings can be found in Table 1. In particular, we are using zwhat dimension
equal to 8 for 1 object and equal to 4 for two objects. We observed that using smaller dimensionalities
for zwhat makes the training more stable, if it is possible to train SCALOR with it. As for our purpose,
the background model is not important and our environments have stable background, for this work,
we are modeling the background with small zbg = 1.

1https://github.com/JindongJiang/SCALOR
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Algorithm 3 SMORL (Evaluation)
Require: Trained SMORL agent πθ , goal image og , SCALOR encoder qφ, evaluation episode length L,

sub-goal episode length l
1: Get goal representation zg = {zm}Nm=1 = qφ(og) where N is the number of recognized objects.
2: Get the number of attempts K = L

l
.

3: Initialize goal index m = 1.
4: Initialize evaluation step t = 1.
5: for k = 1, ...,K steps do
6: Obtain initial observation o1 and pick sub-goal zm.
7: for s = 1, ..., l steps do
8: Encode zt using qφ(zt | z<t,o≤t).
9: Get action at ∼ πθ(at | zt, zm).

10: Execute at and get next observation ot+1 from environment.
11: Set t = t+ 1.
12: end for
13: if all sub-goals zm are solved then
14: Stop evaluation.
15: end if
16: Set m = (m+ 1) mod N .
17: while zm is solved do
18: Set m = (m+ 1) mod N .
19: end while
20: end for

During RL training, we process the first observation o1 of each episode 5 times with SCALOR which
we found to stabilize the inferred representations. During evaluation, we do the same with the goal
images og given from the environment.

Hyper-parameter Value
Optimizer Adam (Kingma & Ba, 2015) with default settings

Number of iterations 5000
Learning rate 0.0001

Batch size 11
Explained Ratio Threshold 0.1
Number of training points 10000

Number of cells 4
Size bias 0.22

Size variance 0.12
Ratio bias 1.0

Ratio variance 0.3

Table 1: SCALOR hyper-parameters.

D.4 SMORL

We refer to Table 2 for general hyper-parameters of SMORL and to Table 3 for environment specific
hyper-parameters of SMORL.

D.5 PRIOR WORK

For the baselines, i.e. SAC, RIG and Skew-Fit, we started from standard settings and made
environment-specific tweaks to tune them for best performance. In particular, significant hyper-
parameter search effort (>500 runs) was spent on finding the best SAC parameters for Multi-Object
Visual Rearrange 2, 3, and 4 objects.
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Hyper-parameter Value
Optimizer Adam with default settings

Exploration Noise None (SAC policy is stochastic)
RL Batch Size 2048
Reward Scaling 1

Automatic SAC entropy tuning yes
SAC Soft Update Rate 0.05

# Training Batches per Time Step 1
Hidden Activation ReLU

Network Initialization Xavier uniform
Separate Attention for Policy & Q-Function yes

Replay Buffer Size 100000
Relabeling Fractions Rollout/Future/Imagined Goals 0.1 / 0.4 / 0.5

Number of Initial Random Samples 10000

Table 2: General hyper-parameters used by SMORL for visual environments.

E PROBLEMS WITH SCALOR TRACKING DURING RL TRAINING

During our experimentation with the reward specification, we first considered SCALOR’s internal
tracking of objects. SCALOR assigns each discovered object an ID, and these IDs are in principle
propagated over time steps. By matching IDs, one can easily compute distances to the goal zg in the
space of the zwhere component (because we pick the episode goal from the objects discovered in the
first observation during RL training). However, with such a reward specification, the agent was easily
finding ways to exploit the biases towards a position in the propagation of the representation to the
next time step.

Hyper-parameter Push, 1 Obj. Push, 2 Obj.
Training Path Length 15 15

Evaluation Path Length 45 75
Learning Rate 0.001 0.0007

Discount Factor 0.925 0.95
Matching Threshold α 1.2 1.3

No Match Reward rno goal 0.75 1.0
zwhat Dim 8 4

Embedding Dim de 48 32
Number of Cond./Uncond. Heads 3/0 1/1

Number of Input-Independent Queries 0 3
Policy Hidden Sizes [128, 128] [128, 128, 128]

Q-Function Hidden Sizes [256, 256, 256] [128, 128, 128]

Hyper-parameter Rearrange, 1 Obj. Rearrange, 2 Obj.
Training Path Length 20 20

Evaluation Path Length 60 100
Learning Rate 0.001 0.0005

Discount Factor 0.95 0.925
Matching Threshold α 1.2 1.3

No Match Reward rno goal 0.75 1.5
zwhat Dim 8 4

Embedding Dim de 48 32
Number of Cond./Uncond. Heads 3/0 1/1

Number of Input-Independent Queries 0 3
Policy Hidden Sizes [64, 64] [128, 128, 128]

Q-Function Hidden Sizes [128, 128, 128] [128, 128, 128]

Table 3: Environment specific hyper-parameters used by SMORL for visual environments.
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In particular, one underlying assumption of SCALOR is that "two objects cannot coexist in the same
position" (Jiang et al., 2019). However, due to 2D-projecting the 3D objects and possible occlusions,
this assumption is not always fulfilled and the RL agent was able to exploit this during training.
For example, the agent learned to position the robotic arm exactly above the object, and due to the
positional propagation, this object’s component was then propagated to the arm. After this, the agent
was able to "manipulate" this component just by positioning his arm to the object’s goal. This shows
the importance of evaluating learned representations in downstream tasks.
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