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Abstract

This work tackles the dynamic structure estimation problems for periodically behaved dis-
crete dynamical system in the Euclidean space. We assume the observations become se-
quentially available in a form of bandit feedback contaminated by a sub-Gaussian noise.
Under such fairly general assumptions on the noise distribution, we carefully identify a set
of recoverable information of periodic structures. Our main results are the (computation
and sample) efficient algorithms that exploit asymptotic behaviors of exponential sums to
effectively average out the noise effect while preventing the information to be estimated
from vanishing. In particular, the novel use of the Weyl sum, a variant of exponential sums,
allows us to extract spectrum information for linear systems. We provide sample complex-
ity bounds for our algorithms, and we experimentally validate our theoretical claims on
simulations of toy examples, including Cellular Automata.

1 Introduction

System identification has been of great interest in controls, economics, and statistical machine learning
(cf. [Tsiamis & Pappas| (2019); Tsiamis et al| (2020); [Lale et al. (2020); (2022); [Kakade et al.| (2020);
|Ohnishi et al| (2021); Mania et al.| (2020); Simchowitz & Foster| (2020); |Curi et al| (2020); [Hazan et al.|
(2018); |[Simchowitz et al. (2019); [Lee & Zhang| (2020))). In particular, estimations of periodic information,
including eigenstructures for linear systems, under noisy and partially observable environments, are essen-
tial to a variety of applications such as biological data analysis (e.g., [Hughes et al| (2017)); [Sokolove &|
Bushell (1978)); |Zielinski et al. (2014)); also see [Furusawa & Kaneko| (2012) for how gene oscillation affects
differentiation of cells), earthquake analysis (e.g., Rathje et al| (1998)); Sabetta & Pugliese (1996); [Wolfe|
(2006)); see |Allen & Kanamori (2003) for the connections of the frequencies and magnitude of earthquakes),
chemical/asteroseismic analysis (e.g., Aerts et al.| (2018))), and communication and information systems (e.g.,
[Couillet & Debbah| (2011)); [Derevyanko et al.| (2016)), just to name a few.

Specifically, providing statistical guarantees for extractions of periodic information under perturbations fol-
lowing a general distribution is quite fundamental as it is connected to the information theory of communica-
tion capacities. Indeed, there has been an interest of studying novel paradigms for coding, transmitting, and
processing information sent through optical communication systems [Turitsyn et al.| (2017). When signals
are coded digitally, erroneous signal transmission is no longer modeled with a simple Gaussian distribution.

On the other hand, those fundamental estimation problems with statistical sample complexity guarantees are
often treated within the literature of learning under partial observability (cf. Menda et al.| (2020); Tsiamis &
[Pappas| (2019)); Tsiamis et al.| (2020); [Lale et al.| (2020)); (2022); |Adams et al.| (2021)); Bhouri & Perdikaris
(2021)); |[Ouala et al.| (2020); Uy & Peherstorfer| (2021)); Subramanian et al.| (2022)); Bennett & Kallus) (2021));
Lee et al. (2020)). Inheriting accumulated results of the controls literature, however, most of the works on
provably correct methods for partially observable dynamical systems consider additive Gaussian noise and
controllable/observable linear system; some works further restrict the spectral radius of the linear system
to be strictly less than one. In fact, if the observation is contaminated by a noise following a more general
distribution, a concentration of measures should be adopted (cf. [Shalev-Shwartz & Ben-David| (2014)); and
this approach suffers from a risk of making structural information of the underlying dynamics vanish as well.
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In this paper, we tackle this periodic structure estimation problem for nearly periodically behaved discrete
dynamical systems (cf. |Arnold| (1998); we allow systems that are not exactly periodic) with sequentially
available bandit feedback. Due to the presence of noise and partial observability, our problem setups do not
permit the recovery of the full set of period/eigenvalues information in general; as such we ask the following
question: what subset of information on dynamic structures can be statistically efficiently estimated? This
work successfully answers this question by identifying and mathematically defining recoverable information,
and proposes algorithms for efficiently extracting such information.

The technical novelty of our approach is highlighted by the careful adoption of the asymptotic bounds
on the exponential sums that effectively cancel out noise effects while preserving the information to be
estimated. When the dynamics is driven by a linear system, the use of the Weyl sum |Weyl (1916)), a variant
of exponential sums, enables us to extract more detailed information. To our knowledge, this is the first
attempt of employing asymptotic results of the Weyl sum for statistical estimation problems, and further
studies on the relations between statistical estimation theory and exponential sums (or even other number
theoretical results) are of independent interests.

Finally, although beyond the scope of this work, it is worth mentioning that our algorithms for periodic struc-
ture estimation can be seamlessly applied to periodic/dynamic bandit problems (see |[Lattimore & Szepesvari
(2020) for an overview of learning from bandit feedback); by using our algorithms for explore phase to de-
termine the periodic structure behind the dynamically changing parameter, one can then commit to arms in
a certain way to maximize rewards (see Appendix . Before concluding the introduction, we nevertheless
strongly emphasize that our focus of this work is on the periodic structure estimation from bandit feedback
rather than the general parameter estimation problems of linear dynamical systems or regret minimization
problems.

With these motivations and summary of our approach in place, we present our dynamical system model
below.

Dynamic structure in bandit feedback. We define D C R? as a (finite or infinite) collection of arms to
be pulled. Let (1¢)$2; be a noise sequence. Let © C R? be a set of latent parameters. We assume that there
exists a dynamical system f on ©, equivalently, a map f : © — 0. At each time step ¢t € {1,2,...}, a learner
pulls an arm z; € D and observes a reward

re(@e) = ft(e)TiUt + Nt

for some 0 € O. In other words, the hidden parameters for the rewards may vary over time but follow only
a rule f with initial value 6. The function r; could be viewed as the specific instance of partial observation
(cf. [Ljung| (2010))).

Our contributions. The contributions of this work are three folds: First, we mathematically identify and
define a recoverable set of periodic/eigenvalues information when the observations are available in a form
of bandit feedback. The feedback is contaminated by a sub-Gaussian noise, which is more general than
those usually considered in system identification work. Second, we present provably correct algorithms for
efficiently estimating such information; this constitutes the first attempt of adopting asymptotic results on
the Weyl sum. Lastly, we implemented our algorithms for toy examples to experimentally validate our claims.

Notations. Throughout this paper, R, R>o, N, Z~, Q, Qx¢, and C denote the set of the real numbers, the
nonnegative real numbers, the natural numbers ({0,1,2,...}), the positive integers, the rational numbers,
the positive rational numbers, and the complex numbers, respectively. Also, [T]:={1,2,...T} for T € Zo.
The Euclidean norm is given by ||z||ge = \/(z, 2)gs = Vo Tz for € R?, where (-)T stands for transposition.
[|M]|| and ||[M||F are the spectral norm and Frobenius norm of a matrix M respectively, and .# (M) and
A (M) are the image space and the null space of M, respectively. If a is a divisor of b, it is denoted by
alb. The floor and the ceiling of a real number a is denoted by |a| and [a], respectively. Finally, the least
common multiple and the greatest common divisor of a set L of positive integers are denoted by lem(£) and
ged(L), respectively.
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2 Related work

Our work may be viewed as a special instance of system identifications for partially observed dynamical
systems. Existing works for sample complexity analysis of partially observed linear systems include [Tsiamis
& Pappas (2019); Tsiamis et al| (2020); Lale et al. (2020); (2022); Hazan et al.| (2018)); |Simchowitz
et al| (2019); [Lee & Zhang| (2020)), under either controlled or autonomous settings. Most of those works
consider additive Gaussian noise and make controllability and /or observability assumptions (for autonomous
case, transition with Gaussian noise with positive definite covariance is required). While Mhammedi et al.
considers nonlinear observation, it still assumes Gaussian noise and controllability. The work Hazan
considers adversarial noise but with limited budget; we mention its wave-filtering approach is
interesting and our use of exponential sums could also be viewed as filtering. Also, the work
considers control inputs and bounded semi-adversarial noise, which is another set of strong
assumptions; however, it is interesting to ask if we can do better when control inputs are allowed in a future
work. We also mention that most of the existing literature for linear systems assume the spectral radius
is smaller than one. Instead, we consider systems with a sub-Gaussian observation noise while allowing
the observation to be made as bandit feedback. Our work includes an algorithm for the case where the
nearly periodically behaved system of interest is linear, for which we successfully employ the Weyl sum.
The application of our mathematical approach to wider scenarios such as the case with unknown but fixed
observation matrix under mild conditions is beyond the scope of this work but is an important future direction
of research.

Secondly, our model of bandit feedback is commonly studied within stochastic linear bandit literature (cf.
|Abe & Long| (1999); Auer| (2003); Dani et al.| (2008); |Abbasi-Yadkori et al.| (2011)). Also, as we consider the
dynamically changing system states (or reward vectors), it is closely related to adversarial bandit problems
(e.g., Bubeck & Cesa-Bianchi| (2012)); [Hazan! (2016)). Recently, some studies on non-stationary rewards
have been made (cf. [Auer et al.| (2019); Besbes et al.| (2014); Chen et al| (2019); |Cheung et al. (2022); Luo|
let al.| (2018); Russac et al.| (2019)); Trovo et al. (2020)); Wu et al. (2018)) although they do not deal with
periodically behaved dynamical system properly (see discussions in |Cai et al. (2021) as well). For discrete
action settings, proposed the periodic bandit, which aims at minimizing the total regret.
Also, if the period is known, Gaussian process bandit for periodic reward functions was proposed
under Gaussian noise assumption. While our results could be extended to the regret minimization
problems by employing our algorithms for estimating the periodic information before committing to arms in a
certain way, we emphasize that our primary goal is to estimate such periodic information in provably efficient
ways. We thus mention that our work is orthogonal to the recent studies on regret minimization problems
for non-stationary environments (or in particular, periodic/seasonal environments). Refer to
[Szepesvaril (2020)) for bandit algorithms that are not covered here.

Lastly, we mention that there exist many period estimation methods (e.g., Moore et al| (2014); |Tenneti &/
[Vaidyanathan| (2015)), and in the case of zero noise, this becomes a trivial problem. Furthermore, one of the
most famous work for dynamic structure estimation of general nonlinear systems is that of Takens’
; however, it cannot be straightforwardly extended to the case of perturbed observations.

3 Problem definition

In this section, we describe our problem setting. In particular, we introduce some definitions on the properties
of dynamical system.

3.1 Nearly periodic sequence

First, we define a general notion of nearly periodic sequence:

Definition 3.1 (Nearly periodic sequence). Let (X, d) be a metric space. Let y > 0 and let L € Z~o. We
say a sequence (y;)52, C X is p-nearly periodic of length L if d(ysyrt,ys) < p for any s,t € Z~o. We also
call L the length of the p-nearly period.
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Intuitively, there exist L balls of diameter x4 in X and the sequence yi, %2, ... moves in the balls in order
if (y¢)$2, is p-nearly periodic of length L. Obviously, nearly periodic sequence of length L is also nearly
periodic sequence of length mL for any m € Z~y. We say a sequence is periodic if it is O-nearly periodic.
We introduce a notion of aliquot nearly period to treat estimation problems of period:

Definition 3.2 (Aliquot nearly period). Let (X,d) be a metric space. Let p > 0 and A > 1. Assume a
sequence {y;}2; C X is p-nearly periodic of length L for some p > 0 and L € Z~. A positive integer £ is a
(p, A)-aliquot nearly period ((p, A)-anp) of (y:)$2, if £|L and the sequence (y;)52, is (p+ 2Au)-nearly periodic.

We may identify the (p, \)-anp with a 2Au-nearly period under an error margin p. When we estimate the
length L of the nearly period of unknown sequence (y;);, we sometimes cannot determine the L itself, but
an aliquot nearly period.

Example 3.1. A trajectory of finite dynamical system is always periodic and it is the most simple but
important example of (nearly) periodic sequence. We also emphasize that if we know the upper bound of
the number of underlying space, the period is bounded above by the upper bound as well. These facts are
summarized in Proposition 3.1} The cellular automata on finite cells is a specific example of finite dynamical
systems. We will treat LifeGame Conway et al| (1970), a special cellular automata, in our simulation
experiment (see Section [f]).

Proposition 3.1. Let f : © — O be a map on a set ©. If |©| < oo, then for any t > || and 0 € O,
FITE(9) = £4(0) for some 1 < L <|6).

Proof. Since |{0, f(0),..., f1®1(0)}| > |©|, there exist 0 < i < j < |O| such that f(§) = £7(6) by the pigeon
hole principal. Thus, f() = f7=+(0) for all t > |O)|. O

If a linear dynamical system generates a nearly periodic sequence, we can show the linear system has a
specific structure as follows:

Proposition 3.2. Let M : RY — R? be a linear map. Let C* = ®,V,, be the decomposition via generalized
eigenspaces of M, where a runs over the eigenvalues of M and V, := A ((al — M)?). Assume that there
exists p > 0, for any 6 € R?, (M*0)2, is p-nearly periodic for somety € N. Let =Y 0o € ©oVa. Then,
each eigenvalue o such that 0, # 0 satisfies |o| < 1, in addition, if |a] =1 and 6, # 0, M0, = ab,.

Proof. We note that {M'v};>¢ is bounded for any v € R? by the assumption on M. Thus, M cannot have
an eigenvalue of magnitude greater than 1. We show the « is in the form of a = €2 for some ¢ € Q
if || = 1. Suppose that o = €™ for an irratiolnal number v € R. Then an eigenvector w for 6, with
|lw] > u, {M*w}iss, cannot become a p-periodic sequence. Thus, we conclude o = €™ for some ¢q € Q.
Next, we show M6, = ab, if |a| = 1 and 6, # 0. Suppose (M — al)f, # 0. Since (M — al)?, = 0, there
exists 1 < d’ < d such that (M — al)¥ 10, = 0 but (M — aI)¥ 0, # 0. Let v’ := (M — aI)*~'6,. Then,
we see that (M — ol )?w’ = 0 but (M — al)w’ # 0. By direct computation, we see that

M| = (M — ol + al)'w'|| > (M — al)w'| - [[u'].

Thus, we have || M'w'|| — oo as t — oo, which contradicts the fact that {M*w'};>¢ is a bounded sequence.
The last statement is obvious. O

Let W be a linear subpace of C? generated by the trajectory {M6, M26,...} and denote dim(W) by dq.
Note that restriction of M to W induces a linear map from W to W. We denote by My the induced linear
map from W to W. Let W = @,caA W, be the decomposition via the generalized eigenspaces of My, where
A is the set of eigenvalues of My and W, := A ((al — My)%). We define

W=t = ®)a)=1Wa,
Wei = Bja)<1Wa.

Then, we have the following statement as a corollary of Proposition [3.2}

Corollary 3.3. There exist linear maps My, M1 : W — W such that
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1. Mg =M+ M4,
2. M1M<1 = M<1M1 = 07
3. My is diagonalizable and any eigenvalue of My is of magnitude 1, and

4. any eigenvalue of M~y is of magnitude smaller than 1.

Proof. Let p : W — W_; be the projection and let i : W—; — W be the inclusion map. We define
My :=iMpyp. We can construct M1 in the similar manner and these matrices are desired ones. O

Example 3.2. Let G be a finite group and let p be a finite dimensional representation of GG, namely, a
group homomorphism p : G — GL,,(C), where GL,,(C) is the set of complex regular matrices of size m.
Fix g € G. Let B € C™"*"™ be a matrix whose eigenvalues have magnitude smaller than 1. We define matrix

of size m 4+ n by
_( rlg O
M := ( 0o B ) .

Then, (M tx)?ito is a p-nearly periodic sequence for any p > 0, x € C™, and sufficiently large ¢o. Moreover,
we know that the length of the nearly period is |G|. We treat the permutation of variables in R? in the
simulation experiment (see Section , namely the case where G is the symmetric group &4 and p is a
homomorphism from G to GLq(C) defined by p(g)((z;)9=,) := (24¢;))¢=;, which is the permutation of
variable via g.

3.2 Problem setting

Here, we state our problem settings. We use the notation introduced in the previous sections. First, we
summarize our technical assumptions as follows:

Assumption 1 (Conditions on arms). The set of arms D contains the unit hypersphere.

Assumption 2 (Assumptions on noise). The noise sequence {n:}72, is conditionally R-sub-Gaussian (R €

R>¢), i.e., given t,

A2 R2

VAER, E[eM|Fq] <e 2,

and Elng|Fi_1] = 0, Var[n;|Fy_1] < R?, where {F,},en is a set of ascending family and we assume that
TlyeeoyTrgl, M, ---,Nr are measurable with respect to F.

Assumption 3 (Assumptions on dynamical systems). There exists p > 0 such that for any 0 € ©, the
sequence (f*(0))52,, is p-nearly periodic of length L for some tg € N. We denote by By the radius of the
smallest ball containing {f*(0)}2,.

Remark 3.4. Assumption [I| excludes the lower bound arguments of the minimally required samples for
our work since taking sufficiently large vector (arm) makes the noise effect negligible. Considering more
restrictive conditions for discussing lower bounds is out of scope of this work.

Then, our questions are described as follows:

« Can we estimate the length L from the collection of rewards (ry(x;))L; efficiently ?

o If we assume the dynamical system is linear, can we further obtain the eigenvalues of f from a
collection of rewards 7

e How many samples do we need to provably estimate the length L or eigenvalues of f ?

We will answer these questions in the following sections and via simulation experiments.
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Algorithm 1 Period estimation (DFT)

Input: Current time tog € Zsq; Tp; € > 0; Linax > 1; orthogonal basis {ui,...,us} of R?
Output: Estimated length L

1: £+ 1,8+ 1

2. form=1,...,d do

3: fOI’t:to,to—i—L...,tQ—‘er—ldO

4: Sample arm u,, and observe r;(u,,)

5: end for

6: while /- 8 < L.« do

7: L+ /0+1

8: for (s,b) = (0,1),(0,2),...,(0,£—1),(1,1),(1,2),...,(3—1,£—1) do
9: if |R ((rt0+s+@t(um))£’i/m ; b/é)}‘z > ¢ then
10: B« pe

11: {1

12: Break

13: end if

14: end for

15: end while

16: to < to + Tp

17: end for

18 L+ S

4 Algorithms and theory

With the above settings in place, we present a (computationally efficient) algorithm for each presented
problem, and show its sample complexity for estimating certain information.

4.1 Period estimation

Here, we describe an algorithm for period estimation followed by its theoretical analysis. The overall proce-
dure is summarized in Algorithm [I] To analyze the sample complexity of this estimation algorithm, we first
introduce an exponential sum that plays a key role:

Definition 4.1. For a positive rational number ¢ € Qs and T complex numbers a1, ...,ar € C, we define
1
T i2mqj
R((“t)t:l%‘l) = fzajel .
j=1

For a p-nearly periodic sequence a := (a+)$2; of length L, we define the supremum of the standard deviations
of the L sequential data of a:

or(a) := sup % Z at—% Z a;

to>1

The exponential sum R(+;-) can extract a divisor of the nearly period of a p-nearly periodic sequence if p
is “sufficiently smaller” than the variance of the sequence even when the sequence is contaminated by noise;
more precisely, we have the following lemma:

Lemma 4.1. Let a := (aj)‘f:l be a p-nearly periodic sequence of length L. Then, we have the following
statements:
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1. if L > 1, then there exists s € Z~o with s < L such that

2-2 Lsup,~q|a
IR ((a7)j=1:8/L)| > W—u— ;21' t', (4.1)

2. if B is not a divisor of L, then for any o € Zy,

L?Co(p + sup,>q |ar|)
T )

IR ((aj)j=r:/B)| <+
where Cy :=1+2/v/2m(3/4)™ /6 = 1.72257196806914....
Proof. As (a;)72; is p-almost periodic, there exist (b:)72; of period L and (¢;)f2; with sup,~; |e;| < p such

that ay = bt + ¢
First, we prove (4.1). Let

1< 1 &
=7 th, by = I theﬁ”q, (¢ € Q).
t=1 t=1
We claim that
L -sup{|bs/p|* 3} > Z lbg/]? = Z b, — b|? > 0% — 2u0. (4.3)

In fact, the first inequality is obvious. The equality follows from the Plancherel formula for a finite abelian
group (see, for example, (Serre, 1977 Excercise 6.2)). As for the last inequality, take arbitrary tg € Z~o and

define a = Zt°+L Ya; and ¢ = ZtﬁL ! ¢;. Then, we have
1 L 1 to+L—1 t0+L 1 to-‘rL 1
ZZ\bt*bFZZ > o —al + L > la—dP - L > o —al-e -4
t=1 t=to t=to t=to
t0+L 1 t0+L 1
S1 > lu—aPeg 3 -
_L la, — al” + e — &
t= to t=to
AL ST L i
_9 | = a—alz. 1= _
7 + a I Ct C
t=to t=to
| torL-1
2 1S
=7 |la¢ — Ho
t=to

Here, we used the Cauchy Schwartz inequality in the second inequality. Since tq is arbitrary, we have .
Let s € argmax,_; 1|b§/L| and let g := s/L. Let T = LT’ +  for some T’ 76NW1thO<*y<L.
Then, we have

T 1 = 1 - i2mqs LSUptzl ‘at|
IR ((a;)j=130)| = T ZZaLt—i-se B
t=0 s=1
N Lsup,q |at]
> [By| — - Z2Pez lod]

T

0% —2uo Lsupy ||
Y o = .
L T
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Next, we prove (4.2)). As in the same computation as above, we have

L |1 = Lsup,.q|a
|R ((aj)’]l_“:1; a/6)| < - F z27roth/,B ZaLt 127ras/5 + Z‘,T>O | t|
t=0
Lr |1 "= oLt L Lsup,sq |a
- 2ralt/B| | = 7,27ras/,3 t>0 1%t
ST |7 ; ¢ L Z_: LR

2 L Lsup,~g |at|
< |1_ei27raL/ﬁ| (U+i1>11§’at|> T+M+ T .
Since |1 — €/27| > \/2(1 — a2)™ /Sq for a € (0,1) by (Chesneau & Bagul, [2020, Proposition 3.2), we have

28L Lsupt>1 ‘at|
R ((a))_1;0/8)| < (p+ ) +p+ =
IR ((@)j=1;0/5)] (” i‘;‘f"”' V2@3/a=er T

LBCo(pt + supy>q |at|)

< pu+

T
O
Then, we obtain the explicit lower bound of the samples for period estimation:
Proposition 4.2. Let a := (a;)2; be a p-nearly periodic sequence of length L. Fiz a positive integer

Liax > 1 with L < Lax, 0 € (0,1), £ € (0,1), and o9 > 0. Let ()52, be a noise sequence satisfying
Assumption . Put v :=1/(1 4+ /4Lmax + 1) and X := p/(007). We define

€ := og7€.
If 1/ (1) < 09 < o1(a), then, for any

7~ 8Lmax 2 10g(4/0) 36 Lo supysy |ai]
T og(E- )2 oo(§—=A) 7

the set of rational numbers
Ste:={q€QN(0,1): qL € Z>o and |R ((ar + m){—1;q)| > €}
is mon-empty with probability at least 1 — 0.

If we apply several collections of rewards (r(z;))L_; for sufficiently large T indicated in Proposition
we obtain various divisors of L. Finally, we provide the precise inputs and output of Algorithm [I] in the
following Theorem:

Theorem 4.3. Suppose Assumptions @ and@ hold. Let r € [0,1) be a non-negative real number, and
suppose p >0 and 6 € (0,1) are given. Fix a positive integer Lax > 1 with L < Lyax. We define

p
gi=——. 4.4
6v/dLinax 4
Assume that re > p. Let T, be an integer satisfying
7T2dAL? 108 BgVdL3
» > max _"_ 9\/> max , (4'5)
A2 T 11

where A := R2log(4dL2,,, 10g Lax/d). Then, the output L of Algorz'thm is a (p,v/d)-anp of (f1())2 2 to
with probability at least 1 — 9.

If p is sufficiently small, we may set 7 as a small positive number, in particular r = 0 if the system is periodic.
Remark 4.4. If random arm selection is adopted rather than the orthogonal basis, it may underestimate an
error margin on some dimensions, which could lead to the nearly period with much larger error margin than
expected; considering failure probability of such a case may potentially produce a variant of our algorithm.
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Algorithm 2 Eigenvalue estimation

Input: Effective sample size N € Z~¢; threshold ~(N)
Output: Matrix A;(N)Ag(N)T

1: Independently draw random unit vectors Z,,, m € [d], from uniform distribution over the unit sphere
in RZ.

2: Wait N time steps.

3: fort=N+1,---,N+2Nd? do

4: mo < {(t = N —1) mod 2d?} +1

5: m < [mg/2d)]

6: Sample arm z; = Z,, and observe 7y := (&, ).

7. end for

8: Construct matrix Ag(N) and A;(N) as in (6], respectively.

9: Obtain the low rank approximation Ag(N) of Ag(N) via SVD with the threshold ().
10: Output A;(N)Ag(N).

4.2 Eigenvalue estimation

If the underlying system has certain structures, more detailed information about the system is expected to
be obtained. In this section, we assume the following condition, linearity of the underlying dynamical system
f on ©, in addition to Assumption and

Assumption 4 (Linear dynamical systems). The dynamical system f : © — © is linear and is represented
by a matriz M € R¥*?,

Let C¢ = @,V, be the decomposition via generalized eigenspaces of M, where a runs over the eigenvalues
of M and V,, := A ((al — M)?). We describe § = _ 0, with 6, € V,,. We remark that an eigenvalue o of
M such that 6, # 0 is in the form of 2™/~ unless |a| < 1 by Proposition

Our objective is to estimate some of, if not all of, the eigenvalues of M with high probability within some
error that decreases by the sample size. To this end, we define the meaningful subset of eigenvalues of M.

Definition 4.2 ((0,k)-distinct eigenvalues). For a vector § € C? and k € Z~g, we define a (6, k)-distinct
eigenvalue by an eigenvalue 3 of M* such that |3| = 1 and 65 # 0.

In our case, starting from a vector 6, the effect of the eigenvalues that are not of (8, d)-distinct eigenvalues
of M may not be observable. Basically, once being able to ignore the effects of eigenvalues of magnitudes
less than 1, the system becomes nearly periodic and we aim at estimating (6, d)-distinct eigenvalues as we
obtain more samples.

Our eigenvalue estimation algorithm is summarized in Algorithm [2} it maintains the following matrices. For
N € Z~y, d random unit vectors Z1,...,%q, and s = 0,1, we define the matrix A,(N) € C?*9 so that its
(k, £) element is given by
N-1 5
_ i2mj
Z To(k—1)d+sd+2d2j+N+e(Tr)e 3L . (4.6)
j=0

That is, after N steps, the reward multiplied by exp(i2mj2/4L) is placed from the top row of Ag and then the
top row of Ay, followed by the second rows of them, and so on. Then, those values are summed up for every
2d? steps or every jth cycle. Here, after throwing away N samples, the effects of eigenvalues of magnitude
less than 1 become negligible, and the trajectory becomes nearly periodically behaved under Assumption
[ The rest of the samples is used to average out the observation noise while maintaining some meaningful
information about M.

The aforementioned exponential sum can be characterized by the Weyl-type sum of matrices, a key machinery
for our algorithm, which we define below:
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Definition 4.3. Let W be a linear space and let My,..., My for N € Z~( be linear maps on W. For

L € Z~, we define

N—-1
1 i2mj2
WMy, My)) = o 3 My

j=0

Remark 4.5. Let Eg,, = (92di+ N+sd+j+1+2d2n)i,j=0,....d—1 be a noise matrix for s = 0,1. Let
F Mt
m;MQd-&-l
X = _ and K := (M6, ..., M%).
i;lng('d—de

Then, A;(N) has an alternative description as follows:

As(N)=XWwW ((Mdej)jy:;)l) MANTUR 4o (B, )35 ) -

As in Proposition [1.7] below, the Weyl-type sum has a crucial property. Define x > 1 by
K= ir};f{HPHHP*lH : PT'MP = Jy},

(4.7)

where J); is a Jordan normal form of M. Also, we define A € (0, 1] to be a value such that, for any eigenvalue
a of M satisfying |a < 1, |a| <1 — A (define A =1 if no such eigenvalue exists). Note by Proposition

the existence of such spectral gap is guaranteed without any further assumptions.

Roughly speaking, Algorithm [2| estimates “A;(N)Ag(N)~! = XM?X 1" Of course, the formula in “. is
not valid as X, K, and the Weyl-type sum are not necessarily invertible and we cannot recover full information
of M? in general. However, we can still reconstruct information of M? restricted on the eigenspaces for (6, d)-

distinct eigenvalues.

To see this, we introduce the Weyl sum and its lower bound:
Lemma 4.6 (Lower bound on the Weyl sum Bourgain| (1993); |Ohl). Define the Weyl sum by

N
W (N,b,q) := Z ei%(j%*f%q)’
§=0
for someb €N, q € Zsg, b<q and N € Z~q. Then, for N > 16¢>, it holds that

#(N,b,q)| € Q (%) .

Proof. It is immediate from Proposition 3.1 in|Oh|because ged(1,4¢q) = 1, 4¢ =0 mod 4, and 2bis even. [

We define Cys(L) > 0 by
1
Clys(L) := inf {C >0:C7t < ‘NV/(N, b, L)' < C forany N > 16L%,0 < b < L} .

Then, we have the following proposition:

Proposition 4.7. Let My and M.y be matrices as in Corollary[3.3 We define linear maps on W by

Qu(My) = (P2
Qu(Mar) =7 (275

Then, we have the following statement:

10
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1o ()5 = Qu() + Qu(Ma),

2. for any N > 16L%, Qn (M) is invertible on W—y,

3. for any v >0 and for any N > 16L7, || M{Qn (My)lw_, ||, |(M7Qn (M))ly, || < £Cus(L),
4. for any r > 2(d — 1), we have

d2ﬁefA(r7d+1)

Iz Qu () < T
Proof. We prove By the properties [I| and [2[ in Corollary we have W((M2d2j)§v;01) = Qn(My) +
QnN(Mcy). Next, we prove When we regard Qn(Mi)|w_, as a linear map on W4, it is represented
as a diagonal matrix diag(# (N,b1,L),...,# (N,by, L)), where m = dimW_;. Therefore, by Lemma
Qn (M) is a bijective linear map on W—;. Next, we prove |3l We estimate |M7Qy(M)|. Let p: C¢ — W
be the orthogonal projection and let i : W — C? be the inclusion map. Let M; := iM;p € C%*? Then, we
have

QN (M1)|| = Qn (M) < KCis(L).

Next, we estimate ||MZ;Qn(M<1)||. Let My := iM_yp. Then, iMZ,Qn(M<y)p = W((Mi‘fj”);v:gl) and
[liMZ,Qn(Mcr)pl| = |MZ,Qn(Mci)||. Let P be a regular matrix such that

Moy = PJP 1,
where J is the Jordan normal form. Then, for r > 2(d — 1), we see that

IMZ1@n (M) = [[iMZ,Qn (M<1)p

N-1 2 e’} 9 .
K 2d2jir _ A 247 +r 2d2j+r—d+1
<k j an 1= A
<q Xl < S (M - a)
J=0 J=0
dQH(l _ A)T‘—d-H dZKe—A(r—d—i-l)
= NAd—1 =TT NAd-L

The second last inequality is proved as follows: for |a| < 1,n > 1and r > m >0,

oo . oo
Z nj +r anj—m-H“ _ i dm xnj—&-r
m m! dz™ 4

Jj=0 J=0 r=a
< IS (Mg | £
_m']:0 Jj) (r—m+j)! ded 1 —2am| _ .
mle \j) (r=m+)t (A=lal) = \j) (1 —a])?”
where, the last inequality follows from
dam 1 o Z m!Cl_" < m'
dxm 1 — zn 5 n(¢—z)™| ~ (1 - |z|)™’

Thus, we have

> (5) i < '“'T_mjio () () = aae

j=0

11
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Proposition plays an essential role in our analysis and guarantees that the information in A4(N) about
(0, d)-distinct eigenvalues does not vanish while noise effects are canceled out. Now, we state our main
theoretical result for the eigenvalue estimation algorithm. Before stating the theorem, we introduce lower
rank approximation via the singular value threshold.

Definition 4.4. Let A:R™*™ be a matrix. Let A = U (D O)V* be a singular valued decomposi-
tion of A where U € R™ "™ and V € R™*™ are orthogonal matrices and D := diag(oy,...,0,,0")

is a diagonal matrix with nonnegative components. Let v > 0. We define a low rank approximation
A, of A via the singular value threshold v by the matrix A, defined by A, = U (D, O)V*, where,
D, = diag(1y,00)(01)01, . . .y 114,00 (04) 0, o') and 17 is defined to be the characteristic function supported

on I CR.

Given this definition, we are ready to present the following main result:
Theorem 4.8. Suppose Assumptions @ @ and hold. Given 6 € (0,1], let the effective sample size

—(d—1)1logA log(Byx? d+6
NZma.X{16L2, ( )Og + Og( (9"<‘-‘)+ + +d},

- X (4.8)

and y(N) = (y/4d>R?log (4d?/5) +1)/v/N. Then, there evists a matriz A whose eigenvalues are zeros
except for (0, d)-distinct eigenvalues of M, such that the output of Algom'thm@ i.e. Al(N)AO(N)T, satisfies,
with probability at least 1 — §, that

(4.9)

HA_AI(N)AO(N)TH <c (R2 (log (1/6) + 1)+1) .

VN

Here, AO(N)T is the Moore-Penrose pseudo inverse of a lower rank approzimation of Ag(N) via the singular
value threshold v(N). The constant C > 0 depends on 6, M, d, (Z,,)% and Cys(L).

m=1’

We mention that by using the results shown in [Song (2002), the bound on spectral norm can be
translated to the bounds on eigenvalues, where the constant depends on the form of A. As described in
Theorem [£.8 the constant is not the absolute constant for any problem instance but depends on several
factors; however, for the same execution, this rate is useful to judge how many samples one collects to
estimate eigenvalues.

Remark 4.9. We note that we can reconstruct the (6, 1)-distinct eigenvalues of M via Algorithm [2[ using
the following trick: Fix non-negative integer r > 0. Take d + r random unit vectors Z1,...,Z44,. Then, for
s =0,1, we may define a matrix A,(N;r) € Cl@+7)x(d+7) g5 that its (k, ) element is given by

2

N i2mj2
To(k—1)(d4r)+s(d+r)+2(d+r)2j+ N+e(Tk)e 3L,

I
o

J

Then, we see that Alg‘orithmoutputs a matrix A(r) that well approximates the (6, d4r)-distinct eigenvalues
of M since the matrix A4(N;r) coincides with A4(N) in the case when we replace M and 6 with M (r) and
0(r) defined by

M(r) := ( ]\O/[ 8 ) c (C(d+r)><(d+r)79(r) — < z > c Cdtr,

Let r be an integer such that r+d is prime to L and fix a positive integer m such that m(r+d) =1 mod L.
Then, the eigenvalues of A(r)™ is close to those of (6, 1)-distinct eigenvalues if we take sufficiently large N.

5 Simulated experiments

In this section, we present simulated experiments that complement the theoretical claims. In particular,
we conducted period estimations for an instance of LifeGame |Conway et al.| (1970), which is a special case

12
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Figure 1: Left: Illustration of a period eight instance of LifeGame; (top) original transitions. (down) an
instance of noisy observation. Right: p-nearly periodic dynamics (5.1)).

of cellular automata Von Neumann et al.| (1966]), and for a nearly periodic toy system, and an eigenvalue
estimation for a linear system, where some dimensions are for permutations and the rest is for shrinking.

Period estimation: LifeGame. We use a specific instance of LifeGame which is illustrated in Figure
As shown on the top eight pictures, starting from certain configuration of cells,; it shows transitions of period
eight. The sample size is computed as the smallest integer satisfying , and the threshold ¢ is given by
(4.4). To prevent the dimension from becoming too large, we used five cells that correctly display period
eight; that is d = 5. Noise 1 is given by i.i.d. Gaussian with proxy R = 0.3, and the down eight pictures
of Figure [l are some instances of noisy observations. We tested 50 different random seeds (i.e., 1, 51, 101,
151, ... , 2451), and computed the error rate (the number of runs producing a wrong estimate othar than
the fundamental period eight, which is divided by 50); and it was zero.

Period estimation: Simple p-nearly periodic system. We consider the following p-nearly periodic
system that circulates over a circle with small variations:

21

Tt—l_ <m
L?

I

re—1
Tt41 = U (a I—Oé t'UJ -|> =+ 17 9t+1 = Gt =+ (51)
where r and 6 are the radius and angle, and « ¢ Q. We use p = 0.001, L = 5, and a = 7. Noise 7, is drawn
ii.d. from the uniform distribution within [—R, R] for R = 0.3. We tested 50 different random seeds (i.e., 1,

51, 101, 151, ... , 2451), and computed the error rate; and it was zero.

Eigenvalue estimation: Permutation and shrink. We use d = 5, and M € R5*® is made such that 1)
the first four dimensions are for permutation (i.e., each of row and column of 4 x 4 sub-matrix has only one
nonzero element that is one.), and 2) the last dimension is simply shrinking; we gave 0.7 for (5, 5)-element of
M. Initial vector 6y and each arm %,,, m € [d], are uniformly sampled from the unit sphere in R®. The value
L is computed by 4! = 24. We used the smallest integer N that satisfies , multiplied by Cgjy, > 0. The
results are shown in Table [T} it is observed that the more samples we use the more accurate the estimates
become to (6o, 5)-distinct eigenvalues of M. Noise 7, is drawn i.i.d. from the uniform distribution within
[-R, R] for R = 0.3, and the Table [1]is of the random seed 1234. We also tested 50 different random seeds
(ie., 1, 51, 101, 151, ... , 2451) for Cyy = 30, and computed the mean absolute error between the true
(0o, 5)-distinct eigenvalues and their nearest estimated values; it was 0.0019, which is sufficiently small.

6 Discussion and conclusion

This work proposed novel algorithms for estimating periodic information about the dynamical systems from
bandit feedback contaminated by a sub-Gaussian noise. We present a potentially important list of future
works below.

Choice of hyperparameters such as Ly,.x, N: If those hyperparameters are correctly chosen for nearly
periodic systems, the outputs of our algorithms are consistent and reasonable across runs, following the
theoretical insights; therefore, practically, one can check if the hyperparameters are properly chosen by

13
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Table 1: Results for the eigenvalue estimation. The top-most row shows the true eigenvalues of M?®, and
the second row shows its (g, 5)-distinct eigenvalues. From the third to sixth row, it shows the estimated
eigenvalues for different values of Cgy,.

eigenvalues of M° 1.000 1.000 | —0.500 — 0.8667 | —0.500 + 0.8667 | 0.168
(60, 5) 1.000 0 —0.500 — 0.866¢ | —0.500 + 0.866¢ 0
when Cgip, =1 1.000 + 0.008¢ 0 —0.489 — 0.860¢ | —0.510 4 0.869¢ 0
when Cgm =5 0.999 — 0.0007 0 —0.495 —-0.867¢ | —0.501 4 0.862¢ 0
when Cgjm = 10 1.000 + 0.0032 0 —0.497 — 0.867¢ | —0.501 4 0.864¢ 0
when Cijm = 30 1.000 + 0.001% 0 —0.500 — 0.866¢ | —0.500 + 0.864¢ 0

running the algorithms. On the other hand, studying if it is possible to theoretically ensure correctness of
hyperparameters or to identify non-periodic systems is an important future work.

Extension to general spectrum information estimation problems: We only impose nearly periodicity
on the dynamical systems on top of the linearity for the eigenvalue estimation problem. Nevertheless,
additional studies are needed to allow other forms of observations (not limited to bandit feedback) and
non-periodic systems to consider eigenvalues with arguments of 27 times irrational numbers. Actually, the
asymptotic bounds of the Weyl sum themselves are still valid when it is sufficiently well approximated
by a rational number |Bourgain (1993); |Oh. Moreover, allowing control inputs would make eigenvalues of
magnitudes smaller than one efficiently recoverable.

Extensions to random dynamical systems: This work studied deterministic dynamical systems; how-
ever, we conjecture that, under the condition that the variance of trajectories generated by a random dynam-
ical system (RDS) (cf. |Arnold| (1998))) is sufficiently small, the similar estimation procedure is adopted for
such RDSs. It is important to study if the estimation problem becomes easier when the system is driven by
a particular noise as it could be treated as a random control input. Also, studying other dynamic structures
such as the Lyapunov exponents for nonlinear systems is an interesting future work.

Study of statistical estimation leveraged by other number theoretical results: The proper use of
exponential sums enables us to average out the noise while preserving particular information. Studying when
this separation is feasible for different sets of information, noise, and class of problems should be important.

Optimality of the results: Although we gave a sufficient number of samples for provably guaranteeing
(approximate) correctness of the estimates, it is unclear if our sample complexity is what one can best achieve
under our problem settings. Studying if the sample complexity bound is tight should be further investigated.
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A Proof of Proposition

Proof.

B := Lpax sup |at|7
t>0

C := \/4R?log(4/9),

D = L3xCo (u + sup Iat|> :
t>1

Then, /T > 0 satisfies the following inequality

C++C2+4(e—pu)B C++/C2+4(e —p)D
“T>m“{ - 2Aep }

if and only if

Liaxsupesglag|  [4R?log(4/6) and
T T ’
L2..C 2
e > [+ max O(IU’ —;jsuptZI |at|) + 4R 10,1%(4/5) )

e< 2 —pu—

Since Lmax > 2, D > B, pi < ysup;sq |as], Co(1 4+ 7) < 3, and

E_Mzao(l—)\). V Lmax
VEImax 14+ +V4Lmax +1
oo(l = X)
~ 2vV2VLnax

{C+\/02+4(5—M)B C+ 02+4(5—M)D}
max 9

2(e — ) 2(e — )
C?+4(s —u)D
2(e—n)

LinaxC? D
<2 +
\/4(5 —p?  (e—p)

\/ 212, C? 6\@[/1511/5)( SupP¢>1 |ag|

<9

=2\ 020 — a2 o0(§ = N)

< 2\/ 2L32,..C? 9L sup,>q |a
B R G VI

where we used the formula /1 — 27 = 2vv/Lyax. Since 2e < \/(05 — 20100)/ Liax, the statement follows

from Lemma (.11
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B Proof of Theorem

Proof. Let 2% be the set of all combinations (m, 8, s,q) such that m € [d], 8 € [Lmax), s € {0,1,...,8 -1}
and {¢g=a/l:ae€{l,...,0—1}}. We remark that

d  Lmax -1 p-1 Lunax
EAEDIDIEDIED IR LD DD DR
m=1 =1 a<Lyax/B a=1 s=0 B=1 £<Lmax/B
< d ix max < max _ 1)

denaX log Linax
< f'

Also, let EZP be the event such that, for the combination k € ¢,

! LTP§1 {77t +8i+ e%} < 412 log (4d L,y 10g Lma"/é).
T,/5] 2 UMt : /5]

Because the error sequence satisfies conditionally R-sub-Gaussian, using Lemma and from the fact that
any subsequence of the filtration {F;} is again a filtration, we obtain, for each xk € ¢,

. R
= dL2_ log Lypax

max

Define 7 :=N,c £ Then, it follows from the Fréchet inequality that

1)

Tp] _ T, _ _
Pr[£’] =Pr| () &I ] 21/|( TR ) (2] 1)
KEHX max max

Iy 4
=1—-—>1-04.
d max IOg Lmax a

Let L be the output of Algorithm |1 l We show that, with probability 1 — 6, L is (p,V/d)-anp of L. In fact,
suppose L is not (p, V/d)-anp. We note that L < L. There exists s € {0,. — 1} and tq,t9 € Zs,

||fs+2t1 (9) _ fs+zt2 (0)” > p+ 2\/&#.

Let m’ € argmax,,_; 4| (0) Tw,, — f5+2(0)Tu,,|. Put a; := f575(0) T, Then, for any ¢t €

.....

Z~q, we have

lat — ap| > |ag, — ag,| — 2

s+/L\t1 9 _ s+/L\t2 9
s IF77 70 )\/gf @)l o

Thus, by definition, we have
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Let 09 = p/2v/dLmax and € := 771 /3\/Linax. Then, /(7€) < og < O’L/’L\((at)t)7 and

8 Lunax R210g(4/8) 36 Lot sup,s1 |as]

a5(§ — )2 oo(§ —A)
82 2dL3 R log(4/0) | 7267 VAL, supys 1 Jadl
p*(L—r)? p(1—r)
T2dL2, R?log(4/5) | 108VdL}, sup,s; |a;]
(1 1r)? -
The last inequality follows from & > 2/3. Thus, Ey Proposition the algorithm finds 5 > L in m'-th loop,
and the output becomes an integer larger than L, which is contradiction. O

C Proof of Theorem 4.8

Here, we provide the proof of Theorem [£.8]

C.1 Proof

Let
K = (M®,...,M%):C* — W,
Eo(N) :=# ((Esj)is') : €= C
For a linear map M : W — W, we define linear maps:
M}
X(M) := @TM%H W — CY
igMz(:dq)dH
QM) =7 (MDY W — W
For s = 0,1, we define linear maps on C? by
As(Ns M) = X(M)Qn (MM FNTLE + Ey(N),
By(N; M) := X(M)QN (MM THNIE,

We note that As(N; Mp) is identical to A4(IV) defined in (4.7). We impose the following assumption on
X(M@):
Assumption 5. The kernel of the linear map X (M) is the same as N'(My).

X(M)@Q
X(M)@Q

Note that this assumption holds with probability 1 if we randomly choose Z1,...,Z4 (see Lemma [C.7]).

The following lemma provides an explicit description of Bo(N; M;)T.
Lemma C.1. Suppose Assumption@ holds. Assume N > 16L%. Let

U, := % (By(N; M;)) c C4,
Uy := N (By(N; My)) C C4,
Us .= f(Ml) =W_,CW.

Leti : Uy — C? be the inclusion map and p : C* — Us- the orthogonal projection. Then, restriction of X (M)
(resp. M1K) to Us (resp. Us") induces an isomorphism onto Uy (resp. Us). If we denote the isomorphism
by X (resp, K). Then, Bo(N; M)t is given by

Bo(N; My)" = p* KMy |3 N Qu (My) | X1
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Proof. Since we have A (M;) = A (M) for all » > 0 and Assumption |5} surjectivity of K by Proposition
and bijectivity of Qn(M7) on Us by Proposition we have

Ur = J(X(M)|u,),
Us = N (M K).

Thus, the restriction of X (M) (resp. K) to Us (resp. Us") induces an isomorphism onto Uy (resp. Us). Let
us denote the isomorphism by X (resp. K). Then, the last statement follows from Proposition O

Lemma C.2. Assume N > 16L%. Let
A := B (N; M;)By(N; M)

Then, A is independent of N and its eigenvalues are zeros except for (0,d)-distinct eigenvalues of M.

Proof. We use the notation as in Lemma By Lemma we obtain
By(N; My)Bo(N; M)t = i X M{X i,
which is independent of NV and its eigenvalues are zeros except for (6, d)-distinct eigenvalues of M. O
The following result will be used in the proof of Theorem [4.8] (but not essential).
Lemma C.3. We have
IX (M) < KV,
[ X (M)l < k(d+1)27

Proof. Considering the Jordan normal form, the first inequality is obvious. As for the second inequality, we
define J € R?*4 by the nilpotent matrix

0 1 0]

J =
1
0] 0

Then, we have
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Proof of Theorem[4.8 Let A be the matrix introduced in Lemma Let
4d?R? log(4d?/d) + 1
V(N) = v :
VN
Let M; and M. be matrices as in Corollary Then, by Proposition we see that
As(N, M) = Ay(N, M) + As(N, M.1),
By(N, M) = By(N, M) + Bo(N, M~.).

We denote by A, (N; M) (resp, Bs(N; M)) the low rank approximation via the singular value threshold ~(N)
(see Definition . By direct computations, we have

|A — Ay (N; M) Ag(N; M)T||
<[ ALN; M) - | Ag(N; M)T = Bo(N; M)t + [[ Ay (N; M) — By (N; My) || - || Bo(N; My)T |
< (I By(N; My)|| + || By (N; Mcy) || + | Ex(N)]) - [ Ao (N; M)T — Bo(N; My)T||

+ | By(N; Mcy) + Ex(N)| - || Bo(N; My)].

By Proposition for s = 0,1 and for N > max{2d, 16L%}, we have
IBS(N; My)[| < [ X (M) - [ MY+t Qu (M) - | K|
< KCws (L) [ X (M) || K|
< Bdr*Clys(L)
IBs(N; Mcr)|| < [ X (Mcr)|| - [MET*1Qn (M) - | K|
d2I{6_A(N+Sd_d)

NAd-1
A(N+sd—d)

< X (M) - 11K -

od d*ke~

< BrVd(d +1) NATT

BHQedJrGfA(NJrsdfd)
= NAd—1 ’

where we used | K| < v/dB (Assumption|3), and || X (M<1)| < k(d+1)2% (LemmalC.3)), and v/d(d+1)d?2? <
edt6. By Lemma with Proposition 4.7, we see that

1Bo(N; My)Y|| < 6Cus(L)IXTH - [ KH.

By using Lemma [D.I] and union bounds, we obtain

max([|Ey(N)[ , [[E2(N)]|r) <~(N) = Wik

with probability at least 1 — . Assume that

(d—1)log A N log(Br?) +d+6
A A
Then, we see that || By(N;Mc1)| < 1/N. Thus, by Lemma [C.6] with probability at least 1 — &, we have

140 (V5 M)T — Bo(N; M)T|| < 8(|Eo(N)|| + || Bo(N; Mc)[l) - [|Bo (N, M) V|| (Ved + 1)
< 8Y(N) - | Bo(N, M) |[*(Vd + 1)
< 8(1+ V)R Cus (L) X2 - K HP ().

N> — +d.

Therefore, there exists C' > 0 depending on || X (M)]|, | K|, &, Cws(L), || X, | K|, and d such that

R? (log (1/6) +1) + 1)
N ;

with probability at least 1 — 4. O

|A— A (N; M)Ao(N; M)t|| < C (
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C.2 Miscellaneous

We provide an expression of Moore-Penrose pseudo inverse:

Proposition C.4. Let A : C™ — C" be a linear map. Let i : S (A) — C" be the inclusion map and let
p: C™ — A (A)*L be the orthogonal projection. Let A := A| y(ay : N (A)F — F(A) be an isomorphism.
Then, the Moore-Penrose pseudo inverse A coincides with i* A=1p*.

Proof. Let B := p*A~1i*. We remark that A = iAp, i*i = id, pp* = id, we see that ABA = A, BAB = B,
(AB)* = AB, and BA = (BA)*. By the uniqueness of Moore-Penrose pseudo inverse, B = Af. O

Proposition C.5. Let A € C¥4 be a matriz and let v € C? be a vector. Let V. C C? be a linear subspace
generated by {A7v}52,. Then, V = .7 (Av, A%v,..., A%).

Proof. Put W = .# ((Av7 A%, ..., Adv)). The inclusion W C V is obvious, we prove the opposite inclusion.
It suffices to show that A7v € W for any positive integer j > d. By the Cayley-Hamilton theorem, A¢ =

Z;l:l cjA%J for some ¢; € C. Thus, by induction A7 is a linear combination of A, A% ... A% namely,
Ay e W. O

We give several lemmas here.

(Cd><d

Lemma C.6 (Perturbation bounds of the Moore-Penrose inverse). Suppose A € is a matriz. Let

E € C? be a matriz satisfying
1
/N )

and let A € C™4 be the low rank approzimation of A+ E via SVD with the singular value threshold C/V/N.
Then, we obtain

3C >0, VN €Zso, ||E|<C

sCl|AT|? (Vi +1)
~ .

o)

Proof. Let omin = ||AT|~! be the minimal singular value of A. From (Meng & Zheng} 2010, Theorem 1.1)
(or originally |Wedin| (1973)) and from the fact

|4s - A < 1B+ \/j%c

we obtain

[t = ap] < Y {||AT||2,

|12 C
1 _
AEH }(\/E-i— 1) TN
For N such that 1 < N < 4C?/02; | we have HAEH < VN/C < 2/0min. Suppose singular values o, k € [d],

min»

of A, and 6y, k € [d], of A+ E are sorted in descending order. Then, it holds that
lox — 6%l < |E] .

Therefore, for N > 402 /02, , the minimum singular value 6,4 is greater than op,;,/2. In this case, Ap =

min’

A+ FE, and it follows that HAEH < 2/0min- Hence, for all N > 1, we obtain
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from which, it follows that

20 (1+V/5) (\/&Jr 1) 8C||Af|2 (\/E+ 1)
AN N

]

O

Lemma C.7 (Null space of random matrix). Suppose M), € R¥*? Lk € [d], have the same null space. Then,
the null space of

LETMl
.T;MQ
X = . ,

x ) My

where xy, k € [d], are independently drawn unit vector from the uniform distribution over the unit hyper-
sphere, is the same as those of My, with probability one.

Proof. Given any k — 1 dimensional linear subspace in 4" (My)* for any k € [d], it holds that the probability
that szk lies on that space is zero. Therefore, by union bound, and by the fact that the row space is the
orthogonal complement of the null space, we obtain the result. O

D Azuma-Hoeffding inequality for exponential sum

Lemma D.1. Let {X; }}1:1 for n € Zwq be sub-Gaussian martingale difference with variance prory R* and
a filtration {F;}. Also, let {a;} C C be a sequence of complex numbers satisfying |a;| < 1 for all j € [n].
Then, the followings hold, where x[-| stands for Re[-] or Jm[].

1 - 2R21og (2/6)
Pr | = X<y > 124
= ;aj il < - > ,

n 2
Zanj < 4R?log (4/9) >1—4.
j=1

1
n n

Proof. For a filtration {F;}i<p, we have

7

B {exme [27:1 anj]:| <E {e»m [Z;_z:—ll “-’Xj}]E {6,\%[%)("] |]:”—1H < JECTCES {6,\9%[2:—11 a; ;]

where the first inequality follows from the assumption of filtration, and the second inequality follows from

A2 R2

E {e/\w[a"x"] ]:n—l} <e .

Fooa] = E [eXXomelen)

By induction, we obtain

By using Markov inequality and the union bound, it follows that

’!L52

1 n
Pr | — |RA Xl > < 2e” 2RZ.
r - ¢ jz_:la] j €| <2e 2R
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Similarly, we have

TL€2

1 n
Pr|—|J Xl > < 2e” 2RZ,
T " m ;a] j el < 2e 2R

Therefore, we obtain

1| 4R21og (4/6)
Pri=|) a;X;| </ ——=
r n CLJ il s n

2R?log (4/9)
n

1 n
>Pr|— R X
> Pr - ¢ j;aj j

1 = 2R21og (4/6)
— X || <y /2N T
+Pr [~ |Jm Za]XJ < - 1
j=1
) )
>(1—= 1—--]-1>1-96
2 (1-5)+(-5) =
where the first inequality follows from the Fréchet inequality. O

E Applications to bandit problems

We briefly cover the applicability of our proposed algorithms to bandit problems (e.g., regret minimization)
which is mentioned in the introduction.

A naive approach is an explore-then-commit type algorithm (cf. Robbins| (1952); |Anscombe| (1963)). One
employs our algorithm to estimate a nearly period, followed by a certain periodic bandit algorithm such as
the work in |Cai et al.| (2021) to obtain an asymptotic order of regret. Caveat here is, because our estimate is
only an aliquot nearly period, one may need to take into account the regret caused by this misspecification
when running bandit algorithms (e.g., p and p may lead to (small) linear regret). Avoiding this small linear
regret would require the system to be 0-nearly periodic and that there exists a sufficiently large gap ensuring
p-nearly period with sufficiently small p implies 0-nearly period.

If one aims at designing an anytime algorithm, the straightforward application of our algorithms may not
give near optimal asymptotic rate of expected regret because the failure probability of periodic structure
estimations cannot be adjusted later. To remedy this, one can employ our algorithm repetitively, and
gradually increase the span of such procedure. Importantly, samples from separated spans can contribute
to the estimate together when the surplus beyond a multiple of period is properly dealt with. Since failure
probability decreases exponentially with respect to sample size, we conjecture that increasing the span for
bandit algorithm by a certain order will lead to the same rate (up to logarithm) of expected regret of the
adopted bandit algorithm.

F Simulation setups and results

Throughout, we used the following version of Julia |Bezanson et al.| (2017)); for each experiment, the running
time was less than a few minutes.

Julia Version 1.6.3

Platform Info:

0S: Linux (x86_64-pc-linux-gnu)

CPU: Intel(R) Core(TM) i7-6850K CPU @ 3.60GHz
WORD_SIZE: 64

LIBM: libopenlibm
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Table 2: Hyperparameters used for period estimation of LifeGame.

LifeGame hyperparameter ‘ Value H Algorithm hyperparameter ‘ Value
height 12 accuracy for estimation p 0.98
width 12 failure probability bound § 0.2
observed dimension 5 maximum possible period Ly ax 10
observation noise proxy R 0.3

ball radius B V5

Figure 2: The area we focus on for the cellular automata experiment.

LLVM: 1ibLLVM-11.0.1 (ORCJIT, broadwell)
Environment:
JULIA_NUM_THREADS = 12

We also used some tools and functionalities of Lyceum Summers et al.| (2020). The licenses of Julia and
Lyceum are [The MIT License; Copyright (c) 2009-2021: Jeff Bezanson, Stefan Karpinski, Viral B. Shah, and
other contributors: https://github.com/JuliaLang/julia/contributors], and [The MIT License; Copyright (c)
2019 Colin Summers, The Contributors of Lyceum)], respectively.

In this section, we provide simulation setups, including the details of parameter settings.
F.1 Period estimation: LifeGame

The hyperparameters of LifeGame environment and the algorithm are summarized in Table [2] Note u =0
because it is a periodic transition. Here, we used 12 x 12 blocks of cells and we focused on the five blocks
surrounded by the red rectangle in Figure 2] The transition rule is given by

1. If the cell is alive and two or three of its surrounding eight cells are alive, then the cell remains alive.

2. If the cell is alive and more than three or less than two of its surrounding eight cells are alive, then
the cell dies.

3. If the cell is dead and exactly three of its surrounding eight cells are alive, then the cell is revived.

F.2 Period estimation: Simple p-nearly periodic system

The dynamical system

ry— 1 ry—1 21
Tt+1:,u<a L —|—Oé L -|>+17 9t+1:9t+77
% 1% L

is u-nearly periodic. See Figure [3|for the illustrations when p = 0.2, L =5, o = 7. It is observed that there
are five clusters. We mention that this system is not exactly periodic. The hyperparameters of this system
and the algorithm are summarized in Table [3]
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Table 3: Hyperparameters used for py-nearly periodic system.

System hyperparameter ‘ Value H Algorithm hyperparameter Value
dimension 2 accuracy for estimation p 0.3
" 0.001 || failure probability bound § 0.2
« T maximum possible nearly period Lax 8
true length L 5

observation noise proxy R | 0.3

ball radius B 2

Figure 3: An example of p-nearly periodic system.

F.3 Eigenvalue estimation

We used the matrix M given by

I
cor~ oo
cocooro
o~ oo o
cocoo~

cocoo

0.7

The first 4 x 4 block matrix is for permutation. After N steps, it is expected that the last dimension shrinks
so that the system becomes nearly periodic. It follows that 4! = 24 is a multiple of the length L. Eigenvalues
of M5 are given by 1.000, 1.000, —0.500—0.8667, —0.500+0.866i, 0.168, and the (6, 5)-distinct eigenvalues
are 1.000, — 0.500 — 0.8667, — 0.500 + 0.866s.
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Table 4: Hyperparameters used for eigenvalue estimation.

Hyperparameter ‘ Value H Hyperparameter ‘ Value
K 6 a nearly period L 24
A 0.1 failure probability bound § 0.2
dimension 5 observation noise proxy R 0.3
ball radius B 1

The hyperparameters of the environment and the algorithm are summarized in Table ] Note we don’t
necessarily need k, B, and A to run the algorithm as long as the effective sample size is sufficiently large;
we used the values (satisfying the conditions) in Table [4] for simplicity.
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