Implicit Hypergraph Neural Networks: A Stable
Framework for Higher-Order Relational Learning
with Provable Guarantees

Xiaoyu Li* Guangyu Tang*
University of New South Wales University of New South Wales
xiaoyu.li2@student.unsw.edu.au tang_guangyu@126.com

Jiaojiao Jiang'
University of New South Wales
jiaojiao.jiang@unsw.edu.au

Abstract

Many real-world interactions are group-based rather than pairwise, e.g., papers
with multiple co-authors or users jointly engaging with items. Hypergraph neu-
ral networks (HGNNs) capture such higher-order relations, but fixed-depth mes-
sage passing can miss long-range dependencies and destabilize training as depth
grows. We introduce Implicit Hypergraph Neural Network (IHGNN), bringing
the implicit equilibrium formulation to hypergraphs: instead of stacking layers,
IHGNN computes representations as the solution to a nonlinear fixed-point equa-
tion, enabling stable, efficient global propagation across hyperedges without deep
architectures. We develop a well-posed training scheme with provable conver-
gence, characterize conditions for oversmoothing and the model’s expressivity,
and derive a transductive generalization bound on hypergraphs. Training uses
an implicit-gradient method coupled with a projection-based stabilizer. On cita-
tion benchmarks, IHGNN consistently outperforms strong graph and hypergraph
baselines in both accuracy and robustness, and is notably resilient to random ini-
tialization and hyperparameter variation—highlighting strong generalization and
practical value for higher-order relational learning.

1 Introduction

Graph neural networks (GNNs) have emerged as a powerful paradigm for learning from graph-
structured data, where nodes represent entities and edges capture their pairwise relationships [35, 63,
62]. However, many real-world scenarios involve complex, higher-order interactions that cannot be
fully captured by simple pairwise connections. For example, in a coauthorship network [36], a single
paper often involves more than two authors. Such relationships are more naturally represented using a
hypergraph, in which each vertex corresponds to an author and each hyperedge connects all authors of
the same paper. By explicitly modeling these multi-way correlations, hypergraphs can capture intricate
interdependencies among multiple entities simultaneously, providing a richer and more faithful
representation of complex relationships present in real-world data. Hypergraph neural networks
(HGNNSs) naturally generalize GNNSs to learn from hypergraph-structured data [15, 67, 30, 19]. By

*Equal contribution.
fCorresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: New Perspectives in
Graph Machine Learning.

extending the capabilities of GNNs, HGNNs can flexibly model and analyze complex, higher-order
relationships that arise in many domains [55, 24, 46, 37, 10, 4, 14].

Despite their expressive power, conventional HGNNSs still rely on explicit message passing across
stacked layers, which is inherently limited in capturing long-range dependencies. As depth increases,
training becomes prone to vanishing or exploding gradients [25, 23], and models often suffer from
computational inefficiency and instability. Moreover, oversmoothing [40, 50, 7], where node repre-
sentations become indistinguishable as layers stack, can severely degrade performance, particularly
in tasks requiring fine-grained discrimination. These challenges highlight the need for more effective
architectures that can capture global context without sacrificing stability or efficiency.

To address the these challenges, we draw inspiration from the success of implicit models [8, 1, 20,
18], which compute feature representations by solving nonlinear fixed-point equations rather than
propagating information through stacked message-passing layers. [20] applied this paradigm to GNNS,
enabling the capture of long-range dependencies in graphs. However, its extension to hypergraph
neural networks remains unexplored. To fill this gap, we propose the Implicit Hypergraph Neural
Network (IHGNN), which enjoys both the expressive power of hypergraph modeling with the
stability and depth efficiency and stability of implicit architectures. IHGNN performs global reasoning
in a single step by directly solving a nonlinear fixed-point equation, effectively capturing higher-order,
long-range dependencies while avoiding the instability and inefficiency of deep stacked models. We
provide both theoretical analysis and empirical evaluation to demonstrate its effectiveness.

We summarize the main contributions of this work: (i) Implicit Hypergraph Learning Framework:
We propose the first hypergraph neural architecture that integrates implicit equilibrium formula-
tions, enabling expressive representation learning without layer-wise message-passing iterations.
(ii) Theoretical Analysis: We establish a well-posed training scheme with provable convergence
guarantees, theoretically show that IHGNN mitigates oversmoothing, and derive a generalization
bound for transductive learning on hypergraphs. (iii) Empirical Evaluation: On Cora, Pubmed,
and Citeseer citation benchmarks, IHGNN achieves state-of-the-art performance, exhibiting robust
accuracy, parameter stability, and training resilience under diverse conditions.

2 Preliminaries

Notation. We use [n] to denote the set {1,2,...,n}. We denote vectors and matrices by lower-
and upper-case boldface letters, respectively. For a vector x € R%, we use [|x||1, [|x]|2, and [|x]|oo
to denote the ¢1-, {3-, and {,.-norm of x. We use 0,, and 1,, to denote an n- dlmensmnal all-zero
and all-one vectors, respectively. For two vectors x,y € R", we use (x,y) or x'y to denote
their standard inner product. Given a vector x € R%, let Diag(x) denote the diagonal matrix with
Diag(x);; = x; for i € [d] and zeros elsewhere. The largest eigenvalue of A is denoted as Apax(A).
For two matrices A, B we denote their Kronecker product and Hardmard product as A ® B and
A © B, respectively. For a matrix A € R™*%, its vectorization is defined as vec(A) € R4, We
use | A || to denote its Frobienus norm, to denote its
maximum-row-sum norm. We define the inner product (A, B) := tr[ABT].

Hypergraph. A (weighted) hypergraph is defined as G = (V, E, w), which contains a set of nodes
V' = {v1,v2,...,vv|}, a set of hyperedges £/ = {e1,...,e|g|}, and a hyperedge-weight vector
w = [wy,..., w|E|}T € RIFl. Each hyperedge e; is a nonempty subset of nodes and is assigned
with a weight w;. We denote n := |V| as the number of nodes and m := |E| as the number of
hyperedges. We can represent the set E as an incidence matrix H € {0, 1}‘V| *IE| where for every
i€ n],je[m],H,; =1ifv; € e;, and H; ; := 0 otherwise. The hyperedge weight matrix
E := Diag(w) € R™*"™ is defined as a diagonal matrix with E; ; := w, for each j € [m]. The node
degree matrix D := Diag(Hw) € R™*" is defined as a diagonal matrix with D, ; := E;"Il H; jw;
foreach i € [n]. The hyperedge degree matrix B := Diag(H"1,,) € R™*™ is defined as a diagonal

matrix with B; ; := >""" | H; ; for each j € [m].

Hypergraph Neural Networks. We assume that each node v; is equipped with input node feature
x; € R% We denote the input node feature matrix as X := [x1,Xa,...,X,] € R"*¢ where
the ¢-th row of X is node feature x;. In the traditional Hypergraph Neural Network (HGNN)
framework [16, 2], node features are updated iteratively through explicit layer-wise propagation.
Formally, the ¢-th layer of an HGNN is defined as X(‘+1) = ¢(D~1/2HEB'H D~ /2X(OW),

where W € R%*4 is the trainable weight matrix, X(*) is the input feature matrix at the ¢-th layer with
X := X, ¢ : R — Ris an entry-wise nonlinear activation function, and D~/?HEB~'HD~1/2
is the normalized hypergraph Laplacian matrix that governs feature propagation on the hypergraph.
In other words, the normalized hypergraph Laplacian matrix serves as the propagation operator in
HGNN, allowing information to flow across multiple nodes connected by common hyperedges and
thus enabling the learning of high-order relationships. Note that when a hypergraph degenerates to a
graph, it is exactly the normalized Laplacian matrix for the graph.

3 Implicity Hypergraph Neural Networks

3.1 The Architecture of IHGNN

Traditional HGNN s rely on explicit layer-wise propagation over a fixed number of iterations to
perform feature aggregation. While effective, this approach often struggles to capture long-range
dependencies and can suffer from instability in deep architectures. To address these limitations,
we propose the Implicit Hypergraph Neural Network (IHGNN), which incorporates the nonlinear
equilibrium formulation from implicit graph neural networks [20] into the hypergraph setting.

In IHGNN, the node representations are derived from a nonlinear fixed-point equation, rather than
through iterative layer-wise updates. This equilibrium-based formulation allows for the modeling of
global dependencies without increasing model depth, thereby improving stability and scalability.

Definition 3.1 IHGNN). The architecture of IHGNN is defined as the following mapping
Y = f(X;W,©1,0,b)

where X € R™*? is the input node feature matrix, W € R4 x4 @, € R¥ b € R¥, @, €
R?»*4" are trainable weights, and f can be described with the following equations:

X =X0;+1,b", (1)
Z—¢ (D—l/QHEB—lﬂTD—l/QZW T 5() : @)
Y =70,, 3)

where ¢ : R — R is a nonlinear activation function.

Now we introduce the components of the IHGNN. Equation (1) defines an affine transformation
that serves as a feature—preprocessing unit, injecting a learned skip term into the equilibrium layer,
and Equation (3) produces the final prediction via a linear readout on the equilibrium state. The
implicit layer Equation (2) can be viewed as solving the fixed-point equation Z = T (Z) :=
$(D"/2ZHEB~'H D~ /2ZW + X). We will show that under some mild conditions, Z = 7 (Z)
has a unique solution Z*, and the fixed-point iteration Z(**1) = T (Z®)) converges to Z* as t — cc.
Hence f is a well-defined mapping in such cases.

3.2 Well-Posedness and Convergence Analysis

To ensure that IHGNN produces valid and stable node representations, it is essential to guar-
antee the existence and uniqueness of a solution to the implicit equilibrium equation for any
given input. To simplify the notation, we denote the normalized hypergraph Laplacian matrix
as M := D~'/2HEB~"H " D~!/2. Then the fixed-point equilibrium equation ,i.e., Equation (2),
in IHGNN becomes Z = ¢(MZW +)NC) We say that the fixed-point equilibrium equation is
well-posed if for any X € R4 it has a unique solution Z*.

To derive a sufficient condition for well-posedness. We assume IHGNN is constructed on an
admissible hypergraph, i.e., a hypergraph where each hyperedge is associated with a non-negative
weight, and each node has a positive degree. Nonnegative hyperedge weights and strictly positive
node degrees ensure the normalized hypergraph Laplacian M = D~'/2HEB~'H"D~1/2 is well
defined, since E = 0 and D~1/2 and B~ exist. Under these conditions M is positive semidefinite.
Combined with the Lipschitz continuity of activation function ¢ and a spectral norm bound on W,
this yields a simple well-posedness condition. The proof is defered to Appendix C.

Theorem 3.2 (Sufficient condition for well-posedness). Let M € R™*™ be the normalized hyper-
graph Laplcaian matrix of an admissible hypergraph. Assume that ¢ : R — R is a nonexpansive
activation function, i.e., ¢ is 1-Lipschit. If the weight matrix W &€ RdrXdn of an [HGNN satisfies
Amax([W|) < 1, then for any X € R%4*%, the fixed-point equilibrium equation Z = ¢(MZW + X)
has a unique solution Z* € R™*<, and the fixed point iteration Z(*+1) = ¢(MZ(t)W+)~() converges
to Z* as t — oo. Futhermore, if we assume that ||Z*||p < Cj for some Cy > 0, Apax(|[W|) = & for
some € [0,1), and Z(Y) = 0,,4, then for any integer t > 1, |Z®) — Z*||p < k'~1Cy.

Note that in [20], they study the fixed-point layer Z = ¢(AZW -+ bias) on graphs with adjacency
matrix A, and proves well-posedness under the spectral condition of A® W. In contrast, Theorem 3.2
is stated for hypergraps and uses the normalized hypergraph operator M, which collapses the joint
constraint into the graph-agnostic requirement A\« (|[W|) < 1, yielding existence, uniqueness, and
geometric convergence with rate kK = Apax(|W|). Moreover, employing a normalized Laplacian
rather than the raw adjacency is standard and more realistic in practice: it controls the spectrum,
mitigates degree heterogeneity, and avoids graph-dependent spectral blow-up.

3.3 Oversmoothing Analysis

Oversmoothing, i.e., the tendency of node embeddings to collapse toward an indistinguishable
constant vector as depth increases—remains a central obstacle for deep (hyper)graph networks.
Since IHGNN is an implicit architecture, depth is replaced by a fixed-point-solving procedure.
Consequently, the classical layer-wise view of oversmoothing no longer applies directly.

Our first result is a sufficient condition for IHGNN to provably avoid the trivial constant solution. Our
second result complements the first one by showing that, even under the identity activation, [HGNN
remains as expressive as any K -th-order polynomial hypergraph filter. The proofs are in Appendix D.

Theorem 3.3 (Sufficient condition for nonidentical node features). Let M € R™*™ be the normalized
hypergraph Laplcaian matrix of an admissible hypergraph. Let ¢ : R — R be a strictly increasing
nonexpansive activation function. Suppose that the weight matrix W € R%*? of an IHGNN satisfies
Amax (|W/) < 1, then for any X € R**? satistying x; # x; for some , j € [n], there does not exists
Zy € R4, such that Z* = lnz(—)'—.

Theorem 3.4 (Expressivity of IHGNN). Let M € R™*" be the normalized hypergraph Laplcaian
matrix of an admissible hypergraph. Let K € A. For every K-order polynomial filter function
p(X) = (Xr, 0xMF)X with arbitrary coefficients {65}/, and input feature matrix x € R"*<,
there exists an IHGNN with identity activation can express it.

3.4 Transductive Generalization Analysis

In this section, we conduct a theoretical analysis of transductive learning on hypergraphs. Let
X := R? be the input feature space and) := RY be the output label space. In the transductive
setting, we observe the entire hypergraph G and node features {x; }?_,, but labels only for a subset of
nodes. Let S C [n] denote the labeled indices with |S| = s and U = [n]\ S the unlabeled indices with
|U| = u (s0 s +u = n). During training, the learner has access to {x;} ; and {y; };cs, and the goal
is to predict {y; }icu, i-e., the labels for all nodes with inidices in U. Without loss of generality, we
index nodes so that S = {1,...,s}and U = {s+1,...,n}. Forany f € H, we define the training
and testing as L,(f) = 137 0(f(x;),y;) and L, (f) = L3707 | £(f(xi),y:), respectively,
where £ : H x X x Y — [0, 00) is a loss function.

Assumption 3.5. We assume the following conditions hold.

* Bounded input features: The input node feature matrix X € R™*? satisfies ||x;||2 < Cx
for each ¢ € [n] for some C'x > 0.

* Bounded trainable parameters: The trainable parameters ©®;,®,, b, W satisfies
1©1]|F < p1,[©2][F < p2,[bll2 < Cp for some p1,p2,Ch > 0, and [W|| < & for
some « € [0, 1). For simplicity, we assume their dimensions satisfies d = dj, = d’.

¢ Lipschitz loss: The loss function £ is Cyp-Lipschitz for some C; > 0.

* Nonexpansive activation: The activation function ¢ is nonexpansive, i.e., 1-Lipschitz.

These assumptions are standard and easy to meet. Feature vectors are routinely normalized in practice,
e.g., {s-normalization, and many benchmark node features are already bounded. During the training,
weight decay/regularization directly impose norm constraints on @1, @2, b. The spectral bound
W] < & < 1 directly enforces the contraction needed for a unique equilibrium when combined
with the normalized operator so the fixed point exists and is reached geometrically. Lipschitz loss
and nonexpansive activations are very common and easy to meet this on bounded domains, e.g.,
squared/hinge losses, cross-entropy are Lipschitz in the probability simplex or when logits are
bounded, and ReLU < 1, tanh, sigmoid activations are 1-Lipschitz.

Next, we state our main results of generalization bounds. The proofs are deferred in Appendix E.

Theorem 3.6 (Transductive generalization bound of IHGNN). Suppose Assumption 3.5 is satisfied.
Let H be the hypothesis class of IHGNN models defined on the any admissble hypergraph. Let
P .= % -+ %, and @ = (s+u_1/2)(1f{}‘(2 x5 Then, for any 6 > 0, with probability at least

1 — & over the choice of the training set {x;}?11* U {y;}:_,, for all f € H, we have

= \/§p20@(p10¢ aty \/ECb) 32 log(4e) " \/ﬁ

In the asymptotic regime, we further simplify the generalization bound.

Corollary 3.7 (Asymptotic transductive generalization bound of IHGNN). Under the same conditions
in Theorem 3.6, for sufficiently large training-set size s and testing-set size u, for any 6 > 0, with
probability at least 1 — § over the choice of the training set, for all f € #, we have

log(1/9))5 |

min{s, u}

Lul) < E(F)+0 (L) cof

Note that the second term O(Sj‘L—iu)l/ 2 decays as either the training-set size s or the testing-set size

u increases. However, the last term O(%)l/ 2 converges slowly whenever s < u or u < s.

The regime s < u corresponds to an under-fitted model, whereas when v < s, the sample mean
computed from the u test nodes, drawn out of the s 4 w available nodes, has high variance.

3.5 Training of IHGNN

Directly enforcing the constraint Ay, (|W/|) < 1 is computationally difficult due to its non-convexity
with respect to W. To address this, we introduce a more tractable surrogate constraint. By assuming
the activation is positively homogeneous, meaning o (ax) = ao(x) for all « > 0. We can derive the
following condition and its proof is in Appendix F.

Theorem 3.8 (Scaled Well-Posedness of IHGNN). Suppose that the activation function ¢ : R — R is
positively homogeneous and nonexpansive. If an IHGNN model with weights W, ®1, ®,, b satisfies

Amax(|[W]) < 1, then there exists an equivalent IHGNN model with weights W, @1, @2, b such

that || W||s < 1, and both models produce identical outputs for all same inputs.

Although this constraint is stricter, it remains valid for many activation functions (e.g., ReLU, identity)
that are positively homogeneous. To maintain this condition during training, we apply a projection
step after each gradient update: Il (W) := arg minw <. [|[W' - W||%, where k € [0,1) is a
relaxation parameter. This operation ensures that the updated weights lie within the feasible region
defined by the well-posedness constraint.

Using the chain rule, we compute gradients with respect to parameters) and the hidden state
Z, followed by gradients for parameters ¢ € {W,®;,b}. The gradient of the loss with re-
spect to ¢ is expressed as: V,L£ = <%q(MZW + XO; +1,b"),VzL), where X is treated
as fixed during this step. The quantity VgL satisfies the recursive equation: Vz£ = ¢'(Z) ®
(MTVZLWT +Ve, L+ Vbﬁ) . Note that our previous analysis can be adapted to show that this
equation can be efficiently approximately solved via fixed-point iteration.

4 Experiment

4.1 Experimental Setup

We implement IHGNN in PyTorch (Python 3.12). Experiments run on a workstation with an Intel
15-12600KF CPU and an NVIDIA RTX 4070 GPU (Windows 11). For evaluation, we use the
standard citation benchmarks Cora [56], Citeseer [56], and PubMed [49] for node classification and
generalization. Publications are nodes. To construct hypergraphs, we adopt a bibliographic-coupling
scheme: for each cited paper, we create a hyperedge connecting all papers that cite it. This captures
community-level citation interactions and higher-order structure beyond pairwise links.

4.2 Performance Analysis

Table 1 shows the performance of THGNN
against the various baselines. IHGNN ranks
first on all three datasets (Cora/Pubmed/Citeseer:
85.9/83.8/75.1), exceeding the best baseline by

Table 1: Accuracy (%) on citation benchmarks.

Model Cora Pubmed Citeseer

. : Semi-SE [61] 59.0 70.7 60.1
+1.5, +3.5, and +1.5 points, respectively (avg. DeepWalk [51] 67.2 65.3 430
+2.2). Classical embeddings (Semi-SE, Deep- Pplanetoid [70] 7577 772 64.7
Walk) underperform, while GCN/GAT improve GCN [35] 81.5 79.0 70.3
but are limited to pairwise edges. HGNN captures ~ GAT [60] 83.0 79.0 72.5
higher-order structure yet degrades with depth; =~ HGNN [15] 81.6 80.2 69.2
IGNN stabilizes deep propagation on pairwise =~ IGNN [20] 84.4 80.3 73.6
graphs. By combining an implicit equilibrium jgGNN 85.9 83.8 75.1

layer with hypergraph modeling, IHGNN captures
higher-order and long-range dependencies, yielding consistent gains across diverse citation networks.

4.3 Stability and Robustness Analysis

We evaluate stability under two pertur- Table 2: Fifty-seed stability: mean, standard deviation,

bations—50 random seeds and hyper- and 95% CI for F1/Accuracy.
parameter sweeps (hidden size, learn-

ing rate, dropout)—and observe consis- Dataset Metric Mean =+ Std 95% CI

tfn%yszrgféls‘glan?z Ondcgrgég/ ACC "Com FI 08621 +0.0066 [0.8603,0.8639]
~ U.062/0.56% with std 0.0000; on Acc 0.8619 +0.0066 [0.8601, 0.8637]
Pubmed, ~ 0.835/0.836 with std 0.0028; pypmed FI 0.8352+£0.0028 [0.8345, 0.8360]
on Citeseer, ~ 0.753/0.751 with std Acc 0.8358 + 0.0028 [0.8350, 0.8366]
0.0069/0.0068, with 95% CI half-widths Citeseer ~ F1 0.7529 +0.0069 [0.7510, 0.7548]
< 0.002 across datasets. Hyperparameter Acc 0.7508 £ 0.0068 [0.7489, 0.7527]

changes shift scores by only £0.01-0.04,
indicating weak sensitivity and a low tuning burden. This is due to the implicit equilibrium layer with
non-expansive activation and constrained weight norm, together with hyperedge aggregation.

4.4 Convergence and Oversmoothing Anlaysis

Cora Pubmed Citeseer
12 100 12.5

10 « 80 %100

7.5

1200 -z~ D),

200 -z~ 1)
IS
S

200 -z~ 1)

5.0

20 25

0.0
20 40 60 80 100 1
Iteration

0
1 20 40 60 80 100 1
Iteration

20 40 60 80 100
Iteration

Figure 1: (a) Fixed-point convergence on Cora, Pubmed, and Citeseer measured by the residual
Ay = ||Z®) — Z=D| g, (b) Test accuracy vs. depth on ModelNet40 for HGNN and THGNN.

We track the fixed-point residual A; = ||Z(*) — Z{~V|| z on benchmarks; Figure 1(a) shows rapid
decay of A, toward zero across datasets, confirming the expected contraction behavior induced by
non-expansive activations and norm-constrained weights. To probe depth effects, we compare with

the HGNN on ModelNet40 and vary propagation depth: as shown in Figure 1(b), HGNN accuracy
degrades with increasing depth (over-smoothing), whereas IHGNN remains stable, indicating that the
implicit hypergraph formulation preserves discriminative signals even at large effective depth.

5 Conclusion

In this work, we introduce IHGNN for stable higher-order relational learning. We prove well-
posedness, convergence, and a transductive generalization bound. On citation benchmarks, IHGNN
consistently improves accuracy, robustness, and training stability over strong GNN/HGNN baselines.
These results show IHGNN captures long-range higher-order dependencies and establishes implicit
methods as a practical basis for learning on non-pairwise structures.

References

[1] S. Bai, J. Z. Kolter, and V. Koltun. Deep equilibrium models. Advances in neural information
processing systems, 32, 2019.

[2] S. Bai, F. Zhang, and P. H. Torr. Hypergraph convolution and hypergraph attention. Pattern
Recognition, 110:107637, 2021.

[3] J. Baker, Q. Wang, C. D. Hauck, and B. Wang. Implicit graph neural networks: A monotone
operator viewpoint. In International Conference on Machine Learning, pages 1521-1548.
PMLR, 2023.

[4] A.Bazaga, P. Lio, and G. Micklem. Hyperbert: Mixing hypergraph-aware layers with language
models for node classification on text-attributed hypergraphs. In Findings of the Association for
Computational Linguistics: EMNLP 2024, pages 9181-9193, 2024.

[5] C.Bodnar, F. Frasca, and M. M. Bronstein. Neural sheaf diffusion: A topological perspective on
heterophily and oversmoothing in graph neural networks. In Proceedings of the International
Conference on Learning Representations (ICLR), 2023.

[6] D. Cai, M. Song, C. Sun, B. Zhang, S. Hong, and H. Li. Hypergraph structure learning for
hypergraph neural networks. In Proceedings of the Thirtieth International Joint Conference on
Artificial Intelligence, pages 1923-1929, 2022.

[7] G. Chen, J. Zhang, X. Xiao, and Y. Li. Preventing over-smoothing for hypergraph neural
networks. arXiv preprint arXiv:2203.17159, 2022.

[8] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud. Neural ordinary differential
equations. Advances in neural information processing systems (NeurIPS), 31, 2018.

[9] K. Ding, A.J. Liang, B. Perozzi, T. Chen, R. Wang, L. Hong, E. H. Chi, H. Liu, and D. Z. Cheng.
Hyperformer: Learning expressive sparse feature representations via hypergraph transformer.
In Proceedings of the 46th international ACM SIGIR conference on research and development
in information retrieval, pages 2062-2066, 2023.

[10] K. Ding, J. Wang, J. Li, D. Li, and H. Liu. Be more with less: Hypergraph attention networks
for inductive text classification. In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages 4927-4936, 2020.

[11] Y. Dong, W. Sawin, and Y. Bengio. Hnhn: Hypergraph networks with hyperedge neurons. arXiv
preprint arXiv:2006.12278, 2020.

[12] E. Dupont, A. Doucet, and Y. W. Teh. Augmented neural odes. Advances in neural information
processing systems (NeurIPS), 32, 2019.

[13] R. El-Yaniv and D. Pechyony. Transductive rademacher complexity and its applications. Journal
of Artificial Intelligence Research, 35:193-234, 2009.

[14] Y. Feng, C. Yang, X. Hou, S. Du, S. Ying, Z. Wu, and Y. Gao. Beyond graphs: Can large
language models comprehend hypergraphs? In The Thirteenth International Conference on
Learning Representations (ICLR), 2025.

[15] Y. Feng, H. You, Z. Zhang, R. Ji, and Y. Gao. Hypergraph neural networks. In Proceedings of
the AAAI conference on artificial intelligence, volume 33, pages 3558-3565, 2019.

[16] Y. Feng, H. You, Z. Zhang, R. Ji, and Y. Gao. Hypergraph neural networks. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 33, pages 3558-3565, 2019.

[17] Y. Feng, Y. Zhang, S. Ying, S. Du, and Y. Gao. Kernelized hypergraph neural networks. /IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2025.

[18] G. Fu, M. H. Dupty, Y. Dong, and L. W. Sun. Implicit graph neural diffusion networks:
Convergence, generalization, and over-smoothing. arXiv preprint arXiv:2308.03306, 2023.

[19] Y. Gao, Y. Feng, S. Ji, and R. Ji. Hgnn+: General hypergraph neural networks. [EEE
Transactions on Pattern Analysis and Machine Intelligence, 45(3):3181-3199, 2022.

[20] F. Gu, H. Chang, W. Zhu, S. Sojoudi, and L. El Ghaoui. Implicit graph neural networks.
Advances in neural information processing systems (NeurIPS), 33:11984—-11995, 2020.

[21] W. L. Hamilton, R. Ying, and J. Leskovec. Inductive representation learning on large graphs. In
Advances in Neural Information Processing Systems (NeurIPS), pages 1024—-1034, 2017.

[22] A.Han, D. Shi, L. Lin, and J. Gao. From continuous dynamics to graph neural networks: Neural
diffusion and beyond. Transactions on Machine Learning Research, 2024.

[23] J. Han, Y. Li, T. Gao, and C.-T. Wang. Resgcn: Residual graph convolutional networks for graph
classification. IEEE Transactions on Neural Networks and Learning Systems, 32(10):4514-4526,
2021.

[24] Y. Han, P. Wang, S. Kundu, Y. Ding, and Z. Wang. Vision hgnn: An image is more than a graph
of nodes. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
19878-19888, 2023.

[25] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. CVPR,
2016.

[26] R. A. Horn and C. R. Johnson. Topics in matrix analysis. Cambridge university press, 1994.

[27] J. Huang, Y. Pu, D. Zhou, J. Cao, J. Gu, Z. Zhao, and D. Xu. Dynamic hypergraph convolutional
network for multimodal sentiment analysis. Neurocomputing, 565:126992, 2024.

[28] J. Huang and J. Yang. Unignn: a unified framework for graph and hypergraph neural networks.
In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, pages
2563-2569, 2021.

[29] S.Ji, Y. Feng, D. Di, S. Ying, and Y. Gao. Mode hypergraph neural network. IEEE Transactions
on Neural Networks and Learning Systems, 2025.

[30] J. Jiang, Y. Wei, Y. Feng, J. Cao, and Y. Gao. Dynamic hypergraph neural networks. In
Proceedings of the 28th International Joint Conference on Artificial Intelligence, pages 2635—
2641, 2019.

[31] J. Jiang, Y. Wei, Y. Feng, J. Cao, and Y. Gao. Dynamic hypergraph neural networks. In
Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence
(IJCAI), pages 2635-2641, 2019.

[32] M. Jin, Y. Zheng, Y.-F. Li, S. Chen, B. Yang, and S. Pan. Multivariate time series forecasting
with dynamic graph neural odes. IEEE Transactions on Knowledge and Data Engineering,
35(9):9168-9180, 2022.

[33] B. Khan, J. Wu, J. Yang, and X. Ma. Heterogeneous hypergraph neural network for social
recommendation using attention network. ACM Transactions on Recommender Systems, 3(3):1—
22,2025.

[34] E.-S. Kim, W. Y. Kang, K.-W. On, Y.-J. Heo, and B.-T. Zhang. Hypergraph attention networks
for multimodal learning. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 14581-14590, 2020.

[35] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks.
In ICLR, 2017.

[36] S. Kumar. Co-authorship networks: a review of the literature. Aslib Journal of Information
Management, 67(1):55-73, 2015.

[37] M. Lei, Y. Wu, S. Li, X. Zheng, J. Wang, Y. Gao, and S. Du. Softhgnn: Soft hypergraph neural
networks for general visual recognition. arXiv preprint arXiv:2505.15325, 2025.

[38] G.Li, M. Miiller, A. Thabet, B. Ghanem, V. Koltun, and L. J. Guibas. DeeperGCN: All you
need to train deeper GCNs. arXiv preprint arXiv:2006.07739, 2020.

[39] M. Li, Y. Fang, Y. Wang, H. Feng, Y. Gu, L. Bai, and P. Lio. Deep hypergraph neural networks
with tight framelets. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39,
pages 18385-18392, 2025.

[40] Q. Li, Z. Han, and X.-M. Wu. Deeper insights into graph convolutional networks for semi-
supervised learning. In Proceedings of the AAAI conference on artificial intelligence (AAAI),
volume 32, 2018.

[41] X.Li, Y. Liu, and M. Wang. HyperRec: Hypergraph neural recommendation. In Proceedings of
the 45th International ACM SIGIR Conference (SIGIR), pages 373-383, 2022.

[42] J. Lin, Z. Ling, Z. Feng, J. Xu, M. Liao, F. Zhou, T. Hou, Z. Liao, and R. C. Qiu. Ignn-solver: A
graph neural solver for implicit graph neural networks. arXiv preprint arXiv:2410.08524, 2024.

[43] 1. Liu, B. Hooi, K. Kawaguchi, Y. Wang, C. Dong, and X. Xiao. Scalable and effective implicit
graph neural networks on large graphs. In The Twelfth International Conference on Learning
Representations, 2024.

[44] J. Liu, B. Hooi, K. Kawaguchi, and X. Xiao. Mgnni: Multiscale graph neural networks with
implicit layers. Advances in Neural Information Processing Systems, 35:21358-21370, 2022.

[45] Z. Liu, X. Wang, B. Wang, Z. Huang, C. Yang, and W. Jin. Graph odes and beyond: A
comprehensive survey on integrating differential equations with graph neural networks. In
Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining
V. 2, pages 6118-6128, 2025.

[46] N.Ma,Z. Wu, Y. Feng, C. Wang, and Y. Gao. Multi-view time-series hypergraph neural network
for action recognition. IEEE Transactions on Image Processing, 33:3301-3313, 2024.

[47] A. Maurer. A vector-contraction inequality for rademacher complexities. In International
Conference on Algorithmic Learning Theory, pages 3—17. Springer, 2016.

[48] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of machine learning. MIT press,
2018.

[49] G.Namata, B. London, and L. Getoor. Query-driven active surveying for collective classification.
In 10th International Workshop on Mining and Learning with Graphs (MLG), pages 1-8, 2012.

[50] K. Oono and T. Suzuki. Graph neural networks exponentially lose expressive power for node
classification. In International Conference on Learning Representations (ICLR), 2020.

[51] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of social representations. In
Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 701-710, 2014.

[52] K. B. Petersen, M. S. Pedersen, et al. The matrix cookbook. Technical University of Denmark,
7(15):510, 2008.

[53] M. Poli, S. Massaroli, J. Park, A. Yamashita, H. Asama, and J. Park. Graph neural ordinary
differential equations. arXiv preprint arXiv:1911.07532,2019.

[54] T. K. Rusch, M. M. Bronstein, and S. Mishra. A survey on oversmoothing in graph neural
networks. arXiv preprint arXiv:2303.10993, 2023.

[55] N. Sasikaladevi and A. Revathi. Hypergraph convolutional neural network for fast and accurate
diagnosis (fat) of covid from x-ray images. International Journal of Pattern Recognition and
Artificial Intelligence, 36(10):2257005, 2022.

[56] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Gallagher, and T. Eliassi-Rad. Collective classifica-
tion in network data. In Al magazine, volume 29, pages 93-93. Association for the Advancement
of Artificial Intelligence, 2008.

[57] Z. Shao, D. Shi, A. Han, Y. Guo, Q. Zhao, and J. Gao. Unifying over-smoothing and over-
squashing in graph neural networks: A physics informed approach and beyond. arXiv preprint
arXiv:2309.02769, 2023.

[58] D. Shi, A. Han, L. Lin, Y. Guo, and J. Gao. Exposition on over-squashing problem on gnns:
Current methods, benchmarks and challenges. arXiv preprint arXiv:2311.07073, 2023.

[59] M. Taheri, A. Scott, and J. Jones. Hyper—SocialNet: Hypergraph neural networks for social
network analysis. In Proceedings of the IEEE/ACM International Conference on Advances in
Social Networks Analysis and Mining (ASONAM), pages 1-8, 2021.

[60] P. Velickovié¢, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio. Graph attention
networks. arXiv preprint arXiv:1710.10903, 2017.

[61] J. Weston, F. Ratle, and R. Collobert. Deep learning via semi-supervised embedding. In
Proceedings of the 25th international conference on Machine learning, pages 1168-1175, 2008.

[62] S. Wu, F. Sun, W. Zhang, X. Xie, and B. Cui. Graph neural networks in recommender systems:
a survey. ACM Computing Surveys, 55(5):1-37, 2022.

[63] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip. A comprehensive survey on graph
neural networks. IEEE Transactions on Neural Networks and Learning Systems, 32(1):4-24,
2020.

[64] L.-P. Xhonneux, M. Qu, and J. Tang. Continuous graph neural networks. In International
conference on machine learning, pages 10432-10441. PMLR, 2020.

[65] L. Xie, S. Gao, J. Liu, M. Yin, and T. Jin. K-hop hypergraph neural network: A comprehensive
aggregation approach. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 39, pages 21679-21687, 2025.

[66] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? In
Proceedings of the International Conference on Learning Representations (ICLR), 2019.

[67] N. Yadati, M. Nimishakavi, P. Yadav, V. Nitin, A. Louis, and P. Talukdar. Hypergcn: A
new method for training graph convolutional networks on hypergraphs. Advances in neural
information processing systems (NeurIPS), 32, 2019.

[68] M. Yang and X.-J. Xu. Recent advances in hypergraph neural networks. arXiv preprint
arXiv:2503.07959, 2025.

[69] Y. Yang, T. Liu, Y. Wang, Z. Huang, and D. Wipf. Implicit vs unfolded graph neural networks.
Journal of Machine Learning Research, 26(82):1-46, 2025.

[70] Z. Yang, W. W. Cohen, and R. Salakhutdinov. Revisiting semi-supervised learning with graph
embeddings. In ICML, pages 40-48, 2016.

10

Appendix

A Related Work

A.1 Graph and Hypergraph Neural Networks

Graph neural networks (GNNs) have become a foundational approach for learning over
graph-structured data. Classical GNN models introduced neighborhood aggregation and atten-
tion mechanisms that achieved strong performance on node-level tasks [35, 21, 60, 66, 38]. Despite
their successes, standard message-passing graph neural networks are fundamentally restricted to
modeling pairwise relationships between nodes. As network depth increases, they often suffer from
over-smoothing, i.e., node representations become indistinguishable, and limited receptive fields,
which hinder their ability to capture long-range dependencies [50, 5, 58, 57, 54].

To capture higher-order structure information beyond pairwise edges, [16] developed HGNN which
propagates signals along node—hyperedge—node paths using an incidence-based Laplacian. [2] studied
hypergraph convolution and hypergraph attention networks. [11] introduced HNHN that leverages
explicit hyperedge neurons with nonlinearities and degree/cardinality-aware normalization. [10] pro-
posed HyperGAT, a hypergraph attention networks for inductive text classification. HyperFormer [9]
is a hyper-relational knowledge graph completer with mixture-of-experts layers for better accuracy at
lower cost. In addition, [31] extend the idea to dynamic hypergraphs by alternating topology con-
struction with hypergraph convolution so the structure adapts during learning, and [6] introduced the
hypergraph structure learning for hypergraph neural networks. [28] established a unified framework
for graph neural networks and hypergraph neural networks.

These models have been adapted to a variety of domains including recommendation [41, 33],
multi-modal learning [34, 27], and social network analysis [59]. More recent works on HGNN's
include [39, 68, 65, 17, 29]. However, most HGNNs still rely on explicit iterative message passing,
which becomes computationally expensive and can be unstable as depth grows.

A.2 Implicit Graph Models and Graph Neural ODEs

Implicit models originate from the idea of replacing explicit layer stacking with the solution of an
equilibrium or continuous-depth system. Deep equilibrium models recast an infinitely deep network
as a root-finding problem whose fixed point defines the representation; they train end-to-end via
implicit differentiation, yielding constant memory (up to solver tolerance) and facilitating long-range
dependency modeling [1]. In parallel, Neural ODEs view depth as continuous time and use ODE
solvers for forward inference together with adjoint-based or implicit differentiation for training,
mitigating optimization issues associated with very deep stacks [8, 12]. Both lines share a common
premise: use a solver instead of layers to achieve global information propagation, better memory
efficiency, and improved stability.

Building on these foundations, implicit graph models transfer the equilibrium/continuous-depth
perspective to graph-structured data. [20] introduced IGNN by formulating graph inference as solving
a nonlinear fixed-point equation so that information couples across the entire graph without deep
propagation. Later, [3] leverage the monotone operator theory and enhance the performance of IGNN
in learning long range dependencies. [44] developed multiscale graph neural networks with implicit
layers. [18] introduced a framework for designing implicit graph diffusion layers using parameterized
graph Laplacians. [43] showed how to efficiently train implicit GNNs to provide effective predictions
on large graphs. [42] introduced a learnable neural solve for IGNNSs. [22] identifies the core building
blocks for adapting continuous dynamics to GNNs and proposes a general framework for designing
graph neural dynamics. The recent work of [69] systematically compared implicit and unfolded
GNNs from both empirical and theoretical perspectives.

From the continuous-depth side, Graph Neural ODEs model the evolution of node states along a
learned vector field on the graph, often yielding smoother gradients and robust training on large or
sparse graphs [53, 64, 32, 45].

11

B Additional Preliminaries

B.1 Kronecker Product and Vectorization

We first recall two linear-algebraic operators that we use repeatedly to manipulate block structures
and linearize bilinear expressions.

Definition B.1 (Kronecker product). Let A € R™*% and B € R™*% be two matrices. The
Kronecker product of A and B is defined as

A:B AB - A 4B
A2,1B A272B 000 A27d1B

A®B = . . .) eRn1n2xd1d2,
A, B A, B --- A, 4.,B

where (A ® B) (i, — 1)y tis,(j1 —1)do+j2 = Ay g2 Bis,jp fOr iy € [n1],j1 € [d1], 2 € [n2], j2 € [da].

Definition B.2 (Vectorization). Let A € R”*? be a matrix. The vectorization of A is defined as
A:,l
A:,l
vec(A)= | .| e R4
A:,d
where A. ; is the j-th column of A, and vec(A)(;_1)44; = Ay fori € [n], j € [d].

The next identity, often called the tensor trick, links matrix multiplication with Kronecker products
and vectorization and will be used to streamline several derivations.

Lemma B.3 (Tensor trick, Section 10.2.2 in [52]). Given three matrices A € R™*" X € R"*?, B €
RP*4 we have

vec(AXB) = (BT ® A) vec(X).

We also record a standard spectral property of Kronecker products, which allows us to relate eigen-
values and eigenvectors of factors to those of the product.

Lemma B.4 (Spectrum of the Kroneck product, Theorem 4.2.12 in [26]). Let A € R™*" and
B € RP*? be two matrices. Let (A, x) and (\, x) be two pairs of eigenvalue and eigenvector of A
and B, respectively. Then Ay is an eigenvalue of A ® B with corresponding eigenvector X ® y.
Moreover, any eigenvalue of A ® B is a product of eigenvalues of A and B.

B.2 Rademacher Complexity

We next recall capacity measures used in our generalization analysis, beginning with the classical
(scalar-valued) Rademacher complexity.

Definition B.5 (Rademacher complexity, Definition 3.1 in [48]). Let G be a family of functions
mapping from Z to R and S = {z}?;, C Z a set of samples with elements in Z. Then, the
(empirical) Rademacher complexity of G with respect to the sample set S is defined as

1 n
Rn(G) :=E |sup— } eig(zi)|,
where each € = [e1,¢€9,...,6,] ", and for each i € [n], &; is an independent Rademacher random

variable, i.e., &; ~ Uniform({—1,1}).

Because our hypotheses are vector-valued, we also use a coordinate-wise variant that aggregates
fluctuations across output dimensions.

12

Definition B.6 (Coordinate-wise Rademacher complexity [47]). Let F be a family of functions
mapping from Z to R% and S = {z;}7; C Z a set of samples with elements in Z. Let f(-); denote
the j-th entry of the output of the function f(-). Then, the (empirical) coordinate-wise Rademacher
complexity of F with respect to the sample set .S is defined as

1 n n
coord . .) .
Ry (F) '_]];,; ?ggﬁ ;;51,]]‘-(%)])

where each £ is an n x d random matrix, and for each i € [n],j € [d], €, ; is an independent
Rademacher random variable, i.e., £; ; ~ Uniform({—1,1}).

The following contraction inequality will be crucial to control the effect of Lipschitz losses applied to
vector-valued predictors.

Lemma B.7 (Contraction inequality for vector-valued function class [47]). Let F be a family of
functions mapping from Z to R? and S = {z;}"_, C Z a set of samples with elements in Z. Let

p: RY — R be a K-Lipschitz function for some K > 0. Then we have

Ru(poF) < V2K - REM(F).

B.3 Transductive Rademacher Complexity

For our transductive setting, we use the transductive Rademacher complexity of [13] to quantify
capacity when both labeled and unlabeled points are fixed in advance.

Definition B.8 (Transductive Rademacher Complexity, Definition 1 in [13]). Let G be a family of

functions mapping from Z to R and S = {z; :if C Z a set of samples with elements in Z. Let

o = [01,09,...,0,)", and for each i € [n], o; is an independent random variable defined as

1, with probability p,
0; := < —1, with probability p,
0, with probability 1 — 2p.

Then, the transductive Rademacher complexity of G with respect to the sample set .S is defined as

11\ &
sup (s + u) ;Jig(zi)] .

ﬁ's+u(gap) =K
9 | geg

Moreover, we define R4y, (G) := Rotu(G, po) with py = Grop

The next result provides a transductive generalization bound that we will invoke to control test error
on the unlabeled subset.

Lemma B.9 (Corollary 1 in [13]). Let H be a hypothesis class of functions from X —), and
0:HxXxY — [0,00) be aloss function. and S = {(z;)};Z}* C Z aset of samples with elements in

— . 32log(4e) 1 1 — stu
Z:=Xx Y. Letcg := /=5 — <505 Let P:= ¢ +:,and Q := S YR SIS e R
Then, for any § € (0, 1), with probability at least 1 — § over the random choice of s training samples

from S, for any h € H, it holds that

Li(f) < Zu(f) + E3+u(€o H) + coP+/min{s,u} + 4/ PTQ log%.

Finally, we relate the transductive complexity to its standard inductive counterpart, which will let us
reuse familiar bounds.

Lemma B.10 (Lemma B.8 in [18]). Let G be a family of functions mapping from Z to R and
S = {z;}71}" C Z aset of samples with elements in Z. Let n := s + u. Then we have

Retu(G) < Rn(G).

13

C Well-posedness and Convergence Analaysis

Definition C.1 (Admissible hypergraph). We say that a hypergraph is admissible if each hyperedge
is associated with a non-negative weight, and each node has a positive degree.

Lemma C.2. Let M be a hypergraph Laplacian matrix of an admissible hypergraph. Then each
eigenvalue \; of M satisfies |\;| < 1. Moreover, we have Ay (M) = 1.

Proof. We define the matrix
P.=D 'HEB'H'.
Then we can write the normalized hypergraph Laplacian matrix as
M = D'/?pD~1/2,

For every i € [n], by simple calculation, we have

Z Py, = — Z H; jw; - Bijj Z H;k (By definitions of D, H, B, E)
k=1 ntj=1 J g=1
1 — 1 &
"D, 2 Mg Bj; 2 Hi (Hj, = Hy)
7 j=1 Jok=1
1 & .
=p. 2 Hijw Bj; = > k1 Hrg)
1,1 J=1
=1L D;,; = Z;n:l H; jw;)

Hence every row of P sums to 1 and every entry of P is nonnegative because the hypergraph is
admissible. Since M and P have the same spectrum, it suffices to show the eigenvalues of P satisfies
the desired properties.

We first show that every eigenvalue \; of P satisfies |\;| < 1. Note that for any x € R”,
[Px[ly < [[Ploollx[lx < [Ix]1- ©)
Let v; be an eigenvector associated with the eigenvalue \;. Note that
IPvills = [[Aivills = [Adll[villa-
Then by Eq. (4), we have |\;| < 1.

To show that there exists some A\; = 1, we see that

S Py 1
S Poy 1
P]-n = ! 1 ! = 1. -]-n
Z;L:l Pmu] 1
Thus can conclude that Ay, (P) = 1. O

Theorem C.3 (Sufficient condition for well-posedness, restatement of Theorem 3.2). Let M € R™ <™
be the normalized hypergraph Laplcaian matrix of an admissible hypergraph. Assume that ¢ : R — R
is an contractive activation function, i.e., ¢ is 1-Lipschitz. If the weight matrix W & R4*4 gatisfies

Amax(|W|) := & € [0,1) then for any X € R%*?, the fixed-point equilibrium equation
Z-¢ (MZW + 5()
has a unique solution Z* € R™*<, and the fixed point iteration

Z+) — (MZWW + 5&)

14

converges to Z* as t — oo. Futhermore, if we assume that || Z*||p < Cj for some Cy > 0, and
Z(1) = 0,4, then for any integer t > 1,

1Z® — Z*||r < K1C,.

Proof. By Lemma B.3, we can deduce that
vec(MZW) = (W' ®@ M) vec(Z). 5)

Note that we assume Apax(|[W/|) < 1, and Lemma C.2 implies that \,.x(M) := k < 1. By
Lemma B.4, we can conclude that

)‘maX(|WT ® M|) =)‘maX(‘WTD)‘maX(‘MD
=)‘maX(‘WD)‘maX(‘MD
=r <1

Let g(z) .= M ® W)z + X. Note that ¢ : R — R is 1-Lipschitz and g is an affine mapping.
Since Amax(|M ® W T|) < 1, the mapping g is contractive, i.e., for any z;,z, € R"?,

[6(g(21)) — ¢(g(22))ll2 < Kllz1 — 222, (©)
then by the well-known Banach fixed point theorem, the equation

vec(Z) = ¢ ((M @ W) vec(Z) +)NC)

has a unique solution Z*, and the fixed point iteration can converges to it. By Eq. (5), we prove the
first result.

Note that, by tensor trick, we have vec(Z®) = ¢(g(vec(Z*~1))) and vec(Z*) = ¢(g(vec(Z*))).

Next, by Eq. (6) and || vec()||2 = || - || F, we have
1ZY = Z* || = || vec(Z") — vec(Z")]2

= ||p(g(vec(Z ™)) — ¢(g(vec(Z*)))|l2 (Simple algebra)
< k|| vec(ZAY) vec(Z*) ||z (Contraction of ¢(g(+)))
< ..
< kY| vee(ZM) — vee(Z*)||;
= kY| vec(Z")]|2 (ZW = 0,,q)
=&""HZ"| (Ivee()llz =11~ I»)
< K10, (1Z*||r < Co)

Thus we complete the proof.

O

D Oversmoothing Analysis

Theorem D.1 (Sufficient condition for nonidentical node features, restatement of Theorem 3.3).
Let M € R™*™ be the normalized hypergraph Laplcaian matrix of an admissible hypergraph. Let
¢ : R — R be a strictly increasing nonexpansive activation function. Suppose that the weight matrix

W e R%*4 of an THGNN satisfies Ayax([W|) < 1, then for any X € R**4 satisfying x; # x; for
some 7, j € [n], there does not exists zg € R?, such that Z* = 1,z .

Proof. Assume for contradiction that there exists a vector zo € R such that the constant-row matrix
Z* = 1,z is a fixed point of the implicit layer, that is

AR (MZ*WHE) .

15

Because M is the normalized hypergraph Laplacian matrix and it is row-stochastic, M1,, = 0,,.
Hence

MZ* =M (1,z]) = (M1,)zg = 0,54
Substituting this into the fixed-point equation gives, for every i € [n], zg = ¢ (X;), where X, is the
i-th row of X.. Since ¢ is strictly increasing, it is injective, so the above equalities imply
X, =X; Vi,je[n].
This contradicts the hypothesis that there exist indices ¢ # j with X; # X;. Therefore no constant-row
fixed point of the form Z* = 1,,z] can exist. O

Theorem D.2 (Expressivity of IHGNN, restatement of Theorem 3.4). Let M € R™*" be the
normalized hypergraph Laplcaian matrix of an admissible hypergraph. Let K € A. For every
K-order polynomial filter function p(X) := (EkK:o 0xMF)X with arbitrary coefficients {0},
and input feature matrix x € R™*?, there exists an IHGNN with identity activation can express it.

Proof. Fix an input feature matrix X € R"*“ and denote p(X) = (31, 0xM¥)X. We construct
an IHGNN with identity activation that produces exactly this mapping. First, we set the hidden state
dimension dj, := (K + 1)d, and we write the hidden state

Z=[z0 zO ... zK)]
where each Z(*) is a block matrix of size n x d. Note that here the supscript (k) denotes k-th

block matrix, not the iteration number of the fixed point iteration. However, we will show that they
coincides with each other. We define ®; € R¥*dn a5

O, =14 Ogxqg -+ 0gxd
and b = 0,4, . We define the weight matrix W € R4 *dn ag
Oaxda Ias Ogxa Ogxqd -+ Ogxa
Oaxd Odxa Iqg Ogxqa -+ Ogxa
Odxd Odxa Oaxa Ig -+ Ogxa
Odxd Odxa Odxa Ogxa - Ig
Odxd Odaxd Odaxda Oaxa -+ Oaxq

Next, the fixed-point equilibrium equation
Z=¢(MZW + X0O; +b)
can be blockwisely written as
70 =X,
ZW) =MZ© = MX,
72 =MZW = M2X,
Z(K) = MZE-Y = MEX.

We define ®, € R %d g5
@y =[0Iy 611y - OxIg]" .

Then we can conclude that
K
0,7 = () 6,M")X.
k=0

Thus we complete the proof. O

E Transductive Generalization Bound

16

Assumption E.1. We assume the following conditions hold.

* Bounded input features: The input node matrix X € R"*¢ satisfies, for each i € [n],
|Ix:]|]2 < Cx for some C'x > 0.

* Bounded trainable parameters: The trainable parameters satisfies [|@|p <
p1, |1®2]|F < pa, [|b]l2 < Cy for some py, p2, Cy, > 0, and |W]|| < & for some & € [0, 1),
and their dimensions satisfies d = dj, = d'.

* Lipschitz loss: The loss function £ : R x R — [0, 0c0) is Cy-Lipschitz.
* Lipschitz activation: The activation function ¢ : R — R is 1-Lipschitz.

Lemma E.2. Assume that Assumption 3.5 hold. We have
E [<5,X>} < /ap1Cx + VndC.

where £ € R™"*4 is a random matrix, each entry of which is a Rademacher random variable.

Proof. We can show that
<\] — T
E[(€.X)] = E[(£, X6 +1,b7)]
= E[(£,X01)] +E[(£,1,b")].
We bound the two terms on the right hand side separately.
E[(€XT,01)] < E[|€XT|/|©1]s]
=[©1r E[IIEXT]|5]
<pi-E[IEXT 5]

N 1/2
<pr- (IE Z ”Xz%‘|>
i=1

< p1v/nCx.

Similary, we can show that

E[(£,1,b)] = E [(b,€71,)]

IN

b2 [I1€7 1,1

<GE €7 1]

- J 1/2
<G |E ZZ €517
_z:l j=1
= Cb -vVnd.
Hence we complete the proof. O

Lemma E.3 (Rademacher complexity of the implicit layer). We define
Fri={f(): F(X) = 2D = o(MZOW +X),t € [T]}.
Assume that Assumption 3.5 hold. Then we have

C, +VdC
coord < P1Cg b
R Fr) < Vil — k)

17

Proof. We can show that

R (Fr) = E | sup (€, f(fi))]
| feFT

—E| swp (£M/X)W +X)

€ | f€FT-1
“E | EMEW)| 4| X)
—E| s (£,MMX)W +X)W) | +E[(£,X)]

£ | f€FT—2 £
=E _fesjtqu}?_2<8,M2f()~()W2> +E {<S,M)~(W>} +E [<57)~(>}
=E :<5,MT71f(X)WT*1>} ++E [(E,MXW)] +E [(&f()}

M=

IE {<S’Mt—lxwt—l>}

~
Il
—

M=

g (e X))

Il
_

— kT

= (vnp1Cy + VndCy)

11—k

—

1
< m(\/ﬁplap + VndCy).
Dividing n on both sides gives

< plCm + \/acb
ST A

Thus the proof is complete. O

R;:loord (]:T>

Theorem E.4 (Transductive generalization bound of IHGNN, restatement of Theorem 3.6). We
assume that the hypergraph is admissible and Assumption E.1 are satisfied. Let H be the hypothesis

class of IHGNN models defined on the given hypergraph. Let ¢y := 4/ %g(‘le) < 5.05. Let
1 1 ._ s+u . .
P:=<+z, Q = G e Then, for any § > 0, with probability at least 1 — §

over the choice of the training set {x;}71 U {y;}%,, for all f € H, we have

Lo(f) < Lo(f) + ﬁpipr;%Cb) + coPy/min{s,u} + ?log%.

Proof. By Lemma E.3, Lemma B.7, Lemma B.9, and Lemma B.10, we can show that

£a(§) S Lalf) + Resall o)+ coP/aminGs,] + 1/ L 1og 3
< Lo(f) + Reru(l o H) + coPy/min{s, u} + \/ ? log%

~ P 1
Ly(f) + Rsin(f o ¢po Fr) + coPy/min{s,u} + 7Q10g5

18

~ P 1
< Lu(f) + V2p2C¢ - RO Fr) + coPy/min{s,u} + TQ log 5

~ V2020 (p1Cy +VdCy) PQ 1
< P i —log =.
< Lu(f)+ eSO + coP/min{s,u} + 5 log
Thus we complete the proof. [

Corollary E.5 (Asymptotic transductive generalization bound of IHGNN, restatement of Corol-
lary 3.7). Under the same conditions in Theorem E.4. For sufficiently large training-set size s and
testing-set size u, for any > 0, with probability at least 1 — ¢ over the choice of the training set, for

all f € H, we have
Lu(f) < Eu(f) +0 (d> @ <1g<1/5>>

s+u min{s, u}

Proof. Ttis not hard to see when s and u are sufficiently large, we have @) = O(1).

First, it is not hard to see that

V2p2C4(p1Cy 4+ VdCy) ~0 \/T
(1—k)Vs+u s+u)’
Next, we can show that

: PQ_1 (1 1 . 11y, 1
coPy/min{s,u} + TIOgS_CO (s+u> mln{s,u}—i—O(<+u>10g5>

1 1 1
O(<+)log
s U)
Thus, by Theorem E.4, we complete the proof. O

F Training of IHGNN

Theorem F.1 (Scaled well-posedness of IHGNN, restatement of Theorem 3.8). Suppose that the
activation function ¢ : R — R is positively homogeneous and nonexpansive. If an IHGNN model
with weights W @1, 62, b satisfies)\max(|W|) < 1, then there exists an equivalent IHGNN model

with weights W, ©1, @, b such that ||W||oo < 1, and both models produce identical outputs for all
same inputs.

Proof. Let a € (0, 1) be a scaling factor such that W := oW satisfies
[Wlleo = a[W]leo < a.

We deﬁng (31 = a®q, and b := ab. Then it is not hard to see that for any X € R™*4_the unique
solution Z* of the equation

Z:¢(MZ\7\7+X(§1 +B)
satisfies Z* = aZ*, where Z* is the fixed point solution of Z = ¢ (MZW + X©; + b) . Hence,
by defining ®5 := a~1©, , we complete the proof. O

19

	Introduction
	Preliminaries
	Implicity Hypergraph Neural Networks
	The Architecture of IHGNN
	Well-Posedness and Convergence Analysis
	Oversmoothing Analysis
	Transductive Generalization Analysis
	Training of IHGNN

	Experiment
	Experimental Setup
	Performance Analysis
	Stability and Robustness Analysis
	Convergence and Oversmoothing Anlaysis

	Conclusion
	Related Work
	Graph and Hypergraph Neural Networks
	Implicit Graph Models and Graph Neural ODEs

	Additional Preliminaries
	Kronecker Product and Vectorization
	Rademacher Complexity
	Transductive Rademacher Complexity

	Well-posedness and Convergence Analaysis
	Oversmoothing Analysis
	Transductive Generalization Bound
	Training of IHGNN

