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ABSTRACT

The temporal relationship between different cellular states and lineages is only
partially understood and has major significance for cell differentiation and can-
cer progression. However, two pain points persist and limit learning-based solu-
tions: (a) lack of real datasets and standardized benchmark for early cell devel-
opments; (b) the complicated transcriptional data fail classic temporal analyses.
We integrate Mouse-RGC, a large-scale mouse retinal ganglion cell dataset with
annotations for 9 time stages and 30, 000 gene expressions. Existing approaches
show a limited generalization of our datasets. To tackle the modeling bottleneck,
we then translate this fundamental biology problem into a machine learning for-
mulation, i.e., temporal trajectory analysis. An innovative regularized optimal
transport algorithm, TAROT, is proposed to fill in the research gap, consisting of
(1) customized masked autoencoder to extract high-quality cell representations;
(2) cost function regularization through biology priors for distribution transports;
(3) continuous temporal trajectory optimization based on discrete matched time
stages. Extensive empirical investigations demonstrate that our framework pro-
duces superior cell lineages and pseudotime, compared to existing approaches on
Mouse-RGC and another two public benchmarks. Moreover, TAROT is capable
of identifying biologically meaningful gene sets along with the developmental tra-
jectory, and its simulated gene knockout results echo the findings in physical wet
lab validation. Codes are provided in the supplement.

1 INTRODUCTION

T=0

T=n

Figure 1: Demo Cell Tempo-
ral Trajectories from Time 0 →
n. Different colors indicate cells
from different time stages.

Since first introduced in 2009, large-scale single-cell RNA se-
quencing (scRNA-seq) has presented enormous opportunities for
researchers in various research fields (Patel et al., 2014; Satija et al.,
2015; Tirosh et al., 2016). It helps reveal detailed information on
transcriptional patterns in different cell and tissue types as well as
disease models (Elmentaite et al., 2022; Jagadeesh et al., 2022).
Equipped with scRNA-seq, we are able to discover significant het-
erogeneities that would never be found with bulk analysis within the
cell population, which contributes to understanding biology ques-
tions with higher cellular resolution. The fast-advancing technology
and increased recognition of different cell subtypes also naturally
lead us to ask: ① How and when are the cell subtypes established?
② Could we predict the developmental trajectory of each cell and
predict the cell “fate” based on current status? ③ And could we find
the key regulator that controls this type of establishment? Answers to those questions are important
for cell differentiation research in developmental biology (Rizvi et al., 2017; Han et al., 2018; Gulati
et al., 2020) and can provide promising pipelines to demystify the cellular response during disease
progression (Zhang et al., 2021; Jia et al., 2022). In the past decade, although a great amount of
effort (Trapnell et al., 2014; Qiu et al., 2017; Ji & Ji, 2016; Street et al., 2018; Cao et al., 2019) has
been put into developing trajectory inference methods using single-cell sequencing data, it remains
extremely challenging. This is because, with current technologies, we can not trace the same popu-
lation of cells over developmental time. It only allows us to collect the transcriptional information
of cells for a specific time point as a “snapshot”, and then a sophisticated computational model-
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ing (Saelens et al., 2019; Van den Berge et al., 2020) is required to construct cell trajectories over
multiple “snapshots”, as demonstrated in Figure 1. Existing algorithms reach good performance on
simulated datasets (Klein et al., 2023) but are still unsatisfactory on realistic benchmarks.

To enhance the capabilities of learning-based algorithms, we generate Mouse-RGC, which is a
large-scale integrated mouse retinal ganglion cell dataset. It contains 30, 000 gene expressions from
9 time stages of early cell development. However, naively plugging previous approaches (Street
et al., 2018; Klein et al., 2023) fail to generalize well on our benchmark, implying their shortage
in handling real cases with much higher data complexity. To develop effective solutions, we recast
the biology challenge into a machine learning problem, i.e., temporal trajectory analysis, aiming
to transport cells across time stages. In detail, our proposed TAROT first learns superior cell repre-
sentations through a tailored masked autoencoder. Then, it performs a regularized optimal transport
(OT) to produce mappings between every two-time stages. During the matching, we consider the
biological priors of gene expression from both developmental and functional perspectives. Note that
directly applying OT will result in inferior results due to neglecting the intrinsic structures in this
biology problem. Last, continuous temporal trajectories (i.e., cell pseudotime) are optimized and
generated by fitting ordered discrete time stages. Our contributions are summarized below:

⋆ We integrate a larger-scale scRNA-seq dataset, i.e., Mouse-RGC, with 30, 000 mouse neuron
cells across annotations of 9 early developmental time stages. It provides a standardized and chal-
lenging benchmark for further research in machine learning (ML) and single-cell transcriptomics.

⋆ We recast the analyses of cell developmental differentiation as an ML problem of inferring tem-
poral trajectories. Our proposed TAROT consists of an improved design of cell representation
extractor and regularized OT with biology priors, delivering substantially enhanced cell lineages.

⋆ Based on discrete inferred lineages, we introduce B-Splines optimization to produce continuous
cell pseudotime estimations with superior quality.

⋆ Extensive experiments validate the effectiveness of our proposals on Mouse-RGC and two pub-
lic datasets. For example, TAROT achieves {3.10% ∼ 65.03%, 13.70% ∼ 35.08%, 6.16% ∼
27.49%, 20.82% ∼ 44.28%} performance improvements on Mouse-RGC and Mouse-MCC
datasets over previous approaches.

⋆ Moreover, TAROT can locate crucial gene sets that are biologically meaningful for each temporal
trajectory. Removing these genes significantly reshapes the simulated cell differentiation, echoed
with the wet lab studies on the Mouse-iPE dataset.

2 RELATED WORKS

Optimal Transport (OT). OT (Villani et al., 2009; Peyré et al., 2019) serves as a powerful tool for
comparing two measures in a Lagrangian framework. It has played a beneficial role in widespread
applications in statistics (Munk & Czado, 1998; Evans & Matsen, 2012; Sommerfeld & Munk,
2018; Goldfeld et al., 2022) and machine learning (Schmitz et al., 2018; Kolouri et al., 2018) do-
mains. OT can also be used to define metrics such as the Wasserstein distance (Arjovsky et al.,
2017; Liu et al., 2019), which has gained tremendous popularity in the training of generative ad-
versary networks (Deshpande et al., 2019; Adler & Lunz, 2018; Petzka et al., 2017; Deshpande
et al., 2018; Yang et al., 2018; Baumgartner et al., 2018; Wu et al., 2019), transfer learning (Shen
et al., 2018; Lee et al., 2019), and contrastive representation learning (Chen et al., 2021). There also
are several preliminary studies to model the cellular dynamics network (Tong et al., 2020) and cell
developmental trajectories (Schiebinger et al., 2019; Klein et al., 2023) through OT.

Representation Learning in Single-Cell Genomics. Extracting powerful cell representations is
one of the ultra goals for single-cell genomics. It has been investigated for a long history, and various
solutions are delivered ranging from classic optimization algorithm (Li et al., 2017; Satija et al.,
2015; Zhao et al., 2022; Stuart et al., 2019) to modern deep learning-based approaches (Yang et al.,
2022; Hao et al., 2023; Cui et al., 2022; Geuenich et al., 2023; Zhao et al., 2023). For instance, Yang
et al. (2022) advocates the bi-directional transformer to learn a robust single-cell representation. To
further improve the quality of learned cell representation, more recent studies leverage a variety
of advanced pre-training designs, including generative (Shen et al., 2023; Cui et al., 2023), mask
language modeling (Hao et al., 2023), multi-task learning (Cui et al., 2022), self-supervised active
learning (Geuenich et al., 2023), and contrastive learning (Zhao et al., 2023) objectives.
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Lineage and Pseudotime Inference. The increasing availability of scRNA-seq data allows re-
searchers to reconstruct the trajectories of cells during a dynamic process. The relationships be-
tween different cellular states and lineages are extremely important for studies on embryonic devel-
opment (Griffiths et al., 2018; Cang et al., 2021; Mittnenzweig et al., 2021; Kim et al., 2023), cell
differentiation (Rizvi et al., 2017; Han et al., 2018; Gulati et al., 2020), cancer progression (Zhang
et al., 2021; Jia et al., 2022) and cell fate diversification (Buchholz et al., 2016; Koenig et al., 2022).
In the past few years, numerous trajectory inference pipelines have been established, which can be
roughly divided into two major categories based on the algorithm they used. The first and perhaps
the most commonly used one is minimum spanning tree (MST) based approaches. Monocle and
Monocle-2, which are the early used methods, both infer the developmental trajectory of one single
cell level and assign the pseudotime of each cell (Trapnell et al., 2014; Qiu et al., 2017). Later,
Tools for Single Cell Analysis (TSCAN) (Ji & Ji, 2016) and Slingshot (Street et al., 2018) run the
MST algorithm on clusters to construct the cluster-based MST. Then, they orthogonally project each
cell onto the paths of the MST to get the pseudotime. Notably, Slingshot utilized a principal curves
algorithm to calculate smooth curves from MST, which gives better visualization. The second cat-
egory is the graph-based trajectory inference method, which uses multiple algorithms to construct
trajectories among cells. One famous and widely used tool, Monocle3 (Cao et al., 2019), generates
the trajectory using a principal graph algorithm. Then, it calculates the shortest Euclidean distance
of each cell from the root node to assign the pseudotime. However, the self-selected root node re-
quired some prior knowledge about the cell identity. Diffusion pseudotime (DPT) (Haghverdi et al.,
2016) and URD (Farrell et al., 2018) uses a k-nearest-neighbor algorithm to construct the temporal
trajectory of the cells in gene expression space.

Single-Cell Transcriptomics. The heterogeneity analysis is the core reason for performing single-
cell sequencing studies. It assesses the transcriptional similarities and differences within the cell
populations and helps reveal a higher cellular resolution among cells (Haque et al., 2017; Satija
et al., 2015; Tirosh et al., 2016). Using scRNA-seq (Patel et al., 2014), researchers are able to define
detailed heterogeneity of immune cells (Shalek et al., 2013; Mahata et al., 2014; Stubbington et al.,
2017), cancer cells (Wu et al., 2021; Fan et al., 2020), embryonic stem cells (Jaitin et al., 2014;
Klein et al., 2015) etc. In the meantime, transcriptional assessments with single-cell sequencing
technology also identify rare cell populations that would never been detected using bulk analy-
sis (Miyamoto et al., 2015; Zeisel et al., 2015; Tirosh et al., 2016). Equally important, the gene
co-expression patterns that scRNA-seq reveals allow us to define gene modules and point out the
underlying mechanism of gene expression regulations (Wagner et al., 2016).

3 DATASET AND MACHINE LEARNING FORMULATION

3.1 MOUSE-RGC: A LARGE-SCALE DATASET OF RETINAL GANGLION CELLS FROM MOUSE

E13 (803)

E14 (2336)

E16 (1824)

E18 (7310)

P0 (4705)

P2 (1855)

P4 (2697)
P7 (3413)

P56 (5057)

Figure 2: The sample distribution of our
Mouse-RGC (30K cells) dataset based on
developmental time stages. For example,
“E18 (7310)” indicates that there are 7, 310
cell samples in time stage E18.

In this section, we introduce all three datasets that are
adopted to evaluate TAROT’s effectiveness. As for pub-
lic datasets, we consider a mouse cerebral cortex cell
benchmark (Di Bella et al., 2021), i.e., Mouse-CCC,
and a mouse induced Erythroid Progenitor (iEP)-derived
cell benchmark (Capellera-Garcia et al., 2016), i.e.,
Mouse-iEP, which contains {66443, 1947} cells across
{11, 2} time stages, respectively. The detailed informa-
tion about our Mouse-RGC is presented below.

Data Collection. To generate the Mouse-RGC dataset,
we extract 30K mouse neuron cells from previously pub-
lished datasets (ref 1,2) and newly formed data. The de-
velopmental time stages of {E13, E14, E16, E18, P0, P2,
P4, P7, P56}, as shown in Figure 4. Then, the corre-
sponding gene expressions are measured by the RNA sequencing technique as previously defined.
Single-cell libraries were prepared using the single-cell gene expression 3′ kit on the Chromium
platform (10X Genomics, Pleasanton, CA) following the manufacturer’s protocol. To be specific,
single cells were partitioned into Gel beads in EMulsion (GEMs) in the 10X Chromium instrument
followed by cell lysis and barcoded reverse transcription of RNA, amplification, enzymatic fragmen-
tation, 5′ adaptor attachment, and sample indexing. On average, approximately 8, 000 ∼ 12, 000
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single cells were loaded on each channel, and approximately 3, 000 ∼ 7, 000 cells were recovered.
Libraries were sequenced on the Illumina HiSeq 2, 500 platforms.

Preprocess and Properties. After we collected the raw signals, the following single-cell sequenc-
ing data processing was done using the Seurat package (Hao et al., 2021). Sample quality control
was performed on each sample individually. For each sample, doublets were removed using Dou-
bletFinder (McGinnis et al., 2019). We retained cells that expressed at least 1, 500 genes and less
than 11, 000 genes. Meanwhile, we removed cells that have more than 5% mitochondrial genes
and genes expressed in fewer than 10 cells. The resulting n cells × g genes matrix of UMI counts
were subject to downstream analysis. The UMI-based gene expression matrix was normalized using
sctransform (Hafemeister & Satija, 2019). After that, the batch correction was done with canonical
correlation analysis (Hotelling, 1992; Anderson et al., 1958), using the top 4, 000 anchor genes.

Clustering. In this research, we are interested in the evolution of different cell types of mouse
neurons. Therefore, we built a nearest-neighbor graph to cluster cells based on their transcriptional
similarity. Specifically, the number of nearest neighbors was chosen to be 50, according to the rich
experiences of biology scientists. The edges were weighted based on the Jaccard overlap metric, and
graph clustering was performed using the Louvain algorithm (Blondel et al., 2008). In the end, as
demonstrated in Figure 3 (Left), the cell clusters were then projected onto a nonlinear 2D space using
the Uniform Manifold Approximation and Projection (UMAP) algorithm (McInnes et al., 2018). For
temporal trajectory analysis, we further decomposed the cell clusters by their time stage labels like
Figure 3 (Right). Our goal is to demystify the neuron evolution path across these 9 time stages.

Figure 3: (Left): Clustering Mouse-RGC to 56 kinds of cell types and projecting them into a 2D space via
UMAP; (Right): Decomposing the clustering results by their time stage labels. Zoom-in for better reliability.

3.2 ML FORMULATION - MATCHING SAMPLE DISTRIBUTION ACROSS TEMPORAL STAGES

Understanding the development of stem cells into fully differentiated cells requires accurate cell
lineage and pseudotime. Thus, the fundamental biology problem here is how to model and infer
evaluation trajectory of neurons? This paper translates and recasts it as a machine learning (ML)
problem, aiming to match cell distributions across temporal stages.

Notations. Let {ri}ni=1 denote the raw cell expressions and {ci}ni=1 are extracted cell repre-
sentations, where n is the total number of cells and ri ∈ R1×g . For each cell representa-
tion ci ∈ {c1, · · · , cn}, it has the labels of time stage and cluster, obtained from the data pre-
processing. Therefore, the total n cells can be divided into k groups, i.e., {C1, · · · , Ck} where∑k

i=1 |Ci| =
∑k

i=1 ni = n, Ci = {c(i)1 , · · · , c(i)ni }, |Ci| = ni is the number of cells in cluster Ci.
Considering temporal information like time stages {t}st=1, we use G(t) = {C(t)

1 , · · · , C(t)
kt

} to repre-
sent all cells in the time stage t, where s is the total number of time stages and kt denotes the number
of clusters at time step t. Our goal is to establish a mapping from Gt → G(t+1), which shares certain
similarity to the trajectory analysis problem (Helland-Hansen & Hampson, 2009).

Problem Definition. Given the cluster set G(t) = {C(t)
1 , · · · , C(t)

kt
} as each time stage t ∈

{1, · · · , s}, we aim to (1) infer temporal trajectories like G(1) → G(2) → · · · → G(s), based on
their gene expression; (2) estimate continuous pseudotime for each sample.
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Figure 4: (a) Biology Problem. We aim to model and infer the evolution trajectory of neurons. Specifically,
the neuron cells are extracted from the developmental time stages {E13, E14, E16, P0, P2, P4, P7, P56} of
mouses. Then, RNA sequencing is performed to collect its expression data. (b) Machine Learning Problem.
We translate the biology problem to an ML problem – matching sample distributions across multiple temporal
stages. This challenging transport problem can be further decomposed into three sub-questions, i.e., Q1, Q2,
and Q3. To tackle these research questions, our proposed TAROT introduces superior cell representations,
regularized optimal transport via biology priors, and continuous trajectory optimization, respectively.

An Ideal Solution. To infer the temporal trajectory, it requires answering three key questions (Q1,
Q2, and Q3) as summarized in Figure 4 (b):

① Before the Transportation. It needs to extract high-quality cell representations {ci}ni=1 from the
gene expressions {ri}ni=1. Both low-dimensional projection methods like PCA (Bro & Smilde,
2014) and UMAP (McInnes et al., 2018), and deep neural networks (Yang et al., 2022; Shen et al.,
2023; Cui et al., 2023) can serve as the desired feature extractor.

② During the Transportation. It focuses on computing the mapping function Tt,t+1 : G(t) → G(t+1),
t ∈ {1, · · · , s−1}, given all cell information from the current and history time stages. Each map-
ping between two-time stages is a bipartite graph and can be derived from distribution matching
problems (Gretton et al., 2012) through the Hungarian algorithm or Optimal Transport, etc. The
crucial challenge here is the design of cost functions for transportation. Naively plugging in dis-
tance measurements based on ML intuitions leads to inferior results (Klein et al., 2023), which
demands appropriate cost designs to integrate biology priors of the neuron developments.

③ After the Transportation. Global lineages are deduced according to the pair-wised mapping
{Tt,t+1}s−1

t=1 . However, it only contains a discrete order of different time stages, which is an
irregularly sampled time series due to the constraints of cell data collection. Since cell differenti-
ation occurs continuously, we need to calculate a continuous cell pseudotime based on its inferred
lineage. It can be addressed by interpolation approaches (Shukla & Marlin, 2020) like Splines.

4 METHODOLOGY

Overview of TAROT. The overall procedures of TAROT are described in Figure 4. Our proposal
tackles the aforementioned ML problem by answering the three key questions. Before transport, we
introduce a customized Masked Autoencoder (MAE) transformer to learn adequate cell representa-
tion. During transport, we integrate important biology priors into the design of cost functions and
leverage them to enable a regularized optimal transport. After transport, continuous trajectories will
be produced by performing B-Splines fitting optimization to inferred cell lineages.

4.1 TAROT: CELL LINEAGE INFERENCE VIA DISTRIBUTION MATCHING

Regularized Optimal Transport for Matching. Optimal transport (OT) distance is a popular
option for comparing two distributions. We consider the discrete situation in our case. For two time
steps t1 and t2, there are two sets of features {fi}Mi=1 and {gj}Nj=1. Since we focus on a cluster-level
mapping, then M = kt1 and N = kt2 are the number of clusters in stage t1 and t2 respectively. fi and
gj are averaged cell representations for each cluster. Note that it is straightforward to extend to cell-
level mapping by adopting cell-specific representations. Our discrete distributions can be formulated
as u =

∑M
i=1 uiδfi and v =

∑N
j=1 vjδgj , where u and v are the discrete probability vectors that
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sum to 1, and δf (or δg) is a Dirac δ function placed at support point f (or g) in the embedding
space. Then, the total cost of transportation is depicted as < T ,D >=

∑M
i=1

∑N
j=1 Ti,jDi,j .

The matrix D is a cost matrix, where each element denotes the cost between feature fi and gj , like
Di,j = 1 − sim(fi, gj) and sim(·, ·) is a similarity measuring function. The T is the transport
matrix that describes the mapping from {fi}Mi=1 to {gj}Nj=1. To learn the transport plan T , it will
minimize the total cost as follows:

FOT(u,v|D) = minT ⟨T ,D⟩ (1)

s.t. D × 1N = u, DT × 1M = v, D ∈ RM×N
+ . (2)

However, this formulation has a super-cubic complexity in the size of u and v, which prevents
adapting OT in large-scale scenarios. Sinkhorn algorithm Cuturi (2013) is applied to speed up the
computation via an entropy regularization, i.e., FOT(u,v|D) = minT < T ,D > −λE(D), where
E(·) is the entropy function and λ ≥ 0 is a hyper-parameter. The optimization of FOT constitutes
the base framework of TAROT, and more innovative designs are described as follows.

Masked RNA Expressions

M
LP

M
H
A

Encoder

M
LP

M
H
A

Decoder
Reconstructed Expressions

Masked Patch Masked Embedding Visible Embedding

Figure 5: The overall procedure of MAE in TAROT.

Cell Representations via Masked Autoen-
coder Transformers (MAE). TAROT tai-
lors an MAE transformer to extract superior
cell representations from the gene expres-
sions {ri}ni=1. Figure 5 illustrates the MAE
procedure: the raw signals are first masked
and fed into the MAE encoder; then, masked
embeddings are incorporated to align with the full input dimensions; finally, the decoder recon-
structs the original input data and computes the MSE training objective. In the inference phase,
TAROT adopts the MAE encoder to generate cell representations.

Biology Priors Regularize Cost Function. Another critical component is the cost function de-
sign. TAROT takes two essential biological factors into account from neuron developmental and
gene expression perspectives. ① (Developmental) The natural cell differentiation never look back.
In other words, clusters in G(t) can not be mapped to their ancestor clusters from history trajecto-
ries {T1,2, · · · , Tt−1,t}. Specifically, an extra cost penalty Ddev

i,j will be applied if the cluster j from
G(t+1) at time t+1 is an ancestor of the cluster i from G(t) at time t. ② (Gene expression) The expres-
sions of developmental-related genes satisfy particular patterns. A specific group of genes tends to
have monotonically increased expressions along with the cell differentiation trajectories. If a map-
ping Tt,t+1 does not meet this prior, an additional cost penalty Dfuc

i,j will be introduced. Considering
these two biology regulations (①+②), the final cost function is depicted as D̃ = (Ddev+Dfuc)⊙D,
where ⊙ denotes the element-wise product and D = 1− corr(G(t),G(t+1)) is a vanilla cost based
on the correlation (i.e., corr(·, ·)) of cell representations.

4.2 TAROT: PSEUDOTIME CALCULATION VIA CONTINUOUS TRAJECTORY OPTIMIZATION

Cell lineages with discrete time orders are produced from the first stage of TAROT. To estimate the
cell pseudotime, TAROT executes fitting optimization for continuous temporal trajectories.

Continuous Trajectory via B-Splines. A K-degree B-Spline is defined as C(u) =
∑I

i=0 Ni,k(u)·
pi, where {Ni,k(·)}i=I−1,k=K

i=0,k=0 are bases and the I is the number of control points {pi}.

More details about the bases of B-Splines are provided in Appendix A1. In TAROT, for each lineage,
we insert J learnable control points {p(j)i }|Jj=1 between two fixed control points pi and pi+1. TAROT
treats the averaged cell presentation of each cluster as the fixed control point. And the continuous tra-
jectory optimization (Figure 4 - Right) is described as min{p(j)

i }i=I−1,j=J
i=0,j=1

∑n′

k=0 ∥ck−P(ck, C(u))∥2,

where P(ck, C(u)) is the projection of cell representation ck on C(u), and n′ is the total number of
cells on the lineage. Then, the pseudotime u(ck) is derived as argminu∥ck − C(u)∥2, u ∈ [0, 1].
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5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

Evaluation Metrics. We introduce five evaluation metrics to measure the quality of tempo-
ral trajectories from TAROT and other baselines. Specifically, metrics {❶, ❷, ❸} and {❹, ❺}
are created to measure the quality of cell lineage and pseudotime, respectively. ❶ Correla-
tion Test (CT) for Lineages. We compute the ratio of lineages that pass the correlation test as
1

s−1

∑s−1
t

1
|Tt,t+1|

∑
lt∈Tt,t+1

CT(lt), where Tt,t+1 is set of mappings {lt : C(t)
i → C(t+1)

j } from
time stage t to t + 1. The CT(lt) is the indicator function that returns 1 if the spearman corre-
lation between averaged cell representations from C(t)

i and C(t+1)
i is the highest one; returns 0,

otherwise. ❷ Gene Pattern Test per Gene (GPT-G) and ❸ Gene Pattern Test per Lineage (GPT-L).
Based on the developmental and functional priors, we select an extra group of genes for testing,
which are not utilized during the TAROT design. The selection follows the widely adopted stan-
dards (Finak et al., 2015). Such genes are experimentally validated to have monotonically increased
or decreased expressions along with the cell differentiation (or the cell pseudotime). For each test
gene, we first compute the percentage of lineages where the gene exhibits monotonicity. Then,
averaging the result across all test genes produces the accuracy of GPT-G. Similarly, we first calcu-
late the percentage of genes that exhibit monotonicity along with a given lineage. Then, averaging
the result across all inferred lineage generates the accuracy of GPT-L. ❹ Time Order Consistency
Test (TOC) for Lineage. It examines whether the optimized cell pseudotime is aligned with the
time order in lineages. We focus on the tuning point of lineages where the cell differentiation
happens i.e., the cell type changes. If the tuning point cluster is C(t)

i , we compute the accuracy

of TOC as 1

|C(t)
i |

∑
ci∈C(t)

i

|{u(G(t−1)
i )<u(ci)}|+|{u(G(t+1)

i )>u(ci)}|
|G(t−1)

i |+|G(t+1)
i |

, where {u(G(t−1)
i ) < u(ci)} is a

set of cells that belong to G(t−1)
i and has a smaller pseudotime than ci. The reported accuracy

of TOC is averaged across all tuning points and lineages. ❺ Temporal Trajectory Error (TTE) is
the average distance between cells to their corresponding projection on the temporal trajectory, i.e.,∑n′

i=0

√
∥ci − P(ci, C(u))∥2. Other details like TAROT’s training setups are in Appendix A2.

10 5 0 5 10

UMAP 1

10

8

6

4

2

0

2

4

6

UM
AP

 2

Lineage: 2 4 4 4 19 19 19 19 19

TAROT
Slingshot

2 4

19

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Pseudotime
100

0

100

200

300

Nu
m

be
r o

f C
el

ls

12.5 10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5

UMAP 1

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

UM
AP

 2

Lineage: 6 0 0 51 12 30 30 30 30

TAROT
Slingshot

6

0
51

12
30

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Pseudotime

0

50

100

150

200

250

300

350

Nu
m

be
r o

f C
el

ls

Figure 6: Two inferred lineages and their corresponding pseudotime distributions from TAROT (Ours) and
Slingshot (Baseline) on the Mouse-RGC dataset. The color bar indicates the value of cell pseudotime.

5.2 SUPERIOR PERFORMANCE OF TAROT IN LINEAGE AND PSEUDOTIME INFERENCE

In this section, we examine the quality of lineage and pseudotime produced by our proposed TAROT.
Three representative baselines, i.e., Slingshot (Street et al., 2018), Monocle-3 (Cao et al., 2019),
and MOSCOT (Klein et al., 2023), are adopted for throughout comparisons. They are distinctive
frameworks based on minimum spanning trees, principal graphs, and optimal transport algorithms,
respectively. Experimental results on Mouse-RGC and Mouse-CCC are presented in Figure 6 and
Table 1, where several consistent observations can be drawn: ❶ Our TAROT demonstrates great
advantages with a clear performance margin compared to Slingshot, Monocle-3 and MOSCOT. In
detail, for evaluation metrics {CT (↑ %), GPT-G (↑ %), GPT-L (↑ %), TOC (↑ %), TTE (↓)},
TAROT obtains {65.03%, 19.70%, 18.11%, 20.82%, 1.75}, {63.02%, 13.70%, 11.56%, 44.28%,
−0.16} and {3.10%, 16.42%, 16.54%, 37.42%, 0.50} performance improvements on Mouse-RGC
and {52.16%, 22, 74%, 11.44%, 25.38%, 0.55}, {27.99%, 35.08%, 27.49%, 34.82%, −0.14} and
{9.61%, 22.86%, 6.16%, 30.88%, 0.59} on Mouse-MCC, respectively. Note that a negative TTE
gain implies a lower error rate for pseudotime optimization. Such impressive outcomes validate
the effectiveness of our proposal. ❷ Although Monocle-3 obtains a lower Temporal Trajectory Er-
ror (e.g., 0.18 and 0.14 lower), it fails short in terms of Time Order Consistency Test (44.28% and
34.82% worse for the accuracy), compared to our TAROT. It suggests that Monocle-3 probably sac-
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Table 1: Performance comparisons of TAROT (Ours) vs. diverse representative baselines on Mouse-RGC and
Mouse-CCC datasets. Note that Mouse-iEP is mainly used for a real case study of simulated gene knockout.

Methods CT ↑ GPT-G ↑ GPT-L ↑ TOC ↑ TTE ↓ CT ↑ GPT-G ↑ GPT-L ↑ TOC ↑ TTE ↓
Mouse-RGC Mouse-CCC

Slingshot 5.28 41.04 42.97 72.22 2.07 10.00 67.90 77.16 68.12 1.13
Monocle-3 7.29 47.04 49.52 48.76 0.12 34.17 55.56 61.11 58.68 0.44
MOSCOT 67.21 44.32 44.54 55.62 0.78 52.55 67.78 82.44 62.62 1.17

TAROT 70.31 60.74 61.08 93.04 0.28 62.16 90.64 88.60 93.50 0.58

rifices the correctness of pseudotime to better fit the B-Splines. In contrast, TAROT achieves much
higher time order consistency with a comparable fitting error, making it a superior choice for neuron
trajectory analyses. ❸ Figure 6 presents two examples of inferred lineages and their pseudotime
distributions, where TAROT captures a longer range of neuron developmental trajectories.

5.3 GENE KNOCKOUT SIMULATION - ALGORITHMIC RECOURSE OF TAROT

With the superior cell lineage and pseudotime from TAROT, we are curious about (1) whether they
capture special gene expression patterns; (2) whether these gene patterns are biologically meaning-
ful; (3) how to manipulate them to influence the cell differentiation.
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Figure 7: Gene expression dynamics over the cell pseudotime. Four kinds of special gene patterns, from left
to right, are increased, increased then decreased, decreased then increased, and decreased gene waves.

Gene Pattern Identification. It is another important angle to dissect the effectiveness of TAROT:
examining whether the predicted temporal trajectory can capture clear gene expression patterns.
Given one lineage, we record four representative patterns of gene “waves”, as presented in Figure 7.
We see that in our inferred lineage, the expression values of several gene subgroups consistently
increase or decrease, followed by a decrease or vice versa, respectively. For most of TAROT’s
lineages, a gene set with similar expression patterns can be identified, as shown in Appendix A3.
The next step is to validate the biological semantics of these located gene groups.

Figure 8: GSEA results of the selected gene
sets from Slingshot and TAROT. A higher ra-
tio of gene set overlap and a larger normal-
ized p-value (|log10(p-value)|) indicate
a more significant relationship with biologi-
cally meaningful GO terms.

Biologically Meaningful? Do the Pathway Alignment.
We use the GSEA (Fang et al., 2023) for the pathway
alignment analysis. It is a method to determine whether
the input gene set has statistically significant relationships
with pathway gene sets of GO terms in biology. We ap-
ply GSEA to the selected gene group from TAROT and
Slingshot, and GSEA considers 22 different mouse gene
libraries for the alignment. Figure 8 records the top-3
aligned GO terms with the highest gene set overlap ratio.
Meanwhile, their normalized p-values are also reported in
the x-axis. The substantially higher values of both met-
rics indicate the superiority of TAROT in discovering bi-
ologically related gene sets.

Algorithmic Recourse for TAROT - Simulating the
Gene Knockout. To testify whether the found genes are
crucial for the cell temporal trajectory and differentiation, we perform an algorithmic recourse of
TAROT by removing these genes during the trajectory optimization to simulate the gene knock-
out. TAROT results with and without the gene removal are summarized in Figure 9. We can see the
trajectory (or differentiation) is significantly altered after even only removing one gene (e.g., TPT1).
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Figure 9: The simulated gene knockout. During the tuning point (red numbers and ⋆) of cell lineage, we
remove one of the previously identified genes, which results in totally different cell differentiation.

A Real Case Study of Gene Knockout. The next key question is whether our simulated results
echo with the wet lab experiment. Rekhtman et al. (1999) provides a real experimental validation
on the Mouse-iPE dataset (Capellera-Garcia et al., 2016) and proves that knockout genes GATA1,
SPI1, and LMO2 will discourage the conversion from murine and human fibroblasts to induced
erythroid progenitor or precursor cells (iEPs). Impressively, we find that TAROT offers aligned
simulation results: removing these genes impedes the mapping (cell differentiation) to the original
iEPs. In details, the initial mappings from TAROT are {cell: Meg → Bas; cell: Neu → Mon}. If
we remove gene GATA1 and SPI1, the simulated results become {cell: Meg → Bas, GMP-like,
MEP-like; cell: Neu → Mon, Bas, GMP-like}. It implies that TAROT successfully reveals a seesaw-
effect regulation between SPI1 and GATA1 in driving the GMP-like and MEP-like lineages.

5.4 ABLATION STUDY

To investigate the contribution of each component in TAROT, comprehensive ablations are con-
ducted on Mouse-RGC. The studies about different cell representations, biology prior regulariza-
tion, continuous trajectory optimization, and the automatic thresholding methods in TAROT are
demonstrated in Table 2, Table 3 and Table A4, respectively.

Table 2: Ablations on cell representations.
Mouse-RGC CT ↑ GPT-G ↑ GPT-L ↑ TOC ↑ TTE ↓
PCA-55 69.10 53.90 54.04 74.55 0.77
UMAP-2 29.44 16.16 16.14 62.69 0.58
VAE 66.43 53.02 53.07 72.17 0.85
MAE 70.31 60.74 61.08 93.04 0.28

Different Cell Representation. A high-
quality cell representation is essential for
inferring temporal trajectory. We im-
plement TAROT with different represen-
tations from diverse sources like PCA,
UMAP, VAE, and MAE. PCA is also applied
to VAE and MAE features to reduce the di-
mension for a fair comparison. Results in Table 3 evidence the advantage of MAE.

Table 3: Ablations on biology prior regularizations.
Mouse-RGC CT ↑ GPT-G ↑ GPT-L ↑ TOC ↑ TTE ↓
D 66.28 39.60 39.60 73.41 0.64
Ddev ⊙D 69.89 57.52 57.78 80.48 0.66
Dfuc ⊙D 68.71 56.01 55.76 78.62 0.72
(Ddev +Dfuc)⊙D 70.31 60.74 61.08 93.04 0.28

Different Biology Prior Regu-
larizations. The flexibility of
TAROT allows us to add various
biology prior knowledge during
transport. We investigate differ-
ent options in Table 3 by adding
cost regularizations in an incre-
mental manner. The results tell us that both Ddev and Dfuc play significant roles in TAROT.

6 CONCLUSIONS

Modeling and inferring single-cell transcriptional patterns is crucial to understanding cell differen-
tiation in developmental biology. This paper presents a novel angle to formulate this fundamental
biology problem into a well-defined machine learning formulation - temporal trajectory analysis.
We propose a large-scale single-cell dataset of mouse retinal ganglion (Mouse-RGC) and an inno-
vative algorithmic framework TAROT to: (1) extract superior cell representations; (2) match feature
distributions across time stages; (3) optimize and produce continuous temporal trajectories. Ex-
tensive investigations validate that our proposals achieve substantial improvements over baseline
methods. Lastly, various gene knockout simulations and a real case study are conducted, where
the impressive results imply the potential of TAROT in providing meaningful biology landscapes.
Future work includes more physical validations of mouse gene knockout and potential applications
like gene therapy and cell longevity engineering.
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REPRODUCIBILITY STATEMENT

The authors have put in great effort to ensure the reproducibility of algorithms and results presented
in the paper. There are detailed explanations of the experiment settings in Section 5.1 and Ap-
pendix A2. The study covers 3 distinct datasets, each of which is thoroughly described in Section 3.
Furthermore, the evaluation metrics have been clearly introduced in Section 5.1, which serves as a
clear framework for evaluating the study’s results. Codes are contained in the supplement.
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Gabriel Peyré, and Jean-Luc Starck. Wasserstein dictionary learning: Optimal transport-based
unsupervised nonlinear dictionary learning. SIAM Journal on Imaging Sciences, 11(1):643–678,
2018.

Alex K Shalek, Rahul Satija, Xian Adiconis, Rona S Gertner, Jellert T Gaublomme, Raktima Ray-
chowdhury, Schraga Schwartz, Nir Yosef, Christine Malboeuf, Diana Lu, et al. Single-cell tran-
scriptomics reveals bimodality in expression and splicing in immune cells. Nature, 498(7453):
236–240, 2013.

Hongru Shen, Jilei Liu, Jiani Hu, Xilin Shen, Chao Zhang, Dan Wu, Mengyao Feng, Meng Yang,
Yang Li, Yichen Yang, et al. Generative pretraining from large-scale transcriptomes for single-cell
deciphering. Iscience, 26(5), 2023.

Jian Shen, Yanru Qu, Weinan Zhang, and Yong Yu. Wasserstein distance guided representation
learning for domain adaptation. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32, 2018.

Satya Narayan Shukla and Benjamin M Marlin. A survey on principles, models and methods for
learning from irregularly sampled time series. arXiv preprint arXiv:2012.00168, 2020.

Max Sommerfeld and Axel Munk. Inference for empirical wasserstein distances on finite spaces.
Journal of the Royal Statistical Society Series B: Statistical Methodology, 80(1):219–238, 2018.

Kelly Street, Davide Risso, Russell B Fletcher, Diya Das, John Ngai, Nir Yosef, Elizabeth Purdom,
and Sandrine Dudoit. Slingshot: cell lineage and pseudotime inference for single-cell transcrip-
tomics. BMC genomics, 19:1–16, 2018.

Tim Stuart, Andrew Butler, Paul Hoffman, Christoph Hafemeister, Efthymia Papalexi, William M
Mauck, Yuhan Hao, Marlon Stoeckius, Peter Smibert, and Rahul Satija. Comprehensive integra-
tion of single-cell data. Cell, 177(7):1888–1902, 2019.

Michael JT Stubbington, Orit Rozenblatt-Rosen, Aviv Regev, and Sarah A Teichmann. Single-cell
transcriptomics to explore the immune system in health and disease. Science, 358(6359):58–63,
2017.

Itay Tirosh, Benjamin Izar, Sanjay M Prakadan, Marc H Wadsworth, Daniel Treacy, John J Trom-
betta, Asaf Rotem, Christopher Rodman, Christine Lian, George Murphy, et al. Dissecting the
multicellular ecosystem of metastatic melanoma by single-cell rna-seq. Science, 352(6282):189–
196, 2016.

Alexander Tong, Jessie Huang, Guy Wolf, David Van Dijk, and Smita Krishnaswamy. Trajectorynet:
A dynamic optimal transport network for modeling cellular dynamics. In International conference
on machine learning, pp. 9526–9536. PMLR, 2020.

Cole Trapnell, Davide Cacchiarelli, Jonna Grimsby, Prapti Pokharel, Shuqiang Li, Michael Morse,
Niall J Lennon, Kenneth J Livak, Tarjei S Mikkelsen, and John L Rinn. The dynamics and
regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nature
biotechnology, 32(4):381–386, 2014.
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A1 MORE TECHNIQUE DETAILS

Details about Entropy Weight Search The entropy weight λ is a critical factor that affects the
final Sinkhorn algorithm transport result; an inadequate λ makes the transport prone to random
mapping. We design a non-linear entropy weight search algorithm to decide an adequate λ for the
Sinkhorn algorithm. The Pytorch-style pseudo code is presented in Algorithm 1.

Algorithm 1: Non-Linear Entropy Weight Search in Python style
def nonlinear_entropy_weight_search(lambda, matrix_1, matrix_2, M):

lambda_i = lambda
best_cost = infinity
while True:

# Calculate sinkhron optimal transport algorithm between matrix_1
and matrix_2 with cost matrix M with entropy weight lambda_i

ot_cost, ot_mapping = sinkhorn_optimal_transport(matrix_1,
matrix_2, M, lambda_i)

# If not converge, increase entropy weight
if not converge(ot_mapping):

lambda_i = lambda_i * 10
elif ot_cost < best_cost:

# Decrease entropy weight for better optimal transport mapping
best_cost, lambda = ot_cost, lambda_i
lambda_i = lambda_i - lambda_i * 0.1

# Entropy weight search done
elif ot_cost > best_cost:

break
return lambda

A1.1 DETAILS OF THE BASE FUNCTION IN B-SPLINES

B-Spline is constructed based on the base function, and the base function is defined recursively:

Ni,0(u) =

{
1, ui ≤ u ≤ ui+1

0, otherwise
, (3)

Ni,k =
u− ui

ui+k − ui
Ni,k−1(u) +

ui+k+1 − u

ui+k+1 − ui+1
Ni+1,k−1(u), (4)

where the {ui}ni=0 are the knots of the B-Spline. For more details about adapting the B-Spline for
pseudotime trajectory optimization, please check Appendix A2.

A2 MORE IMPLEMENTATION DETAILS

A2.1 TRAINING DETAILS OF TAROT

Pre-Transport - MAE training TAROT employs a customized transformer network comprising
6 encoder layers and 6 decoder layers. The encoder layers boast a dimension of 256 with 8 attention
heads, while the decoder layer has a hidden dimension of 512 and is also equipped with 8 attention
heads. Our MAE uses AdamW (Loshchilov & Hutter, 2019) optimizer with the weight decay of
1e−5, the learning rate of 1e−4, and the training step of 50K, wherein the initial 2.5K iterations as
a warmup. For the single-cell data, we divide each cell’s genes into 128 patches, where each patch
contains 64 consecutive gene expression values. The final cell representation {ci}ni=1 is obtained by
feeding the encoder output into PCA, which reduces the dimension from 256 to 55.

During Transport - Regularized OT We use Pearson correlation as the vanilla cost function
corr(·, ·). The final entropy weight λ of each optimal transport is obtained by Algorithm 1.

Post-Transport - B-Splines Trajectory Optimization The curve parameter is predefined before
the trajectory optimization. We use 3-degree B-Spline with 300 knots, and the number of learnable
control points J is set with 1. The optimization is solved via gradient descent, the learning rate is
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1 × 10−2, and the optimization stop condition is the loss fluctuation is less than 1 × 10−4% with
most 1, 000 optimization steps.

A2.2 DETAILS ABOUT METRIC

For further clarification of differences between GPT-G and GPT-P, we provide the PyTorch-style
pseudo codes for both two metrics in Algorithm 2 and 3 respectively.

Algorithm 2: Gene Pattern Test per Gene in Python style
def gene_monotonically_per_gene(all_lineages, cells, test_gene_group):

mono_per_gene = []
for lineage in all_lineages:

# Calcuate the percentage of genes in test_gene_group, which
steady increase/decrease over this lineage

gene_ratio = monotony_in_lineage(lineage, cells, test_gene_group)
mono_per_gene.append(gene_ratio)

return mean(mono_per_gene)

Algorithm 3: Gene Pattern Test per Path in Python style
def gene_monotonically_per_path(all_lineages, cells, test_gene_group):

mono_per_path = []
for gene in test_gene_group:

# Calculate the percentage of paths in all_lineages, which the
specific gene steadily increases/decreases over these paths

path_ratio = monotonu_of_gene(all_lineage, cells, gene)
mono_per_path.append(path_ratio)

return mean(mono_per_path)

A3 MORE EXPERIMENTAL RESULTS

A3.1 MORE RESULTS OF GENE WAVE VISUALIZATION
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Figure A10: Gene expression
dynamics over the cell pseudo-
time left to right. From top to
bottom are the heatmap of differ-
ent genes that increase, decrease,
increase followed decrease, and
decrease followed increase.

To illustrate the capability of TAROT in discovering gene sets with
specific patterns from lineages, we collect more gene waves with
such expression patterns and show them in Figure A11 and A10
in different forms. Results show that TAROT yields more genes
with similar expression patterns since the high-quality lineage and
pseudotime inference.

A3.2 MORE ABLATION RESULTS

Table A4: Result of different tra-
jectory optimization options.

Methods TOC ↑ TTE ↓
Mouse-RGC

Sp-1 93.04 0.28
Sp-2 90.73 0.25
Sp-3 92.03 0.23
Poly. 63.37 1.24
Principal 72.22 2.07

Different Options for Pseudotime Trajectory Optimization
The number of learnable points J between two fixed control points
greatly affects the B-Spline pseudotime trajectory optimization.
We ablate different J to seek a plausible setting for the pseudotime
trajectory optimization. Table A4 indicates that more learnable
control points deliver improved TTE but sacrifice TOC, which in-
dicates better trajectory fitting does not result in better pseudotime
trajectory. Therefore, we use “1” learnable control points per two
fixed points. We also compare our method with two other trajec-
tory fitting methods: the “Poly.” method, which uses the polyno-
mial curve for temporal trajectory fitting (the degree of curve is the
number of cell differentiations that happen), and the “Principal” method, which uses the principal
curves algorithm, the same trajectory fitting method with Slingshot (Street et al., 2018).

Automatic thresholding within TAROT In TAROT, the automatic thresholding method is vital to
achieving accurate lineage results. We proposed two candidate automatic thresholding techniques:
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Figure A11: More gene expression dynamics over the cell pseudotime. Four kinds of special gene patterns,
from left to right, are increased, increased then decreased, decreased then increased, and decreased gene waves.
Gene waves in different lines are identified from different lineages.

the “P-value” method and the “max. sep.” method (i.e., the maximum separation). The “P-value”
method utilizes statistical significance to identify mappings with a p-value lower than the threshold
of 1e−4. Conversely, the “max. sep.” method selects mappings with close OT costs but notably
distinct from other mappings, emulating human intuition. Table A4 reports TAROT’s results with
two thresholding methods, demonstrating that the “max. sep.” selects lineages with higher quality.

A4 ETHICAL STATEMENT ABOUT DATASET COLLECTION

Table A5: Ablations on automatic thresholding.
Mouse-RGC CT ↑ GPT-G ↑ GPT-L ↑ TOC ↑ TTE ↓
P-value 66.58 56.30 56.89 92.86 0.23
max. sep. 70.31 60.74 61.08 93.41 0.30

For the data collection of Mouse-RGC,
mice were maintained in pathogen-free fa-
cilities under a 12-hour light-dark sched-
ule with standard housing conditions.
Food and water were continuously sup-
plied. Animals used in this study include
both males and females.
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