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Abstract

Recent advances in Multimodal Large Lan-001
guage Models (MLLMs) have brought forward002
capabilities such as handling multiple images003
or engage in multi-turn conversations involving004
images. In this paper, we present a challenging005
spot the differences benchmark for evaluating006
MLLMs, geared toward the identification and007
captioning of Visual Differences (ViDi)1. The008
benchmark corresponds to a test-only dataset009
with 200 pairs of images, along with human-010
annotated descriptions of visually noticeable011
differences for each pair. ViDi goes beyond the012
identification of single differences, challenging013
models to articulate changes using natural lan-014
guage, while pinpointing the subject of each015
difference and its absolute or relative location.016
Empirical results reveal that MLLMs are still017
in an early development stage, showing limited018
performance in spot the differences tasks.019

1 Introduction020

Both academia and industry have been developing021

ever more powerful Multimodal Large Language022

Models (MLLMs) at a very fast pace (Yin et al.,023

2024), together with new benchmarks and evalua-024

tion methods (Fu et al., 2024). MLLMs build on025

large language models with strong reasoning and026

language generation capabilities, although their vi-027

sual perception is still limited (Tong et al., 2024;028

Zhang et al., 2024a). In the current setting, eval-029

uating fine-detail scenarios and spatial reasoning030

abilities is highly important, so as to provide in-031

sights for future research, in the area.032

In this paper, we focus on the problem of analyz-033

ing multiple visual inputs for differences, and pro-034

ducing visually grounded natural language outputs.035

Similarly to humans, MLLMs should have the abil-036

ity to compare multiple visual inputs and process037

complex requests that focus on this comparison.038

1The dataset is available at https://anonymous.4open.
science/r/ViDi-FC45/

The prevalent use of chat-based interfaces with 039

multiple interactions presents a promising avenue 040

for evaluating reasoning capabilities across multi- 041

ple visual instances, a domain that remains largely 042

unexplored in visual understanding research. In 043

this context, we introduce a benchmark based on 044

spot the differences puzzles, to systematically eval- 045

uate MLLM abilities related to discerning and de- 046

scribing salient visual differences between natural 047

images. The evaluation focuses not only on identi- 048

fying differences, but also on articulating them with 049

precision in natural language, encompassing sub- 050

ject identification and spatial localization. Previous 051

studies have significant limitations, by focusing on 052

one difference in each pair of images, and/or by 053

often relying on synthetic images. As a result, cur- 054

rent models are not being evaluated to their full 055

potential. To address this gap, we consider a more 056

complex comparison problem, focusing on detect- 057

ing multiple differences in natural image pairs that 058

were specifically designed to challenge human per- 059

ception. In summary, our main contributions are: 060

(1) We propose a new benchmark for the identifi- 061

cation and captioning of multiple Visual Dif- 062

ferences (ViDi), based on a test-only dataset 063

with 200 spot the differences puzzles, which 064

collectively contain 1,097 differences span- 065

ning diverse image aesthetics, objects, and 066

difference types (Section 3). 067

(2) We perform a baseline evaluation on promi- 068

nent MLLMs, showing a generalized poor per- 069

formance on the ViDi benchmark (Section 4). 070

2 Related Work 071

The evaluation of models that couple vision and 072

language has been the focus of many recent studies, 073

e.g. developing benchmarks to test different ca- 074

pabilities (Thrush et al., 2022; Parcalabescu et al., 075

2022; Bitton-Guetta et al., 2023), and often relying 076

on protocols based on visual question answering 077
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Figure 1: The proposed benchmark targeting the identification and captioning of Visual Differences (ViDi).

(Zhang et al., 2024b). However, most previous078

work has focused on inputs consisting of a sin-079

gle image, while the problem of comparing im-080

ages to assess differences between them remains081

much less explored. Notable exceptions include082

benchmarks like Spot-the-Diff (Jhamtani and Berg-083

Kirkpatrick, 2018), CLEVR-Change (Park et al.,084

2019), CLEVR-Multi-Change (Qiu et al., 2021),085

Image-Editing-Request (Tan et al., 2019), DiffCap086

(Hu et al., 2024), or VisMin (Awal et al., 2024),087

which have been used in the assessment of spe-088

cialized models focused on image change captions089

(Park et al., 2019). Appendix A presents a more de-090

tailed analysis of the aforementioned previous stud-091

ies. Still, existing benchmarks feature important092

limitations, e.g. focusing on the analysis of a single093

difference, and/or including simplistic/synthetic im-094

ages that lack aesthetic and object diversity. This095

paper advances ViDi as a more challenging bench-096

mark, featuring natural image pairs with multiple097

differences between them, that were specifically098

designed to challenge human perception.099

3 The ViDi Dataset100

The ViDi benchmark dataset is designed to examine101

the capacity of models to interpret similar images102

and write textual descriptions for multiple subtle103

differences between them — see Figure 1. Our104

approach uses spot the differences puzzles collected105

from the Web, specifically created to challenge106

human visual capabilities, paired with manually107

curated descriptions of the differences.108

In terms of vision capabilities, this benchmark109

increases the complexity in comparison to previ-110

ous proposals, by using image pairs with multiple111

subtle differences between them, and ensuring that112

each variation represents a minor detail within the113

broader visual context. In terms of linguistic ca-114

pabilities, the benchmark goes beyond the mere115

generation of grammatically correct sentences, aim- 116

ing at contextually relevant and semantically coher- 117

ent descriptions that align with visual inputs. The 118

goal is to precisely identify and locate subjects, e.g. 119

through spatial references, and articulate changes 120

between images. With respect to reasoning ca- 121

pabilities, ViDi encompasses multiple cognitive 122

dimensions. These include spatial reasoning to 123

understand object relationships and positions, com- 124

parative reasoning to detect visual disparities be- 125

tween images, causal reasoning to infer the nature 126

and rationale of the changes in the scene, or com- 127

monsense reasoning to clearly and unambiguously 128

locate the changes. This multi-layered reasoning 129

process demands both precise change detection 130

and understanding of contextual and commonsense 131

cues of significance within the broader scene. 132

We manually sourced 200 image pairs from the 133

Web, originally in social media sites, professional 134

news and entertainment websites, as well as am- 135

ateur and hobbyist websites. All images feature 136

natural scenes and we specifically avoided illustra- 137

tions, although we also included some magazine- 138

type cover posters. Images generated by synthetic 139

processes were avoided as much as possible, and 140

differences pertaining to scene-text in the images 141

also seldom occur. The English annotations for 142

the differences were, in most cases, derived from 143

information available on the website from which 144

the images were collected, but always further cu- 145

rated. The annotations were systematically orga- 146

nized in accordance with the position of the differ- 147

ences in the image, following a reading sequence 148

from top-left to bottom-right in a zigzag manner, 149

as is customary in Western writing. Each sentence 150

describes one difference in the image pair, and 151

conforms to the following guidelines: (a) humans 152

can distinguish the difference in the two images; 153

(b) the sentence should clearly identify the object/- 154

subject of the difference, using simple and natural 155

2



descriptions for human understanding; (c) the ob-156

ject should be unambiguously located within in157

the images, either globally (e.g., through object158

properties) or with respect to other objects (e.g.,159

using spatial relations); and (d) the sentence should160

clearly describe what was changed (e.g., object161

color, size, number, etc.).162

With a total of 1076 differences, each image163

pair in ViDi has 3 to 12 differences (average: 5.9).164

Individual difference descriptions are 3 to 27 words165

long (average: 12), and total descriptions per pair166

range from 49 to 140 words (average: 79).167

When describing differences, the selection of the168

anchor for the relative location within the scene can169

be biased in the annotation process, and automated170

models can naturally select other anchors to locate171

the object. To at least partially avoid this type of172

bias, as well as other particularities of individual173

writing styles, the descriptions from a first anno-174

tation were rephrased through the use of a large175

language model, and then further curated through176

a subsequent round of revisions.177

Although other existing benchmarks (Awal et al.,178

2024; Zhang et al., 2024b; Evennou et al., 2024)179

feature significantly larger datasets, ViDi priori-180

tizes quality by providing 200 meticulously curated181

samples, ensuring a valuable and reasonable sam-182

ple size. Despite being small, we argue that the183

ViDi benchmark supports the precise measurement184

and effective differentiation of systems with vary-185

ing capacities, at a fine granularity.186

4 Experiments and Results187

Experimental Settings. To evaluate model per-188

formance, we consider two experimental settings.189

The granular alignment setting evaluates the com-190

patibility of model predictions with individual191

ground-truth differences, focusing on the closest192

match. Models are given a pair of images and193

prompted to return a description of one difference.194

In turn, the global alignment setting assesses the195

similarity of the prediction with the combined and196

comprehensive context of all ground-truth descrip-197

tions for the differences. In this setting, the model198

is prompted to list all the differences in the pair of199

images. We evaluated seven open-weight MLLMs:200

MiniCPM-V-2.6 (Yao et al., 2024), Phi3.5 Vision201

(Abdin et al., 2024), LLaVA-CoT (Xu et al., 2024),202

NVLM-D-72B (Dai et al., 2024), LLAVA-OV-72B203

(Li et al., 2024), InternVL2.5-78B (Chen et al.,204

2024), and Llama-3.2-90B (Dubey et al., 2024).205

The prompts used to query the models are re- 206

ported in Appendix B. Each model and setting 207

uses standard metrics for evaluating text generation, 208

namely BLEU (Papineni et al., 2002), ROUGEL 209

(Lin, 2004), and CIDEr (Vedantam et al., 2015). 210

Across all experiments, we maintained consistent 211

text generation parameters. To account for the prob- 212

abilistic nature of text generation, we apply sam- 213

pling with a temperature set at 0.5, execute five 214

generation runs using different random seeds, and 215

average the scores across the runs. We also mea- 216

sure the consistency of the models as the absolute 217

difference of the metrics, when we swap the order 218

of the images. Since the annotations are invariant 219

to the order of the images, the models should show 220

minimal variation in the metrics. 221

How do models perform at identifying one dif- 222

ference? In the granular alignment setting, the 223

evaluation metrics are calculated considering mul- 224

tiple ground-truth sentences, and the results are 225

presented in Table 1. The InternVL2.5-78B model 226

is clearly the top performer, with the highest scores 227

across all metrics, suggesting better coherence 228

and fluency, and better adherence to our annota- 229

tions. The small Phi3.5 Vision model is reasonably 230

competitive across metrics given its size, and sur- 231

prisingly Llama-3.2-90B showed a weaker perfor- 232

mance, despite its larger size. Appendix C presents 233

examples of the outputs generated by different mod- 234

els, while Appendix D shows a detailed analysis 235

of the types of differences featured in the dataset, 236

together with the corresponding results. 237

How do models perform at covering all the dif- 238

ferences? For the global alignment setting, the 239

metrics were computed considering the ground 240

truth sentences as a single-paragraph description 241

that models should generate. The results are pre- 242

sented in Table 1. Overall, the Phi3.5 Vision model 243

exhibits the best performance metrics compared 244

to its counterparts. Interestingly, smaller mod- 245

els exhibit notably competitive results, whereas 246

larger models such as LLAVA-OV-72B and Llama- 247

3.2-90B are ranked lower. All models struggle 248

with longer phrase matches, with low BLEU3 and 249

BLEU4 scores. Even the best-performing mod- 250

els have low scores across all metrics, indicating 251

significant room for improvement in generating 252

consistent difference descriptions. The models 253

also exhibit a significantly low CIDEr score, sig- 254

naling a poor relevance of the response content. 255

Specifically, LLAVA-OV-72B’s poor CIDEr score 256
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Granular Alignment Setting
Model BLEU1 BLEU2 BLEU3 BLEU4 ROUGEL CIDEr

Phi3.5 Vision 37.5 ±0.2 21.0 ±0.4 9.9 ±0.3 5.1 ±0.3 29.5 ±0.3 6.9 ±0.4
MiniCPM-V-2.6 23.3 ±0.0 12.3 ±0.0 4.6 ±0.0 2.1 ±0.0 23.2 ±0.0 0.0 ±0.0
LLaVA-CoT 50.0 ±0.4 26.9 ±0.5 14.4 ±0.5 8.0 ±0.4 32.1 ±0.3 12.4 ±0.5
NVLM-D-72B 42.0 ±0.1 23.5 ±0.2 11.8 ±0.2 6.4 ±0.2 32.5 ±0.2 7.9 ±0.1
LLAVA-OV-72B 46.0 ±0.3 27.4 ±0.2 15.7 ±0.3 9.7 ±0.3 33.6 ±0.6 15.7 ±0.8
InternVL2.5-78B 53.4 ±0.5 31.4 ±0.1 17.5 ±0.2 10.2 ±0.2 37.5 ±0.0 17.2 ±0.0
Llama-3.2-90B 34.2 ±0.1 18.4 ±0.1 9.2 ±0.1 5.0 ±0.0 29.9 ±0.0 3.2 ±0.2

Global Alignment Setting
Model BLEU1 BLEU2 BLEU3 BLEU4 ROUGEL CIDEr

Phi3.5 Vision 27.9 ±0.1 14.4 ±0.1 6.6 ±0.0 3.3 ±0.0 22.6 ±0.0 3.3 ±0.1
MiniCPM-V-2.6 22.4 ±0.1 11.1 ±0.0 4.2 ±0.0 1.7 ±0.0 19.4 ±0.0 1.2 ±0.1
LLaVA-CoT 4.1 ±0.0 2.0 ±0.0 1.0 ±0.0 0.5 ±0.0 13.6 ±0.1 1.0 ±0.2
NVLM-D-72B 13.3 ±0.0 6.9 ±0.0 3.1 ±0.0 1.6 ±0.0 19.5 ±0.1 0.9 ±0.0
LLAVA-OV-72B 1.5 ±0.0 0.9 ±0.0 0.5 ±0.0 0.3 ±0.0 13.0 ±0.0 0.0 ±0.0
InternVL2.5-78B 16.3 ±0.3 8.6 ±0.1 4.6 ±0.0 2.6 ±0.0 18.7 ±0.0 3.4 ±0.0
Llama-3.2-90B 23.6 ±0.2 11.5 ±0.1 5.5 ±0.0 2.9 ±0.0 16.3 ±0.2 1.5 ±0.1

Table 1: MLLM performance metrics on the ViDi Benchmark. The values correspond to the average between the
two possible image orders, together with the corresponding variation.

can be attributed to its tendency to generate sim-257

ilar and incomplete responses for both granular258

and global alignment prompts, failing to describe259

the full range of differences between images. Ap-260

pendix C presents examples of model predictions.261

What are the main takeaways from both eval-262

uation settings? Comparing the performance263

across both settings reveals several important in-264

sights. Notably, the task of finding one difference265

is more manageable by current MLLMs, whereas266

the more complex task of comprehensively describ-267

ing differences is generally not accomplished. This268

finding is particularly important, as most previous269

benchmarks focused on a single difference (Park270

et al., 2019; Awal et al., 2024; Zhang et al., 2024b).271

The InternVL2.5-78B model shows adaptabil-272

ity, performing at a higher rank in both scenar-273

ios. Although Phi3.5 Vision leads in several met-274

rics for listing all differences, it shows compara-275

tively weaker performance in the granular align-276

ment experiment. Conversely, LLAVA-OV-72B is277

very competitive in recognizing a single difference,278

but performed much worse when enumerating all279

differences, often producing very brief responses.280

Even the reasoning-based approach of the LLaVA-281

CoT model failed to systematically identify all the282

differences, and we noticed that the reasoning chain283

focused on re-interpreting the input textual prompt,284

instead of drawing inferences from the visual con-285

tents. The parameter count also does not appear286

to be the determining factor for performance in ei- 287

ther task. For instance, Llama-3.2-90B consistently 288

performs below the other models, despite having 289

the largest parameter count, because it is unreli- 290

able with multiple images (Bhutani, 2025). The 291

small models demonstrate performance equivalent 292

to the large models, particularly in the more com- 293

plex setting. All models exhibit a notable degree 294

of confabulation when describing the differences. 295

This is exemplified by outputting several repetitions 296

of one change description with minimal variations. 297

The input order of the images has no significant 298

impact on the results. In Appendix D we report 299

experiments by type of difference, with attribute 300

differences being more thoroughly described and 301

count differences being more challenging. 302

5 Conclusions 303

We presented ViDi as a new benchmark for evalu- 304

ating MLLMs in the task of describing differences 305

between pairs of images, moving beyond previous 306

work by addressing multiple differences in image 307

pairs originally designed to challenge humans. We 308

also evaluated prominent MLLMs and showed that, 309

despite popular enthusiasm, these models remain 310

in the early stages of development, with their visual 311

comprehension significantly trailing their linguistic 312

abilities. Future work can consider extending the 313

benchmark to support visually situated multi-turn 314

dialog evaluation settings (Zheng et al., 2022). 315
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Limitations and Ethical Considerations316

The ViDi benchmark leverages resources collected317

from the Web, and some of the images in our318

dataset may be subject to copyright restrictions.319

While we attempted to prioritize the use of Creative320

Commons licensed images, the complete copyright321

status of all images could not be definitively ver-322

ified. We nevertheless complied with the robot323

exclusion protocol, and we believe that our use324

of the images fits into the definition of Fair Use,325

given the objective of non-profit educational/sci-326

entific research aimed at public good. Our public327

GitHub repository gathers all the processed images,328

along with a text file containing, in the first line,329

the source URL of the webpage from which the330

image was collected, followed by the difference331

annotations. Copyright holders may contact us to332

request removal or replacement of specific images.333

Another limitation of the work reported in this334

paper is related to the fact that our annotations have335

used only the English language. Moreover, despite336

efforts to maintain consistent evaluation standards,337

relying on a small pool of annotators may have338

introduced inherent biases, and potentially limited339

the generalizability across diverse demographic per-340

spectives and interpretation styles.341

Finally, the performance levels of the different342

models may have been impacted by our use of sim-343

ple and standardized prompts, which we employed344

across all experiments for consistent evaluation.345
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A Detailed Analysis on Prior Work 516

Several recent studies have focused on advancing benchmarks for assessing models that integrate vision 517

with language. For instance, the Winoground dataset (Thrush et al., 2022) tests compositional reasoning, 518

asking models to distinguish subtle differences in image-text relationships. The WHOOPS dataset 519

(Bitton-Guetta et al., 2023) challenges the ability to reason about commonsense and compositionality, by 520

presenting commonsense-defying images. The VALSE benchmark (Parcalabescu et al., 2022) assesses 521

the vision-linguistic grounding capabilities of models on a suite of tests covering various linguistic 522

constructs: existence, plurality, counting, spatial relations, actions, and entity co-reference. The NLVR2 523

benchmark (Suhr et al., 2019) evaluates the capacity of models to determine the validity of a statement in 524

a visual context. While these studies provide valuable insights into different aspects of vision-language 525

understanding, they primarily focus on single-image scenarios, lacking the ability to evaluate complex 526

multi-image reasoning over visual differences. 527

A common evaluation paradigm for MLLMs involves following a visual question answering protocol, 528

with questions tailored to evaluate specific skills or comprehension abilities. For instance, the SPHERE 529

dataset (Zhang et al., 2024b) is particularly designed to measure spatial reasoning skills, through basic 530

questions referring to object positions, distances, sizes, and counts. It also features advanced questions 531

that require combinations of spatial and visual skills, and questions that require advanced understanding 532

of a scene as a 3D environment with physical entities. The authors concluded that models still lack the 533

ability to understand distance, to reason from both allocentric and egocentric viewpoints, and to perform 534

physical world reasoning. ViDi is perhaps even more challenging, calling for models to generate coherent 535

textual descriptions that are visually grounded, without involving any question category limitations. Again, 536

analyzing fine-grained image differences is a core component of our new benchmark. 537

In a spot the differences task the images typically share the same perspective, which helps to con- 538

centrate on the semantic variations (i.e., alterations such as minor size adjustments or slight shifts are 539

not significant). The task is related to visual semantic understanding and anomaly detection, and has 540

been referred to as image change captioning (Park et al., 2019). Previous work has also looked at this 541

challenge in connection with application areas such as remote sensing (Liu et al., 2022; Wang et al., 2024) 542

or medical imaging (Hu et al., 2023). To produce a textual description of differences, models are required 543

to build on abilities such as object identification, object counting, attribute recognition, and spatial relation 544

reasoning, in addition to language generation. Previous work includes the Spot-the-Diff dataset (Jhamtani 545

and Berg-Kirkpatrick, 2018), created from pairs of images extracted from urban surveillance videos. 546

However, as Awal et al. (2024) highlight, the frames frequently resemble one another, and instances 547

often do not have distinct semantic differentiation. The CLEVR-Change dataset (Park et al., 2019) 548

extends the goal to consider robustness towards distractors, by augmenting a single change fused with 549

a camera angle change. However, the dataset uses synthetic images with only a few object categories. 550

The Image-Editing-Request dataset (Tan et al., 2019) features a large collection of real image pairs with 551

corresponding editing instructions for a single change. The images were obtained from social media 552

websites, specifically from posts aiming to crowdsource a specific change to an original image. 553

To address the challenges of data scarcity and variability, recent studies build on generative protocols 554

to create synthetic data for model training and evaluation. The DiffCap dataset (Hu et al., 2024) merges 555

existing real-world image difference datasets and synthetic data, resulting in GPT-assisted change captions 556

together with pairs of synthetic images (including subtle and complex changes). Alternatively, Evennou 557

et al. (2024) proposed a synthetic augmentation framework, based on diffusion models, without human or 558

other filtering validation. Change captions are generated from image-text datasets by instructing an LLM 559

with a few change categories, and a diffusion model generates synthetic images based on the intended 560

change descriptions. Similarly, the VisMin dataset (Awal et al., 2024) was also created following a 561

generative protocol, using LLMs and diffusion models. This benchmark requires models to predict the 562

correct image-caption match given two images and two captions, where only one aspect (object, attribute, 563

count, and spatial relation) changes at a time. The authors report that MLLMs exhibit notable deficiencies 564

in understanding spatial relationships and counting abilities. However, approaches leveraging synthetic 565

data are prone to simplify the tasks and introduce confabulations, therefore, requiring a human in the loop 566
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Model Vision Encoder # Parameters

Phi3.5 Vision (Abdin et al., 2024) CLIP ViT-L/14 4.2B
MiniCPM-V-2.6 (Yao et al., 2024) SigLip-400M 8B
LLaVA-CoT (Xu et al., 2024) ViT-H/14 11B
NVLM-D-72B (Dai et al., 2024) InternViT-6B 72B
LLAVA-OV-72B (Li et al., 2024) SigLip-400M 72B
InternVL2.5-78B (Chen et al., 2024) InternViT-6B 78B
Llama-3.2-90B (Dubey et al., 2024) ViT-H/14 90B

Table 2: Summary of MLLMs benchmarked in this study, detailing their vision encoders and parameter counts.

for reliability, or highly engineered data validation pipelines.567

Most of the aforementioned previous studies focus on tasks in which only one difference is evaluated.568

With ViDi, we advocate for multiplicity because it increases the search space, and fine-grained understand-569

ing becomes harder with confounding factors, thus requiring robust feature representations. Real-world570

relevance also requires handling multiplicity. Exceptionally, the CLEVR-Multi-Change dataset (Qiu et al.,571

2021) consists of synthetic image pairs that contain multiple changes, change captions, and bounding572

boxes of the changed regions. However, this specific benchmark again only features synthetic images that573

lack aesthetic and object diversity.574

B Implementation Details575

In this study, we used a computing node equipped with four NVIDIA A100 80GB GPUs, which enabled576

us to run all models efficiently, eliminating the need for model quantization. To truly explore visual577

perception on models with high-resolution capabilities, we processed the smaller images with a recent578

super-resolution model (Wang et al., 2021), ensuring a minimum resolution of 1024x1024 pixels. The579

models used in the experiments are summarized in Table 2 . We obtained their released versions on580

HuggingFace.581

The prompts used to instruct the models in the two evaluation scenarios (i.e., one difference and all582

differences) are presented next.583

Granular Alignment Prompt:

<image>
<image>
Describe one single difference between the two images.
Use one sentence that adheres to the following guidelines:

Identify the main subject/object of the change;
Describe its location relative to other objects or within the image (e.g., using directional terms and nearby reference
points);
State what has specifically changed (e.g., color variation, quantity difference, presence/absence, or text modification);
Describe both versions of what has changed, separated by the word "or" (e.g., "red or blue", "5 or 7", or "facing up or
looking down").

Present the difference on a single individual English sentence, without any additional context.
Do not reference explicitly which image shows which version of the change/subject/object.

584
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Global Alignment Prompt:

<image>
<image>
List all the differences between the two images.
For each difference, use one sentence that adheres to the following guidelines:

Identify the main subject/object of the change;
Describe its location relative to other objects or within the image (e.g., using directional terms and nearby reference
points);
State what has specifically changed (e.g., color variation, quantity difference, presence/absence, or text modification);
Describe both versions of what has changed, separated by the word "or" (e.g., "red or blue", "5 or 7", or "facing up or
looking down").

Present each difference as a single individual English sentence, without any additional context.
Do not reference explicitly which image shows which version of the change/subject/object.

585

In the case of models that only support one image together with each request, we suggest using a 586

multi-round conversational prompt that is presented next. We show the version corresponding to the 587

global alignment setting, but a similar prompt can also be used when on the granular alignment setting. In 588

our experiments, all the models that were considered support multi images in the prompt, and therefore 589

this multi-round conversational prompt was not used. 590

Chat Interaction Prompt:

User:
<image>
Analyze the image and provide a detailed description.

Assistant: ...

User:
<image>
Analyze this other image and describe the differences in comparison to the previous image.
For each difference, use one sentence that adheres to the following guidelines:

Identify the main subject/object of the change;
Describe its location relative to other objects or within the image (e.g., using directional terms and nearby
reference points);
State what has specifically changed (e.g., color variation, quantity difference, presence/absence, or text
modification);
Describe both versions of what has changed, separated by the word "or" (e.g., "red or blue", "5 or 7", or "facing
up or looking down").

Present each difference as a single individual English sentence, without any additional context.
Do not reference explicitly which image shows which version of the change/subject/object.

Assistant: ...

591

9



C Dataset Examples592

Two examples of natural scene image pairs featured in the ViDi dataset, together with the corresponding593

annotations for the differences and also with the results generated by different models, are presented in594

Figures 2 and 3. The images from these two instances were originally made available online by Zack595

Eckley2 under a Creative Commons license.596

The color of the sky is blue or orange.
The tower at the centre, with or without an antenna.
The color of the logo of the coffee shop on the left, either green or purple.
The traffic lights on the left are either green or red.
The arrowhead on the light bulb sign at the construction site has 4 or 5 light bulbs.
The logo at the construction site is either red or green.
The crosswalk at the bottom, with the left stripe more or less faded.

Model Granular Alignment Outputs

Phi3.5 Vision The color of the sky changes from blue in the first image to a pinkish hue in the second
image, or the time of day appears different, or the lighting conditions are altered.

Llava-CoT The color of the Starbucks sign, which is facing up or looking down on the street, is red or
blue.

InternVL2.5-78B The pedestrian crossing the street is facing the camera or is facing away from the camera.

LLAVA-OV-72B The sky has changed from a hazy orange color to a clear blue, indicating a change in the
time of day or weather conditions.

Model Global Alignment Outputs

Phi3.5 Vision The sky has a gradient of colors in the second image, ranging from a warm orange near
the horizon to a cooler blue at the top, or the sky is a uniform light blue in the first image.

Llava-CoT The Starbucks sign is red or blue. The street sign is black or white. The skyscraper is a
tall building or a tall building with a black top. The Starbucks sign is facing up or looking
down. The street sign is facing up or looking down. The skyscraper is facing up or looking
down. The Starbucks sign is on the left or on the right. The street sign is on the left or on
the right. ...

InternVL2.5-78B A person is walking in the crosswalk or a person is not walking in the crosswalk.
The flag on the boat is present or absent.

LLAVA-OV-72B The sky has changed from blue to orange.

Figure 2: Images associated to sample #14 in the ViDi dataset, together with the ground-truth annotations (top),
model outputs for the granular setting (in the middle), and model outputs for the global alignment setting (at the
bottom), when providing the image in the left as the first input to the model.

2https://www.tes.com/teaching-resource/spot-the-difference-starters-photoshop-set-1-12038773
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The number of windows on a house in the center.
The color of the cover hiding a construction site in the center is green or red.
The pink house in the center, with or without a small statue of a saint on its wall.
The color of the door on the brick wall, either brown or green.
The color of the shirt of the person driving the boat is blue or purple.
The number written on the side of the boat is 9246 or 92466.
The graffiti on the orange wall of the house on the right is missing.
The stone step at the lower left corner, with or without a docking ring.

Model Granular Alignment Outputs

Phi3.5 Vision The text "VV 27285" on the boat in the image has a slight variation in the second image,
where the numbers "27285" are repeated twice.

Llava-CoT The color of the boat is brown or blue.

InternVL2.5-78B The boat in the canal has a person wearing a purple shirt or a black shirt.

LLAVA-OV-72B The person in the boat is facing forward or looking down.

Model Global Alignment Outputs

Phi3.5 Vision The main subject/object of the change is the boat. In the first image, the boat is located
closer to the foreground and is positioned on the left side of the canal, while in the second
image, the boat is further away and positioned on the right side of the canal. The boat in
the first image has the text "UV 2788" on its side, which is not visible in the second image.

Llava-CoT The boat is white or brown and has the text "V8 92466" or "V8 92465" on it. The boat is
near the canal or the buildings. Graffiti is on the buildings or not.

InternVL2.5-78B The boat’s color is a light beige or a darker tan.
The text on the boat’s side is "VE 9246" or "VE 92466."
The person driving the boat is wearing a dark shirt or a light shirt.
There is graffiti on the wall near the right side of the image or there is no graffiti.
The flag on the boat is present or absent.

LLAVA-OV-72B The person on the boat is wearing a different shirt, blue or purple.

Figure 3: Images associated to sample #15 in the ViDi dataset, together with the ground-truth annotations (top),
model outputs for the granular setting (in the middle), and model outputs for the global alignment setting (at the
bottom), when providing the image in the left as the first input to the model.
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Difference Category % in annotations % in image pairs

Attribute 42.8 95.5
Object 28.6 80.0
Count 12.5 49.0

Symbolic 9.4 31.0
Spatial Relation 6.8 29.5

Table 3: Distribution of difference categories in the ground truth descriptions. The columns correspond to the
percentage of sentences per category, and the percentage of image pairs, containing at least one sentence of each
category.

D Analysis of Results by Difference Category597

With the goal of improving the understanding of the model’s responses, we used an LLM to classify each598

ground truth difference description into a predefined set of change types. The chosen categories are as599

follows: Object (presence/absence), Attribute, Count, Spatial Relation (position/direction), and Symbolic600

(textual/conceptual). The classification was performed by employing Llama 3.3 70B, instructed with the601

following prompt that features a definition for each of the classes. Upon manual examination of a sample602

of sentences featuring 178 instances, we estimate the classification accuracy to be around 86%.603

Category Classification Prompt:

The input sentence represents a description of one difference detected between pairs of images. Your task is to classify
the sentence into one of the following categories:

Object - Refers to the presence or absence of an object in the scene. This includes cases where an object appears in one
image but is missing in the other (e.g. "a tree is present in one of the images but absent in the other.").

Attribute - Describes a change in the characteristics of an object, such as its color, texture, size, shape, or material (e.g.
"the car is red in one of the images and blue in the other.").

Spatial Relation - Captures differences in the position, orientation, or arrangement of objects relative to each other or
within the scene (e.g. "the chair is near the table in one of the images but far from it in the other.").

Count - Refers to a change in the number of instances of an object or group of objects in the scene (e.g. "there are three
apples in one of the images but only two in the other.").

Symbolic - Refers to changes in the meaning, purpose, or interpretation of an object. These differences may involve
symbols, text (e.g. "the sign reads ’Stop’ in one of the images and ’Yield’ in the other.").

Show only the category name.
Sentence: <sentence>

604

Table 3 provides a summary of the classification results, detailing the percentage of sentences linked to605

each category, and the percentage of instances with at least one sentence in that category. Attribute and606

object differences are the most prevalent. Conversely, spatial relation and symbolic differences occur less607

frequently in the annotations, but are present in at least 29.5% of the dataset instances.608

Table 4 present the CIDEr score for each of the considered models in the granular alignment scenario,609

along with the percentage of instances where the model response achieves the highest CIDEr score for a610

ground truth sentence of each difference category, averaged across both image orderings. InternVL2.5-78B611

showed the best performance in the task, and distinguishes itself describing many attribute changes, at the612

same time seldom reporting spatial relation changes. The reasoning model LLaVA-CoT achieved a similar613

performance to InternVL2.5-78B, distinguishing itself in describing count changes. MiniCPM-V-2.6614

registered a poor CIDEr score, mostly describing object category differences. Phi3.5 Vision and NVLM-615

D-72B had a similar performance. LLAVA-OV-72B only stands out as better at producing symbolic616

differences, while Llama-3.2-90B generated more spatial relation differences compared to other models,617

albeit having a low CIDEr score.618

Additionally, in Table 5 we present the CIDEr score when we prompt the model with a few-shot619
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%
Model CIDEr Object Attribute Count Spatial Relation Symbolic

Phi3.5 Vision 6.9 32.0 41.7 7.5 7.0 11.8
MiniCPM-V-2.6 0.0 40.3 40.3 6.3 8.1 5.0
LLaVA-CoT 12.4 28.9 45.2 10.2 5.5 10.2
NVLM-D-72B 7.9 33.2 40.2 8.8 7.2 10.6
LLAVA-OV-72B 15.7 29.6 42.5 8.0 6.5 13.6
InternVL2.5-78B 17.2 29.0 45.6 8.2 5.8 11.3
Llama-3.2-90B 3.2 33.1 41.0 8.3 8.7 8.8

Table 4: Model performance in terms of CIDEr scores for the granular alignment setting, along with the percentage
of instances where the highest score value corresponds to each difference category.

instruction that was derived from the prompt template used in the main experiments. The specific prompt 620

is presented above. Particularly, the instruction includes, in context, all but one of the differences of the 621

corresponding image pair, and we executed multiple evaluations with each instance, in order to cover all 622

possibilities as the missing difference that should be identified. This approach helps the model adhere 623

to the annotation style and facilitates the clear identification of differences that the model perceives or 624

is unable to recognize. The models NVLM-D-72B and LLAVA-OV-72B generally perform the best 625

across categories, and the larger models tend to perform better than the smaller ones. Category-wise, 626

the attribute differences are more easily perceived by most models, with high scores by the NVLM- 627

D-72B and InternVL2.5-78B models. The higher performance score of the LLAVA-OV-72B model in 628

object differences supports its suitability for detection tasks. The lower performance score of the count 629

differences category suggests that this is a more challenging task, and inherently the reasoning-based 630

approach of the LLaVA-CoT model seems to be beneficial. We reviewed the LLaVA-CoT outputs and 631

confirmed that the reasoning sequence is homogeneous, starting with an interpretation of the user prompt 632

followed by an image caption section, then a planning section that highlights what the model identifies 633

as meaningful to fulfill the task, and finally a conclusion, but lacking backtracking and self-validation. 634

Despite using this strategy, the model often produces confabulations, including errors in the planning 635

section that propagate to the final answer. The model also elaborates much more on the interpretation of 636

the input prompt, instead of the interpretation of the images and their differences. Finaly, the symbolic 637

differences category shows the most variability between models. 638

Few-shot Prompt:

<image>
<image>
This is a list of differences between these two images:

Difference annotation example 1
Difference annotation example 2
...

Describe one missing difference between the two images.
Use one sentence that adheres to the following guidelines:

Identify the main subject/object of the change;
Describe its location relative to other objects or within the image (e.g., using directional terms and nearby reference
points);
State what has specifically changed (e.g., color variation, quantity difference, presence/absence, or text modification);
Describe both versions of what has changed, separated by the word "or" (e.g., "red or blue", "5 or 7", or "facing up or
looking down").

Present the difference as a single individual English sentence, without any additional context.
Do not reference explicitly which image shows which version of the change/subject/object.

639
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Model (All categories) Object Attribute Count Spatial Relation Symbolic

Phi3.5 Vision 18.8 17.4 22.8 16.5 17.6 13.1
MiniCPM-V-2.6 5.5 6.8 5.3 4.1 7.3 5.8
LLaVA-CoT 20.9 18.5 24.6 22.9 19.4 16.5
NVLM-D-72B 38.1 23.4 37.4 21.2 22.9 26.3
LLAVA-OV-72B 31.1 27.8 35.5 19.8 28.4 37.2
InternVL2.5-78B 31.1 27.3 37.4 22.4 26.4 34.3
Llama-3.2-90B 11.8 8.9 14.6 10.6 16.2 13.8

Table 5: Model performance in terms of CIDEr scores in the few-shot evaluation setting.
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